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We measure the branching fraction for the Cabibbo-suppressed decay D° — K%K9z "z~ and search for
CP violation via a measurement of the CP asymmetry Acp as well as the 7T-odd triple-product asymmetry
al,. We use 922 fb~! of data recorded by the Belle experiment, which ran at the KEKB asymmetric-energy
e"e™ collider. The branching fraction is measured relative to the Cabibbo-favored normalization channel
D® — K%ntn; the result is B(D° — KK "n~) =[4.79 £0.08(stat) +0.10(syst) £0.31 (norm)] x 1074,
where the first uncertainty is statistical, the second is systematic, and the third is from uncertainty in the
normalization channel. We also measure Acp = [—2.51 & 1.44(stat)"(|) (syst)]%, and alp = [-1.95 &
1.42(stat) 713 (syst)]%. These results show no evidence of CP violation.
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An outstanding puzzle in particle physics is the absence
of antimatter observed in the Universe [1,2]. It is often
posited that equal amounts of matter and antimatter existed
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in the early Universe [3]. For such an initial state to evolve
into our current Universe requires violation of CP (charge-
conjugation and parity) symmetry [4]. Such CP violation
(CPV) is incorporated naturally into the Standard Model
(SM) via the Kobayashi-Maskawa mechanism [5].
However, the amount of CPV measured to date is insuffi-
cient to account for the observed imbalance between matter
and antimatter [2,6]. Thus, it is important to search for new
sources of CPV.

Published by the American Physical Society
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In this paper, we search for CPV in the singly Cabibbo-
suppressed (SCS) decay D° — KKOztz~ [7]. SCS decays
are expected to be especially sensitive to physics beyond the
SM, as their amplitudes receive contributions from QCD
“penguin” operators and also chromomagnetic dipole oper-
ators [8]. The SCS decays D* - KK~ and D° — #t7~ [9]
are the only decay modes in which CPV has been observed in
the charm sector. The CP asymmetry measured,

[(D° = f)=T(D° = f)
I(D° = f)+T(D° > f)

(1)

ACP =

where f and f are CP-conjugate final states, is small, at the
level of 0.1%.

We also perform a high-statistics measurement of the
branching fraction. Several measurements of the branching
fraction exist [10—12]. The most precise result was obtained
by the BESII Collaboration, which found B(D° —
KKt n™) = (534£0.9£0.3) x 107 [12]. Our meas-
urement presented here uses an event sample almost two
orders of magnitude larger than that of BES IIL

We search for CPV in D° — K3K%x" 7~ decays in two
complementary ways. We first measure the asymmetry
Acp; a nonzero value results from interference between
contributing decay amplitudes. The CP-violating interfer-
ence term is proportional to cos(¢ + ) for D° decays,
where ¢ and 6 are the weak and strong phase differences,
respectively, between the amplitudes. For D decays, the
interference term is proportional to cos(—¢ + &). Thus, to
observe a difference between D° and D° decays (i.e.,
Acp # 0), 6 must be nonzero.

To avoid the need for 6 # 0, we also search for CPV by
measuring the asymmetry in the triple-product C; =
p K0 (Pg+ X Pr), Where p K0 D+ and p,- are the three-
momenta of the K(S), #*, and n~ daughters, defined in the
DY rest frame. We use the K3 with the higher momentum
for this calculation. The asymmetry is defined as

"7 N(Cy >0)+N(Cr <0)’

(2)

where N(Cr >0) and N(Cy <0) correspond to the
yields of D° — K9K$z*z~ decays having C; >0 and
Cr < 0, respectively. The observable A7 is proportional
to sin(¢ + ) [13-15]. For D° decays, we define the
CP-conjugate quantity

N(-C; > 0) = N(-Cy; <0)
N(=C; > 0)+ N(-Cr < 0)’

Ar= 3)

which is proportional to sin(—¢ + §). Thus, the difference

Ar—A
afp == )

is proportional to sin ¢ cos 9, and, unlike Acp, 6 = 0 results
in the largest CP asymmetry. The minus sign in front of C;
in Eq. (3) corresponds to the parity transformation, which is
needed for A7 to be the CP-conjugate of A7. Finally, we
note that a’,, is advantageous to measure experimentally, as
any production asymmetry between D and D° or differ-
ence in reconstruction efficiencies cancels out.

