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We present measurements of the branching fractions for the singly Cabibbo-suppressed decays D —
K*K~n*z°and D - K* 72~ #x+2°, and the doubly Cabibbo-suppressed decay D* — K+z~z" 2, based on
980 fb~! of data recorded by the Belle experiment at the KEKB e*e™ collider. We measure these modes
relative to the Cabibbo-favored modes D* — K~z7z" 2% and D} — K+*K~z"2°. Our results for the ratios
of branching fractions are B(D* — KTK~zt7%)/B(D* - K2tz 7°) = (11.32 £ 0.13 £ 0.26)%,
B(DY - KTzt 2%)/B(DT - K~ ntzat7%) = (1.68 £ 0.11 £0.03)%, and B(D] — Ktz n*z")/
B(Df - K*K-ztz%) = (17.13 £ 0.62 & 0.51)%, where the uncertainties are statistical and
systematic, respectively. The second value corresponds to (5.83 4+ 0.42) x tan* 6., where 6. is the
Cabibbo angle; this value is larger than other measured ratios of branching fractions for a doubly Cabibbo-
suppressed charm decay to a Cabibbo-favored decay. Multiplying these results by world average
values for B(DT —» K ztztz’) and B(Dj —» KK ntz°) vyields B(Dt — KK ztz%) =
(7.08 £ 0.08 + 0.16 £ 0.20) x 1073, B(D* —» K*7~x*2°%) = (1.05 £ 0.07 £0.02 £ 0.03) x 1073, and
B(Df - Kt a7 7°)=(9.4440.344+0.28 +0.32) x 1073, where the third uncertainty is due to the
branching fraction of the normalization mode. The first two results are consistent with, but more precise
than, the current world averages. The last result is the first measurement of this branching fraction.
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I. INTRODUCTION

Cabibbo-suppressed (CS) hadronic decays of charm
mesons provide a powerful means to search for new physics
[1]. Because such decays are suppressed in the Standard
Model, their decay rates are especially sensitive to small
new-physics contributions to the amplitudes. Thus, it is
important to measure such decays with high precision. It is
notable that the only observation of CP violation in charm
decays, possibly arising from new physics [1], was made
with the singly Cabibbo-suppressed (SCS) decays D° —
K*K~and D° - ztz~ [2]. Experimentally, CS decays can
be challenging to measure, as they typically have higher
background levels than those for Cabibbo-favored (CF)
decays.

In this paper, we present measurements of the branching
fractions for the SCS decays D" — KK ztz° and
D} — K*n~nta% and the doubly Cabibbo-suppressed
(DCS) decay D™ — K*z~z+z° Throughout this paper,
charge-conjugate modes are implicitly included. The
branching fractions are measured relative to those for
the well-measured CF modes D™ — K ztz*z’ and
D} — KK~ n*x° The branching fraction of a DCS decay
relative to its CF counterpart is expected to be approx-
imately tan*6. = 0.29% [3], where 0. is the Cabibbo
angle. The SCS decay D™ — KK~ z*7° and the DCS
decay Dt — K*z~ntz°, were recently observed by the
BESIII experiment [4—6]. The decay D} — K* 72~z 7" has
not yet been observed. The average of the absolute
branching fractions measured at BESII [5,6] is
B(DT - Ktz ntz%) = (1.18 0.07) x 1073; this gives
a ratio of branching fractions B(D" — Ktz z*z")/
B(Dt - K-ntz*2%) = (1.89 £ 0.12)%, which corre-
sponds to (6.56 4 0.42) x tan*f-. This value is larger
than other measured ratios of DCS to CF branching
fractions, which are in the range (0.7 —1.8) x tan* 6
[7]. To investigate this further, we use the full Belle dataset
to measure these decay modes with high precision.

II. DETECTOR AND DATASET

Our analysis uses the full dataset of the Belle experiment,
which corresponds to an integrated luminosity of 980 fb~!
collected at or near the Y(nS) (n=1, 2, 3, 4, 5)
resonances. The Belle experiment ran at the KEKB
asymmetric-energy e e~ collider [8,9]. The Belle detector
is a large-solid-angle magnetic spectrometer consisting
of a silicon vertex detector (SVD), a 50-layer central drift
chamber (CDC), an array of aerogel threshold Cherenkov
counters (ACC), a barrel-like arrangement of time-of-flight
scintillation counters (TOF), and an electromagnetic calo-
rimeter (ECL) comprising CsI(T1) crystals located inside a
superconducting solenoid coil providing a 1.5 T magnetic
field. An iron flux-return located outside the coil is
instrumented to detect K9 mesons and to identify muons

(KLM). A detailed description of the detector is given in
Refs. [9,10].

