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Based on a data sample of 983 tb~! collected with the Belle detector at the KEKB asymmetric-energy e e~
collider, we present the study of the heavy-flavor-conserving decay ) — Af 7z~ with A reconstructed via its
pK~n* decay mode. The branching fraction ratio B(EQ — Afz~)/B(EY - E-x") is measured to be
0.38 £ 0.04 £ 0.04. Combining with the world average value of B(E? — E~z+), the branching fraction
B(E? - Afz)isdeduced to be (0.54 4 0.05 £ 0.05 + 0.12)%. Here, the uncertainties above are statistical,

systematic, and from B(E) — Z~z"), respectively.
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I. INTRODUCTION

The decay of charmed hadrons provides an ideal plat-
form to study quantum chromodynamics (QCD). Usually,
the charmed baryons decay via the transition of a ¢ quark
into a d or s quark. However, baryons which contain both
an s and a ¢ quark also have a special class of decay, heavy-
flavor-conserving nonleptonic decay, which proceeds via
the decay of the s quark. In such decays, the weak
interaction among the light quarks can be well described
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by the short-distance effective Hamiltonian, since the
emitted 7 which has a low momentum due to the kinematic
limit. Thus, the decay rate of the heavy-flavor-conserving
nonleptonic decay process can be calculated by theory, and
experimental measurements can be used to test the syn-
thesis of heavy quark and chiral symmetries [1,2].

The well-known =0 baryon consists of the ¢, s, and d
quarks and can decay via the disintegration of the s quark
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FIG. 1. The Feynman diagrams of the (a) s — u(itd) and
(b) ¢s = dc modes of Z% — Az~ decay.
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TABLE 1.

Theoretical predictions on the branching fraction of Z0 — A} 7z~ before experimental measurement

(1073). All the results have been normalized using the current world average lifetimes of the SU(3) antitriplets [7,8].

(CLY)? (°92) [1] Voloshin [3]

Gronau [4]

Faller [5] (CLY)? (06) [6]

0.39 >(0.25 +0.15)

1.34 +£0.53

<3.9 0.17

with the ¢ quark acting as a spectator, i.e., 22 — Az~ The
decay width of 20 — Afz~ is based on the sizes of the s
quark decay amplitude of s — u(iid) and the weak scatter-
ing amplitude c¢s — dc, whose Feynman diagrams are
shown in Fig. 1. Table I summaries several previous
theoretical predictions of the branching fraction of 20 —
Af 7~ using the measured s — u(itd) amplitude and the
weak scattering amplitude determined by the lifetimes of
the SU(3) anti-triplets A}, E, and 2 [3-6]. The large
variation of these theoretical predictions is mainly due to
different assumptions about the interference between the
two strangeness-changing amplitudes.

The first experimental measurement on the branching
fraction of EY — Az~ was performed by LHCb [9],
finding a value (0.55 £ 0.02 £ 0.18)%. The normalization
of this result includes certain model-dependent assump-
tions based on heavy-quark symmetry and isospin.

This result is closer to the prediction from Gronau and
Rosner [4] as listed in Table I, which is calculated by
assuming constructive interference between the two
strangeness-changing amplitudes, meanwhile, the pre-
dicted branching fraction of Z¥ — Afz~ is less than
0.01% for the destructive interference. Furthermore, the
central value of LHCb result is generally larger than the
theoretical predictions in Table I. After the measurement
from LHCb, B(E? - A/z~) has been calculated to be
(0.58 £ 0.21)% from a study based on a constituent quark
model [10].

In this paper, we take Z2 — E~ 7" decay as the reference
mode and measure the branching fraction ratio of

BE=ALZ) +,— _, =0
m via the eTe™ — iy

process using Belle data samples. The resulting B(Z2 —
Af7~) measurement, obtained using the world average
value B(EQ —» E-7") = (1.43 £0.32)% [7,11], is free of
model dependent assumptions. Throughout this paper
inclusion of charge-conjugate modes is implicitly assumed.

