Automated Generation of Scientific Workflow Generators with W{Chef

Taind Coleman®, Henri Casanova®, Rafael Ferreira da Silva®®*

“University of Southern California, Department of Computer Science, Los Angeles, CA, USA
b Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA
“National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Scientific workflow applications have gained significant importance, and their automated and efficient execution on large-scale
computing platforms has been the subject of extensive research and development. For these efforts to be successful, a solid experi-
mental methodology is needed to evaluate workflow algorithms and systems. A foundation for this methodology is the availability
of realistic workflow instances. Although public repositories provide workflow instances for a few scientific applications, these are
limited in scope, and workflow instances are not available for all application scales of interest. To address this limitation, previous
work has developed generators of synthetic workflow instances of arbitrary scales. Despite being popular, the implementation of
these generators is a manual and labor-intensive process that requires expert application knowledge. As a result, these generators
only target a handful of applications, even though there are hundreds of workflow applications in production.

We introduce WfChef, a fully automated framework for constructing a synthetic workflow generator for any scientific applica-
tion. Based on an input set of workflow instances for a particular application, WfChef automatically produces a synthetic workflow
generator. To measure the realism of the generated workflows, we define and evaluate several metrics. Using these metrics, we com-
pare the realism of the workflows generated by WfChef generators to that of the workflows generated by the previously available,
hand-crafted generators. We find that WfChef generators not only require zero development effort (because they are automatically
produced), but also generate workflows that are more realistic than those generated by hand-crafted generators.

Keywords: Scientific Workflows, Synthetic Workflow Generation, Workflow Management Systems, Workflow Pattern Detection,
Automatic Workflow Generation, Realistic Synthetic Workflow Instance

1. Introduction The automated execution of workflows on these platforms have
been the object of extensive research and development, as seen
in the number of proposed workflow resource management and
scheduling approache and the number of developed work-
flow systems (a self-titled “incomplete” list [4]] points to 300+
distinct systems, although many of them are no longer in use).
Thus, in spite of workflows and workflow systems being used
in production daily, workflow computing is an extremely ac-
tive research and development area, with many remaining chal-
lenges [3L 1516, [7]].

Addressing these challenges requires a solid experimental
methodology for evaluating and benchmarking workflow algo-
rithms, platforms, and runtime systems [8]. This methodology
requires sets of representative workflow instances. One ap-
proach is to extract workflow structures from real-world exe-
cution logs, as we have done in previous work [9}10]. This has
resulted in a repository that hosts ~20 workflow instances for
each of several scientific applications [11]. These instances can
be and have been used by researchers for analyzing the structure

In the past several decades, scientific workflows have sup-
ported some of the most significant discoveries [1]] in an abun-
dance of scientific domains. Many computationally intensive
scientific applications have been framed as scientific workflows
that execute on various compute platforms and at various plat-
form scales [2]. Scientific workflows are typically described
as Directed Acyclic Graphs (DAGs) in which vertices represent
tasks and edges represent dependencies between tasks, as de-
fined by application-specific semantics. As workflows continue
to be adopted by scientific projects and user communities, they
are becoming more complex. Today’s production workflows
can be composed of millions of individual tasks that execute
for milliseconds to hours, and that can be single-threaded pro-
grams, multi-threaded programs, tightly coupled parallel pro-
grams (e.g., MPI programs), or loosely coupled parallel pro-
grams (e.g., MapReduce jobs), all within a single workflow [3]].

*Corresponding address: Oak Ridge National Laboratory, P.O. Box 2008,
Oak Ridge, TN, USA 37831

*“*This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-
AC05-000R22725 with the US Department of Energy (DOE). The publisher acknowl-
edges the US government license to provide public access under the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Email addresses: tgcolema@usc.edu (Taind Coleman),

henric@hawaii.edu (Henri Casanova), silvarf@ornl.gov (Rafael
Ferreira da Silva)

Preprint submitted to Future Generation Computer Systems

of scientific workflow applications, for identifying commonali-
ties across these applications, for providing workflow instances
as input to simulators of workflow executions developed using

The IEEE Xplore digital database includes 117 and 92 articles with both
the words “Workflow” and “Scheduling” in their title for 2021 and 2022, re-
spectively.

April 17, 2023

http://energy.gov/downloads/doe-public-access-plan

various simulation frameworks, which in turn makes it possible
to evaluate Workflow Management Systems (WMSs) designs
and the scheduling and resource management algorithms im-
plemented in these systems using realistic workflow configura-
tions.

Real workflow instances are, by definition, representative
of real applications. However, they are limited in number and
scope, and creating new real instances requires significant time,
resources, and expertise. To overcome this limitation, in pre-
vious work we have developed tools for generating synthetic
workflows by extrapolating the patterns seen in real workflow
instances. The work in [9] presents a synthetic workflow gen-
erator for four workflow applications, which has been used ex-
tensively by researcher The method for generating the syn-
thetic workflows was ad-hoc and based on expert knowledge
and manual inspection of real workflow instances. Our more
recent generator in [10] improves on the previous generator
by using information derived from statistical analysis of ex-
ecution logs. It was shown to generate more realistic work-
flows than the earlier generator, and in particular to preserve
key workflow features when generating workflows at different
scales [10]. The main drawback of these two generators is
that implementing the workflow generation procedure is labor-
intensive. Generators are manually crafted for each application,
which not only requires significant development effort (several
hundreds of lines of code) but also, and more importantly, ex-
pert knowledge about the scientific application semantics that
define workflow structures. As a result, this approach is not
scalable if synthetic workflow instances are to be generated for
a large number of scientific applications.

We introduce WfChef , a framework that automates the pro-
cess of constructing a synthetic workflow generator for any given
workflow application. WfChef takes a set of real workflow in-
stances as input and outputs the code of a synthetic workflow
generator for that application. By analyzing the task graphs of
the real workflows, WfChef identifies subgraphs that represent
fundamental task dependency patterns. It then uses this infor-
mation, along with task type frequencies, to generate a synthetic
workflow generator that can create realistic synthetic workflow
instances with an arbitrary numbers of tasks. In this work, we
evaluate the realism of the synthetic workflows generated by
WI{Chef, both in terms of workflow structure and execution be-
havior. Note that WfChef is a core module of a larger frame-
work called WfCommons [12]], but it also has standalone value.
For example, in [13]], WfChef was used standalone to gener-
ate synthetic workflow instances to augment the training set for
GCNScheduler, a novel machine learning approach to work-
flow scheduling on heterogeneous networks. Specifically, this
work makes the following contribution

1. We describe the overall architecture of WfChef and the

algorithms it uses to analyze real workflow instances and
produce a workflow generator;

2To date, 350+ bibliographical references to the research article and/or the
software repository’s URL.

3 A preliminary shorter version of this paper appears in the proceedings of
the 2021 IEEE eScience Conference [[14].

2. We quantify the realism of the generated workflows when
compared to real workflow instances, in terms of abstract
graph similarity metrics and of the realism of simulated
workflow executions;

3. We compare the realism of the generated workflows to
that of the workflows generated by the original workflow
generator in [9] and by the more recent generator in [10]];

4. We show that for complex scientific workflows using only
a fraction of the real workflow instances available still
yields realistic synthetic instances, in addition to being
significantly faster;

5. Our key finding is that the generators automatically pro-
duced by W{Chef lead to equivalent or improved (often
vastly) results when compared to the previously avail-
able, manually implemented, workflow generators.

6. We implemented W{Chef as part of an open source frame-
work [[12]] that provides foundational tools for scientific
workflow research and development, and that has already
supported 10+ research articles.

2. Related Work

Scientific workflow configurations, both inferred from real-
world executions and synthetically generated, have been used
extensively in the workflow research and development com-
munity, in particular for evaluating resource management and
scheduling approaches. As scientific workflows are typically
represented as Directed Acyclic Graphs (DAGs), several tools
have been developed to generate random DAGs, based on spec-
ified ranges of values for various parameters [15} [16} 17} [18].
For instance, DAGGEN [15] and SDAG [16] generate random
DAGs based on parameters such as the number of tasks, the
width, the edge density, the maximum number of levels that
can be spanned by an edge, the data-to-computation ratio, etc.
Similarly, DAGEN [17] generates random DAGs, but does so
for parallel programs in which the task computation and com-
munication payloads are modeled according to classic paral-
lel programs. DAGITIZER [18] is an extension of DAGEN
for grid workflows where all parameters are randomly gener-
ated. Although these generators can produce a very diverse set
of DAGs, these DAGs may not resemble those found in actual
scientific workflows as they do not capture patterns defined by
application-specific semantics.

