
The VLDB Journal (2023) 32:791–813
https://doi.org/10.1007/s00778-022-00775-9

REGULAR PAPER

Data collection and quality challenges in deep learning: a data-centric
AI perspective

Steven Euijong Whang1 · Yuji Roh1 · Hwanjun Song2 · Jae-Gil Lee1

Received: 12 December 2021 / Revised: 8 November 2022 / Accepted: 10 December 2022 / Published online: 3 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Data-centric AI is at the center of a fundamental shift in software engineering where machine learning becomes the new
software, powered by big data and computing infrastructure. Here, software engineering needs to be re-thought where data
become a first-class citizen on par with code. One striking observation is that a significant portion of the machine learning
process is spent on data preparation. Without good data, even the best machine learning algorithms cannot perform well. As
a result, data-centric AI practices are now becoming mainstream. Unfortunately, many datasets in the real world are small,
dirty, biased, and even poisoned. In this survey, we study the research landscape for data collection and data quality primarily
for deep learning applications. Data collection is important because there is lesser need for feature engineering for recent deep
learning approaches, but instead more need for large amounts of data. For data quality, we study data validation, cleaning,
and integration techniques. Even if the data cannot be fully cleaned, we can still cope with imperfect data during model
training using robust model training techniques. In addition, while bias and fairness have been less studied in traditional data
management research, these issues become essential topics in modern machine learning applications. We thus study fairness
measures and unfairness mitigation techniques that can be applied before, during, or after model training. We believe that the
data management community is well poised to solve these problems.

Keywords Data collection · Data quality · Deep learning · Data-centric AI

1 Overview

Deep learning is widely used to glean knowledge from
massive amounts of data. There is a wide range of applica-
tions including natural language understanding, healthcare,
self-driving cars, and more. Deep learning has become so
prevalent thanks to its excellent performance with the avail-

This article extends tutorials the authors delivered at the VLDB
2020 [169] and KDD 2021 [94] conferences.
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ability of big data and powerful computing infrastructure.
According to the IDC[41], the amount of data worldwide
is projected to grow exponentially to 175 zettabytes (ZB) by
2025. In addition, powerful GPUs and TPUs enable software
to have superhuman performances in various tasks.

We are going through a fundamental paradigm shift in
software engineering where machine learning becomes the
new software (referred to as Software 2.0 [134]). Conven-
tional software engineering involves designing, implement-
ing, and debugging code. In comparison, machine learning
starts with data and trains a function on the data. It is known
that data preparation is an expensive step in end-to-end
machine learning. In particular, collecting data, cleaning it,
and making it suitable for machine learning training takes
45%[43] or even 80–90%[24,153] of the entire time. In
addition, the code on a machine learning platform (e.g.,
PyTorch [112]) is high level and thus, requires significantly
fewer lines compared to conventional software. Finally, the
trained model may need to be continuously improved with
hyperparameter tuning. This entire process from data prepa-
ration to model deployment is widely viewed as a new
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Fig. 1 Deep learning challenges
from a data-centric AI
perspective. Data collection and
quality issues cannot be
resolved in a single step, but
throughout the entire machine
learning process. This survey
thus focuses on the breadth of
available techniques

software engineering paradigm, and companies have been
actively developingopen source [13,30] andproprietarySoft-
ware 2.0 systems [5,6,21,68,71,137]. Solving data issues is
increasingly becoming critical in machine learning research.

While data collection and quality issues are important,
machine learning research has mainly focused on training
algorithms instead of the data. According to [153], a common
complaint in the industry is that research institutions spend
90% of their machine learning efforts on algorithms and 10%
on data preparation, although based on the amounts of time
spent, the numbers should be 10% and 90% the other way.

At the same time, many companies are promising to
use responsible and data-centric AI practices. For exam-
ple, Google [120] says that AI has a significant potential
to help solve challenging problems, but it is important to
develop responsibly. Microsoft [121] pledges to advance AI
using ethical principles that put people first. Other com-
panies make similar statements [109,154]. More recently,
data-centric AI [42] is becoming critical where the primary
goal is not to improve the model training algorithm, but to
improve the data pre-processing for better model accuracy.

These trends motivate us to investigate data collection
and quality challenges for deep learning from a data-centric
AI perspective. Figure 1 shows a simplified end-to-end pro-
cess starting from data collection tomodel deployment. Deep
learning systems aremore complicated in practice [118,141],
and we only show the essential steps. The first topic we cover
is data collection. In comparison with traditional machine
learning, in deep learning feature engineering is less of a
concern, but there is instead a need for large amounts of
training data. Unfortunately, many industries do not adopt
deep learning simply because of the lack of data and the lack
of explainability of the trained models. The second topic
is data cleaning and validation. While there is a vast liter-
ature on data cleaning, unfortunately not all the techniques
directly benefit deep learning accuracy [96]. In addition, there
are recent deep learning issues including data poisoning that
needs to be addressed, especially by the data management
community. Data poisoning is becoming a significant threat
as attackers generate data with a malicious intent to reduce

the model accuracy of AI applications. In response, there is
a branch of research called data sanitization where the goal
is to defend against such attacks. The third topic is robust
model training. Even afterwe carefully validate and clean our
data, the data quality may still be problematic because there
is no guarantee that we fixed all the data problems. Hence,
we may still need to cope with dirty, missing, or even poi-
soned data in model training. Fortunately, there are various
robust training techniques [149] available. The fourth topic
is fair model training. Traditional research on data manage-
ment has not focused on bias and fairness issues. However,
in addition to cleaning and validating data to improve model
accuracy, also showing fairness against biased data is becom-
ing essential for responsible AI. In fact, many data validation
works now mention that supporting AI ethics including fair-
ness is an important future research direction [18]. Model
fairness research [12,36,100,165] largely consists of fairness
measures and unfairness mitigation before, during, or after
model training. Recent studies are now addressing model
fairness and robustness together due to their close relation-
ship where data bias and noise may affect each other in the
same training data [84,131,133,148].

While the coverage of this survey is broad, we believe it is
important to have a birds-eye view of data issues in the entire
deep learning process in order to advance data-centric AI.
Each subtopic is not only substantial, but studied by different
communities. Data collection, cleaning, and validation have
been traditionally studied in the data management commu-
nity. Robust model training is a central topic in the machine
learning and security communities, while fair model training
is a popular topic in the machine learning and fairness com-
munities.Both fairness and robustness topics are increasingly
being researched in the data management community as well
because they are closely related to the input data.Data-centric
AI is a nascent field that cannot be covered by solving just
one of these areas either, but instead will ultimately need an
orchestration within a holistic framework. Our contribution
is thus to connect these related topics together at a high level
with a focus on recent and significant works. Table 1 shows a
taxonomy of the techniques covered in this survey. Figure 2
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Fig. 2 Decision tree on how data-centric AI techniques connect with
each other in one workflow

shows a decision tree of how the techniques connect with
each other in one workflow. Our work targets researchers
and practitioners who need a starting point of understanding
how data plays a key role in data-centric AI.

In summary, deep learning is becoming prevalent thanks
to big data and fast computation, and software engineering
is going through a new paradigm shift. However, big data
for deep learning have been relatively understudied, but is
becoming critical in data-centric AI. We cover the following
topics in the next sections:

– Data collection techniques formachine learning (Sect. 2).
– Data validation, cleaning, and integration techniques for
machine learning (Sect. 3).

– Robust training techniques for copingwith noisy and poi-
soned data (Sect. 4).

– Fair training techniques for coping with biased data
(Sect. 5)

– Overall findings and future directions (Sect. 6).

We choose papers using three criteria. First, we include
papers to cover the diverse areas in each section. Second, in
each area, we select prominent papers preferably with many
citations. Third, we cover recent techniques that are emerg-
ing, but are yet to be widely cited according to our judgment
and tutorials.

Note that Table 1 also specifies the data types each tech-
nique focuses on. For both robust and fair training (Sects. 4,
5), we mainly consider supervised learning.

2 Data collection

Our coverage of data collection originates from a sur-
vey [130] by two of the authors, so we keep it brief with
new updates based on a tutorial [169]. There are three main
approaches for data collection. First, data acquisition is
the problem of discovering, augmenting, or generating new
datasets. Second, data labeling is the problem of adding
informative annotations to data so that a machine learning
model can learn from them. Since labeling is expensive, there
is a variety of techniques to use including semi-supervised
learning, crowdsourcing, and weak supervision. Finally, if
one already has data, improving existing data and models
can be done instead of acquiring or labeling from scratch.