We use Monte Carlo (MC) simulated events to optimize
selection criteria, study sources of background, and calcu-
late selection efficiencies. Signal MC events are generated
using EVTGEN [11] and propagated through a detector
simulation based on GEANT3 [12]. Final-state radiation
from charged particles is simulated using PHOTOS [13].
Four-body decays are generated to decay uniformly in
phase space without intermediate resonances. An MC
sample of generic e"e™ collisions corresponding to the
same integrated luminosity as the data sample is used to
develop selection criteria.

III. EVENT SELECTION

To ensure that tracks are well reconstructed, each final-
state charged particle is required to have at least two SVD
hits in each of the longitudinal and azimuthal measuring
coordinates. Charged particles are identified by calculating
likelihoods L; for specific particle hypotheses, where
i=m=n K, p, u, e. These likelihoods are based on
information from various detectors: photon yield in the
ACC, dE/dx information from the CDC, time-of-flight
information from the TOF, energy in the ECL, and hits in
the KLM [14-16]. Tracks with Lg/(Lx + L,) > 0.6 are
identified as kaon candidates; otherwise, tracks are con-
sidered pion candidates. Kaon candidates must also satisfy
L,/(L,+ Lg) <095. Tracks that satisfy L,/(L, +
Lhagron) > 095 or  L,/(L, + L, + Lg) > 095 are
rejected, where L,, Lyudron, and £, are determined mainly
using information from the ECL and KLM detectors
[15,16]. These requirements have an efficiency of about
90% for kaons and 95% for pions.

Photon candidates are identified from energy clusters in
the ECL that are not associated with any charged track. The
photon energy is required to be greater than 50 MeV in the
barrel region (covering the polar angle 32° < 6 < 129°),
and greater than 100 MeV in the endcap region (covering
12° < 0 < 31°0r 132° < @ < 157°). The ratio of the energy
deposited in the 3 x 3 array of crystals centered on the
crystal with the highest energy, to the energy deposited in
the corresponding 5 x 5 array of crystals, is required to be
greater than 0.80. Candidate 7° — yy decays are recon-
structed from photon pairs having an invariant mass
satisfying 115 MeV/c? < M(yy) < 150MeV/c?;  this
region corresponds to about 36 in M(yy) resolution.

A D, candidate is reconstructed by combining
K K*z" or K*z¥at track combinations with a z°
candidate. A vertex fit is performed for the three charged
tracks and its fit quality is defined as y2,. The coordinates

of the fitted vertex are assigned as the D(t) decay vertex

position.
Final selection criteria are determined by maximizing
a figure-of-merit (FOM), which is defined as either

033003-2
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S/V/S+ B for DY - K*K z*z° and D" —» K*n~ 2t 7’
or S/v/B for DY - K*z~ntz°, where S and B are the
numbers of signal and background events, respectively,
expected in a region —30 MeV/c?> < M(D)—my <
20MeV/c%. In this expression, M(D) is the invariant
mass of a reconstructed D or DY candidate, and m, is
the known D™ or D] mass [7]. This region corresponds to
about 2.5¢ in the M(D) resolution. The FOM for D} —
K+t a0 is different because the branching fraction for
this mode has not yet been measured.

Pairs of y candidates are subjected to a fit in which the

y’s are constrained to originate from the D(t) decay vertex,

and their invariant mass is constrained to the nominal 7°
mass [7]. The resulting fit quality (){,2[0) is required to
satisfy ;(,2[0 < 8. To improve the momentum resolution of

the 7°, the y energies are updated from this fit; the
resulting 7° momentum is required to be greater than

0.40 GeV/c. We veto Dg) — KT~ " 2° candidates sat-

isfying |M(n*7™) —myo| < 10 MeV/c?, where myo is
the nominal K% mass [7], to suppress peaking back-

grounds such as D(t) — K K97°. This region corresponds

to about 3¢ in mass resolution.

The D(t) production vertex is determined by fitting the
D(t) trajectory to the e*e™ interaction point (IP), which is
determined from the beam profiles. This vertex fit quality is
defined as y2. The sum of vertex fit qualities y2, + yip
is required to be less than 14 for D™ — KT K~ z*z° decays,
and less than 10 for the other signal modes. This require-
ment has a signal efficiency of 80%—-82% while rejecting
60%—-80% of background.