An alternative to random generation is to generate DAGs
based on the structure of real workflows for particular scientific
applications. In [19], over forty workflow patterns are iden-
tified for addressing business process requirements (e.g., se-
quence, parallelism, choice, synchronization, etc.). Although
several of these patterns can be mapped to some extent to struc-
tures that occur in scientific workflows [20]], they do not fully
capture these structures. In particular, they do not necessarily
respect the ratios of different types of particular workflow tasks
in these structures. This is important because a workflow struc-
ture is not only defined by a set of vertices and edges, but also
by the task type (e.g., an executable name) of each vertex. The
work in [21] focuses on identifying workflow “motifs” based
on observing the data created and used by workflow tasks so as

to reverse-engineer workflow structures. These motifs capture
workflow (sub-)structures, and can thus be used for automated
workflow generation. Unfortunately, identifying these motifs
is an arduous manual process [21]. In our previous work [9],
we developed a tool for generating synthetic workflow config-
urations based on real-world workflow instances. Although the
overall structure of generated workflows was reasonably realis-
tic, we found that workflow execution (simulated) behavior was
not (see [10] and also results in Section [5.3). In [10], we de-
veloped an enhanced version of that earlier generator in which
task computational loads are more accurately captured by using
statistical methods. As a result, the generated synthetic work-
flows are more realistic. While the task computational load
characterization is automated, the DAG-generation procedure
is labor-intensive because generators are manually crafted and
rely on expert knowledge of the workflow application. Identify-
ing workflow patterns/structures to generate synthetic workflow
instances has several applications, a crucial one being bench-
marking. Task Bench [22]] is a parameterized benchmark de-
signed to assess the performance of distributed programming
systems. Task Bench offers a number of sample task graphs
(workflows) that represents some of the most common patterns
found in workflow applications. But real workflow applica-
tions, although they do include some of these patterns, typically
combine them in complex structures, and capturing these struc-
tures to generate realistic task graphs is challenging.

All above works attempt to generate synthetic workflow in-
stances that are representative of real-world workflows, so as
to enable research and development activities, including bench-
marking. The goal of this work is to automate synthetic work-
flow instance generation. Automatic (non-synthetic) workflow
instance generation has been proposed to help users translate
their conceptual workflows into concrete workflows that can be
executed with some target runtime system, or Workflow Man-
agement System (WMS). This is movitaged by the fact that
there is a large number of such systems, that users may want to
use multiple such systems, and that doing so is labor-intensive.
The work in [23] proposes a tool, wfGenes, by which a user
constructs an abstract workflow description. This abstract de-
scription is then translated into a workflow description in the
format of some target WMS, and then validated against the
workflow description schema provided by that WMS. This ap-
proach has been used for real-world HPC use cases to gener-
ate workflows that are executable with two distinct production
WMSs. The work in [23] is orthogonal but complementary to
this work. While wfGenes does not generate synthetic work-
flow instances, the synthetic workflow instances produced by
the approach proposed in this work could be provided as input
to wfGenes so as to produce workflows that can be executed
with a range of WMSs.

To the best of our knowledge, this is the first work that
attempts a completely automated synthetic workflow genera-
tion approach (automated analysis of real workflow instances
to drive the automated generation of synthetic workflows). Our
approach makes it straightforward to generate synthetic work-
flows at arbitrary scales that are representative of real workflow
instances for any workflow application. These synthetic work-

flows are key for supporting the development and evaluation
of workflow algorithms. Also, they can provide a fundamental
building block for the automatic generation of workflow appli-
cation skeletons [24], which can then be used to benchmark
workflow systems [23]].

3. Problem Statement

In this paper, we focus on the automated generation of gen-
erators that aim to capture the overall structure of workflows,
including task dependencies and the task graph. The primary
goal of these generators is to facilitate the evaluation of sci-
entific workflow systems and optimization techniques without
the need to deploy complex applications and their software de-
pendencies. Generating synthetic workflows that resemble real-
world workflows makes it possible to broaden the scale and the
scope of research and development activities that target work-
flow applications, platforms, systems, and algorithms.

Consider a scientific application for which a set of real work-
flow instances, W, is available. Each workflow w in W is a
DAG, where the vertices represent workflow tasks and the edges
represent task dependencies. In this work, we only consider
workflows that comprise tasks that execute on a single compute
node — i.e., tasks are not parallel jobs (which is the case for a
large number of scientific workflow applications [3} 2} 26, 127]).
More formally, w = (V, E), where V is a set of vertices and E
is a set of directed edges. We use the notation |w| to denote the
number of vertices in w (i.e., [w| = |V|). We assume that each
workflow has a single entry vertex and a single exit vertex (for
workflows that do not we simply add dummy entry/exit vertices
with necessary edges to all actual entry/exit vertices). Finally,
a type is associated to each vertex v, denoted as type(v). This
type denotes the particular computation that the corresponding
workflow task must perform. In this work, we consider work-
flows in which every task corresponds to an invocation of a par-
ticular method or executable, and we simply define a vertex’s
type as the name of that method or executable. Several tasks in
the same workflow can thus have the same type.

Problem Statement — Given W, the objective is to produce the
code for a workflow generator that generates realistic synthetic
workflow instances. This workflow generator takes as input an
integer, n > min,ey (|w|). It outputs a workflow w’ with n’ > n
vertices that is as realistic as possible. n’ may not be equal to
n because real workflows for most scientific applications can-
not be feasibly instantiated for arbitrary numbers of tasks. Our
approach guarantees that n’ is the smallest feasible number of
tasks that is greater than n.

We use several metrics to quantify the realism of the gener-
ated workflow. Consider a workflow generated with the work-
flow generator, w’, and a real workflow instance with the same
number of vertices, w. The realism of workflow w’ can be quan-
tified based on DAG similarity metrics that perform vertex-to-
vertex and edge-to-edge comparisons (see Section [5.2). The
realism can also be quantified based on similarity metrics com-
puted between the logs of (simulated) executions of workflows
w and w’ on a given compute platform (see Section|5.3).

4. The WfChef Approach

In this section, we describe our approach, WfChef. In Sec-
tion[d.T} we define particular sub-DAGs in a set of workflow in-
stances. Algorithms to detect these sub-DAGs and to use them
for synthetic workflow generation are described in Section[4.2]
Finally, in Section f.3] we briefly describe our implementation
of WfChef.

4.1. Pattern Occurrences

The basis for our approach is the identification of particular
sub-DAGS in workflow instances for a particular application.
Let us first define the concept of a type hash:

Definition 1 (Type hash). Given a workflow vertex v, we de-

fine its top-down hash, T D(v), recursively as the following string.

Consider the lexicographically sorted list of the unique top-
down hashes of v’s successors. TD(®) is the concatenation of
these top-down hashes and of type(v). We define v’s bottom-up
hash, BU(v), similarly, but considering predecessors instead of
successors. Finally, we define v’s type hash, TH(v), as the con-
catenation of TD(v) and BU (v).

Figure[I]is an example for a simple 9-task workflow, where
TD, TU, and TH strings are shown for each vertex. The type
hash of each vertex in a workflow encodes information regard-
ing the vertex’s role in the structures and sub-structures of the
workflow. From now on, we assume that each vertex is anno-
tated with its type hash. Given a workflow w, we define the type
hash of w, denoted as TH(w), as the set of unique type hashes
of w’s vertices. TH(w) can be computed in O(|w|? log(|w])). We
must calculate 7D and BU hashes for all vertices because they
can have the same T'D and different BU, and vice-versa.

The basis of our approach is the observation that, given a
workflow, sub-DAGs of it that have the same type hash are rep-
resentative of the same application-specific pattern (i.e., groups
of vertices of certain types with certain dependency structures,
but not necessarily the same size). We formalize the concept of
a pattern occurrence as follows:

Definition 2 (Pattern Occurrence (PO)). Given a set of work-
flow instances for an application W, a pattern occurrence is a
DAG po such that:
e po is a sub-DAG of at least one workflow in W;
o There exists at least one workflow in W with two sub-
DAGs g’ and g” such that:
— ¢ and g" are disjoint;
- TH(g') =TH(g") = TH(po);
— Any two entry, resp. exit, vertices in g’ and g’ that
have the same type hash have the exact same par-
ents, resp. children.

Figure |2 shows an example workflow, where vertex types
are once again indicated by colors. Based on the above def-
initions, this workflow contains 6 POs, each shown within a
rectangular box. The two POs in the red boxes have the same
type hash, and we say that they correspond to the same pattern.
But note that although they correspond to the same pattern, they

do not have the same number of vertices. POs can occur within
POs, as is the case for the POs in the green boxes in this exam-
ple. Note that a sub-DAG of the rightmost POs (the three-task
PO in the red box) has the same type hash as the POs in the
green boxes. In fact, it is identical to those POs (i.e., a blue
vertex followed by a green vertex). But this subgraph is not a
PO because it does not have a common ancestor with any of the
other POs with similar type hashes.