2.1 Data acquisition

If there is not enough data, the first option is to perform data
acquisition, which is the process of finding datasets that are
suitable for training machine learning models. In this survey,
we cover three approaches: data discovery, data augmenta-
tion, and data generation. Data discovery is the problem of
indexing and searching datasets. Data augmentation takes
labeled examples and distorts or combines them to generate
synthetic examples. If there is not enough data around, the
last resort is to take matters in one’s own hands and create
datasets using crowdsourcing or synthetic data generation
techniques.

2.1.1 Data discovery

Data discovery is the problem of indexing and searching
datasets that exist either in corporate data lakes [54,157] or
the Web[25]. One example is the Goods system[64], which
searches tens of billions of datasets in Google’s data lake.
Goods takes a post hoc approach where it crawls the datasets
from multiple sources and extracts metadata to maintain a
central dataset catalog, which does not require any work
from the dataset owners. Each entry in the catalog contains
metadata about one dataset including its size, provenance
on which job created it and which job read it, and schema
information. Goods provides search, monitoring, and dataset
annotations as well. A public version of Goods calledGoogle
Dataset Search [23] supports science dataset searching.More
recently, these data discovery tools have become more inter-
active. A representative system is Juneau [183], which is an
interactive data search and management tool built on top of
the Jupyter Notebook data science platform. Here, the key
technical challenge is finding the related tables. Juneau uses
similarity measures for comparing records and schemas and
provenance information that intuitively captures the purpose
of creating each data set. Finding tables that can be joined
or unioned in data lakes efficiently is critical, and LSH-

123



Data collection and quality challenges in deep learning: a data-centric AI perspective 795

based algorithms that perform set overlap search or unionable
attribute retrieval on tables have been proposed [104].

2.1.2 Data augmentation

For data augmentation, a popular method for generating data
in the machine learning community is generative adversar-
ial networks (GANs) [59,60,89]. We start from a training
set that has real data. There are two components: a gen-
erator that generates fake data that is realistic using some
random noise as an input and a discriminator that tries to
distinguish the real data from the fake data of the generator.
The generator and discriminator are trained in an adversarial
fashion. One limitation of a GAN is that it cannot gener-
ate data that is completely different than the existing data.
Using policies [70,124] is a way to complement that limi-
tation where one can apply various custom transformations
provided bydomain experts as long as the data remains realis-
tic. AutoAugment [40] automates this process where the idea
is to have a controller that suggests a strategy for applying
transformations with certain probabilities andmagnitudes on
the data. The system then trains a child model on this aug-
mented data and measures the accuracy on a validation set.
This result is then used to decide whether the strategy pro-
duces useful data that is within realistic bounds and should
thus be used.

Thedata augmentation literature continues to grow rapidly.
Mixup [16,17,69,175,181] has been proposed as a simple, but
effective augmentation technique where the key idea is to
mix pairs of data points of different classes. The additional
data effectively regularizes the model to predict in-between
training data points assuming linearity. Model patching [58]
utilizes GANs to augment the data of specific subgroups of a
class so that the model accuracy is similar across subgroups.

2.1.3 Data generation

Another option for collecting or acquiring new data is to
generate data. A popular option is to use crowdsourcing plat-
forms likeAmazonMechanical Turk [1]where one can create
tasks and pay humanworkers to create or find data. For exam-
ple, a task may ask workers to find face images of a certain
demographic frompublicwebsites [155]. In addition, one can
use a simulator or generator for specific domains, e.g., Her-
moupolis [115] formobility data andCrash toNotCrash [86]
for drivingdata.Domain randomization [158,159] is an effec-
tive technique for generating a wide range of realistic data
from a simulator by varying its parameters. We note that
GANs also generate new data, but they require sufficient
amounts of real data for model training.

2.2 Data labeling

Once there are enough datasets, the next step is to label the
examples. We cover data labeling techniques for utilizing
existing labels and manually or automatically labeling from
no labels.

2.2.1 Utilize existing labels

The traditional approach for labeling is semi-supervised
learning [160,188] where the idea is to use existing labels
to predict the other labels. One can utilize existing machine
learning benchmarks [50,79] that provide labeled data for
a variety of tasks. The simplest form is Self-training [174]
where a model is trained on the available labeled data and
then applied to the unlabeled data. Then, the predictions with
the highest confidence values are trusted and added to the
training set. This approach assumes that we can trust the
high confidence, but there are other techniques including Tri-
training [186], Co-learning [185], and Co-training [20] that
do not rely on this assumption.

2.2.2 Manual labeling from no labels

If there are no labels to start with, but one has funds to
employ workers, a standard approach is to use crowdsourc-
ing platforms like Amazon Mechanical Turk to perform
labeling. Since labeling is such an important task, there
are labeling-specialized services like Amazon Sagemaker
Ground truth [2] and Google Cloud Labeling [56]. When
using Sagemaker, one can choose labeling tasks and recruit
labelers who are assisted with a UI and tools to label the data.
Sometimes, crowdsourcing may not be feasible because the
workers do not have the right expertise. Hence, the last resort
is to rely on domain experts, but this option can be expensive.

Active learning [129,142] is an effective method to reduce
the crowdsourcing cost. The idea is to ask human labelers to
label uncertain examples that, when answered, are likely to
improve model accuracy the most. While a full coverage of
active learning is out of scope, the example selection tech-
niques can largely be categorized into identifying uncertain
examples and using decision theoretic approaches to analyze
the effect of a newly labeled example on the model accuracy.

2.2.3 Automatic labeling from no labels

Recently, weak supervision is becoming popular where the
idea is to (semi-)automatically generate labels that are not
perfect (therefore called “weak” labels), but at scale where
the larger volume may compensate for the lower label qual-
ity.Weak supervision is useful in applicationswhere there are
fewor no labels to startwith. Early techniques include crowd-
sourcing and distant supervision [105], which uses external

123



796 S. E. Whang et al.

knowledgebases to generate labels for the trainingdata.More
recently, data programming builds on these techniques where
multiple labeling functions are developed and combined to
generate weak labels.

Snorkel [10,122,123] is the seminal system for data pro-
gramming. Given user-provided labeling functions (e.g.,
Python functions that detect spam), Snorkel combines them
in one generative model by intuitively taking a probabilistic
consensus. Then, given unlabeled data, Snorkel can generate
probabilistic labels. The unlabeled data and the probabilistic
labels are used to train a final discriminativemodel like a deep
neural network. Another way to combine labeling functions
is to use majority voting. Empirically, the number of labeling
functions determines whether a generative model or majority
voting is better. Snuba [163] automates the process of con-
structing labeling functions using a small labeled dataset, if
that is available.

2.3 Improving existing data

In addition to searching and labeling datasets, one can
also improve the quality of existing data and models. This
approach is useful in several scenarios. Suppose the target
application is novel or non-trivial where there are no relevant
datasets outside, or collecting more data no longer benefits
the model’s accuracy due to its low quality. Here, a better
option may be to improve the existing data. One effective
approach is to improve the labels through re-labeling. Sheng
et al. [146] demonstrates the importance of improving labels
by showing the model accuracy trends against more training
examples for datasets with different qualities. As the data
quality decreases, even if more data is used, the accuracy of
the model does not increase from some point and plateaus. In
this case, the only way to improve the model accuracy is to
improve the label quality, which can be done by re-labeling
and taking majority votes on multiple labels per example. In
fact, one could clean the entire data including labels, which
naturally leads to the next section where we cover data vali-
dation, cleaning, and integration.

3 Data validation, cleaning, and integration

It is common for the training data to contain various errors.
Machine learning platforms like TensorFlow Extended
(TFX) [13] have data validation [117] components to detect
such data errors in advance using data visualization and
schema generation techniques. Data cleaning can be used
to actually fix the data, and there is a heavy literature [74] on
various integrity constraints. However, recent studies [75,96]
show that cleaning the data before machine learning by
only fixing well-defined errors does not necessarily bene-
fit machine learning accuracy. Instead, it is more effective

to clean for machine learning with the direct purpose of
improving accuracy [107] and making the model training
more robust to noise in the data [98]. A recent survey [75]
mentions that robust training is considered more effective
than data cleaning before model training. Data noise can
also be adversarial where it contains malicious poisoning,
and cleaning against this is called data sanitization in the
security community. Yet another issue is incorporating AI
ethics like model fairness [18] where data may be biased,
which may cause the trained model to be discriminatory. So
far the data validation literature does not cover robust and
fair training in depth, but these areas are heavily studied in
the machine learning community, so we make a connection
by elaborating on their techniques in Sects. 4 and 5, respec-
tively.