We measure the branching fraction, A¢p, and al, using
data collected by the Belle experiment running at the
KEKB asymmetric-energy et e~ collider [16]. The data
used in this analysis were collected at e™e™ center-of-mass
(CM) energies corresponding to the T(4S) and T(55)
resonances, and 60 MeV below the T (4S) resonance. The
total integrated luminosity is 922 fb~!.

The Belle detector [17] is a large-solid-angle magnetic
spectrometer consisting of a silicon vertex detector (SVD), a
50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like arrange-
ment of time-of-flight scintillation counters (TOF), and an
electromagnetic calorimeter comprising CsI(TI) crystals.
All these subdetectors are located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux-return located outside the coil is instrumented to detect
K9 mesons and to identify muons. Two inner detector
configurations were used: a 2.0-cm-radius beam-pipe and
a three-layer SVD were used for the first 140 fb~! of data,
and a 1.5-cm-radius beam-pipe, a four-layer SVD, and a
small-inner-cell drift chamber were used for the remaining
data [18].

We use Monte Carlo (MC) simulated events to optimize
event selection criteria, calculate reconstruction efficiencies,
and study sources of background. The MC samples are
generated using the EVTGEN software package [19], and the
detector response is simulated using GEANT3 [20]. Final-
state radiation is included in the simulation via the PHOTOS
package [21]. To avoid introducing bias in our analysis, we
analyze the data in a “blind” manner, i.e., we finalize all
selection criteria before viewing signal candidate events.

We identify the flavor of the D° or D° decay by
reconstructing the decay chain D** — D%, D —
K$K$ntz~; the charge of the #7 (which has low momentum
and is referred to as the “slow” pion) determines the flavor of
the D° or D°. The D and D** decays are reconstructed by
first selecting charged tracks that originate from near the
ete™ interaction point (IP). We require that the impact
parameter 0z of a track along the z direction (antiparallel to
the e™ beam) satisfies |6z| < 5.0 cm, and that the impact
parameter transverse to the z axis satisfies or < 2.0 cm.

To identify pion tracks, we use light yield information
from the ACC, timing information from the TOF, and
specific ionization (dE/dx) information from the CDC.
This information is combined into likelihoods Lk and £, for
a track to be a Kt or 7, respectively. To identify 7+ tracks
from D° — KOKOn"7~, werequire £,./(L, + Lg) > 0.60.
This requirement is more than 96% efficient and has a K
misidentification rate of 6%.
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We reconstruct Kg — nt 7z~ decays using a neural net-
work (NN) [22]. The NN utilizes 13 input variables: the K g
momentum in the laboratory frame; the separation along
the z axis between the two 7+ tracks; the impact parameter
with respect to the IP transverse to the z axis of the 7+
tracks; the Kg flight length in the x — y plane; the angle
between the K} momentum and the vector joining the IP to
the K§ decay vertex; in the K9 rest frame, the angle
between the 71 momentum and the laboratory-frame boost
direction; and, for each ™ track, the number of CDC hits in
both stereo and axial views, and the presence or absence of
SVD hits. The invariant mass of the two pions is required to
satisty |M(z"7”) —myo| < 0.010 GeV/c?, where myo is
the K9 mass [23]. This range corresponds to three standard
deviations in the mass resolution.

After identifying z* and K9 candidates, we reconstruct
D candidates by requiring that the four-body invariant
mass M(KOKOn"n~)=M satisfy 1.810GeV/c? <M <
1.920 GeV/c?. We remove D° — K$K9KY decays, which
have the same final-state particles, by requiring |M (7" z~) —
m K(;| >0.010GeV/c?. This criterion removes 96% of these

decays. To improve the mass resolution, we apply mass-
constrained vertex fits for the K candidates. These fits
require that the 7= tracks originate from a common point,
and that M (7" 7~) = mgo [23]. We perform a vertex fit for

the D° candidate using the z* tracks and the momenta of the
K9 candidates; the resulting fit quality (y*) must satisfy
a loose requirement to ensure that the tracks and K9
candidates are consistent with originating from a common
decay vertex.