4.2. Algorithms

WfChef consists of two main algorithms, WFCHEFRECIPE
and WFCHEFGENERATE. The former is invoked only once and
takes as input a set of workflow instances for a particular ap-
plication, W, and outputs a “recipe”, i.e., a data structure that
encodes relevant information extracted from the workflow in-
stances. The latter is invoked each time a synthetic workflow
instance needs to be generated. It takes as input a recipe and a
desired number of vertices (as well as a seeded pseudo-random
number generator), and outputs a synthetic workflow instance.
Both these algorithms have polynomial complexity and imple-
ment several heuristics, as described hereafter.

Algorithm 1 Algorithm to compute a recipe based on a set of

real workflow instances.
1: function WrCHerFRECIPE(W)

2: POs « {} > dictionary of POs
3: for each w € W do
4: POs[w] <[] > list of POs in w
5: for each unvisited vertex v in w do
6: mark v as visited
7: v/ = an unvisited vertex s.t. TH(V') = TH(v)
8: if v/ is not found then continue
9: mark V' as visited
10: A = CL0oSESTCOMMONANCESTORS(V,V")
11: D = CLosesTCOMMONDESCENDANTS(V,V")
12: if A = 0 or B = () continue
13: POs[w].append(SusBDAG(v, A, B))
14: POs[w].append(SuBDAG(V', A, B))
15: end for
16: end for
17: Errors « {} > dictionary of errors
18: for each w € W do
19: for each b € W s.t. |b| < |[w| do
20: g < RepLIcaTEPOs (|w|, b, POs[b], POs[w])
21: Errors[b][w] « Error(w,g)
22: end for
23: end for

24: return new Recipe(W, POs, Errors)
25: end function

WeCHEFRECIPE pseudo-code is shown in Algorithm[I] Lines
2 to 16 are devoted to detecting all POs in W. For each w in W,
the algorithm visits w’s vertices (Lines 5-15). An arbitrary un-
visited vertex v is visited, and another arbitrary unvisited vertex
v’ is found, if it exists, that has the same type-hash as v (Lines 6-
7). If no such V" exists then the algorithm visits another vertex
v (Line 8). Otherwise, it marks v as visited (Line 9) and com-
putes the set of closest common ancestor and successor vertices

TDb := @ + blue = blue
BUb = {BUg1+ BUg2} + blue = red-yellow-red-yellow-green- red-yellow-red-yellow-red-pink-green-blue
THb := TDb + BUb = blue-red-yellow-red-yellow-green- red-yellow-red-yellow-red-pink-green-blue

TDg1 := {TDb} + green = blue-green
BUg1 = {BUy1+ BUy2} + green = red-yellow-red-yellow-green
THg1:= TDbg1+ BUg1= blue-green-red-yellow-red-yellow-green

TDg2 := {TDb} + green = blue-green
BUg2 ={BUy1+ BUy2 + BUp} + green = red-yellow-red-yellow-red-pink-green
THg2:= TDbgT+BUg1= blue-green- red-yellow-red-yellow-red-pink-green

TDy3 :={TDg2} + yellow = blue-green-yellow.

TDy1 :={TDg1} + yellow = blue-green-yellow
BUy1 = {BUr} + yellow = red-yellow
THy1:= TDy1+ BUy1= blue-green-yellow-red-yellow

BUy3 = {BUr} + yellow = red-yellow
THy3:= TDy3 + BUy3= blue-green-yellow-red-yellow .= Tpp + BUp= blue-green-pink-red-pink

TDp :={TDg2} + pink = blue-green-pink
BUp = {BUr} + pink = red-pink

OO0 000

TDy2 :={TDg1} + yellow = blue-green-yellow
BUy2 = {BUr} + yellow = red-yellow
THy2:= TDy2+ BUy2= blue-green-yellow-red-yellow

TDy4:={TDg2} +yellow = blue-green-yellow
BUy4 ={BUr} + yellow = red-yellow
THy4:= TDy4 + BUy4= blue-green-yellow-red-yellow

TDr :={TDy1 + TDy2 + TDy3 + TDy4 + TDp} + red = blue-green-yellow-blue-green-yellow-blue-green-yellow-blue-green-pink-red

BUr = {BUr} + @ = red

THr := TDr + BUr = blue-green-yellow-blue-green-yellow-blue-green-yellow-blue-green-pink-red-red

<

Figure 1: Example workflow with 7D, BU, and T H strings shown for each vertex. Vertex types are simply their colors (‘“red”, “green”, “blue”, “yellow”, “pink”)

I

and their identifier is the color plus a number (“greenl”, “green2”,
string concatenation operator.

® O

o
0 oo

Figure 2: Example workflow with 6 POs, shown in rectangular boxes. Boxes
with the same color indicate POs with identical type hashes.

for v and v/ (Lines 10-11). The pseudo-code of the CLOSEST-
ComMMONANCESTORS and CLoSESTCOMMONDESCENDANTS functions
is not shown as they are simple DAG traversals. If v and v’ do
not have at least one common ancestor and one common de-
scendant, then the algorithm visits another vertex v (Line 12).
Otherwise, two POs have been found, which are constructed
and appended to the list of POs that occur in w at Lines 13
and 14. The pseudo-code for function SuBDAG is not shown.
It takes as input a vertex in a DAG, a set of ancestors of that
vertex, and a set of descendants of that vertex. It returns a DAG
that contains all paths from all ancestors to all descendants to
traverse v, but from which the ancestors and descendants have
been removed (along with their outgoing and incoming edges).

Lines 17 to 23 are devoted to computing a set of “errors” re-

yellow1”, “yellow2”, “yellow3”, “yellow4”). 0 denotes the empty string, and + denotes the

sulting from using a particular (smaller) base workflow to gen-
erate a larger (synthetic) workflow. The WfChef approach con-
sists in replicating POs in a base workflow to scale up its num-
ber of vertices while retaining a realistic structure. Therefore,
when needing to generate a synthetic workflow at a particular
scale, it is necessary to choose a base workflow as a starting
point. To provide some basis for this choice, for each w € W,
the algorithm generates a synthetic workflow with |w| vertices
using as a base each workflow in W with fewer vertices than w
(Lines 12-22). The RepLicaTEPOs function replicates POs in a
base workflow to generate a larger synthetic workflow (it is de-
scribed at the end of this section). The error, that is the discrep-
ancy between the generated workflow and w, is quantified via
some error metric (the ERror function) and recorded at Line 21
(in our implementation we use the THF metric described in Sec-
tion[5.2). The way in which these recorded errors are used in
our approach is explained in the description of WFCHEFGENER-
atE hereafter. Finally, at Line 24, the algorithm returns a recipe,
i.e., a data structure that contains the workflow instances (W),
the discovered pattern occurrences (POs), and the above errors
(Errors).

The pseudo-code for WFCHEFGENERATE is shown in Algo-
rithm 2] It takes as input a recipe (rcp) and a desired number of
vertices n. At Line 2, the algorithm determines the workflow in
W that has the numbers of vertices closest to n. This workflow
is called closest. At Line 3, the algorithm finds the workflow
in W that, when used as a base for generating a synthetic work-
flow with |closest| vertices, leads to the lowest error. The intent
here is to pick the best base workflow for generating a syn-
thetic workflow with n vertices. No workflow in W may have

Algorithm 2 Algorithm for generating a synthetic workflow
with n vertices based on a recipe.
1: function WrFCHEFGENERATE(rcp, n)

2: closest < win rcp.W s.t. |lw| — n| is minimum
3: base «— win rcp.W t. rep.Errors[w, closest]
is minimum
4: g < RepLICATEPOs (n, base, rcp.POs[base],
r.POs[closest])
5: return g

6: end function

exactly n vertices. As a heuristic, we choose the best base work-
flow for generating a synthetic workflow with |closest| vertices,
based on the errors computed at Lines 17 to 23 in Algorithm T}
The synthetic workflow is generated by calling function RepLI-
caTePOs at Line 4, and returned at Line 5.