+ anything inclusive decay

II. THE DATA SAMPLE AND THE BELLE
DETECTOR

This analysis is based on data collected at or near the
T(1S), T(2S), T(3S), T(4S), and YT(5S) resonances by
the Belle detector [12,13] at the KEKB asymmetric-energy
ete™ collider [14,15]. The data sample corresponds to an
integrated luminosity of 983 fb~! [13]. The Belle detector
is a large solid-angle magnetic spectrometer that consists of
a silicon vertex detector, a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters

(ACCQC), a barrel-like arrangement of time-of-flight scintil-
lation counters (TOF), and an electromagnetic calorimeter
comprised of CsI(Tl) crystals (ECL) located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux-return yoke instrumented with
resistive plate chambers located outside the coil is used to
detect K mesons and identify muons. A detailed descrip-
tion of the Belle detector can be found in Refs. [12,13].
Signal Monte Carlo (MC) samples of one million events
are generated with EVTGEN [16] to determine signal shapes
and efficiencies for each Z0 decay mode. The e*e™ — c¢
process is simulated using PYTHIA [17], and E? —
Afn~/E mt decays are generated with a phase space
model. The simulated events are processed with a detector
simulation based on GEANT3 [18]. Inclusive MC samples of

(1S, 28, 35) decays, Y(4S) - BB, Y(55) — B(,)B,),
and ete” — gg (g = u, d, s, ¢) at center-of-mass (c.m.)
energies of 10.52, 10.58, and 10.867 GeV, corresponding to
2 times the integrated luminosity of data, are used to
optimize the signal selection criteria and to check possible

peaking backgrounds.

III. EVENT SELECTION CRITERIA

For well-reconstructed charged tracks in the signal
mode, the impact parameters perpendicular to and along
the beam direction with respect to the nominal interaction
point are required to be less than 1 cm and 3 cm,
respectively. For the particle identification (PID) of a
well-reconstructed charged track, information from differ-
ent detector subsystems, including specific ionization in the
CDC, time measurement in the TOF, and the response of
the ACC, is combined to form a likelihood £; [19] for
particle species i, where i = p, z, or K. Kaon candidates
are required to have Lg/(L,+ Lg)>0.6 and
Li/(Lg+ L) > 0.6, with an approximately 89% selec-
tion efficiency. For protons, the requirements are
L,/(L,+L;)>06and L,/(L, + Lg) > 0.6, while for
charged pions, the requirements are £,/(L, + L,) > 0.6
and L,/(Lg + L,) > 0.6; these requirements are approx-
imately 95% efficient.

For 20 — Afz~, A} candidates are reconstructed via the
Af = pK~z" decay mode and selected with |M ,x-,+ —
my+| <12 MeV/c?* (within ~30 of the nominal A/ invari-
ant mass, where o denotes the mass resolution).
Hereinafter, M, represents the measured invariant mass
and m; denotes the nominal mass of particle i [7]. The A}
candidate is combined with a 7z~ to form the Z0 candidate.

032005-2
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To improve the momentum resolution and suppress the
backgrounds, vertex fits are performed for the selected A
and ZY candidates, and we require y2...x/ndf < 20 with the
corresponding efficiencies exceeding 90%. To reduce
combinatorial backgrounds, the scaled momentum X, =
P¥/Pmax 18 required to be greater than 0.45. Here, p* is
the momentum of =’ in the c.m. frame, and

Pmax = 1/ Eoeam — M20¢*/c, where Epn is the beam
=~

energy in the ee™ c.m. frame and mgo is the invariant
mass of Z0 candidates.

For the reference mode Z0 — Z~ 77", candidate Z0 —
E~z" events are selected using well-reconstructed tracks
and PID in a way similar to the methods in Ref. [11]. The A
candidates are reconstructed in the decay A — pz~ with a
production vertex significantly separated from the inter-
action point, and we define the A signal region as |M ,,- —
my| <3 MeV/c? (~2.56). The E~ candidate is recon-
structed from the combination of selected A and z~
candidates. We define the E~ signal region as |M,,- —
mz-| < 6.5 MeV/c? (~30). Finally, the reconstructed =~
candidate is combined with a z7 to form the 20 candidate.
We perform vertex fits for the A, E~, and =9 candidates,
and require y2..x/ndf < 20. To suppress the combinatorial
backgrounds, we require the flight directions of A and =~
candidates, which are reconstructed from their fitted
production and decay vertices, to be within five degrees
of their momentum directions. The efficiency of this
requirement is higher than 98%. We also require the scaled
momentum x, >0.45. All the requirements on mass
windows and scaled momenta above are optimized by
maximizing S/+/S + B, where S is the expected number of
EY events from signal MC samples using B(Z) —
Afn7)=055% [9] and B(E? - = 7") =1.43% [7],
and B is the number of expected background events in
the Z0 signal region from the inclusive MC samples.