3.1 Data validation

Data visualization is a widely used and effective way to
validate data for machine learning (see a tutorial [117]
and survey [118]). Compared to traditional data cleaning,
visualization is effective for a human to perform quick,
but important sanity checks on the data to prevent larger
errors downstream. A representative open-source tool is
Facets [52],which shows various statistics and the contents of
datasets that can be used for sanity checks on data to prevent
larger errors downstream. In addition to manual visualiza-
tion, there has also been research on automatic generation of
new visualizations [93] that can be used for validation pur-
poses. SeeDB[164] is a seminal framework that repeatedly
generates visualizations of interest. To capture the notion of
interestingness, SeeDB uses a deviation-based utility metric
that gives a high value when groupings of the data result in
different probability distributions.

Automatically generating visualizations can run into
the problem of false positives, so there is also a line of
research that proposes false discovery control techniques.
CUDE[184] controls false discovery in the context of multi-
ple hypothesis testing for visual interactive data exploration.
Here, users can repeatedly generate visualizations and mark
the ones that are significant. Based on this user feedback,
the goal is to automatically choose the visualizations that are
significantly interesting in a statistical sense.

Schema-based validation [13,117] is widely used in prac-
tice. Tensorflow Data Validation (TFDV) [22,49] assumes
a continuous training setting where input data periodically
streams in as shown in Fig. 3. TFDV generates a data schema
from previous data sets and uses the schema to validate future
data sets and alert users on data anomalies. For each anomaly,
TFDV provides concrete action items to possibly fix the root
cause. A schema here is different from a traditional database
schema where it contains a summary of data statistics of the
features. In case a new dataset violates the current schema,
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Fig. 3 TensorFlow Data Validation (TFDV) [22] uses a user-approved
schema to validate the statistics of the training and serving data

either the data needs to be fixed, or the schema needs to be
updated, and the user makes the decision.

More recently, data validation systems are equipped
with additional functionalities. Deequ [138,139] allows one
to write data quality constraints declaratively, which then
are automatically generated into unit tests. The mlinspect
library [63] enables declarative machine learning pipeline
inspection. Other additions include automatic identifica-
tion of error types [125], testing the impact of errors on
models [140], ease of usage [101], and efficient human-in-
the-loop validation [170].

3.2 Data cleaning

Data cleaning has a long history of removing various well-
defined errors by satisfying integrity constraints including
key constraints, domain constraints, referential integrity con-
straints, and functional dependencies. For an introduction,
see the book Data Cleaning [74]. There is also a recent sur-
vey on data cleaning techniques for machine learning and
vice versa [75].

We first introduce one of the state-of-the-art data clean-
ing techniques to give a sense of how sophisticated these
techniques have become. HoloClean [127] repairs data using
probabilistic inference using three main ingredients: satisfy-
ing various integrity constraints, using external dictionaries
to check the validity of values, and using quantitative statis-
tics.

Unfortunately, only focusing on fixing the data does
not necessarily guarantee the best model accuracy. At first
glance, it seems that perfectly cleaning the data would be
most useful for the model training. However, the notion of
clean data is not always clear cut, and removing all possible
errors is not always feasible. CleanML[96] is a framework
that evaluates various data cleaning techniques and seeing if
they actually helpmodel accuracy. The authors show that data
cleaning does not necessarily improve downstream machine
learning models. In fact, the cleaning may sometimes have
a negative effect on the models. However, by selecting an
appropriate machine learning model, one can eliminate the
negative effects of data cleaning.Also there is no single clean-

Fig. 4 ActiveClean [88] iteratively selects data that is likely to be dirty
and cleans it

ing algorithm that performs the best, and onemust adaptively
choose the algorithm depending on the type of noise to clean.
Moreover, many data cleaning primitives have high-impact
parameters like thresholds that need to be tuned, similar to
machine learning hyperparameter tuning. Hence, data clean-
ing techniques that are not originally designed for machine
learning must be used carefully.

Recently, there are data cleaning techniques with the
specific purpose of improving model accuracy [48]. Active-
Clean [88] is a seminal framework that iteratively cleans
samples of dirty data and updates the model. Figure 4 shows
the workflow where there is a sampler that chooses an exam-
ple that is likely to be dirty, and data quality rules can be used
to identify such dirty samples. The reason for sampling data is
that cleaning the entire data is presumed to be very expensive.
Each sample can be cleaned by an oracle or domain expert.
Then, the model is updated to be more accurate and also
chooses the next sample. ActiveClean has theoretical guar-
antees where, by repeatedly training a model on the clean
sample plus previously cleaned data, the model eventually
obtains an accuracy as if it was trained on clean data only.
ActiveClean assumes convex lossmodels like SVMs, and the
data cleaning is assumed to be done perfectly.

Another branch of research is to clean the labels for the
purpose of improvingmodel accuracy. TARS[47] is a system
that predicts model accuracy out of noisy labels that are pro-
duced from crowdsourcing. TARS first chooses labels that
are likely to be flipped because they were labeled by poor-
performing workers and thus have low confidence values.
TARS then estimates how much the model will improve if
the label is flipped after cleaning. The confidence values of
labels can be computed by using confusionmatrices of work-
ers, which capture the history of how well they performed in
past tasks. A confusion matrix thus contains the previous
false positive, false negative, true positive, and true negative
rates. Given the probability that a label is flipped, TARS esti-
mates the resulting model accuracy and subtracts that by the
estimated accuracyof the currentmodel to determinewhether
the label is worth examining. Hence, TARS can selectively
clean labels that are expected to benefit model accuracy the
most.

More recently, there are more systematic approaches to
support data cleaning for machine learning. One study [128]
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shows how data quality issues affect MLOps and proposes
various solutions to tackle them. For example, CPClean [82]
is proposed to analyze howmissing data impacts the certainty
of predictions. Another work [107] distinguishes data clean-
ing beforemachine learning versus formachine learning and
suggests to clean data throughout the entire machine learning
pipeline. Some common challenges include handling multi-
modal data and data that change over time.

3.3 Data sanitization

Data poisoning has recently become a serious issue because
changing a fraction of training data, which may come from
an untrusted source, may alter the model’s behavior. Com-
pared to dirty data, there is a malicious intent to make the
model fail. Data poisoning is a real problem because data
are now easier to publish through dataset search engines. A
dataset owner can simply post metadata to the public, which
will be automatically crawled by the search engine. Then,
one can simply harvest that data using web crawlers without
knowing that the data is poisoned. Data sanitization [39] is
the problem of defending against such poisoning attacks and
can be viewed as an extreme version of data cleaning.

A simple type of data poisoning is called label flipping
where a label of a training example is flipped fromone class to
another, but other works generate new data as well. Recently,
data poisoning techniques have become much more sophis-
ticated and therefore harder to defend against [143,187]. We
illustrate a state-of-the-art data poisoning techniques for deep
learning [187]. A major challenge when poisoning data for
deep learning is that the victim’s model cannot be easily
analyzed. Hence, transferable poisoning attacks have been
proposed, which can still succeed without accessing the vic-
tim’s model. The idea is to train an ensemble of substitute
models, which are assumed to be similar to the victim’s
model. Any attack that negatively affects the substitute mod-
els will presumably attack the victim’s model as well. Given
a set of clean data points of different classes, the poisoning
algorithm adjusts the clean points to “move closer” to the
target within the feature space and form a convex polytope
that surrounds it to maximize the chances of the target to be
misclassified.

How do we defend against such data poisoning using data
sanitization? The main approach is to perform outlier detec-
tion to detect poisonings and discard them. Figure 5 shows
a simple setting where a classifier’s behavior changes after
introducing poisoning (top right data points). If the data san-
itization can identify and discard these points as outliers,
then the model’s accuracy can be restored. Compared to tra-
ditional outlier detection, the challenge is that poisonings
are intentionally designed by the adversary to be difficult
to detect while reducing model accuracy. Data sanitization
techniques [39,72,114] have been proposed throughout the

Fig. 5 Data Sanitization [39] identifies and discards data poisoning for
better model accuracy

years, and a recent study [87] evaluates various defenses by
developing attacks and seeing if the defenses work are still
effective. Unfortunately, the conclusion is that no technique
can adequately defend against carefully designed attacks.We
suspect that data poisoning and sanitization techniques will
continue to evolve and compete with each other.