Algorithm 3 Algorithm for replicating POs in a base workflow.
1: function RepLicaTEPOs(n, base, bPOs, cPOs)

2: g « base

3: prob « {} > dictionary of probabilities
4: for each po € bPOs do

5: nc = |{p € cPOs | TH(p) = TH(po)}|

6: tc = |{p € cPOs}|

7: nb =|{p € bPOs | TH(p) = TH(po)}|

8: prob[po] « (nc/tc)/nb

9: end for
10: while |g| < n do
11: po « sample from bPO with distribution prob
12: g < AppPO(g, po)
13: end while
14: return g

15: end function

The pseudo-code for RepLIcATEPOs is shown in Algorithm 3]
It takes as input a desired number of vertices (n), a base work-
flow (base), the list of POs in the base workflow (bPOs), and
the list of POs in the workflow whose number of vertices is
the closest to n (cPOs). The intent is to replicate POs in the
base workflow, picking which pattern to replicate based on the
frequency of POs for that pattern in the closest workflow. At
Line 2, the algorithm first sets the generated workflow to be the
base workflow. Lines 4-9 are devoted to computing a proba-
bility distribution. More specifically, for each PO in bPOs, the
algorithm computes the probability with which this PO should
be replicated. Given a PO in bPOs, nc is the number of POs
for that same pattern in cPOs (Line 5) and fc is the total num-
ber of POs in cPOs. Thus, nc/tc is the probability that a PO
in cPOs is for that same pattern. nb is the number of POs in
bPOs for that same pattern (Line 7). The probability of pick-
ing one of these POs in bPO for replication is thus computed as
((nc/tc)/nb) (Line 8). Note that this probability could be zero
since nc could be zero. The algorithm then iteratively adds one
PO from the base graph to the generated graph (while loop at
Lines 10 to 13). At each iteration, a PO po in bPO is picked
randomly with probability prob[po] (Line 11), and this pattern
is added to g (Line 12). The function AppPO operates as fol-

lows. Given a workflow, g, and a to-be-added PO, po, for a
specific pattern, it: (i) randomly picks in g one existing PO for
that same pattern, po’; (ii) adds po to the workflow, connect-
ing its entry, resp. exit, vertices to the parent, resp. children,
vertices of the corresponding entry, resp. exit, vertices of po’.

The pseudo-code in this section is designed for clarity. Our
actual implementation, described in the next section, is more
efficient and avoids all unnecessary re-computations (e.g., the
probabilities computed in WFCHEFGENERATE).

4.3. Implementation

We have implemented WfChef as part of a scientific work-
flow framework, WfCommons [12]], which provides a collec-
tion of tools for analyzing workflow executions, for producing
generators of synthetic workflows, and for simulating workflow
executions. WfChef has been distributed as a core Python mod-
ule of WfCommon since version v0.6 and has already sup-
ported 10+ research articles. Specifically, the wfchef module
defines a Recipe class. The constructor for that class takes
as input a list of workflow instances and implements algorithm
WECHErFRECIPE. The workflow instances are provided as files in
the WfCommons JSON forma The class has a public method
duplicate that implements the WFCHEFGENERATE algorithm,
and a private method duplicate_nodes that implements the
RepLICATEPOs algorithm. WfCommons distribution packages
provide a set of pre-computed recipes generated with WfChef,
which are produced based on the set of workflow instances
collected, curated, and distributed as part of the WfCommons
framework. Users also have the option to generate their own
recipes using WfChef’s methods and their own set of workflow
instances.

5. Experimental Evaluation

In this section, we evaluate our approach and compare it
to previously proposed approaches. In Section[5.1] we describe
our experimental methodology. We evaluate the realism of gen-
erated workflows based on their structure, in Section and
based on their simulated execution, in Section[5.3]

5.1. Methodology

We compare the realism of the synthetic instances gener-
ated by WfChef generators to that of instances generated with
the original workflow generator in [9], which we call Work-
flowGenerator, and with the more recent generator proposed
in [[10]], which we call WorkflowHub. Recall that both Work-
flowGenerator and WorkflowHub are hand-crafted, while W{fChef
generators are automatically produced.

We consider workflow instances from four scientific ap-
plications: (i) Epigenomics, a bioinformatics workflow [28];
(ii)) Montage, an astronomy workflow [29]; (iii) Cycles [30],
an agriculture workflow; and (iv) Blast [31]], a bioinformatics
workflow.

“https://github.com/wfcommons/wfcommons
Shttps://github.com/wfcommons/workflow-schema

https://github.com/wfcommons/wfcommons
https://github.com/wfcommons/workflow-schema

We choose Montage and Epigenomics because they are well-
known and widely used in production. Additionally, both Work-
flowGenerator and WorkflowHub can generate synthetic work-
flow instances for these applications, making it possible to com-
pare our approach to previous work. Note that both these previ-
ously proposed generators support several scientific workflow
applications. However, the only ones they have in common are
Epigenomics and Montage. Two other applications are sup-
ported by WorkflowGenerator and WorkflowHub, but the work-
flow structures generated by WorkflowGenerator do not match
that seen in the real workflows. While it may be that the gen-
erator was inherently flawed, the most likely reason is that the
applications have evolved while the generator has not been up-
dated. The synthetic workflows it produces have structures very
different from that seen in the workflows generated by the latest
version of these applications, making comparisons to synthetic
workflows generated by WorkflowHub or WfChef meaningless.
Note that this need to manually update workflow instance gen-
erators to track updates in the application is precisely one of
the motivations behind WfChef. That is, W{fChef fully elimi-
nates application version dependency by automatically gener-
ating generators and using real instances as a basis for synthetic
workflows. Finally, despite not being supported by Workflow-
Generator, we included Cycles for its simpler structure when
compared to Montage and Epigenomics, and Blast, a bioinfor-
matics workflow, to have a larger set of representative applica-
tions.

Our ground truth consists of real Montage, Epigenomics,
Blast, and Cycles workflow instances. These instances are pub-
licly available on the WorkflowHub repository [10]. They were
obtained based on logs of application executions with the Pe-
gasus [32] and Makeflow [31] workflow management systems
on the Chameleon academic cloud testbed [33]. Specifically,
we consider 15 Montage workflow instances with between 60
and 9,807 tasks, 26 Epigenomics workflow instances with be-
tween 43 and 1,697 tasks, 24 Cycles workflow instances with
between 69 and 6,545 tasks, and 15 Blast workflow instances
with between 45 and 305 tasks.

We generate synthetic workflow instances with the same
number of tasks as real workflow instances, so as to compare
synthetic instances to real instances. Both WorkflowGenera-
tor and WorkflowHub encode application-specific knowledge
to produce synthetic workflow instances for any desired num-
ber of tasks, n. Instead, WfChef generators rely on training
data, i.e., real workflow instances. We use a simple “training
and testing” approach. That is, for generating a synthetic work-
flow instance with n tasks, we invoke WrCHEFREcIPE with all
real workflow instances with < n tasks. For instance, say we
want to use WfChef to generate an Epigenomics workflow with
127 tasks. We have real Epigenomics instances for 75, 121, and
127 tasks. We invoke WFCHEFRECIPE with the 75- and 121-tasks
instances to generate the recipe. We then invoke WFCHEFGEN-
ERATE, passing to it this receipt and asking it to generate a 127-
tasks instance. In Section [6] we evaluate how the accuracy of
the generated workflows is impacted by reducing the number of
real workflow instances used for training.

5.2. Evaluating the Realism of Synthetic Workflow Structures

We use two graph metrics to quantify the realism of gener-
ated workflows, as described hereafter.

Approximate Edit Distance (AED) — Given a real workflow
instance w and a synthetic workflow instance w’, the AED met-
ric is computed as the approximate number of edits (vertex re-
moval, vertex addition, edge removal, and edge addition) nec-
essary so that w = w’, divided by |w|. Lower values include
a higher similarity between w and w’. We compute this met-
ric via the optimize_graph_edit_distance method from the
Python’s NetworkX package. Note that NetworkX also pro-
vides a method to compute an exact edit distance, but its com-
plexity is prohibitive for the size of the workflow instances we
consider. Even though the AED metric can be computed much
faster, because it is approximate, we were able to compute it
only for workflow instances with 865 or fewer tasks for Epige-
nomics, 750 or fewer tasks for Montage, 664 or fewer tasks
for Cycles, and 45,105 or 305 tasks for Blast. This is because
of RAM footprint issues (despite using a dedicated host with
192 GiB of RAM).

Figure 3| shows AED results for (a) Epigenomics, (b) Mon-
tage, (c) Blast, and (d) Cycles workflow instances, for WfChef,
WorkflowGenerator, and WorkflowHub. (Note that results for
Blast and Cycles are not shown for WorkflowGenerator as it
cannot not produce workflow instances for these applications.)
WorkflowHub and W{Chef use randomization in their heuris-
tics. Therefore, for each number of tasks we generated 10 sam-
ple synthetic workflows with each tool. The heights of the lines
in Figure [3|correspond to average AED values, and we show er-
ror bars that represent the range between the third quartile (Q3)
and the first quartile (Q1), in which 50 percent of the results
lie. Error bars also show minimum and maximum values. Error
bars, minimum, and maximum values are not shown for Work-
flowGenerator as it generates synthetic workflow structures de-
terministically.