We reconstruct D** — D%z} decays by combining D°
candidates with 7} candidates. We require that the mass
difference M(KYKOn"n~nf) — M =AM be less than
0.15 GeV/c?. We also require that the momentum of the
D** candidate in the CM frame be greater than 2.5 GeV/c;
this reduces combinatorial background and also removes
D** candidates originating from B decays, which can
potentially contribute their own CPV [24-28]. We perform
a D** vertex fit, constraining the D° and 7 to originate
from the IP. We subsequently require »_(y?/ndf) < 100,
where the sum runs over the two mass-constrained K vertex
fits, the D vertex fit, and the TP-constrained D** vertex fit,
and “ndf” is the number of degrees of freedom in each fit.

The D** momentum and > (y?/ndf) requirements are
chosen by maximizing a figure-of-merit (FOM). This FOM
is taken to be the ratio Ng/\/Ng + Ny, where Ng and N
are the numbers of signal and background events, respec-
tively, expected in the signal region 1.845GeV/c?> <M <
1.885GeV/c? and 0.144GeV/c?> < AM <0.147 GeV/c?.
The signal yield N is obtained from MC simulation using
the PDG value [23] for the branching fraction, while the
background yield Ny is obtained by appropriately scaling
the number of events observed in the data sideband
AM € (0.140,0.143) U (0.148,0.150) GeV/c>.

After applying all selection criteria, 27% of events have
multiple D*+ — D%z}, D° — KK Q" x~ signal candidates.
For these events, we retain a single candidate by choosing
that with the lowest value of > (y?/ndf). According to MC
simulation, this criterion correctly identifies the true signal
decay 81% of the time, without introducing any bias.

We determine the signal yield via a two-dimensional
unbinned extended maximum-likelihood fit to the variables
M and AM. The fitted ranges are 1.810GeV/c?> <M <
1.920GeV/c? and 0.140GeV/c? < AM <0.150 GeV/c>.
Separate probability density functions (PDFs) are used for
the following categories of events: (a) correctly recon-
structed signal events; (b) misreconstructed signal events,
i.e., one or more daughter tracks are missing; (c) “slow pion
background,” i.e., a true D° - K%Kz "z~ decay is com-
bined with an extraneous =z track; (d) “broken charm
background,” i.e., a true D** — D%z decay is recon-
structed, but the (nonsignal) D° decay is misreconstructed,
faking a D° — K$K%z* 7~ decay; (e) purely combinatorial
background, i.e., no true D*T or D° decay; and
(f) D° - KYKIKY decays that survive the M(z"z~) veto.

All PDFs are taken to factorize as P(M) x P(AM). We
have checked for possible correlations between M and AM
for all the signal and background components and found
them to be negligible. For correctly reconstructed signal
decays, the PDF for M is the sum of three asymmetric
Gaussians with acommon mean. The PDF for AM is the sum
of two asymmetric Gaussians and a Student’s t function [29],
all with acommon mean. Both common means are floated, as
are the widths of the asymmetric Gaussian with the largest
fraction used for M, and the o, r parameters of the Student’s t
function used for AM. All other parameters are fixed to MC
values. For misreconstructed signal decays, a second-order
Chebychev polynomial is used for M, and a fourth-order
Chebychev polynomial is used for AM. These shape param-
eters are fixed to MC values. The yield is taken to be a fixed
fraction of the total signal yield (14 & 1%), which is also
obtained from MC simulation.

For slow pion background, we use the same PDF for M
as used for correctly reconstructed signal decays. For AM,
we use a threshold function Q% + a- Q', where Q =
AM —m,+ and a is a parameter. For broken charm
background, we use the sum of two Gaussians with a
common mean for M, and a Student’s t function for AM.
For combinatorial background, we use a second-order
Chebychev polynomial for M, and, for AM, a threshold
function with the same functional form as used for slow
pion background. For D° — K$K9KY decays, we use a
single Gaussian for M and a Student’s t function for AM.
The broken charm and D° — K$K%K$ backgrounds are
small; thus, their yields and shape parameters are taken
from MC simulation. For slow pion background, the AM
shape parameters are taken from MC simulation. All other
shape parameters (six for the means and widths of the
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FIG. 1. Projections of the fit for D% — K2K2ﬂ+7[_ on M
(upper) and AM (lower). The brown dashed curve consists of
slow pion, broken charm, and D° — K9K9KY backgrounds.
The corresponding pull distributions [= (data — fit result)/
(data uncertainty)] are shown below each projection. The dashed
red lines correspond to +30 values.

signal PDF, and three for the combinatorial background)
are floated. The fit yields 6095 + 98 signal events.
Projections of the fit are shown in Fig. 1.