IV. BRANCHING FRACTION OF E! - A}n-

After applying the above event selection criteria from the
reference mode, the distribution of M-+ in the reference
mode is shown in Fig. 2. The yields of E0 — Z~z" are
extracted by an unbinned maximum-likelihood fit to the
obtained Mz-,+ distribution. The Z? signal shape is para-
metrized by a double-Gaussian function with the same
mean value, and a first-order polynomial is used to describe
the background shape. The central value of the signal
function is fixed to the world average value [7], and all
other parameters in the fit are free to float. The fit result is
shown in Fig. 2, along with the pulls (Nguu — Ngt)/ G datas
where the 64y, is the error on Ny,,. The fitted 50 — E-7*
signal yield in data is Ng-,+ = (4.387 4+ 0.037) x 10*. The
detection efficiency of 20 — Z~ 7+ is 16.4% determined by
fitting the corresponding Mz-,+ spectrum from the signal

8000

6000

4000

Events / 2 MeV/c?

2000

Pull
vora O
T

...................................

M(Er*) [GeV/c?]

FIG. 2. Fit to the invariant mass distribution of E~z" in data.
The solid blue curve shows the best fitted result, the dashed blue
curve shows the signal component, and the dot-dashed purple line
shows the fitted backgrounds.

MC sample, where efficiency correction factors due to PID
have been included, and are discussed below.

For the E) — Az~ signal mode, the invariant mass
distribution of A} candidates is shown in Fig. 3. A double
Gaussian function is used for the Al signal shape, while a
second order polynomial is taken to describe the back-
ground shape. All the parameters in the fit are free. The A}
mass window is indicated by the red dashed lines in Fig. 3.
The fitted mass of A/ is (2286.55 4= 0.03) MeV/c?, which
is consistent with the world average value [7].

15000

10000

5000

Events / 2 MeV/c?

OLL._.I..-u'-'.'.l....I...ﬁ:.].‘A.

Pull

-4

2.26 2.27 2.28 2.29 2.3 2.31
M(pK ") [GeV/c?]

FIG. 3. Fit to the invariant mass distribution of A} in data.
The solid blue curve shows the best fitted result, the dashed blue
curve shows the signal component, and the dot-dashed purple
curve shows the fitted backgrounds. The red dashed lines show
the defined A} signal region.
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4500

4000

Events / 0.5 MeV/c?

3500

sl

0 f__--_—— - |

Pull

2.465 2.47 2.475

M(pK 7)-M(pK rc*)+m(A?) [GeV/c?]

FIG. 4. The invariant mass distribution of Az~ in data. The
solid blue curve shows the best fitted result, the dot-dashed purple
line shows the fitted backgrounds.

After applying the mass window of A}, the M-, -
spectrum is shown in Fig. 4, together with the fit result
and the corresponding pull distribution. The quantity
M k- — M g5+ + my+ is used, to remove the effect
of the AT — pK~z" mass resolution. According to a study
of the inclusive MC samples [20], previous Belle analysis
[21], and the A sideband events, there is no peaking
background in the M-, distribution in the range under
study. Thus, the Z? signal shape is described by a double-
Gaussian function, and a first-order polynomial represents
the backgrounds. The values of parameters in the double-
Gaussian function are fixed to those obtained from the
signal MC sample. The solid blue curve is the best fit
result, and the dot-dashed purple line shows the fitted
backgrounds. The fitted Z% — A}z signal yield is
1467.7 £ 134.5. The statistical significance of the signal
is 10.60. Here, the statistical significance is calculated
using \/—21In(Ly/ L), Where Ly and L, are the
maximized likelihoods without and with the signal com-
ponent, respectively. The detection efficiency is found to be
14.6% based on a fit to the M +,- spectrum in the signal
MC sample, where efficiency correction factors due to PID
have been included, and are discussed below. The signal
yields and detection efficiencies of 22 — Az~ and 20 —
B~z are summarized in Table II.

TABLE II. Summary of the detection efficiencies (¢) and event
yields (N) of 2% — Afz~ and 2 — Z- 7. The uncertainties in
the table are statistical only.

€ N
B - 8t 16.4% 43875 £ 369
20 5 Afn 14.6% 1467 + 134

The branching fraction ratio is calculated according to
the formula,

B(E2 - Afzn7)
B(E) - == xt)
Ny x e x B(E" = Ax) x B(A = pr)

Nz, x €35, x B(AF > pK~n*)
= 0.38 + 0.04(stat) & 0.04(syst),

where N, , and Ng, are the signal yields of 20 5 Atz and
E? - 277" in data, respectively; €,°, and %
corresponding detection efficiencies; B(A — pK~z™"),
B(E~ — Az~), and B(A — pz~) are the branching frac-
tions taken from the Ref. [7]. Using the world average
branching fraction B(E) - & z") = (1.43 £0.32)%
[7,11], we measure B(EQ - Afz~) = (0.54 £0.05+
0.05+£0.12)%, where the last uncertainty is from
B(E? - E-xt).

are the

V. SYSTEMATIC UNCERTAINTIES

There are several sources of systematic uncertainties for
the measurement of the branching fraction of 20 — Afz~
as listed in Table III, including detection-efficiency-related
uncertainties, the branching fractions of intermediate states,
as well as the fit method.