The key observation in Figure [§] is that WfChef leads to
lower average AED values than its competitors in most cases.
For Epigenomics, WorkflowGenerator leads to the worst results
for all workflow sizes, being significantly outdone by Work-
flowHub. WorkflowHub is itself outperformed by WfChef for
all workflow sizes. On average, over all Epigenomics instances,
WorkflowGenerator, WorkflowHub, and W{Chef lead to an AED
of 2.039, 1.473, and 1.086, respectively. For Montage work-
flows, WorkflowGenerator outperforms WorkflowHub for all
instances, and both are outperformed by WfChef. On average,
the AED over all Montage instances is 1.694 for Workflow-
Generator, 2.216 for WorkflowHub and 1.111 for W{Chef. For
Blast workflows, W{Chef lead to a nearly zero AED, which
is mostly due to the simple structure of the workflow, i.e., a
single initial task which outputs are consumed by tasks repre-
senting a fan-out PO, which results are merged by two indepen-
dent tasks. WorkflowHub, however, does not properly capture
that larger instances of the workflow are defined by increas-
ing the number of tasks in the fan-out PO. For Cycles work-
flows, both WfChef and WorkflowHub lead to similar AEDs for
large instances, however WorkflowHub fails to capture work-

epigenomics WorkflowGenerator - - WorkflowHub —WfChef

9 o o

° & D) P R IR o
I S A SR QA AR I S
#tasks

(a)
WorkflowGenerator -- WorkflowHub —WfChef

Approximate Edit Distance (AED)

montage

45
4
3.5

Approximate Edit Distance (AED)
~

N _z O ")
@ Y o & A2
#tasks

(b)

- WorkflowHub - WfChef

o =4
=) =}
G &

o
o
=

o
o
N

Approximate Edit Distance (AED)
o o
o o
2 e
‘

o

© g
#tasks
©

cycles - WorkflowHub - WfChef

12

1

Approximate Edit Distance (AED)
o
>

D Yl > 9 N 9 el
© P © I o & & &
#tasks

(d)

Figure 3: AED for (a) Epigenomics, (b) Montage, (c) Blast, and (d) Cycles
workflows instances. Lines are average values. Error bars show the range be-
tween the third quartile (Q3) and the first quartile (Q1), and minimum and max-
imum values as black dots.

flow structure specifics for smaller instances. In this particular
case, WorkflowHub attempts to generate more occurrences of
a macroscopic PO instead of increasing the number of tasks in
existing fan-in and fan-out patterns.

The good results obtained by WfChef are due to it being
able to generate instances that are closer in size and that are
more faithful to real workflow instances. Note that the AED
metric values are quite high overall, often above 1 (except for
Blast). Although the synthetic instances may have a structure
that is overall similar to that of the real instances, making the

two workflows absolutely identical requires a large number of
edits. For this reason, hereafter we present results for a second
metric.

Type Hash Frequency (THF) — Given a real workflow instance
w and a synthetic workflow instance w’, the THF metric is com-
puted as the Root Mean Square Error (RMSE) of the frequen-
cies of vertex type hashes. Recall from Definition [I] that the
type hash of a vertex encodes information about a vertex’s type
but also the types of its ancestors and successors. Therefore,
the more similar the workflow structure and sub-structures, the
lower the THF metric.

Figure [4] shows THF results for (a) Epigenomics, (b) Mon-
tage, (c) Blast, and (d) Cycles. More results are shown than
in Figure [3| since we can evaluate the THF metric for larger
workflow instances. Like in Figure [3| lines represent averages
and error bars, minimum, and maximum values are shown for
WorkflowHub and W{Chef.

Results are mostly in line with AED results. For Epige-
nomics, WorkflowGenerator leads to the worst average results
for all workflow sizes. W{Chef leads to significantly better re-
sults on average than WorkflowHub in all but two cases. For
349- and 423-task workflows, although W{Chef leads to better
average results, error bars for WfChef and WorkflowHub have
a large amount of overlap. Note that the length of the error bars
for the WfChef results show a fair amount of variation, with
short error bars for one workflow size and significantly longer
error bars for the next size up (e.g., going from 265 tasks to 349
tasks). This behavior is due to “jumps” in structure between
workflows of certain scales. In other words, for a given appli-
cation, it is common for smaller workflows to contain only a
subset of the patterns that occur in larger workflows. On aver-
age over all Epigenomics instances, WorkflowGenerator, Work-
flowHub, and W{Chef lead to a THF of 0.097, 0.021, and 0.004,
respectively. For Montage, WorkflowGenerator leads to better
average results than WorkflowHub for all workflow sizes, and
W{Chef leads to strictly better results than its competitors for all
workflow sizes. On average over all Montage instances, Work-
flowGenerator, WorkflowHub, and WfChef lead to a THF of
0.211, 0.252, and 0.040, respectively. For Blast, WfChef leads
to nearly zero THF values, though WorkflowHub also leads to
very small values. For Cycles, WfChef significantly outper-
forms WorkflowHub, with average THF of 0.01 and 0.15, re-
spectively. This indicates that WfChef can capture most pat-
terns expressed in Cycles workflows.

We conclude that generators produced by W{Chef gener-
ate synthetic workflow instances with structures that are sig-
nificantly more realistic than that of workflows generated by
WorkflowGenerator and WorkflowHub.

5.3. Evaluating the Accuracy of Synthetic Workflows

Synthetic workflow instances are typically used in the liter-
ature to drive simulations of workflow executions. A pragmatic
way to evaluate the realism of synthetic workflow instances is
thus to quantify the discrepancy between their simulated execu-
tions to that of their real counterparts, for executions simulated

epigenomics WorkflowGenerator -- WorkflowHub —WfChef

™y
£ o1
T 0.08
2
E]
3006
o
w 0.04
G
3 0.02
ey
L o
>
ODDN DD DO ONDANDNDODO PO OO DD
. VRN AV 7 AN AT AP O 1 7 B PTG AY A DT P VS
#tasks
(a)
_ montage WorkflowGenerator -- WorkflowHub —WfChef
™
I
F o035 L
> 03 e
> . J
$ 0.25 }1 ————— {L[‘I{} Li 1
% 02 -7 i
I 015
& 01
L oos m
§ 0
S & & A D S > ® R S O @
= N N T M S R I S S\ GRS S O
#tasks
(b)
blast -~ WorkflowHub =~ WfChef
0018
—0.016
£ 0.014
50.012
f=
[
3 0.01
g
X 0.008
% 0,006
w 0.004
£ 0.002
0
o g g
s K Y
#tasks
(©
cycles -~ WorkflowHub = WfChef
0.18
S LN s
__ 016 A R e o G S
.- T) e’ b T
fow -

3 0.12

Type Hash Frequen:
° o o ©

o o o o ©
S 8 & 8 &

%

D DO DD DD IO RO D >N H DD DD D> O > O
© .07 07 A AV AT S Q7 W (9 (©7 QT DA A DR AN L0 N
NI ATV AT TR W @7 6% @ BV O AN o o
#tasks
(@

Figure 4: THF for (a) Epigenomics, (b) Montage, (c) Blast, and (d) Cycles
workflows instances. Lines represent average values. Error bars show the range
between the third quartile (Q3) and the first quartile (Q1), and minimum and
maximum values as black dots.

for the same compute platform using the same Workflow Man-
agement System (WMS). To do so, we use simulators [33]]
of the state-of-the-art Pegasus and Makeflow WMSs.
The simulators are built using WRENCH [36]], a framework for
implementing simulators of WMSs that are accurate and can
run scalably on a single computer. In [37], it was demonstrated
that WRENCH provides high simulation accuracy for workflow
executions using Pegasus and Makeflow. To ensure accurate
and coherent comparisons, all simulation results in this section
are obtained for the same simulated platform specification as

epigenomics Generator ~WfChef -~ WorkflowHub

Makespan Error (%)
S
8

Generator = WfChef - WorkflowHub

Makespan Error (%)
S
8

S >
& N
A« K
#tasks

(b)

~WfChef -~ WorkflowHub

Makespan Error (%)

o

3 o
LS Nb A,)b

#tasks

©

cycles ~WfChef -~ WorkflowHub

© DD XD DD R DD >N D DD DD ;O PO
D7 A AV AT @@Q@@@@@\B@&xw k:bg)v

#tasks

(d)

Figure 5: Makespan error for Epigenomics (a), Montage (b), Blast (c), and
Cycles (d) workflows instances. Points are average values. Error bars show the
range between the third quartile (Q3) and the first quartile (Q1), and minimum
and maximum values as black dots.

that of the real-world platforms that was used to obtain the real
workflow instances (based on execution logs): 4 compute nodes
each with 48 cores on the Chameleon testbed [33]).