We normalize the sensitivity of our search by counting
the number of D — K gzﬁﬂ‘ decays observed in the same
dataset. The branching fraction for D° - KOKOz 7~ is
calculated as

B(D° - KK n"n™)
_ (ngkgﬂ+ﬂ_> < 81(27[*7[‘ > %
NKgﬂJrn" SKgKgﬂJrlr’
where N is the fitted yield for D — K3K%z "z~ or D° —
Kz n~ decays; € is the corresponding reconstruction
efficiency, given that K§ — 7"z~ and B(K} — z*7~) and
B(D° - K%rn"z~) are the world average branching frac-
tions for K — 7"z~ and D° — K%z 7z~ [23]. The selection
criteria for D° — K97z~ are the same as those used for
D° — KK%n*n~, except that only one K is required.
We determine Ngo,+,- from a two-dimensional binned

fit (rather than unlginned, as the sample is large) to
the M and AM distributions. The fitted ranges are

B(D° - K%ntn~)
B(KY—ntn™)

. )

1.820GeV/c? <M <1.910GeV/c? and 0.143 GeV/c? <
AM < 0.148 GeV/c* [30]. We use separate PDFs for
correctly reconstructed signal, slow pion background,
broken charm background, and combinatorial background.
The small fraction of misreconstructed signal events are
included in the PDF for combinatorial background. The
functional forms of the PDFs are mostly the same as those
used when fitting D° — K‘;ngﬁﬂ‘ events. For the AM
PDF for signal, the sum of a symmetric Gaussian and
an asymmetric Student’s t function is used. In addition,
the parameter o, of the Student’s t function is taken to
be a function of M, to account for -correlations:
6, =0yg+0,(M—mp), where 6, and o, are floated
parameters and mo is the D° mass [23]. For the M
PDF of broken charm background, the sum of a
Gaussian and a second-order Chebychev polynomial is
used. For the M PDF of combinatorial background, a first-
order Chebychev polynomial is used. There are a total of 10
floated parameters. The fit yields 1069870 & 1831 D° —
K%ntx~ decays. Projections of the fit are shown in Fig. 2.
The fit quality is somewhat worse than that for the signal
mode due to the very high statistics. We account for
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FIG. 2. Projections of the fit for D° - K3z*z~ on M (upper)
and AM (lower). The corresponding pull distributions
[= (data — fit result)/(data uncertainty)] are shown below each
projection. The dashed red lines correspond to £36 values.
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uncertainty in the signal shape when evaluating systematic
uncertainties (below).

We evaluate the reconstruction efficiencies in Eq. (5)
using MC simulation. For D° - K%K9z "z~ decays, no
decay model has been measured. Thus we generate this
final state in several ways: via four-body phase space, via
D° — K*TK*~ decays, via D’ — K9K%p" decays, via
D° — f9p0 decays, and via D° - K**K$z~ decays. The
resulting reconstruction efficiencies are found to span a
narrow range; the central value is taken as our nominal
value, and the spread is taken as a systematic uncertainty.
The D° — K97z~ decays are generated according to
the measured Dalitz model [31]. This model includes
P°K°, oK,  f,(980)K°, f,(1430)K°, K*(892)~x™,
K{(1430)~z", and K3;(1430)~z" intermediate states.
The resulting efficiencies are EROKOz n = (6.92 +

0.02)% and ego,+,- = (14.88 £ 0.03)%, where the errors

are statistical only. These values are subsequently cor-
rected for small differences between data and MC simu-
lation in particle identification (PID) and Kg reconstruction
efficiencies. The differences are measured using
Dt - D%}, D°— K-zt and D** - Dz}, D° —
Kgﬂo decays, respectively. The overall correction factors
are 0.930 £0.014 for D° —» K9K%z*z~ and 0.899 +
0.007 for D° — K%z z~. Inserting all values into Eq. (5)
along with the fitted yields and the PDG values [23]
B(D° - KSzt72)=(2.80+0.18)% and B(K} —»ztn")=
(69.204£0.05)% gives B(D° - KYK%x"n™) = (4.79+
0.08) x 10™*, where the quoted uncertainty is statistical
only.