3.4 Multimodal data integration

Another dimension of data management to consider is the
issue of multimodal data integration [11]. So far, we implic-
itly assumed single-source datasets, but in practice, data
scientists often deal with multimodal data from multiple
sources. For example, autonomous vehicles can generate a
wide range of data including multiple video streams, radar
and lidar data, and thousands of irregular times series from
the Controller Area Network (CAN) of the vehicle. Ana-
lyzing all of this data together requires some form of data
integration. In machine learning, two relevant integration
techniques are alignment and co-learning. Alignment is to
find relationships of sub-components of instances that have
multiplemodalities. For example, if there aremulti-view time
series, one can perform subsampling, forward or backward
filling, or aggregate in time windows so that the time series
can be better integrated. Co-learning is to train better on a
modality using a different modality. For example, if there
are embeddings from different modalities, one approach is
to concatenate them together for a multimodal representa-
tion. In general, data integration is by itself a large research
area that has been studied for decades [46,152], although not
all techniques are relevant to machine learning.

4 Robust model training

Even after collecting the right data and cleaning it, data
quality may still be an issue during model training. It is
widely agreed that real-world datasets are dirty and erro-
neous despite the data cleaning process. As summarized in
Table 2, these flaws in datasets can be categorized depending
on whether data values are noisy or missing and depending
on whether these flaws exist in data features (attributes) or
labels.
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Table 2 Types of data poisoning covered in this survey

Noisy Missing

Features Adversarial Learning
(Sect. 4.1)

Data Imputation
(Sect. 4.2)

Labels Robust Learning
(Sect. 4.3)

Semi-Supervised Learning
(Sect. 4.4)

The problem of data poisoning has been studied in the-
ory (i.e., robust statistics) and practice for over fifty years
and has gained a lot of attention in the machine learning
community [73,161]. It starts with a basic question, ‘can the
machine learning model learn and predict as if the data was
not corrupted?’ and aims to develop machine learning algo-
rithms robust to the worst-case corruptions where we cannot
recover the entire clean information from the data. It mainly
considers the corruptions in data features, which include out-
liers and adversarial examples.

Statistical approaches like robust mean estimation [97]
aim to recover the mean of the distribution in the presence
of data flaws. Convex programming [44] and filtering [33]
address the problems by assigning a score to each data point
based on the degree to which the sample is considered cor-
rupted. This series of studies have been inspiring a lot of
machine learning robustness optimization techniques such
as loss reweighting and sample selection. In addition, robust
machine learning involves many problems depending on
what sorts of damages we consider. For example, privacy
machine learning aims to respect the privacy of the users
providing the data [119].

4.1 Noisy features

Noisy features are often introduced by adversarial attacks.
Among several types of attacks, we focus on the poisoning
attack, which is known as contamination of the training data,
to be aligned with the main theme of this survey. During
the training phase of a machine learning model, an adver-
sary tries to poison the training data by injecting maliciously
designed data to deceive the training procedure. Besides the
adversarial noise, noisy features can include natural noise
like image blurring and color noise, possibly not removed by
data cleaning. There have been some approaches to success-
fully denoising the natural noise using Sparse Coding [144]
and Feature Attention [8], but they are out of the scope of this
survey.

Either features or labels or both can be the target of the
poisoning attack. The poisoning attack can be done in three
ways depending on the capability of adversaries. First, an
adversary can randomly perturb the labels, i.e., by assigning
other incorrect labels, picked from a random distribution,
to a subset of training data. Since the label flipping result

in overfitting to wrong labels like noisy labels, the robust
training methods for this type of attack will be discussed in
Sect. 4.3. Second, an adversary is more powerful and can
corrupt the features of the examples possibly determined
by analyzing the training algorithm[19]. The corrupted fea-
tures deceive the model into making wrong predictions.
Third, unlike manipulating the features, an adversary may
add adversarial examples into the training data such as out-of-
distribution examples. These examples lead to a sharp drop in
generalization capability of machine learning models under
distributional shifts. For more details, the reader can refer to
[27,145].

Various defense strategies have been actively studied for
robust training on adversarial examples (e.g., noisy features).
Most of the current strategies are not adaptive to all types of
attacks, but are effective to only a specific type. We sum-
marize a few well-known, representative strategies in this
section.

Most notably, in adversarial training, the robustness of a
model can be improved using a modified objective function
based on the fast gradient sign method [61]. It is defined as
a weighted sum of an usual loss function on clean examples
and the loss function on adversarial examples. By this regu-
larization, the model is forced to predict the same class for
legitimate and perturbed examples in the same direction.

Knowledge distillation has been shown to be effective for
adversarial attacks [111]. Defensive distillation is almost the
same as typical knowledge distillation, except that the same
network architecture is used for both the original network
and the distilled network. Specifically, instead of hard labels,
where only the true label has the probability 1 in a probabil-
ity vector, soft targets, which are generated by the original
network as the prediction result, are used for training the dis-
tilled network. The benefit of using soft targets comes from
the additional knowledge found in probability vectors com-
pared to hard class labels [111].

Feature squeezing [173] reduces the degree of freedom
available to an adversary by squeezing out unnecessary input
features. If the original and squeezed inputs result in substan-
tially different outputs by amodel, the corresponding input is
determined to be adversarial. A popular squeezing technique
for images is reducing the color depth on a pixel level.

Another idea is to detect adversarial examples using sep-
arate classification networks [103]. A sub-network, called an
adversary detection network or simply a detector, is trained
to produce an output that indicates the probability of the
input being adversarial. For this purpose, a classification net-
work is trained using only non-adversarial examples, and
adversarial examples are generated for each example in the
training set. Then, the detector is trained using both the
original dataset and the corresponding adversarial dataset.
MagNet [102] falls into this category, and it also contains a
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Fig. 6 Informative missingness in the MIMIC-III dataset [29]

reformer that corrects an adversarial example to a similar
legitimate example using autoencoders.

4.2 Missing features

Since missing data can reduce the statistical power and pro-
duce biased estimates, data imputation has been an active
research topic in statistics and machine learning. Missing
features can occur in any types of data, but, in this paper,
we focus on multivariate time-series data because its high
input rate and sensor malfunction generate missing values
very often.

Missing values in multivariate time-series data are ubiqui-
tous in many practical applications ranging from healthcare,
geoscience, astronomy, to biology and others. They often
inevitably carry missing observations due to various reasons,
such as medical events, saving costs, anomalies, incon-
venience, and so on. These missing values are usually
informative where the missing value and patterns provide
rich information about target labels in supervised learning
tasks.

We first describe informative missingness. Figure 6 shows
MIMIC-III critical care dataset [29]. Starting from the bot-
tom, there are the missing rate of each variable, the corre-
lation between missing rate of each variable and mortality,
and the correlation between missing rate of each variable
and each ICD-9 diagnosis category. Here, we observe that
the values of missing rates are correlated with labels, where
the values with low missing rates are highly correlated with
the labels. In other words, the missing rate of variables of
each patient is useful, and this information is more useful for
the variables that are more often observed in the dataset.

For existing approaches, a simple solution is to omit the
missing data and to perform analysis only on the observed
data, but it does not provide good performance when the
missing rate is high and the samples are inadequate. Another
solution is to fill in the missing values with substituted val-
ues, which is known as data imputation. However, these
methods do not capture variable correlations and may not
capture complex patterns to perform imputation. Combin-
ing the imputation methods with prediction models often

results in a two-step process where imputation and prediction
models are separated; the missing patterns are not effectively
explored in the prediction model, thus leading to suboptimal
analysis results.

GRU-D[29] is a deep learning model based on the gated
recurrent unit (GRU) to effectively exploit two representa-
tions of informativemissingness patterns—masking and time
interval. Masking informs the model of which inputs are
observed or missing, while time interval encapsulates the
input observation patterns. GRU-D captures the observa-
tions and their dependencies by applying masking and time
interval, which are implemented using a decay term, to the
inputs and network states of the GRU, and jointly train all
model components through back-propagation. GRU-D not
only captures the long-term temporal dependencies of time-
series observations, but also utilizes the missing patterns to
improve the prediction results.

We elaborate on the two components of GRU-D: making
and time interval. The value of a missing variable tends to be
close to some default value if its last observation happened
a long time ago, because the influence of the last observa-
tion fades away over time. As lots of missing patterns are
informative and potentially useful in prediction tasks, but
unknown and possibly complex, the goal is to learn decay
rates from the training data rather than fixing them a pri-
ori. The GRU-D model incorporates two different trainable
decay mechanisms. For a missing variable, an input decay
γx is added to decay it over time toward the empirical mean,
instead of using the last observation as it is. A hidden state
decay γh in GRU-D has an effect of decaying the extracted
features (GRU hidden states) rather than raw input variables
directly.

We now extend the discussion to cover tabular data and
present interesting studies in statistics, machine learning, and
query optimization.