We quantify the discrepancies between the simulated execu-
tion of a synthetic workflow instance and that of a real workflow
instance with the same number of vertices, using two metrics.
The first metric is the absolute relative difference between the
simulated makespans (i.e., overall execution times in seconds),
which call makespan error. The second metric is the Root Mean
Square Percentage Error (RMSPE) of workflow task start dates.
The former metric is simpler (and used often in the literature to
quantify simulation error), but the latter captures more detailed
information about the temporal structure of the simulated exe-
cutions.

Figure[5]shows makespan error for synthetic instances gen-
erated by WorkflowGenerator, WorkflowHub, and WfChef, for
(a) Epigenomics, (b) Montage, (c) Blast, and (d) Cycles. Note
that, unlike for the results in the previous section, error values
are shown for WorkflowGenerator. Although it generates work-

flows with deterministic structure, it samples task characteris-
tics (i.e., task runtimes, input/output data sizes) from particular
random distribution. Both WorkflowHub and WfChef do a sim-
ilar sampling, but from distributions determined via statistical
analysis of real workflow instances.

Overall, the execution of synthetic workflows generated by
WorkflowGenerator yield the least accurate makespans. Work-
flowHub and W{Chef lead to better results, with a small ad-
vantage for WorkflowHub for Epigenomics and Montage work-
flows, a small advantage for WfChef for Blast, and a relatively
large advantage for WfChef for Cycles. Over all Epigenomics
instances the average relative differences between makespans
of the real workflow instances and of the synthetic instances
generated by WorkflowGenerator, WorkflowHub, and WfChef
are 75.73%, 15.21%, and 15.50%, respectively. For Montage
instances, these averages are 135.12%, 32.61%, and 25.59%.
For Blast instances, these averages are 0.69% and 0.60% for
WorkflowHub and W{Chef, respectively. Finally, the average
relative differences between makespans for Cycles instances are
22.05% and 8.26%.

Figure [6] shows results for the RMSPE of workflow task
start dates. Here again, we find that the synthetic workflow
instances generated by WorkflowGenerator lead to unrealistic
simulated execution. WorkflowHub and Wf{Chef lead to more
similar results, with a small advantage for WfChef (for Mon-
tage and Blast), and significant advantage for WfChef for Cy-
cles. On average over all Epigenomics instances, the RMSPE
of workflow task completion dates for synthetic Epigenomics
instances generated by WorkflowGenerator, WorkflowHub, and
WAChef are 294.70%, 46.08%, and 40.49%, respectively. For
Montage instances, these averages are 558.93%, 64.29%, and
55.42%. For Blast instances, these averages are 18.94% and
13.63% for WorkflowHub and WfChef, respectively. For Cy-
cles, these averages are 53.03% and 32.27%. The substantial
difference for Cycles is mostly due to task graph patterns that
are not captured by WorkflowHub.

‘We conclude that WfChef generators produce synthetic work-
flow instances that lead to simulated executions that are drasti-
cally more realistic than that of synthetic workflows generated
by WorkflowGenerator. In fact, it is fair to say that Workflow-
Generator does not make it possible to obtain realistic simula-
tion results (which is a concern given its popularity and com-
monplace use in the literature). W{Chef generators lead to re-
sults that are similar but typically more accurate than Work-
flowHub. And yet, WfChef generators are automatically gen-
erated meaning that, and very much unlike WorkflowGenerator
and WorkflowHub, they require zero implementation effort.

6. Impact of the Real Instance Dataset Size

In the previous section, we have shown that WfChef has
the ability to automate the detection of workflow sub-structures
to create realistic synthetic workflow instances. Our approach
requires the availability of real workflow instances. To date,
a limited number of real-world scientific workflow instances
are available, and only for a small number of workflow ap-
plications. For four of these applications, we have shown that

10

epigenomics WorkflowGenerator -- WorkflowHub —WfChef

1000

RMSPE

PODAN DD PO ROINDANDA DO O DO OO DD
B A2 DY GNP A 4@ A S (S O QAN A G @@A\Q\/@\/@

#tasks

(2)

montage WorkflowGenerator -- WorkflowHub —WfChef
3000
2500
w 2000
&
2 1500
& 1000
500
S H O Q > " > > O D J Q " A
R N A A VU GRS M\ G S

blast ~WfChef -~ WorkflowHub

k<

g
#tasks

(©)

cycles

#tasks

(d)

Figure 6: RMSPE of simulated task start dates for Epigenomics (a) and Mon-
tage (b), Blast (c) and Cycles (d) workflows instances. Points are average val-
ues. Error bars show the range between the third quartile (Q3) and the first
quartile (Q1), and minimum and maximum values as black dots.

WfChef can achieve good results. The dearth of available real
workflow instance may be the reason why no machine learn-
ing algorithm has been proposed to solve the synthetic work-
flow generation problem — there simply is not enough data to
learn from. It would be natural to expect that WfChef, like
machine learning algorithms, would yield significantly better
results with a greater number of available real instances. Yet,
we have observed that in many cases using a larger number of
real instances yields little to no improvements. This is likely
because adding real instances that do not include new workflow
patterns does not benefit WfChef, and in fact merely increases
its computational complexity. It is thus possible that WfChef
could achieve good results even when using a small number of
real instances as its input.

In this section, we perform experiments to assess the re-
alism of generated synthetic workflow instances when real in-
stance sets of different sizes are used. We measure THF values

Epigenomics - Cycles ~ Blast - Montage

4
S o @9
o w o
@ o &

o
o
N}
a

o
o
N}

e e
o 9 o
S o r»
G o~ O

Type Hash Frequency (THF)

o

100% 50%

Dataset Size

Figure 7: Type Hash Frequency (THF) vs. fraction of real workflow instances
provided as input to W{Chef.

Epigenomics - Cycles - Blast - Montage

15

0.5

Approximate Edit Distance (AED)
-

100% 75% 50%

Dataset Size

25% one_sample

Figure 8: Approximate Edit Distance (AED) vs. fraction of real workflow
instances provided as input to WfChef.

for the generated instances as well as the time required to gener-
ate them. The goal of these experiments is to better understand
the impact of additional, non-informative workflow instances
on the complexity of WfChef, and to draw conclusions regard-
ing how large the real workflow instance dataset needs to be for
WfChef to produce realistic synthetic workflow instances.

6.1. Accuracy vs. Dataset Size

In Section |5] we evaluate the realism of WfChef-generated
synthetic instances. All experiments in that section are done us-
ing all of the real-world instances available to us for the Epige-
nomics, Montage, Blast, and Cycles applications. We wish to
determine whether using these instances is truly needed to pro-
duce realistic synthetic workflow instances; and, if not, how
many instances is a good number to use. To this end, here
we run experiments in which we remove real instances and
run W{Chef to generate synthetic instances. Specifically, we
use 100%, 75%, 50%, 25%, and a single one of the real in-
stances, where the largest instances (in number of tasks) are
removed. We then evaluate the generated synthetic instances
using the same metrics as used in Section[5.2] Type Hash Fre-
quency (THF), and Approximate Edit Distance (AED), for our
four applications.

Figure[7|shows THF values of WfChef-generated workflow
instances vs. the fraction of real instances used as input. For all
four applications, using 100% of the real instances leads to the
lowest THF values, but we note that using fewer instances does
not lead to much higher THF values. For Montage and Cycles,

11

the difference between the best result (achieved using 100% of
the real instances) and the worst result (achieved when using
a single real instance) is 0.0084 and 0.0034, for Montage and
Cycles, respectively. For Epigenomics, the difference is 0.0018
between using 100% of the real instances and using 25% of
them (which leads to the worst THF value). Due to the simple
structure of Blast workflows, W{Chef is able to achieves zero
THEF regardless of the number of real instances used.

Figure 8 shows AED values vs. the fraction of real instances
used as input. The main observation is that AED values follows
the same trends as THF values. For the Montage, Epigenomics,
and Cycles applications the best results are achieved when us-
ing 100% of the real instances and the worst results are achieved
when using 25% or a single one of the real instances. The dif-
ference between the minimum and the maximum AED values is
0.154, 0.127, and 0.362 for these three workflows, respectively.
Finally, just as for THF, AED for Blast is also 0.000.

The results in Figure [/|and Figure 8 lead to the conclusion
that using 100% of the real instances is not necessary to achieve
good accuracy results. In fact, using 50% of the real instances
yields results that are very close to the best results. This sug-
gests that using a small number of real instances as input to
WfChef is sufficient to produce realistic synthetic instances. We
also note that the difference between the best and the worst re-
sults is not significant for any of the applications, which also
supports the previous conclusion.