The systematic uncertainties on the branching fraction
are listed in Table I. The uncertainty arising from the fixed
parameters in signal and background PDFs is evaluated by
varying these parameters and refitting. All 31 fixed
parameters are sampled simultaneously from Gaussian
distributions having mean values equal to the parameters’
nominal values and widths equal to their respective
uncertainties. After sampling the parameters, the data are
refit and the resulting signal yield recorded. The procedure
is repeated 5000 times, and the root-mean-square (r.m.s.) of
the 5000 signal yields is taken as the uncertainty due to the
fixed parameters. When sampling the parameters, correla-
tions among them are accounted for.

The uncertainty due to the fixed yield of broken charm
background is evaluated by varying this yield (obtained
from MC simulation) by £50% and refitting. The fractional
change in the signal yield is taken as the uncertainty. The
uncertainty due to the fixed yield of D — K$K$KY events
is evaluated in a similar manner; in this case the D° —
K9KYKY yield is varied by the fractional uncertainty in the
branching fraction [23]. There is a small uncertainty due to
the finite MC statistics used to evaluate the efficiencies
gKgKgﬂﬂf’ and SK(;ﬂd»ﬂf.

TABLE I. Systematic uncertainties (fractional) for the branch-
ing fraction measurement.

KSKOntn~ Kontn~
Source (%) (%)
Fixed PDF parameters 0.14 0.09
D® — KYK$KY background 0.11 N/A
Broken charm background 0.98
MC statistics 0.26 0.17
KY reconstruction efficiency 0.83 0.36
PID efficiency correction 0.40
Tracking efficiency 0.70
M(ztz™) veto efficiency Bt N/A
Fraction of misreconstructed signal e
Decay model 0.73 0.60
B(KY - ntz™) 0.07
Total for B KOKOat 7 /B [ f%gé

Uncertainty in track reconstruction gives rise to a
possible difference in reconstruction efficiencies between
data and MC simulation. This is evaluated in a separate
study of D** — Dz, DY — K%z "z~ decays [22]. The
resulting uncertainty is 0.35% per track. As signal decays
have two more charged tracks than normalization decays
do, we take this uncertainty to be 0.70% on the branching
fraction.

There is uncertainty due to K(S) reconstruction, which
is found from a study of D*' — Dz, D°— K$z°
decays [22]. This uncertainty is 0.83% for D° —
KKz "z~ and 0.36% for D° — KSztz~. These uncer-
tainties are correlated between the two channels and thus
partially cancel. However, for simplicity we take these
uncertainties to be uncorrelated, which is conservative.
The uncertainty due to PID criteria applied to the z™*
racks depends on momentum and is obtained from a
study of D** —= DOz, D — K~z* decays. This uncer-
tainty is also correlated between the D° — KK %z 2~ and
D° — K97z~ channels, and we take this correlation into
account when calculating the uncertainty.

There is uncertainty arising from the D° — Kgf[+7[_
decay model [31]. We evaluate this uncertainty by modi-
fying the branching fractions of intermediate states to
correspond to recent PDG values [23]. These shifts in
intermediate branching fractions are consistent with their
statistical uncertainties. The resulting reconstruction effi-
ciency is slightly lower than that of our original decay
model; we take the average of the two values as our
nominal efficiency and half the difference as a systematic
uncertainty.

There is an uncertainty arising from the |M(z"z~) —
m K2| > 10 MeV/c? requirement applied to reject D —

K9KIKY background. This is evaluated by varying this
criterion from 8 MeV/c? to 15 MeV/c?; the resulting

052001-5



A. SANGAL et al.

PHYS. REV. D 107, 052001 (2023)

fractional change in the signal yield is taken as the
uncertainty. Finally, there is uncertainty in the PDG value
B(KY% — zt7~) = 0.6920 £ 0005 (which enters €), and the
PDG value of the branching fraction for the normalization
channel D° — K9z z~. The total systematic uncertainty is
taken as the sum in quadrature of all individual uncertain-
ties. The result is | 7% for D° — KKzt n~, +£0.72%
for D — K9z*z~, and f)704% for the ratio of branching
fractions.