The dominant source of background is random combi-
nations of particles produced in ete™ — ¢c events or in B
decays. To suppress this background, the momentum of
the DT or D candidate in the e™e™ center-of-mass frame
is required to be greater than 2.5 or 2.9 GeV/c, respec-
tively. To further suppress backgrounds, we calculate the

significance of the D(t) decay length L/o;, where L is the

projection of the vector running from the production

vertex to the D?;) decay vertex onto the momentum

direction. The corresponding uncertainty o; is calculated

by propagating uncertainties in the vertices and the D&

momentum, including their correlations. We subsequently
require L/o;, > 4.0 for D - KK 7*7% L/o; > 9.0
for Dt - Ktz atz°, and L/, >25 for D} —
K*n~n*7°. The resulting signal efficiencies are 58%—
77%, while more than 93%-99.8% of background is
rejected.

The CF normalization modes D* — K~z"z"2° and
DY — K*K~n" 2" are selected with the same criteria as
those used to select the signal modes, to minimize
systematic uncertainties. For both signal and normalization

modes, we retain events that satisfy —70 MeV/c? <
M(D) — mp < 60MeV/c2.

After applying all selection criteria, about 10% of events
for D™ decay modes and 15% of events for Dy decay
modes have multiple signal candidates. For these events,
the average multiplicity is about 2.2 candidates for each
channel. We select a single candidate by choosing the one
with the smallest value of the sum )(lzzo + Yoo T Xip- Based
on MC simulation, this criterion selects the correct signal
candidate 68% of the time.

There are backgrounds from D** decays in which the
final state particles are the same as those for the signal or
normalization modes. These are as follows:

(i) for D* — K~h*n*x® decays, where h* = KT or

at, there is background from D*t — DOzt
DY - K=h*7%(x°).To reject this background, we
require  M(K~h*z*z%) — M(K~h*2%) — m,+ >
20 MeV/c?.

(i) for DY — K*K~n"2° there is background from
Dt - D%z, DY - KKtz and from D*t —
D*t7°, D — K~K*z™. To reject these, we require
M(K-K*nt2%)—~M(K-K*zt)—mp>10MeV/c?,
and also M(K~K*z"7%) — M(K=K*7%) — m,+ >
10 MeV/c?.

(i) for D, — K*n~nta®, there is background from
D*~ — D%, D° - K*n~z°, with the 7~ replaced
by a random z*. To suppress this background,
we require M(K 7=zt 7%) = M(K* 7t 7%) = m,- >
40 MeV/c?.

These requirements reject only 1%—-3% of signal decays but
reduce D** backgrounds to a negligible level.

IV. YIELD EXTRACTION

We determine signal yields by performing an extended
unbinned maximum-likelihood fit to the M(D) distribu-
tions. The probability density function (PDF) describing
signal decays is taken to be the sum of a Crystal Ball
function [17] and three asymmetric Gaussians (AG), which
are Gaussian functions with different widths on the left- and
right-hand sides of the peak position. This position is
denoted by the parameter u, and all four functions are
required to have a common value of y. An additional term
(Pgsr) 1s included to describe signal decays with final-state
radiation (FSR). For this term, the sum of a CB function
and a Gaussian is used; the parameters of Prsr and its ratio
to the total signal yield (frsr) are fixed to MC values. The
overall PDF is

Psig:(l_fFSR)[f3[f2[fl'AG</"v61751)
+(1=f1)-AG(u,0,,8,)] + (1 = f2) - AG(, 03, 83)]
+ (1= f3)-CB(u, 04, et nepy)| + frsr - Prsgs (1)
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where 0, = r;0; (i = 1, 2, 3) with a scaling factor r;, and
the left-side (L) and right-side (R) widths of the asymmetric
Gaussians are specified by the parameter J;: of'R =
0;(1 £ &;). The parameters u and o, are free to vary, which
allows for a difference in resolution between data and MC
simulation; all other parameters are fixed to MC values.
The mode D+ — Kz~ 7" 7" is fitted simultaneously with
the normalization mode Dt — K~ 7tz 7%, as both modes
share signal shape parameters.

The background shapes are described by second-order
Chebyshev polynomials for D — K*z~z*z° and
D} — K*n~n*7°% and a third-order Chebyshev polyno-
mial for DT — K+ K~ 7+ z°. All parameters of these shapes
are free to vary.