The detection-efficiency-related uncertainties include
those from tracking efficiency, PID efficiency, A
reconstruction efficiency, and the statistical uncertainty
of the MC efficiency. The tracking efficiency uncertainties
cancel in the measured branching fraction ratio. Using
D*t - D% ", D° - K=z", and A — pz~ control sam-
ples, the PID efficiency ratios of data and MC simulations
are studied. For the signal decay of Z0 — A} z~, the PID
efficiency ratios between the data and MC simulations are
€data/ €mc = (100.0£0.9)%, (97.7£0.5)%, (99.8 +1.0) %,
and (97.4 +0.8)% for the kaon, proton, pion from =
decay, and the pion from A} decay, respectively. For the
reference decay mode 20 - E-7t, the PID efficiency
ratios between the data and MC simulation are €4, /€pvc =
(95.4 £ 0.6)% and (99.3 £ 0.7)% for the pion from E and

TABLE III. The systematic uncertainties on the measurement
of B(EY - A/ z™). The uncertainty of B(E2 — E~z7") is taken as
an independent uncertainty and not listed in this table.

Sources Value (%)
PID efficiency 4.0
A selection 2.7
Branching fractions of intermediate states 5.2
Mass resolution 4.0
Fit range 4.4
MC statistical 0.3
Total 9.3
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the pion from E~, respectively. The central values of PID
efficiency ratios are taken as the PID efficiency correction
factors while their errors are taken as the systematic
uncertainties due to PID for the selected tracks.

Since the momentum distributions between signal mode
and reference mode are different, the uncertainties on the
PID efficiency for the pion do not completely cancel in the
branching fraction ratio. When combining PID uncertain-
ties, those for kaons and pions are added linearly, as they
are taken from the same control sample: this procedure is
conservative. The remaining uncertainties are added in
quadrature, to yield the total PID systematic uncertainty on
B(E? — Afz), which is 4.0%. The uncertainty from A
reconstruction efficiency is 2.7%, which is estimated
based on its momentum distribution according to the
previous study [22]. We generate one million MC simulated
events for both signal and reference decay modes, which
introduce negligible systematic uncertainties (less than
0.3%) due to the statistical uncertainties of the detection
efficiencies.

The uncertainties of branching fractions of A7 = pK~z™,
E” > Azn~, and A - pz~ are 5.1%, 0.04%, and 0.8%,
respectively [7]. They are added in quadrature to yield the
total systematic uncertainty due to the branching fractions of
intermediate states, which is 5.2%.

The systematic uncertainties from the fitting method
include fit range, mass resolution, and the uncertainty in the
29 mass. To consider the uncertainty due to mass reso-
lution, we enlarge the mass resolution of the 0 — Afz~
signal shape by 10% and take the difference in signal yields
as the systematic uncertainty, which is 4.0%. The fit ranges
are changed by 0.5 MeV/c? in both fits to M Ao~ and
M=+ spectra, and the deviations compared to the nominal
fit results are taken as the systematic uncertainties, which
are 4.4% and 0.2% for signal and reference modes,
respectively. In the fit to the M+, spectrum, the fitted
E% mass is (2470.43 £ 0.06) MeV/c? when we do not fix
the central mass of signal function, which is consistent with
the world average value [7] and the difference in signal
yield compared to the nominal result is less than 0.1%.
Thus, the uncertainty from the Z° mass is neglected.

Assuming all the sources are independent and adding
them in quadrature, the total systematic uncertainty on
B(E? - Afzn™) is obtained. All the systematic uncertain-
ties are summarized in Table III, where the uncertainty of
22.4% on B(E? — E~x) [7] is not included and treated as
an independent systematic uncertainty.

VI. CONCLUSION

In summary, using the entire data sample of 983 fb~!
collected with the Belle detector, we perform a model
independent measurement on the branching fraction of
EY — Afz~. The branching fraction ratio is calculated
to be

=0.38 £0.04 £ 0.04.

Afz™)
=

")

Taking B(E? — 2~ 77) = (1.43 £ 0.32)% [7], the absolute
branching fraction of ZY — Atz is measured to be
(0.54 £0.05 +£0.05+0.12)%, where the uncertainties
are statistical, systematic, and from B(ZE) - E-zt),
respectively. This result is consistent with the measurement
by LHCb [9], and although less precise than their model-
dependent result. It is larger than the theoretical predictions
[3-6]. This result, once combined with the improved
B(E? - E-zt) expected from Belle II, can constrain
theoretical models more stringently.
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