We measure the CP asymmetry Acp from the difference
in signal yields for D° and D° decays:

N(D’ = f) = N(D° > f)

Adet — — A
T ND® - f)+ N(D° - )

(6)

The observable A%} includes asymmetries in production
and reconstruction:

ALL = Acp + App + A, (7)

where Agg is the “forward-backward” production asym-
metry [32] between D** and D*~ due to y* — Z° interfer-
ence in ee” — c¢; and Ag is the asymmetry in
reconstruction efficiencies for 7z tracks. We determine
AZ* from a study of flavor-tagged D** — Dz, D° —
K~ nt decays and untagged D — K~z" decays [33]. In
this study, A¢* is measured in bins of pr and cos 0, of the
nf, where pq is the transverse momentum and 0, is the
polar angle with respect to the z-axis, both evaluated in
the laboratory frame. We subsequently correct for Az® in
KKzt n~ events by separately weighting D° and D°
decays:

wpo = 1 — A& (pr,cos 6, ) (8)
wpo = 1 + A (pr.cos b, ). 9)

After correcting for A&, we obtain A%E = Acp + Apg.
The asymmetry Agg is an odd function of cos 6%, where 6*
is the polar angle between the D** momentum and the +z
axis in the CM frame. Since Acp is a constant, we extract
Acp and also Agg via

AZp(cos 0°) + AZp(—cos 0)
2

Acp = (10)

AZF(cos ) — ARE(—cos 0%)

A =
FB 2

(11)

For this calculation, we define four bins of cos@*:
(-1.0,-0.4), (-0.4,0), (0,0.4), and (0.4,1.0). We deter-
mine A% for each bin by simultaneously fitting for DY and
DV signal yields for weighted events in that bin. We use the
same PDF functions as used for the branching fraction

measurement, and with the same fixed and floated param-
eters. The fixed shape parameters are taken to be the same
for all cos 6* bins. The yields of combinatorial background
for the D° and D° samples are floated independently. The
yields of broken charm and D° — KgKgKg backgrounds
are fixed to MC values. The yield of slow pion background
is also fixed: the total yield is fixed to the value obtained
from the branching fraction fit, and the fraction assigned to
DO, DY, and each cos 8* bin is taken from MC simulation.
The fitted parameters are N(D° — f) and AS%. The results
for AZp are combined according to Eqs. (10) and (11) to
obtain Ac-p and Apg. These values for the cos §* bins are
plotted in Fig. 3. Fitting the Acp values to a constant, we
obtain Acp = (=2.51 £ 1.44)%.

The systematic uncertainties for Acp are listed in
Table II. The uncertainty due to fixed parameters in the
signal and background PDFs is evaluated in the same
manner as done for the branching fraction: the various
parameters are sampled from Gaussian distributions and the
fitis repeated. After 2000 trials, the r.m.s. of the distribution
of Acp values is taken as the systematic uncertainty.

The uncertainty due to the fixed yields of backgrounds is
evaluated in two ways. The uncertainties in the overall
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FIG. 3. Values of Aqp (upper) and Agg (lower) in bins of cos 6*.
The red horizontal line in the Acp plot shows the result of fitting
the points to a constant (“p,”). The red curve in the Agg plot
shows the leading-order prediction for Apg(eTe™ — c¢) [34].
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TABLE II. Systematic uncertainties (absolute) for Acp.
Sources (%)
Fixed PDF parameters +0.01
D - K9K9KY background o0
Broken charm background e
Binning in cos 6* +0.04
Reconstruction asymmetry Ag* +0.01
Fixed background fractions +0.04
Total ol

yields of broken charm and residual D° — K9K9K?9 back-
grounds are evaluated in the same manner as done for the
branching fraction measurement. In addition, the fixed
fractions of the backgrounds between D° and D° decays,
and among the cos #* bins, are varied by sampling these
fractions from Gaussian distributions having widths equal
to the respective uncertainties and repeating the fit. After
2000 trials, the r.m.s. of the resulting distribution of Acp
values is again taken as the systematic uncertainty.