Projections of the M(D) fits are shown in Fig. 1 for
DY - K*K- 2tz and its normalization mode

DT - K~ntztz°% in Fig. 2 for D* — Ktz 2" 2" and
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FIG. 1. Fit projections for D™ — K*K~z"z°, and its normali-
zation mode Dt — K~ 7tz 7°. Data are plotted as filled circles
with error bars. The red solid, red dashed, and blue dashed curves
denote the overall fit result, the signal component, and the
background component, respectively.
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FIG. 2. Fit projections for D* — K*z~z" 2% and its normali-
zation mode DT — K~z z+z°. The signal PDFs are the same for
the two modes (see text). Data are plotted as filled circles with
error bars. The red solid, red dashed, and blue dashed curves
denote the overall fit result, the signal component, and the
background component, respectively.

its normalization mode Dt — K~ zTz"z%; and in Fig. 3
for Df - KTz~ n*z° and its normalization mode
D} — K*K~ntx°. Also plotted are the pulls, defined as
(Ngata — N5 ) /0, wWhere o is the uncertainty on Ng,,. The
pull distributions show that the fits describe the data
satisfactorily. The signal and background yields (N,
and Ny,) obtained from the fits for the signal region,
+20 MeV/c? around the nominal Dg) mass, are listed in

Table I.

The statistical significance of a signal yield is evaluated
as the difference in the log likelihoods obtained from
fits performed with and without a signal PDF. For
Dt — Ktz ntz% we obtain A ln £ = 177; as the number
of degrees of freedom for the fit without a signal compo-
nent is one less than that with a signal component, this
value corresponds to a statistical significance of greater
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TABLE 1. Fitted signal yields (N,

sig

than 106. For D} — KTz~ nt2% we obtain Aln £ = 594.
In this case, the number of degrees of freedom without a
signal component is three less than that with a signal
component (parameters N, u, and o; are dropped), and
this value of A In £ corresponds to a statistical significance
of greater than 10s. This measurement constitutes the first
observation of this D] decay.

V. BRANCHING FRACTIONS

To determine the branching fractions, we divide the
signal yields by their respective reconstruction efficiencies.
However, the reconstruction efficiency for a decay can vary
across the four-body phase space, and the distribution
in phase space of these decays is unknown. To reduce
systematic uncertainty arising from the unknown decay
distribution (which often contains intermediate resonan-
ces), we correct the signal yields for reconstruction effi-
ciencies in bins of phase space as follows.

For a Dz; decay to four pseudoscalar particles in the
final state, tl?le phase space is five-dimensional (5D). We
thus correct the data for acceptance and reconstruction
efficiency in bins of 5D phase space, where the bins are
taken to be the invariant masses squared of five pairs of
final-state particles [18]. These are calculated from fits
subject to the mass constraint M(D) = mp+ or mp+. The
reconstruction efficiency is determined. The efficiency-
corrected signal yield is calculated as

data bkg
Ni*™ = Nygg * [

N =2 : )

i

where Nda@, f?kg, and ¢; are the number of data events, the
fraction of background events, and the reconstruction
efficiency for bin i. The summation runs over all bins.

The uncertainties on each term in Eq. (2), for each bin i, are

) and background yields (Ny,) in the region +20 MeV/ ¢? around the nominal D*S mass, and

efficiency-corrected signal yields (N°™) for (1) DT — K¥K~z272% (2) D* - KTz a*2% and (3) Dy — K*7 ntz° The

sig

normalization modes are DT — K-ztztz% for (1) and (2), and D} — K*K-ztz" for (3). The N

sig values are not directly used

to calculate N°™, which is calculated using Eq. (2). The normalization mode D™ — K~ z* 2+ z° is used for both (1) and (2) but selected

sig ?

with different criteria in the two cases. Thus, the yields of this mode for (1) and (2) differ. Also listed are ratios of branching fractions
(see text). The event yields are listed with their statistical uncertainty; the branching fraction ratios are listed with both statistical and
systematic uncertainties. The right-most column lists the current world average (WA) [4-7].