– Statistics MICE[162], which is one of the most com-
monly used packages in R, creates multiple imputed
datasets to take care of uncertainty in missing values.
By default, linear regression is applied to predict missing
values. Besides, users can build models on all imputed
datasets for evaluation and combine the results from these
models to obtain a consolidated output.

– Machine learningXGBoost [32] internally handles miss-
ing values. It implements gradient boosted decision trees,
and node splits are determined by considering missing
values. In more detail, when a value is missing, the
instance is classified into the default direction because
there is nothing to evaluate for the split criteria. Here, the
optimal default directions are learned from the data.

– Query optimization ImputeDB[26] selectively applies
imputation to a subset of records dynamically during
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Fig. 7 Robust training categorization [149]

query execution. The rationale behind this optimization
is that the subset which imputation is needed for a specific
query is generally much smaller than the entire database.
Thus, the computation spent for imputation is signifi-
cantly saved.

4.3 Noisy labels

Because data labeling is done manually in many cases,
incorrect or missing labels are, in fact, very common;
the proportion of incorrect labels is reported to be 8–
38% in several real-world datasets [150]. As an example of
ANIMAL-10N[149], which is real-world noisy data with
human annotation errors, human annotators mistakenly clas-
sified the Cheetah images as other animals like Jaguars
instead of Cheetahs. In this example, it may be difficult to
distinguish the patterns of Cheetahs and Jaguars, resulting
in noisy labels in training data. So wrong annotations can be
caused by such human errors. Similarly, labeling errors occur
with data types other than images. For sentiment analysis,
annotators oftendisagree on thepolarity (e.g., positive or neg-
ative) of the sentiment expressed in the text [166]. Another
type of error is software error. If there are many images to
annotate, onemay use automatic object recognition software.
However, the object recognition itself may have errors. Thus,
many deep learning techniques have been developed to con-
sider the existence of label noises and errors, which are more
critical in deep learning than in conventional machine learn-
ing as a deep neural network completely memorizes such
noises and errors because of its high expressive power.

We explain what kinds of problems occur with noisy
labels. In standard supervised learning, training data con-
sist of example and label pairs {(xi , yi )}Ni=1. In a practical
setting, however, the label yi is actually ỹi , which means it
can be incorrect. If one trains powerful models like VGG-19
on noisy data, the model may simply memorize the noise as
well and perform worse on clean data. The goal of the noisy
label problem is to train the network as if there are no noisy
labels.

Fig. 8 Two directions of robust training covered in this survey

Figure 7 from a recent survey [149] shows the catego-
rization of robust training techniques. There are largely four
components in the training procedure: deep neural architec-
ture, loss function, input training data, and regularization.
For each component, there are relevant robust training tech-
niques. For deep neural architectures, robust architectures
have been developed. For training data, various sample selec-
tion techniques have been proposed. For the loss function,
robust loss functions and loss adjustment techniques have
been proposed.More specifically, loss adjustment can be fur-
ther divided into loss correction [113], loss reweighting [28],
and label refurbishment [126]. For regularization, robust reg-
ularization techniques have been proposed.

In this survey, we focus on the most representative tech-
niques: sample selection and loss correction techniques as
illustrated in Fig. 8. Loss correction is to correct the loss
of all samples before a backward step. The representa-
tive techniques include Bootstrap [126], F-correction [113],
and ActiveBias [28]. Sample selection is to select expectedly
clean samples to update the network. The representative tech-
niques include Decouple [99], MentorNet [78], and Coteach-
ing [65].

We first introduce ActiveBias [28], which is a loss cor-
rection technique. ActiveBias performs a forward step on a
given mini-batch and computes the sample importance for
each sample. There are many statistics for the importance,
e.g., variance of predictions.ActiveBias then corrects the loss
bymultiplying the normalized importance. If a label is noisy,
then its importance μi decreases. The corrected loss is used
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Fig. 9 SELFIE is a hybrid of loss correction and sample selection [149]

to update the network. We then explain sampling selection
through its representative technique Coteaching [65], where
the noise rate τ is assumed to be given. It then performs a for-
ward step on a given mini-batch and selects the (100 − τ )%
low-loss samples as clean samples. The network is updated
using the loss of the clean samples.

Although these two methods have improved the robust-
ness to noisy labels, there are limitations of the two methods.
Loss correction suffers from accumulated noise due to the
large number of false corrections. Since all the examples are
used for the training step, false corrections can accumulate
for heavily noisy data. On the other hand, sample selection
uses only clean samples having low losses and easy to clas-
sify. Hence, we may end up ignoring many useful, but hard
samples that are classified as unclean.

SELFIE [149] was proposed to overcome the above lim-
itations by using a hybrid of loss correction and sample
selection (see Fig. 9). SELFIE introduces refurbishable sam-
ples where labels can be corrected with high precision. The
key issue of SELFIE is constructing the refurbishable and
clean samples. For the clean samples, SELFIE adopts the
small-loss trick [65] and uses the (100 − τ )% low-loss sam-
ples in the mini-batch. The refurbishable samples are ones
that have consistent label predictions. Each label is replaced
with the most frequently predicted label during the training
step. For example, if an image is predicted mostly as a dog
and only sometimes a cat, then the label predictions are con-
sidered consistent, and such a cat label is considered noisy
and corrected to a dog. Finally, the loss is calculated for the
refurbishable samples with correct labels and the clean sam-
ples; the samples that are neither refurbishable nor clean are
discarded. The advantage of SELFIE is that itminimizes false
corrections during the model training by selectively correct-
ing refurbishable samples. As a result, the correction error of
refurbishable samples is low. Also as the training progresses,
the number of refurbishable samples also increases, so most
training samples are exploited in the end.

Prestopping is another technique [149] for avoiding over-
fitting to noisy labels by early stopping the training of a deep
neural network before the noisy labels are severely mem-
orized. The algorithm resumes training the early stopped

network using a maximal safe set, which maintains a collec-
tion of almost certainly true-labeled samples. MORPH[151]
further improves Prestopping through a novel concept of
self-transitional learning, which automatically switches its
learning phase at the transition point. The optimal transition
point is determined without any supervision such as a true
noise rate and a clean validation set, which are usually hard to
acquire in real-world scenarios.MORPH rather estimates the
noise rate by fitting the loss distribution to a one-dimensional
and two-component Gaussian mixture model (GMM).

DivideMix [95] is a recent technique that trains two net-
works simultaneously. At each epoch, a network models
its per-sample loss distribution with a GMM to divide the
dataset into a labeled set (mostly clean) and an unlabeled
set (mostly noisy), which is then used as training data for
the other network (i.e., co-divide). At each mini-batch, a net-
work performs semi-supervised training using an improved
MixMatch [17] method, which we cover in the next section.
When training on the CIFAR-10 dataset with 40% asymmet-
ric noise, standard training with cross-entropy loss causes
the model to overfit and produce over-confident predictions,
making the loss difficult to be modeled by the GMM. Also,
adding a confidence penalty during thewarmup leads tomore
evenly distributed loss. Finally, training with DivideMix can
effectively reduce the loss for clean samples while keeping
the loss larger for most noisy samples.

4.4 Missing labels

We cover the issue of missing labels where training labels
may not exist for either some or all examples. There
are largely semi-supervised and unsupervised approaches.
In semi-supervised approaches, clean labeled data exists
together with unlabeled (or incorrectly labeled) data. The
goal is to exploit unlabeled data to improve accuracy as
much as possible. Here, the loss is defined as the super-
vised loss for labeled data plus the unsupervised loss for
unlabeled data. The representative techniques include unsu-
pervised loss (e.g., consistency loss) likeMean-Teacher [156]
and augmentation techniques like MixMatch [17]. For unsu-
pervised approaches, the representative techniques include
self-supervised learning and generative models, and we
will cover a self-supervised learning technique called Jig-
sawNet [108].

In Mean-Teacher [156], the teacher model is the average
of consecutive student models. Both the student and teacher
models evaluate the input in a training batch. The softmax
output of the student model is compared with the one-hot
label using a classification cost. Additionally, the output is
compared with the teacher output using the consistency loss.
After the weights of the student models are updated via gra-
dient descent, the teacher model weights are updated as an
exponential moving average of the student model weights.
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Fig. 10 Example of the jigsaw puzzle task for a given unlabeled
image [108]

A training step with unlabeled examples is done without the
classification cost.