6.2. Recipe Creation Time vs. Dataset Size

As expected, Section [6.1] shows that using all real work-
flow instances available yields the most realistic synthetic in-
stances for all our four applications. As seen in Section
however, creating recipes, which are then used to generate syn-
thetic instances, requires applying three algorithms to each real
instance. When these instances are large this process can be
time-consuming.

In this section, we measure the time to create a recipe when
using 100% or 50% of the available workflow instances. Recall
from Section that the larger instances are removed. That
is, when using 50% of the real instances, these instances are
the smallest ones. We thus expect large speedup when going
from 100% to 50% if there are some very large instances in the
dataset.

Table 1 shows recipe creation times for our four applica-
tions. In Section[6.1] using 50% of the available samples yields
realistic synthetic instances that differ by at most 0.018 THF
from the real workflows. The results in Table 1 show that creat-
ing the recipes with 50% of the samples can have large speedup
(859.5 for Montage, 504.2 for Cycles). As expected, this dra-
matic speedup is due to the exclusion of the largest and most
complex real instances, which, despite their complexity, do not
contain much more new information about the workflow struc-
ture. For applications such as Epigenomics, which does not
have very large instances, the speedup is only 1.5, and for Blast,
which has simple structure and small instances, the speed up is
minimal at 1.1.

The results in this section paired with the results from Sec-
tion [6.1| show that using 50% of the real instances is sufficient

Order of Samples 100% of instances ~ 50% of instances

Available

60, 105, 180,
474, 621, 750,
1314, 1740,
6450,

Application

312,
1068,
2124,
7119,

Montage 58,020.6s 67.5s

75, 121,
225, 235, 243,
349, 407, 423,
509, 517, 561, 5
673, 715, 795,
865, 985, 1097,
1399, 1697

69, 135, 136,
221, 268, 333,
439, 440, 659,
664, 876, 995,
1313, 1324,
2183, 2184,
4364, 6545

45, 45, 45, 45, 45,
105, 105, 105, 105,
105, 305, 305, 305,
305, 305

127,
265,

Epigenomics 30.9s 21.2s

Cycles 45,728.2s 90.7s
663,
1093,
1985,
3275,
19.5s

Blast 17.9s

Table 1: Recipe creation times when using 100% and 50% of the real instances
for the Montage, Epigenomics, Cycles, and Blast applications.

to create sufficiently realistic synthetic instances, which also
achieves a significant speedup over using 100% of the real in-
stances.

7. Conclusion

The availability of synthetic but realistic scientific workflow
instances is crucial for supporting research and development
activities in the area of workflow computing, and in particu-
lar for evaluating workflow algorithms and systems. Although
synthetic workflow instance generators have been developed in
previous work, these generators were hand-crafted using expert
knowledge of scientific applications. As a result, their devel-
opment is labor-intensive and cannot easily scale to supporting
large number of scientific applications. As an alternative, in
this work we have presented WfChef, a tool for automatically
generating generators of realistic synthetic scientific workflow
instances. Given a set of real workflow instances for a particular
scientific application, WfChef analyzes these instances in order
to discover application-specific patterns. A synthetic workflow
instance with an (almost) arbitrary number of tasks can then
be generated by replicating these patterns in a real workflow in-
stance with fewer tasks. We have demonstrated that the WfChef
generators, which require zero software development efforts,
generate more realistic synthetic workflow instances than the
previously available hand-crafted generators. We have quanti-
fied workflow instance realism both based on workflow DAG
metrics and on simulated workflow executions. We have also
presented results that show how the size of the real instance
dataset impacts WfChef. To do so we have measured the re-
alism of the generated workflow instances when removing in-
creasingly large numbers of instances from the dataset (from
largest to smallest). Finally, we have shown that although using
the full dataset yields better synthetic instances, using only 50%

12

of the dataset produces instances that are almost as realistic and
can be generated much quicker.

A short-term future work direction is to develop a metric
for structurally comparing two workflow applications to rea-
son about how one application might perform on some system,
given its similarity to another workflow application. A longer-
term direction is to investigate whether machine learning tech-
niques can be applied to solve the synthetic workflow genera-
tion problem, to compare these techniques to WfChef, and per-
haps evolve WfChef accordingly. Our suspicion, however, is
that the amount of training data necessary for machine learning
approaches to be effective could be prohibitive. By contrast, the
WfChef algorithms are able to analyze a few real workflow in-
stances to discover patterns and, as seen in Section|[6] still yield
good results.

Acknowledgments

This work is funded by NSF contracts #1923539,#1923621;
partly funded by NSF contracts #2016610,#2016619,#2103489,
#2103508. This research used resources of the Oak Ridge Lead-
ership Computing Facility at the Oak Ridge National Labora-
tory, which is supported by the Office of Science of the U.S. De-
partment of Energy under Contract No. DE-AC05-000R22725.
We also thank the NSF Chameleon Cloud for providing time
grants to access their resources.

References

[1] R. M. Badia Sala, E. Ayguadé Parra, J. J. Labarta Mancho, Workflows
for science: A challenge when facing the convergence of HPC and big
data, Supercomputing frontiers and innovations 4 (1) (2017) 27-47.|doi :
10.14529/js£i170102,

C.S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, J. I. V. Hemert,
Scientific workflows: moving across paradigms, ACM Computing Sur-
veys (CSUR) 49 (4) (2016) 1-39. doi:10.1145/3012429.

R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,
E. Deelman, A characterization of workflow management systems for
extreme-scale applications, Future Generation Computer Systems 75
(2017) 228-238. doi:10.1016/j.future.2017.02.026.

Existing Workflow Systems, https://s.apache.org/
existing-workflow-systems|(2021).

R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Badia,
B. Balis, T. a. Coleman, F. Coppens, F. Di Natale, B. Enders, T. Fahringer,
R. Filgueira, G. Fursin, D. Garijo, C. Goble, D. Howell, S. Jha, D. S.
Katz, D. Laney, U. Leser, M. Malawski, K. Mehta, L. Pottier, J. Ozik,
J. L. Peterson, L. Ramakrishnan, S. Soiland-Reyes, D. Thain, M. Wolf, A
community roadmap for scientific workflows research and development,
in: 2021 IEEE Workshop on Workflows in Support of Large-Scale Sci-
ence (WORKS), 2021, pp. 81-90. doi:10.1109/WORKS54523.2021.
00016.

R. Ferreira da Silva, H. Casanova, K. Chard, T. Coleman, D. Laney,
D. Ahn, S. Jha, D. Howell, S. Soiland-Reys, I. Altintas, D. Thain,
R. Filgueira, et al., Workflows Community Summit: Advancing the State-
of-the-art of Scientific Workflows Management Systems Research and
Development (Jun. 2021). |doi:10.5281/zenodo.4915801.

R. Ferreira da Silva, H. Casanova, K. Chard, D. Laney, D. Ahn, S. Jha,
et al., Workflows Community Summit: Bringing the Scientific Workflows
Community Together (Mar. 2021). doi:10.5281/zenodo.4606958.
R. Ferreira da Silva, R. M. Badia, V. Bala, D. Bard, T. Bremer, 1. Buck-
ley, S. Caino-Lores, K. Chard, C. Goble, S. Jha, D. S. Katz, D. Laney,
M. Parashar, F. Suter, N. Tyler, T. Uram, I. Altintas, et al., Work-
flows Community Summit 2022: A Roadmap Revolution, Tech. Rep.

[2]

(3]

[4]
[3]

(6]

(7]

(8]

https://doi.org/10.14529/jsfi170102
https://doi.org/10.14529/jsfi170102
https://doi.org/10.1145/3012429
https://doi.org/10.1016/j.future.2017.02.026
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.5281/zenodo.4915801
https://doi.org/10.5281/zenodo.4606958

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

ORNL/TM-2023/2885, Oak Ridge National Laboratory (2023). |doi:
10.5281/zenodo . 7750670.

R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Commu-
nity resources for enabling and evaluating research in distributed scien-
tific workflows, in: 10th IEEE International Conference on e-Science,
eScience’ 14, 2014, pp. 177-184. /doi:10.1109/eScience.2014 .44,
R. Ferreira da Silva, L. Pottier, T. Coleman, E. Deelman, H. Casanova,
Workflowhub: Community framework for enabling scientific workflow
research and development, in: 2020 IEEE/ACM Workflows in Support
of Large-Scale Science (WORKS), 2020, pp. 49-56. |doi:10.1109/
WORKS51914.2020.00012.