We assign a systematic uncertainty due to the choice of
cos #* binning by generating an ensemble of MC experi-
ments and, for each experiment, calculating A -p using four,
six, and eight bins of cos #*. The mean value of A.p for
these bin choices is calculated, and the largest difference
from the mean value with four bins (our nominal result) is
taken as the systematic uncertainty. There is also uncer-
tainty arising from the A¢* values taken from Ref. [33]. We
evaluate this by sampling A7’ values from Gaussian
distributions and refitting for Acp; after 2000 trials, the
rm.s. of the fitted values is taken as the systematic
uncertainty. The overall systematic uncertainty is the
sum in quadrature of all individual uncertainties. The result
is (410)%.

To measure alp, we divide the data into four subsam-
ples: D° decays with C; > 0 (yield = N,) and C; <0
(yield = N,); and D° decays with —C; > 0 (N;) and
—Cr <0 (Ny). Thus, Ay = (N, = N,)/(N, +N,), Ay =
(N3 —N4)/(N3 + Ny),and alp, = (A — Ap)/2. We fit the
four subsamples simultaneously and take the fitted param-
eters to be Ny, N3, Ay, and alp.

For this fit, we use the same PDF functions as used for
the branching fraction measurement, and with the same
fixed and floated parameters. The fixed shape parameters
are taken to be the same for all four subsamples, as
indicated by MC studies. The yield of combinatorial
background is floated independently for all subsamples.
The yield of slow pion background is fixed in the same way
as done for the Acp fit. The fit gives Ay = (—0.66 £
2.01)% and alp, = (—1.95 + 1.42)%, where the uncertain-
ties are statistical only. These values imply Ay = (+3.254
1.98)%. Projections of the fit are shown in Fig. 4.

The systematic uncertainties for al, are listed in

Table III. Several uncertainties that enter the branching
fraction measurement cancel out for a’,. The uncertainty
arising from the fixed parameters in the signal and back-
ground PDFs is evaluated in the same manner as done for
the branching fraction: the various parameters are sampled
from Gaussian distributions, and the fit is repeated. After
5000 trials, the r.m.s. in the fitted values of a’,, is taken as
the systematic uncertainty. The uncertainties due to the
fixed yields of broken charm and D° — K3K9KY back-
grounds are also evaluated in the same manner as done for
the branching fraction. Finally, we assign an uncertainty
due to a possible difference in reconstruction efficiencies
between decays with C;,—C; >0 and those with
Cy,—Cr < 0. These uncertainties are evaluated using
MC simulation by taking the difference between generated
and reconstructed values of al,. The total systematic
uncertainty is calculated as the sum in quadrature of all
individual uncertainties; the result is (*J5)%, dominated
by the uncertainty due to efficiency variation.

In summary, using Belle data corresponding to an
integrated luminosity of 922 fb~!, we measure the branch-
ing fraction, A¢cp, and al, for D° — K9K$ztn~ decays.
The branching fraction, measured relative to that for
DO — K(S)Jﬁn'_, is

B(D° - KYKSnt7™)
B(D° — K%zntz~)
— [1.71 £ 0.03(stat) = 0.04(syst)] x 102, (12)

Inserting the world average value B(D° - Kntz~) =
(2.80 £ 0.18)% [23] gives

B(D° - KSKSzta)
— [4.79 4 0.08 (stat) + —0.10(syst) +0.31 (norm)] x 104,
(13)

where the last uncertainty is due to B(D° - K%z z~). The
time-integrated CP asymmetry is measured to be

TABLE III. Systematic uncertainties (absolute) for the agp
measurement.

Source (%)
Fixed PDF parameters 0.010
D° - KSK$KY background 0000
Broken charm background o014
Efficiency variation with C;, Cy +0.14

0.14
Total +0.14
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FIG. 4. Projections of the fit for a’, in M (left) and AM (right). (a) (b) the D° C; > 0 subsample; (c) (d) the D° C; < 0 subsample;
(e) (f) the D° — C; > 0 subsample; and (g) (h) the D° — C; < 0 subsample.

Acp(D°® - K§Knt ™)
= [-2.51 + 1.44(stat) 0|0 (syst)]%.  (14)

The CP-violating asymmetry a’, is measured to be

alp(D® — KOKYzt ™)
= [~1.95 + 1.42(stat) *0-[5 (syst)]%.  (15)
The branching fraction measurement is the most precise to

date. The measurements of Acp and alp are the first such
measurements. We find no evidence of CP violation.
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