Decay mode Nio Niie Ngy" (x10°) Branching fraction ratio Current WA

(1) Dt - K*K~nt7° 49798 £ 564 50463 + 214 2.352 £0.025 (11.32£0.13 £ 0.26)% (10.6 £ 0.6)%
Dt - K~ zatntza® 602463 + 1614 197151 £ 570 20.77 £ 0.07

2) Dt = Ktn~nt a0 3631 4+ 198 18879 + 101 0.303 £ 0.020 (1.68 +0.11 +0.03)% (1.89 £0.12)%
Dt - K-ztatza® 208118 + 707 22327 + 212 18.06 £0.10

3) DY - Ktn~atz® 26150 + 1442 277160 £ 582 1.464 £ 0.052 (17.13 £0.62 £ 0.51)%
D} - KtK-ztz0 110261 4+ 735 71425 £ 263 8.547 £+ 0.059
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sig

o The

bin sizes are chosen to minimize efficiency variations within
the bins. There are 576 bins for D* — K*K-z"7° (ie.,
4 x4 x 3 x4 x3); 243 bins for D - KTz~ xt2% 768
bins for DT — K-zt 7+ 7% 432 bins for D} — K*z~nxt 7%
and 576 bins for D] — K™K~z z°. Invariant mass squared
distributions for different combinations of final-state

particles (i.e., projections of the five-dimensional distribu-
tion) are shown in Fig. 4 for D* — K*K~z*z°, Fig. 5 for
D - Ktz ntx°, and Fig. 6 for DY — K"z~ n" 2"

The reconstruction efficiencies ¢; are determined from a
large sample of MC events. These efficiencies include a
correction for particle identification, to account for small
differences observed between data and MC simulation. The
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correction, typically 0.93-1.03, is determined from a
sample of D** — DYz", D - K~z" decays. The fraction
of background events in the ith bin (f'l?kg) is obtained from
the 5D distribution of events in the M(D) sidebands
—70MeV/c* <M(D)—mp <—-50MeV/c* and 40 MeV/
> <M(D) —mp < 60MeV/c?. An MC study shows that
background in the signal region is well described by

background in the sidebands. The background fractions

must satisfy the constraint ), }fkg = 1. The efficiency-

corrected signal yields obtained using Eq. (2) are listed in
Table L.

The ratio of the efficiency-corrected yield for a CS mode
to that for a CF mode is equal to the ratio of branching
fractions: Ngy" (CS)/Ngy"(CF) = B(CS)/B(CF). Inserting
values from Table I, we obtain

B(DT - KtK=nta")

B(D" - K~ntnta°) 3)

= (11.32£0.13)%,

B(Dt - K*tn~nta®)
B(D" - K=ntnta0)

=(1.68 +0.11)%, (4)

B(Df - K*n~nta®)

=(17.13 £0.62) %,
B(Df — K*K=n"z%) ( )%

(5)

where the uncertainties listed are statistical.

VI. SYSTEMATIC UNCERTAINTIES

Because we measure the ratio of branching fractions
for decays with similar final states, most systematic

uncertainties cancel. The remaining uncertainties are listed
in Table II and evaluated as follows.

As a correction accounting for the difference in particle
identification (PID) efficiencies between data and MC is
included in Eq. (2), we evaluate the uncertainty on this
correction. Signal and normalization modes differ by the
flavor of at most one track in the final state. We evaluate the
uncertainty introduced by this difference using a sample of
D*t - D%z, DY — Kzt decays. The resulting uncer-
tainties are 0.9% for D* — K*K=2"2° and 0.8% for
Dt = K ntzta%; 0.8% for DY - K*7~n"7° and 0.9%
for DY — K*K-n* 7% We thus assign 1.7% as the sys-
tematic uncertainty for the ratios of their branching
fractions.

TABLE II. Fractional systematic uncertainties (in %) for
the following ratios of branching fractions: (a) B(D* —
K*K 2% /B(DY — K ntnt7"); (b) B(DY - K*n~nt2%)/
B(DT - K~ztz*7%); and (c) B(D} —» Kz~ n*2°)/B(Df —

K+*K~n+n0).

Sources () (b) (c)
PID efficiency correction 1.7 e 1.7
Multiple-candidate selection 1.1 1.3 1.2
Signal parametrization 0.5 0.5 1.1
M(D) resolution 0.5 e 1.4
Binning 0.6 0.5 0.7
Background M?(p;p;) distribution 0.1 0.1 0.3
Efficiency correction bias 0.6 0.8 1.1
Total uncertainty 23 1.9 3.0
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We consider uncertainty arising from the multiple-
candidate selection procedure by keeping all candidates
without best candidate selection. We refit the M(D)
distributions, redetermine the signal efficiency curves,
and obtain the corrected yields with Eq. (2). The resulting
changes in the branching fractions are assigned as system-
atic uncertainties.