In MixMatch [17], to exploit an unlabeled dataset, it per-
forms label guessing where stochastic data augmentation is
applied to an unlabeled image K times; then, each augmented
image is fed through the classifier. The average of these
K predictions is sharpened by adjusting the distribution’s
temperatures. The MixMatch algorithm mixes both labeled
examples and unlabeled example with label guesses. In more
detail, when mixing two images, the images are overlayed,
and the labels are averaged, following the MixUp augmen-
tation [181].

We now proceed to unsupervised techniques. Since there
are no labels, we need to develop new tasks exploiting labels
that can be obtained from the data for free. JigsawNet [108]
is one of such techniques. If an image is divided into smaller
regions without labels, we can randomize the regions and
solve the jigsaw puzzle where we know the correct order
and positions, as illustrated in Fig. 10. JigsawNet trains a
context-free network (CFN) to solve the jigsaw task. The
trained network can be transferred or fine-tuned to solve the
given task using a small amount of labeled data.

5 Fair model training

We now focus on the issue of model fairness where biased
data may cause a model to be discriminating and thus unfair.
This problem is closely related to robust model training
where instead of addressing noise in the training data, the
goal is to address bias. A famous example is the COMPAS
tool by Northpointe, which predicts a defendant’s risk of
committing another crime. According to an analysis by ProP-
ublica [7], black defendants are far more likely to be judged
as high risk compared to white defendants, which turns out to
be inaccurate in practice. Other popular examples include an
AI-based recruiting system discriminating against job appli-
cants by gender [3], an AI-based photo app tagging people of
a certain race inappropriately [57], and an AI chatbot gener-
ating hate speech towards minorities [135]. These incidences
fueled the new research area of algorithmic fairness.

There could be multiple reasons why COMPAS discrimi-
nates. The training data could be biased where there is more
data for certain demographics. Or there can be external fac-
tors where the surrounding environment may have caused
more crime than race itself. Even the fairness measure can
be in question where it does not accurately reflect reality. In
general, analyzing fairness can be an extremely complicated
issue that involves factors outside the data.

An extensive discussion on fairness and ethics can be
found in the recent fair ML book [12], and here, we only
focus on fairness issues with technical solutions. In particu-
lar, we discuss how to measure fairness and how to mitigate
unfairness. In addition, we discuss a recent trend of how fair
and robust techniques are converging. This trend is natural,
as bias and noise can affect each other, and only addressing
fairnessmay negatively affect robustness and vice versa. This
section extends recent tutorials [94,169] by the authors.

5.1 Fairness measures

Fairness cannot be described by one notion, and there are tens
of possible definitions summarized in various surveys [12,36,
100,165] used for predicting crime, hiring, giving loans, and
more. We illustrate representative measures using a running
example and then categorize themaccording to reference [12]
as shown in Table 1 on Page 3. We use the following nota-
tions: Y denotes the label of a sample, Ŷ the prediction of
a model, and Z is a sensitive attribute like race or gender.
Choosing a sensitive attribute depends on what is consid-
ered sensitive in the application. For example, if a company
may run into trouble by discriminating based on age, then an
attribute that is related to age can be considered sensitive.

We illustrate fairness using the simplest-possible model: a
perceptron, which is the most basic unit in a neural network.
Suppose the perceptron receives three input features: “Race
= black” has a value of one if the person is black (e.g., Z =
0) or zero otherwise (Z = 1). “Race = white” has one if it is
a white person or zero otherwise. “Previous crime” is one if
the person has a previous crime and zero otherwise. The last
feature is a constant to make the prediction threshold equal
to zero. Given an example, we take the weighted sum by
multiplying the feature values with the weights [2, 1, 1, -2]
and, if the sum is at least zero, the model predicts (i.e., the Ŷ
value) recidivism (i.e., Y = 1) and otherwise not (i.e., Y = 0).
For example, if a white person committed a previous crime,
the weighted sum is 0×2+1×1+1×1−1×2 = 0, which
is larger or equal to the threshold zero. The interpretation is
that the person previously committed a crime, so is likely to
re-offend. A black person who committed a previous crime
gets the same prediction. However, for people who did not
commit a previous crime, the model starts to discriminate
where only a black person is predicted to still re-offend as
shown in Fig. 11. The prediction is obviously unfair and is
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Fig. 11 A perceptron receiving input features and performing a
weighted sum. Even amodel as simple as a perceptronmay show unfair-
ness

shown for illustration purposes to show how even a model as
simple as a perceptron can be discriminating.

For our running example, let us assume there are four
people: (a) one white person who committed a crime before
and committed a crime again, (b) onewhite personwho never
committed a crime, (c) one black person who committed a
crime before and committed a crime again, and (d) one black
person who never committed a crime. In this example, the
perceptron correctly predicts for a, b, and c but wrongly
predicts for d.

We summarize the prominent group fairness measures for
fairness.

– Demographic parity [51,53] requires that sensitive groups
must have the same positive prediction rates. The formu-
lation is as follows: P(Ŷ = 1|Z = 0) = P(Ŷ = 1|Z =
1) where the Z value indicates the sensitive group. Ŷ =
1 means that the prediction of the model is positive, e.g.,
predicting recidivism. Demographic parity says that the
positive prediction rates of the two groups must be the
same. In our running example, P(Ŷ = 1|Z = 0) = 0.5
while P(Ŷ = 1|Z = 1) = 1, which shows unfairness.

– Equalized odds [15,66,176] is defined as P(Ŷ = 1|Z =
0,Y = A) = P(Ŷ = 1|Z = 1,Y = A), A ∈ {0, 1}.
That is, we would like to guarantee demographic parity
when the label Y is zero (in our example, the person did
not commit crime again) and when Y is one (the person
committed crime) separately. In other words, equalized
odds says that the accuracy conditioned on the true label
must be the same for the groups. In our running example,
P(Ŷ = 1|Z = 0,Y = 1) = P(Ŷ = 1|Z = 1,Y = 1) =
1, but P(Ŷ = 1|Z = 0,Y = 0) = 0 �= P(Ŷ = 1|Z =
1,Y = 0) = 1, so there is some unfairness.

– Predictive parity [15,35,45] is defined as P(Y = 1|Z =
0, Ŷ = 1) = P(Y = 1|Z = 1, Ŷ = 1). That is, given
that the predictions are positive, we would like the actual
likelihood of the label being positive to also be the same.
Note that this measure can be extended to other label
classes (e.g., Y = 0, Ŷ = 0). In our running example,
P(Y = 1|Z = 0, Ŷ = 1) = 1 �= P(Y = 1|Z = 1, Ŷ =
1) = 0.5, which shows unfairness.

Interestingly,many statistical fairnessmeasures are equiv-
alent to or variants of the following fairness criteria [12]:
independence: Ŷ⊥Z , separation: Ŷ⊥Z |Y , and sufficiency:
Y⊥Z |Ŷ . Note that demographic parity is equivalent to inde-
pendence, equalized odds is equivalent to separation, and
predictive parity is equivalent to sufficiency. An impossi-
bility result says that no two fairness criteria can be fully
satisfied together (see proofs in [12]).

There are remaining fairness criteria beyond the three
above, andwe cover the two popular ones: individual fairness
and causality fairness.

– Individual fairness [51] only uses the classifier for its
definition and is defined as D( f (x), f (x ′)) ≤ d(x, x ′)
where d is a distance function among examples, and D is
a distance function between outcome distributions. Intu-
itively, the predictions for similar people must be similar
as well. For example, if two people are similar to each
other, then their recidivism rates must be similar as well.
Choosing proper distance functions is a key challenge in
individual fairness.

– Causality fairness [83,85,90,106,182] assumes a causal
model, which is a diagram of relationships between
attributes. An edge from attribute A to attribute B means
that A’s value affects B’s value. For example, suppose
that race not only affects crime, but also the zip code of
a person’s address, which provides an environment for
committing more or less crime. A causal graph could
have three nodes race, zip code, and crime with edges
from race to zip code, race to crime, and zip code to
crime. One can perform a counterfactual analysis to see
if zip code indeed affects crime rates by comparing sim-
ilar people that live or do not live in that zip code.

5.2 Unfairness mitigation

Although there are many ways to measure fairness, one
would ultimately like to perform unfairness mitigation [12,
14]. Data bias can be addressed either before, during, or
after model training. These approaches are referred to as pre-
processing, in-processing, and post-processing approaches,
respectively. Pre-processing approaches can be viewed as
data cleaning, but with a focus on improving fairness. For
each approach, we cover representative techniques.
Pre-processing mitigation

The goal is to fix the unfairness before model training by
removing data bias. The advantage is that we may be able
to solve the root cause of unfairness within the data. A dis-
advantage is that it may be tricky to ensure that the model
fairness actually improves when we only operate on the data.
A naïve approach that does not work is to remove sensitive
attributes (also referred to as unawareness) because they are
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Fig. 12 Repairing distribution by averaging scores of the same per-
centiles [53]

usually correlated with other attributes. For example, remov-
ing sensitive attributes like race, income, and gender does not
ensure fairness because their values can be inferred using
correlated attributes like zip code, credit score, and browsing
history, respectively. We cover three natural approaches for
pre-processing—repairing data, generating data, and acquir-
ing data.

