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The successful incorporation of many resonant and nominal inter
state transitions into the data set indicates an adequate treatment of the 
dyad by the Hamiltonian, since these transitions are highly dependent 
on ΔE18,27 and the Coriolis-coupling coefficients utilized in the least- 
squares fit. One example of the state mixing between vibrational states 
is shown in Fig. 8, where a sharp resonance occurs between the Ka = 11−

series of ν18 and Ka = 7+ series of ν27 (ΔKa = 4). The most-perturbed 
transition, at J′′ + 1 = 176, is ~ 500 MHz from its unperturbed loca
tion. Each of these series also displays large undulations occurring from 
both global coupling perturbation and centrifugal distortion. The pro
gression of the global undulation, from low to high frequencies as Ka 
increases, is displayed in Fig. 9. This plot highlights several of the res
onances present for the ν18-ν27 dyad, and the most perturbed transition, 
located in Ka = 43, is ~ 1 GHz from its unperturbed location. Most 
resonances are above J′′ + 1 = 130, reaffirming the utility of the 
extension of the frequency range to 500 GHz. 

A total of 17 independent nominal interstate transitions were 
measured and incorporated into the least-squares fit, and they were 
crucial in finalizing several Coriolis-coupling constants and confirming 
the assignment of some resonant transitions. These nominal interstate 
transitions occur when rotational energy levels from each vibrational 
state are close enough in energy that intense state-mixing occurs. In 
many cases, it is possible to measure corresponding intrastate and 
interstate transitions for each level to create a matched set of four 
transitions (Fig. 10). As these four transitions involve the same energy 
levels, the average of the interstate transition frequencies must be the 
same as the intrastate transition frequencies. This condition confirms the 
assignment of all transitions when the difference between the sets of 
transitions is less than the measurement uncertainty of 50 kHz. The 
frequency difference between the transitions in Fig. 10 is only 36 kHz 
despite the higher obs. – calc. for individual transitions, e.g., the intra
state transition of ν18, where it is one of two transitions in the fit that is 
greater than three times the measurement uncertainty and is shown in 
red in the resonance plot of Fig. 10 and in the data distribution plot 
(Fig. 7). The typical working procedure for least-squares fitting is to 
scrutinize transitions with greater than two times the measurement 
uncertainty with regards to including such transitions in the least- 
squares fit. This transition displays an abnormal line shape, which is 
likely due to another underlying transition distorting its true frequency. 
Although this would typically warrant the exclusion of this transition, 
the very limited number of these important resonant and nominal 
interstate transitions in the data set make even this imperfectly 
measured transition highly valuable for the coupling information it 
provides. As a result, it was retained in the final data set with explicably 
high error. 

Measurement of the precise and accurate value of the energy dif
ference for the out-of-plane and in-plane nitrile bending modes for a 
variety C(sp2)–CN-containing organic molecules, including the previ
ously studied cyanoarenes, allows for an analysis of the structural factors 
that impact the vibrational mode energies. As shown in Fig. 1, the 
structure of each of the cyanoarenes recently studied in our group 
[15–17] differs from benzonitrile [12,13] by N-atom substitution in the 
aromatic ring. Similar to benzonitrile, 3-cyanopyridine [15] and 4-cya
nopyridine [16] have ortho C–H groups adjacent to the nitrile. Cyano
pyrazine [17] has an ortho C–H group and a nitrogen atom. 2- 

Cyanopyrimidine from this work completes this series by providing 
analogous data for a cyanoarene with two ortho nitrogen atoms. There is 
a monotonic increase in the ΔEip−oop values with increasing sub
stitutions of ortho C–H groups with nitrogen atoms shown in Table 5. 
There is a smaller change to ΔEip−oop with meta substitution in the 
reverse direction, such that the effects of ortho and meta substitution are 
approximately +10 and −3 cm−1, respectively. 

5. Conclusion 

To expand the search for heterocyclic aromatic molecules in the 
interstellar medium, the current study provides the necessary laboratory 
data for 2-cyanopyrimidine. The larger dipole moment of 2-cyanopyri
midine (6.5 D) vs pyrimidine (2.3 D) increases the possibility of detec
tion in the ISM if these species were to have similar abundances. The 
combination of the spectroscopic constants provided here, along with 
computed (provided in Supplementary Material) or experimental nu
clear quadrupole coupling constants, would reliably predict transition 
frequencies much lower or slightly higher in frequency than the fre
quency range of the current measurements (130–500 GHz). The least- 
squares fit of the Coriolis-coupled dyad of ν18 and ν27 allows for a pre
cise determination of the energy separation of the fundamental modes, 
ΔE18,27, although high-resolution infrared spectroscopy is needed to 
determine the fundamental frequencies. This infrared study would be 
challenging, however, since ν18 and ν27 have quite low predicted in
tensities (0.1 and 0.6 km/mol (MP2), respectively). Of the cyanoarenes 
studied to date, 2-cyanopyrimidine exhibits the largest energy difference 
for the out-of-plane and in-plane nitrile bending modes (ΔEip−oop =

38.9673191 (77) cm−1). This large energy separation notwithstanding, a 
two-state Hamiltonian is required to adequately address the transition 
frequencies observed for each vibrational state – even in the 130 – 360 
GHz range. At the same time, highly-perturbed transition frequencies 
(resonances) above 360 GHz are required to adequately describe the 
Coriolis perturbation and obtain a satisfactory least-squares fit. This 
behavior demonstrates how broadly Coriolis perturbation can affect 
transition frequencies, even those that are not “highly” perturbed as 
resonances, and that the resonant transitions provide important con
straints on the determination of the spectroscopic parameters that 
cannot be obtained from transition frequencies influenced by the global 
Coriolis interaction alone. 
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Table 5 
Experimental energy separations for selected organic species for the out-of-plane 
and in-plane nitrile bending modes.   

ΔEip−oop (cm−1) ortho 
N 

meta 
N 

para 
N 

benzonitrile [12,13] 19.1081701(74) 0 0 0 
3-cyanopyridine [15] 15.7524693 (37) 0 1 0 
4-cyanopyridine [16] 18.806554 (11) 0 0 1 
cyanopyrazine [17] 24.8245962 (60) 1 1 0 
cyanopyrimidine (this work) 38.9673191 (77) 2 0 0  
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