Wrfinstances: Workflow Instances Repository, https://wfcommons.
org/instances (2023).

T. Coleman, H. Casanova, L. Pottier, M. Kaushik, E. Deelman, R. F.
da Silva, Wfcommons: A framework for enabling scientific workflow
research and development, Future Generation Computer Systems 128
(2022) 16-27.|d0i:10.1016/j.future.2021.09.043.

J. Coleman, M. Kiamari, L. Clark, D. D’Souza, B. Krishnamachari,
Graph convolutional network-based scheduler for distributing computa-
tion in the internet of robotic things, in: MILCOM 2022 - 2022 IEEE
Military Communications Conference (MILCOM), 2022, pp. 1070-1075.
doi:10.1109/MILCOM55135.2022.10017673.

T. Coleman, H. Casanova, R. da Silva, Wfchef: Automated gen-
eration of accurate scientific workflow generators, in: 2021 IEEE
17th International Conference on eScience (eScience), IEEE
Computer Society, Los Alamitos, CA, USA, 2021, pp. 159-168.
d0i:10.1109/eScience51609.2021.00026.

URL https://doi.ieeecomputersociety.org/10.1109/
eScienceb1609.2021.00026

DAGGEN: a synthetic task graph generator, https://github.com/
frs69wq/daggen (2021).

M. A. Amer, R. Lucas, Evaluating workflow tools with sdag, in: 2012
SC Companion: High Performance Computing, Networking Storage
and Analysis, IEEE, 2012, pp. 54-63. doi:10.1109/SC.Companion.
2012.20.

D. G. Amalarethinam, G. J. Mary, Dagen — A tool to generate arbitrary
directed acyclic graphs used for multiprocessor scheduling, International
Journal of Research and Reviews in Computer Science 2 (3) (2011) 782.
D. G. Amalarethinam, P. Muthulakshmi, Dagitizer — a tool to generate di-
rected acyclic graph through randomizer to model scheduling in grid com-
puting, in: Advances in Computer Science, Engineering & Applications,
Springer, 2012, pp. 969-978. doi:10.1007/978-3-642-30111-7_
93,

W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, A. P. Barros,
Workflow patterns, Distributed and parallel databases 14 (1) (2003) 5-51.
doi:10.1023/A:1022883727209.

U. Yildiz, A. Guabtni, A. H. Ngu, Towards scientific workflow patterns,
in: Proceedings of the 4th Workshop on Workflows in Support of Large-
Scale Science, 2009, pp. 1-10. doi:10.1145/1645164.1645177.

D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil, C. Goble, Com-
mon motifs in scientific workflows: An empirical analysis, Future Gener-
ation Computer Systems 36 (2014) 338-351./doi:10.1016/j.future.
2013.09.018.

E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz,
E. Marx, K. S. Morris, Q. Cao, G. Bosilca, S. Mirchandaney, W. Leek,
S. Treichlerk, P. McCormick, A. Aiken, Task Bench: A Parameterized
Benchmark for Evaluating Parallel Runtime Performance, in: SC20: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2020, pp. 1-15. |doi:10.1109/5C41405.2020.
00066.

M. Roozmeh, I. Kondov, Workflow Generation with wfGenes, in: 2020
IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),
2020, pp. 9-16. doi:10.1109/WORKS51914.2020.00007,

D. S. Katz, A. Merzky, Z. Zhang, S. Jha, Application skeletons: Con-
struction and use in eScience, Future Generation Computer Systems 59
(2016) 114-124. doi:10.1016/j.future.2015.10.001!

T. Coleman, H. Cansanova, K. Maheshwari, L. Pottier, S. R. Wilkin-
son, J. Wozniak, F. Suter, M. Shankar, R. Ferreira da Silva, Wf-
Bench: Automated Generation of Scientific Workflow Benchmarks, in:
2022 IEEE/ACM International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems

13

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

(PMBS), 2022, pp. 100-111. |doi:10.1109/PMBS56514.2022.00014.
J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A survey of data-intensive sci-
entific workflow management, Journal of Grid Computing 13 (4) (2015)
457-493.d0i:10.1007/s10723-015-9329-8.

M. Malawski, A. Gajek, A. Zima, B. Balis, K. Figiela, Serverless ex-
ecution of scientific workflows: Experiments with Hyperflow, AWS
lambda and Google Cloud functions, Future Generation Computer Sys-
tems (2017). /doi:10.1016/j.future.2017.10.029,

G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi,
Characterizing and profiling scientific workflows, Future Generation
Computer Systems 29 (3) (2013) 682-692. doi:10.1016/j.future.
2012.08.015!

J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity, E. Deel-
man, C. Kesselman, G. Singh, M.-H. Su, T. Prince, et al., Montage: a
grid portal and software toolkit for science-grade astronomical image mo-
saicking, International Journal of Computational Science and Engineering
4(2) (2009) 73-87.|doi:10.1504/IJCSE.2009.026999!

R. Ferreira da Silva, R. Mayani, Y. Shi, A. R. Kemanian, M. Rynge,
E. Deelman, Empowering agroecosystem modeling with htc scientific
workflows: The cycles model use case, in: 2019 IEEE International Con-
ference on Big Data (Big Data), 2019, pp. 4545-4552. doi:10.1109/
BigData47090.2019.9006107,

M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: A portable ab-
straction for data intensive computing on clusters, clouds, and grids, in:
Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies, 2012, pp. 1-13. doi:10.1145/
2443416.2443417.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, K. Wenger, Pegasus,
a workflow management system for science automation, Future Genera-
tion Computer Systems 46 (0) (2015) 17-35.'doi:10.1016/j.future.
2014.10.008!

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Ce-
vik, J. Colleran, H. S. Gunawi, C. Hammock, et al., Lessons learned from
the Chameleon testbed, in: 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020, pp. 219-233.

WRENCH Pegasus Simulator, https://github.com/
wrench-project/pegasus (2021).
WRENCH Makeflow Simulator, https://github.com/

wrench-project/makeflow (2021).

The WRENCH Project, http://wrench-project.org (2021).

H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, F. Suter, Developing accurate and scalable
simulators of production workflow management systems with wrench,
Future Generation Computer Systems 112 (2020) 162-175. doi:10.
1016/j.future.2020.05.030.

https://doi.org/10.5281/zenodo.7750670
https://doi.org/10.5281/zenodo.7750670
https://doi.org/10.1109/eScience.2014.44
https://doi.org/10.1109/WORKS51914.2020.00012
https://doi.org/10.1109/WORKS51914.2020.00012
https://wfcommons.org/instances
https://wfcommons.org/instances
https://doi.org/10.1016/j.future.2021.09.043
https://doi.org/10.1109/MILCOM55135.2022.10017673
https://doi.ieeecomputersociety.org/10.1109/eScience51609.2021.00026
https://doi.ieeecomputersociety.org/10.1109/eScience51609.2021.00026
https://doi.org/10.1109/eScience51609.2021.00026
https://doi.ieeecomputersociety.org/10.1109/eScience51609.2021.00026
https://doi.ieeecomputersociety.org/10.1109/eScience51609.2021.00026
https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
https://doi.org/10.1109/SC.Companion.2012.20
https://doi.org/10.1109/SC.Companion.2012.20
https://doi.org/10.1007/978-3-642-30111-7_93
https://doi.org/10.1007/978-3-642-30111-7_93
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1145/1645164.1645177
https://doi.org/10.1016/j.future.2013.09.018
https://doi.org/10.1016/j.future.2013.09.018
https://doi.org/10.1109/SC41405.2020.00066
https://doi.org/10.1109/SC41405.2020.00066
https://doi.org/10.1109/WORKS51914.2020.00007
https://doi.org/10.1016/j.future.2015.10.001
https://doi.org/10.1109/PMBS56514.2022.00014
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1504/IJCSE.2009.026999
https://doi.org/10.1109/BigData47090.2019.9006107
https://doi.org/10.1109/BigData47090.2019.9006107
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://github.com/wrench-project/pegasus
https://github.com/wrench-project/pegasus
https://github.com/wrench-project/makeflow
https://github.com/wrench-project/makeflow
http://wrench-project.org
https://doi.org/10.1016/j.future.2020.05.030
https://doi.org/10.1016/j.future.2020.05.030

	Introduction
	Related Work
	Problem Statement
	The WfChef Approach
	Pattern Occurrences
	Algorithms
	Implementation

	Experimental Evaluation
	Methodology
	Evaluating the Realism of Synthetic Workflow Structures
	Evaluating the Accuracy of Synthetic Workflows

	Impact of the Real Instance Dataset Size
	Accuracy vs. Dataset Size
	Recipe Creation Time vs. Dataset Size

	Conclusion