For fair data repairing, we first cover a method [53] that
guarantees demographic parity while preserving important
statistics like the ranking of data. As an example (Fig. 12),
let us say that we have test scores and distributions for dif-
ferent genders where the data follow normal distributions,
but the women’s distribution has a higher mean and larger
variance. Now, let us say that we want to train a model that
uses the test score to make a prediction. If we keep the men
and women distributions as they are, then a model using a
single threshold is going to be unfair for male versus female
and violate demographic parity. Hence, the idea is to combine
the two distributions by averaging the scores of the same per-
centile without losing the ranking information. This method
can be extended to more than two sensitive groups.

A more recent system called Cappucin [136] repairs data
such that a new causality-based fairness called interventional
fairness is satisfied. The key insight is that satisfying inter-
ventional fairness can be reduced to satisfying multivalued
functional dependencies (MVDs). The authors then propose
minimal repair methods for MVDs by reducing the problem
to MaxSAT or matrix factorization problems.

If there is not enough data to satisfy fairness, an alterna-
tive is to generate new data using the available data. A recent
method [34] is to generate unbiased data using weak super-
vision. The input is biased data and an unbiased data that
is smaller than the biased data that we have some control
on. The idea is to train a generative model on the bias data
except that we are adjusting the example weights such that
it is as if the generative model is being trained on unbiased
data. Then, the generative model generates new data that is
unbiased. An exampleweight reflects how likely the example
is part of the biased or unbiased data and can be computed
by training a separate classifier for distinguishing the biased

Fig. 13 Slice Tuner [155] is a selective acquisition framework for accu-
rate and fair models where it iteratively estimates learning curves to
determine how much data to acquire per data slice

data from the unbiased data. The generative model that uses
the example weights for training is guaranteed to produce
unbiased synthetic data. In addition, GANs [171] have also
been used for data generation where a generator competes
with two discriminators: one for telling apart real and fake
data and another for predicting the sensitive attribute.

As data are increasingly available, acquiring data from
external data sources is also becoming a viable option [9,
31]. A recent approach called Slice Tuner [155] selectively
acquires examples with the purpose of maximizing both
accuracy and fairness of the trained model (Fig. 13). Slice
Tuner assumes a set of non-overlapping data slices (e.g.,
regions), and the fairness measure is equal error rates [165]
where themodel’s accuracies on different slices must be sim-
ilar. The key idea is to maintain learning curves of slices,
which can be used to predict accuracies on those slices given
more data. Slice Tuner then solves a convex optimization
problem to determine the amount of data to acquire per
slice. Two challenges are that learning curves may be unre-
liable and that acquiring data for one slice may influence the
model’s accuracy on another slice. Slice Tuner solves these
problems by iteratively updating the learning curves using a
proxy for estimating influence.As a result, amodel can obtain
better accuracy and fairness compared to various baselines
given a fixed budget for data acquisition. Another system
called Deepdiver [9] performs data acquisition such that all
possible slices contain sufficient amounts of data. Here, the
slices may overlap with each other, and the objective is to
guarantee minimum coverage instead of improving model
accuracy or fairness.
In-processing mitigation We now cover representative in-
processing techniques for unfairness mitigation where the
model training is fixed. The advantage is that one can directly
optimize accuracy and fairness. On the other hand, the down-
side is that the model training itself may have to change
significantly,whichmaynot be feasible inmany applications.
There are largely three in-processing approaches. The first is
to directly modify the objective function of the model train-
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Fig. 14 Suppose we are classifying circles versus squares where the
color of the shapes indicate the sensitive group. The left image has little
correlation between the sensitive group and being on one side of the
decision boundary, whichmeans the covariance is low. The right image,
on the other hand, shows a high covariance where just by looking at the
sensitive group, one can figure out whether the data point is on which
side of the decision boundary. Hence, by minimizing the covariance,
one can also make the sensitive attribute more independent of the model
predictions and thus satisfy demographic parity as well

ing by adding fairness constraints. The second is to make the
model compete with a fairness discriminator via adversarial
training. The third is adaptive sample reweighting techniques
that re-weight input samples for fairness.

Directly adding fairness constraints to the model training
objective function is an effectiveway to optimize for fairness.
Zafar et al. propose fairness constraints techniques [177] to
use in the objective function of model training to satisfy
demographic parity. The focus is on convexmargin classifiers
like SVMs. However, as the demographic parity constraint is
not convex, it cannot be directly added to the objective func-
tion. Instead, the idea is to use a proxy that approximates
demographic parity and is convex. For the proxy, the authors
use the covariance between the sensitive attribute and the
signed distance to the decision boundary. Figure 14 provides
an intuition why covariance is a good proxy. A limitation of
fairness constraints is that it does not readily generalize to
deep neural networks that are not convex. Other optimization
techniques [4,81] for maximizing fairness and accuracy have
been proposed as well.

If one does not want to modify the loss function in the
model, another approach is to perform adversarial training
with anothermodel for fairness. Adversarial de-biasing [178]
is a representative work in this direction. Here, the idea is
to do adversarial training between a binary classifier and
an adversary that tries to infer the sensitive attribute value
(Fig. 15). For example, the classifier may predict recidivism
while the adversary infers the gender of the person based
on the classifier predictions. Suppose the fairness measure
is demographic parity. A key theoretical result is that, if the
adversary optimally predicts the sensitive attribute, but the
classifier completely fools the adversary, it means that the
model prediction is independent of the sensitive attribute.

Fig. 15 Adversarial de-biasing [178] competes a classifier with a fair
discriminator

Fig. 16 FairBatch [132] is a batch selection framework for model fair-
ness where sensitive group ratios are adjusted based on intermediate
model fairness

In our example, recidivism will have nothing to do with the
gender. One downside of adversarial debiasing or adversar-
ial training in general is that stability is sometimes an issue
where the model training may not easily converge to a single
solution.

Adversarial training can also be used to attain both fair and
robust training. FR-Train [131] uses a mutual information-
based approach to train a model that is both fair and
robust. The classifier’s fairness-accuracy tradeoff is harmed
when the data is poisoned. FR-train avoids this problem by
competing a classifier with two discriminators for fairness
and robustness. The robustness discriminator uses a clean
validation set that can be constructed using crowdsourc-
ing techniques. We will continue discussing this work in
Sect. 5.3.

A major downside of the previous methods is that the
model training needs to be replaced ormodified significantly,
and amore convenient approach is to only re-weight the sam-
ples in order to obtain similar fairness results. FairBatch [132]
is a batch selection technique with the purpose of improving
fairness. During batch selection, it is common to select a
random sample from the training set. Instead, the idea of
FairBatch is to adjust the sensitive group ratios within each
batch of examples being used for training as illustrated in
Fig. 16. For example, suppose the training set is biasedwhere
a certain sensitive group has very few examples. If an inter-
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Fig. 17 Post-processing unfairness mitigation [66] involves combining
models using randomization to attain the desired fairness

mediate model shows poor fairness, then the next batch of
examples will contain more examples of that sensitive group.
Howexactly the sensitive group ratio should be adjusted is the
technical challenge. OmniFair [179] is a declarative system
for supporting group fairness for any model by reweight-
ing samples. While the goals are similar to FairBatch, the
specific optimization techniques differ where Omnifair uses
a Lagrangian multiplier to translate a constraint optimiza-
tion problem into an unconstrained optimization problemand
leverages a monotonicity property. Other techniques include
an adaptive sample reweighting approach that corrects label
bias [77] and an adaptive boosting technique for maximizing
fairness [76].

Post-processing mitigation The final approach for unfairness
mitigation is to fixmodel predictions for fairness,which is the
only option if the data and model cannot be modified. How-
ever, post-processing usually results in a tradeoff of worse
accuracy.