The uncertainty due to PDF parameters that are fixed in
the fit for a signal yield is evaluated by sampling these
parameters from a multivariate Gaussian distribution that
accounts for their uncertainties and correlations, and re-
fitting for the signal yield. The procedure is repeated 1000
times, and the root-mean-square of the distribution of fitted
yields is taken as the uncertainty due to the fixed
parameters.

There are several sources of uncertainty in the efficiency
correction procedure. We first consider effects due to the
M (D) resolution. In Eq. (2), events satisfying |M(D) —
mp| < 20 MeV/c? were used; however, data and MC could
have different mass resolutions, and this would bias the
efficiency-corrected signal yield. We evaluate the efficiency
of the signal region requirement (esg) by integrating
the signal PDFs over this region. The ratio of the efficiency
for a signal mode to that of a normalization mode is
determined, both for data and MC. The ratio of these ratios
[hom /<% (data)] /[€29™ /esR (MC)] is calculated, and the
difference from unity is taken as the systematic uncertainty
due to the M (D) resolution. These uncertainties are 0.5% for
B(D" - K*K=nt7°)/B(DT - K~z z*z°) and 1.4% for
B(Df - K*n~nt7%)/B(Df — K*K~n*z°). The uncer-
tainty for B(D™ — K*z~ntz°)/B(DT - K~ntnta°) is
negligible, as the final states have the same particles.

We also consider uncertainty due to binning. We repeat
the efficiency correction with a different number of bins,
e.g.,4x4x4x4x4=1024bins for DT - K* K-zt 7°,
and take the fractional change in the ratio of branching
fractions as a systematic uncertainty.

We evaluate uncertainties arising from the 5D distribu-
tion of background events by applying a correction to the
background distribution. This correction, obtained from
MC, is the ratio of the background distribution for events
having M (D) in the signal region to that for events having
M(D) in the sideband. After applying this correction, the
signal yield in each efficiency bin is recalculated. The
fractional change in the overall efficiency-corrected signal
yield is assigned as a systematic uncertainty.

We check for bias in the efficiency correction due to
possible intermediate resonances in the D™ or D] decay,
also using MC simulation. The results for the efficiency-
corrected signal yields are all consistent with input values;
the small differences observed are conservatively assigned
as systematic uncertainties.

The total systematic uncertainty is obtained by summing
all individual contributions in quadrature. The results are
listed in Table II.

VII. CONCLUSION

In summary, using 980 fb~! of data collected with the
Belle detector, we observe the SCS decays DT —
K*K=7*7° and D} — K*2~ 2" 2%, and the DCS decay
Dt — K*n~nta% The statistical significance of each
mode is greater than 10c. The branching fractions for
these decays relative to the branching fractions for topo-
logically similar CF decays are measured to be

B(DT - K*K=nta°)
B(D" - K~ntrnta?)
B(D* - Ktz ntn®
B(D" - K~ ntnta®
B(D} - K*tn~nta°)
B(Df - K*K=nta")

= (11.32 £ 0.13 £ 0.26)%,

; = (1.68 £ 0.11 = 0.03)%,

= (17.13 £ 0.62 £+ 0.51)%,

where the uncertainties are statistical and systematic,
respectively. Taking sin 8- = 0.2257 [7], the second result
above corresponds to (5.83 + 0.42) x tan* 6. This value is
significantly larger than other measured ratios of DCS to
CF branching fractions, but it is consistent within 1.2¢
with the large rate of D" — K*z~ 272 measured by
BESIII [5,6].

Inserting world average values for the branching frac-
tions of the normalization modes B(D* — K=zt 72" 7°) =
(6.25+£0.18)% [7] and B(D} — K*K~7n2%) = (5.51 +
0.19)% [7,19], we obtain

B(D* = K*K-n+7°%) =(7.08 £0.08 £0.16 +0.20) x 1073,
B(D* = K77 7°) =(1.05+0.07 +0.02+£0.03) x 103,
B(Df = K 7 7°) =(9.44+0.344+0.28 £0.32) x 103,

where the uncertainties are statistical, systematic, and from
uncertainty in the branching fractions of the normalization
modes, respectively. The first two results are consistent
with recent BESIII results [4-6] but have greater precision.
The last result is the first measurement of this Cabibbo-
suppressed decay.
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