We introduce a representative work [66] that combines
models to adjust fairness. The method we explain here
assumes equalized odds for binary classifiers, although other
settings are supported in the paper as well. We assume a
model M for each Z value and then construct the following
models: a trivial model that only returns 0, another trivial
model that only returns 1, and the “inverted” model 1 − M ,
which returns the opposite prediction of M . The idea is to
combine these models using randomization such that the
fairness criteria is satisfied. Figure 17 illustrates how this
combination can be done for Z = 0 and Z = 1. In each case,
we can generate a model with the desired positive prediction
rate as long as it is inside the parallelogram. If we gener-
ate a model in the intersection of the two parallelograms,
we can find a model where P(Ŷ = 1|Z = 0,Y = A) =
P(Ŷ = 1|Z = 1,Y = A), A ∈ {0, 1}, which is exactly the
definition of equalized odds. Among the possible combined
models, we then choose the onewith the lowest expected loss
(i.e., closest to the top left as highlighted in the figure). Other
post-processing approaches leverage unlabeled data [37] and
calibration [116].

Fig. 18 Fairness and robustness issuesmay negatively affect each other.
Noisy or missing group information may result in inaccurate results
after unfairness mitigation. A biased distribution in the data may result
in disproportionate accuracies after robust training

5.3 Convergence with robustness techniques

Most recently, we are witnessing a convergence of fair-
ness and robustness techniques. This direction is inevitable
because both techniques address flaws in the data, but one
does not subsume the other. Fair training assumes that the
data are clean and only focus on removing its bias. However,
the sensitive attribute itself can be noisy or even miss-
ing. On the other hand, robust training primarily focuses
on improving the overall accuracy, but does not consider
disproportionate performances between different sensitive
groups. In general, fairness and robustness are not neces-
sarily aligning goals. For example, if the data are already
biased, then removing noisy data for robust training may
end up worsening the bias by removing too much data from
an underrepresented group [133]. Figure 18 illustrates these
dynamics. There are three directions for the convergence:
making fairness approaches more robust (fairness-oriented),
making robust approaches fairer (robust-oriented), and equal
mergers of fair and robust training. We summarize the recent
research for each of the three approaches.
Fairness-oriented approaches The first direction of conver-
gence is to make fair training more robust. This research
currently has two directions: when the sensitive group infor-
mation is noisy or entirely missing.

The first scenario may occur if some users may want
to hide or mistakenly omit their group memberships. An
analysis of fair training results on noisy sensitive group infor-
mation [168] shows that the true fairness violation on a clean
sensitive group can be bounded by a distance between this
group and its noisy version. In addition, noise-tolerant fair
training techniques [92] have been proposed where the idea
is to change the unfairness tolerance to estimate the fairness
of the true data distribution.

The second scenario is when the sensitive attribute is
fully missing. Here, the data collection sometimes does
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Fig. 19 A DRO-based fair algorithm[67] improves model fairness
without using the sensitive group information by identifying the worst-
performing samples

not gather the group information due to various reasons
like legal restrictions. Distributionally Robust Optimization
(DRO) [147] has been used to improve the model perfor-
mance for minority sensitive groups without using the group
information [67]. The idea is to approximately minimize
the worst-case (latent) group loss by identifying the worst-
performing samples (Fig. 19) and giving them more weight.
Adversarially reweighted learning for fairness [91]makes the
assumption that unobserved sensitive attributes are correlated
with the features and labels, and performs adversarial train-
ing between a classifier versus an adversary that finds less
accurate clustered regions and gives more weights on those
regions.
Robustness-oriented approaches Robust training is designed
to improve the overall accuracy of a model, but may dis-
criminate groups where some have much worse accuracy
than others. There are three directions of research: finding
anomalies in the data, training without spurious features, and
improving robustness via adversarial training. Fair anomaly
detection [180] has been proposed to prevent anomaly detec-
tion from discriminating specific groups. The idea is to
compete a classifier that finds abnormal data and a discrimi-
nator that predicts the sensitive group from the classifier’s
prediction. After training, the classifier’s output becomes
independent of the sensitive group. Fair training without
spurious features [84] addresses the problem of preventing
feature removal from being discriminating. A self-training
technique is proposed to mitigate accuracy degradation and
biased effects (Fig. 20). Finally, fair adversarial training [172]
prevents adversarial training from discriminating groups by
adding constraints for equalizing accuracy and robustness.
Equal mergers Robust and fair training can be combined
in equal terms as well. One direction is to make the model
training fair and robust at the same time. FR-Train [131]
is a mutual information-based framework that competes a
classifier, discriminator for fairness, and discriminator for
robustness to make the classifier fair and robust (Fig. 21). A
recent sample selection framework [133] adaptively selects

Fig. 20 A self-training technique [84] can mitigate the biased effects
of spurious feature removal by also using full-featured data

Fig. 21 FR-Train [131] is a mutual information-based approach for
achieving both fairness and robustness, which competes one classifier
with two discriminators

Fig. 22 Adaptive sample selection [133] can be another solution for
improving fairness and robustness. The key idea is to utilize only clean
and fair samples in training

training samples for fair and robust model training (Fig. 22).
This framework does not require modifying the model or
leveraging additional clean data. A fairness-aware ERM
framework [167] has been proposed based on the observation
that group-dependent label noises may reduce both model
accuracy and fairness. The solution is to use surrogate loss
where the label distribution is corrected based on the noise
rates of groups. The surrogate loss better reflects the true loss
and thus mitigates the negative effects of group-dependent
label noises. Another direction of robust and fair training
is to take a role of an adversary and generate attacks that
not only reduce accuracy, but also harm fairness. Fairness-
targeted poisoning attacks [148] proposes a gradient-based
attack method that finds the optimal attack locations that
reduce the fairness the most.
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6 Overall findings and future directions

We summarize our findings. In Sect. 2, we explained that data
collection techniques consist of data acquisition, data label-
ing, and improving existing data and models. Some of the
techniques have been studied by the data management com-
munity while others by the machine learning community. In
Sect. 3, we covered key approaches in data validation, data
cleaning, data sanitization, and data integration. Data val-
idation can be performed using visualizations and schema
information. Data cleaning has been heavily studied where
recent techniques aremore tailored to improvingmodel accu-
racy. Data sanitization has the different flavor of defending
against poisoning attacks. Data integration is challenging due
to multimodal data. In Sect. 4, we explained that noisy or
missing labels incur poor generalization on test data. Exist-
ing work for noisy labels suffers from either (i) accumulated
noise or (ii) partial exploration of training data. Hybrid (e.g.,
SELFIE) and semi-supervised techniques (e.g., DivideMix)
can achieve very high accuracy with noisy training data.
Semi-supervised (e.g., MixMatch) and self-supervised (e.g.,
JigsawNet) techniques are actively developed to exploit
abundant unlabeled data. In Sect. 5, we covered fairness
measures, unfairnessmitigation techniques, and convergence
with robustness techniques. The mitigation can be done
before, during, or after model training. Pre-processing is
useful when training data can be modified. In-processing is
useful when the training algorithm can be modified. Post-
processing can be used when we cannot modify the data and
model training. The convergence with robustness techniques
can be categorized into fair-robust techniques, robust-fair
techniques, and equal mergers.

As data-centric AI becomes more established, we believe
there will be various convergences of these research areas.
Our list is certainly not exhaustive, but we attempt to identify
the major trends.

– Data cleaning and robust training Currently, data clean-
ing is becoming more machine learning oriented, but is
considered less effective than robust training. We believe
that the two techniques should continue integrating for
the best results.

– Data validation and model fairness The recent works in
data validation point toAI ethics as one of the challenging
aspects to validate. We believe that model fairness will
eventually be merged into the data validation process.

– Data collection So far, most of themachine learning liter-
ature assumes that the input data are already given. At the
same time, data collection for accurate machine learning
is now an active research direction in the data manage-
ment community. We believe this trend will continue to

expand where data collection needs to also consider fair-
ness and robustness.

– Model training and testing Improvingmodel training and
testing protocols is becoming another solution for deal-
ing with data quality issues. The output of the model on
data samples provides useful knowledge for evaluating
the data, helping to develop accurate and robust infer-
ence pipelines. We believe that the learning dynamics of
models provide new perspectives for interpreting robust-
ness and fairness.

– Model fairness and robustness Trustworthy AI is becom-
ing increasingly critical in the machine learning commu-
nity, and we believe its various aspects including fairness
and robustness will have to be addressed together instead
of one at a time. There are other elements of Trustwor-
thy AI including privacy and explainability that should
eventually be part of data-centric AI as well.

Concluding remark In the data-centric AI era, collecting data
and improving its quality will only become more critical for
deep learning. We covered four major topics (data collec-
tion, data cleaning, validation, and integration, robust model
training, and fair model training), which have been studied
by different communities, but need to be used together. We
believe all the data techniques will eventually converge with
the robust and fair training techniques as data-centric AI
matures, and hope that our survey plays a catalyst role.
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