PHYSICAL REVIEW LETTERS 130, 031901 (2023)

Evidence of a New Excited Charmed Baryon Decaying to X, (2455)%*+z*

Y.B. Li®, C.P. Shen®, I. Adachi®, H. Aihara®, D. M. Asner®, H. Atmacan®, T. Aushev®, R. Ayad®, V. Babu®,
S. Bahinipati®, P. Behera®, K. Belous®, J. Bennett®, M. Bessner®, V. Bhardwaj®, B. Bhuyan®, T. Bilka®, D. Bodrov®,
J. Borah®, A. Bozek®, M. Bracko®, P. Branchini®, T. E. Browder®, A. Budano®, M. Campajola®, D. Cervenkov®,
M.-C. Chang®, P. Chang®, B. G. Cheon®, K. Chilikin®, H. E. Cho®, K. Cho®, S.-J. Cho®, S.-K. Choi®, Y. Choi®,

S. Choudhury®, D. Cinabro®, S. Das®, G. De Pietro®, R. Dhamija®, F. Di Capua®, J. Dingfelder®, Z. Dolezal ®,

T. V. Dong®, D. Dossett®, D. Epifanov®, B. G. Fulsom®, R. Garg®, V. Gaur®, A. Garmash®, A. Giri®,

P. Goldenzweig®, E. Graziani®, T. Gu®, Y. Guan®, K. Gudkova®, C. Hadjivasiliou®, K. Hayasaka®, H. Hayashii®,
W.-S. Hou®, C.-L. Hsu®, T. Iijima®, K. Inami®, N. Ipsita®, A. Ishikawa®, R. Itoh®, M. Iwasaki®, Y. Iwasaki®,
W. W. Jacobs®, E.-J. Jang®, Q. P. Ji®, S. Jia®, Y. Jin®, K. K. Joo®, G. Karyan®, T. Kawasaki®, H. Kichimi®,

C. Kiesling®, C. H. Kim®, D. Y. Kim®, K.-H. Kim®, Y.-K. Kim®, H. Kindo®, K. Kinoshita®, P. Kody§®, T. Konno®,
A. Korobov®, S. Korpar®, E. Kovalenko®, P. Krizan®, P. Krokovny®, M. Kumar®, R. Kumar®, K. Kumara®,
Y.-J. Kwon®, T. Lam®, J. S. Lange®, M. Laurenza®, S. C. Lee®, C. H. Li®, J. Li®, L. K. Li®, Y. Li®, L. Li Gioi®,
J. Libby®, K. Lieret®, D. Liventsev®, M. Masuda®, T. Matsuda®, D. Matvienko®, S. K. Maurya®, F. Meier®,
M. Merola®, F. Metzner®, K. Miyabayashi®, R. Mizuk®, G. B. Mohanty®, I. Nakamura®, M. Nakao®, Z. Natkaniec®,
A. Natochii®, L. Nayak®, M. Niiyama®, N. K. Nisar®, S. Nishida®, S. Ogawa®, H. Ono®, P. Oskin®, P. Pakhlov®,
G. Pakhlova®, S. Pardi®, H. Park®, S.-H. Park®, S. Patra®, S. Paul®, T. K. Pedlar®, R. Pestotnik®, L. E. Piilonen®,
T. Podobnik®, E. Prencipe®, M. T. Prim®, N. Rout®, G. Russo®, S. Sandilya®, L. Santelj®, V. Savinov®, G. Schnell®,
J. Schueler®, C. Schwanda®, Y. Seino®, K. Senyo®, M. E. Sevior®, M. Shapkin®, C. Sharma®, J.-G. Shiu®,
J.B. Singh®, A. Sokolov®, E. Solovieva®, M. Stari¢®, Z. S. Stottler®, M. Sumihama®, T. Sumiyoshi®, W. Sutcliffe®,
M. Takizawa®, U. Tamponi®, K. Tanida®, F. Tenchini®, K. Trabelsi®, T. Tsuboyama®, M. Uchida®, T. Uglov®,
Y. Unno®, S. Uno®, Y. Usov®, R. van Tonder®, G. Varner®, K. E. Varvell®, E. Waheed®, E. Wang®, M.-Z. Wang®,
M. Watanabe®, S. Watanuki®, O. Werbycka®, J. Wiechczynski®, E. Won®, B. D. Yabsley®, W. Yan®, S.B. Yang®,
J. Yelton®, J. H. Yin®, C.Z. Yuan®, Y. Yusa®, Y. Zhai®, Z. P. Zhang®, V. Zhilich®, and V. Zhukova

(Belle Collaboration)
® (Received 19 June 2022; revised 31 July 2022; accepted 23 August 2022; published 20 January 2023)

We present the study of B — X.(2455)%* 2% p decays based on 772 x 10° BB events collected with
the Belle detector at the KEKB asymmetric-energy ete™ collider. The .(2455)** candidates are
reconstructed via their decay to AfzT and A} decays to pK~zt, pK?Q, and Azt final states. The
corresponding branching fractions are measured to be B(B® — £.(2455)°z" p) = (1.09 + 0.06 4 0.07) x
10~* and B(B® — £.(2455)**7~p) = (1.84 = 0.11 £ 0.12) x 107*, which are consistent with the world
average values with improved precision. A new structure is found in the My (54s5)0.++,+ spectrum with a
significance of 4.2¢ including systematic uncertainty. The structure is possibly an excited A} and is
tentatively named A.(2910)*. Its mass and width are measured to be (2913.8 4- 5.6 4-3.8) MeV/c? and
(51.8 +20.0 & 18.8) MeV, respectively. The products of branching fractions for the A.(2910)" are
measured to be B(B? — A,(2910)* p) x B(A,(2910)* — £.(2455)°z*) = (9.5 + 3.6+ 1.6) x 10~° and
B(B® = A.(2910)* p) x B(A.(2910)" — %.(2455)**7~) = (1.24 £0.35 +0.10) x 10~5. Here, the
first and second uncertainties are statistical and systematic, respectively.
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Because of the numerous degrees of freedom of the
internal structure of charmed baryons, their spectroscopy
provides an excellent laboratory for studying the dynamics
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LHCDb Collaborations in the past two decades [4], there are
still missing states in the predicted spectra [5] and proper-
ties of many known particles are still poorly understood [4].

Currently, there is no unified phenomenological model
that can fully describe the charmed baryon sector.
Theoretically, the mass spectrum of excited charmed
baryons has been studied with numerous approaches, such
as a quantum chromodynamics (QCD) based quark model
[6], the QCD sum rule [7-11], Reggie phenomenology
[12], a relativistic quark potential model [13], quark
potential models [14—18], the relativistic flux tube models
[19,20], the coupled channel model [21], the constituent
quark models [22-24], and lattice QCD [25,26]. More
experimental measurements are required to validate these
theoretical models.

Among the observed excited Al family, the highest state
A.(2940)" presents many mysteries. It was discovered by
BABAR via its decay to D°p [27], and confirmed by LHCb
[28], and its decay to X.(2455)%**z* was observed by
Belle [29]. Though the quantum number J© = %‘ is favored
for A.(2940)" according to the LHCb measurement, other
spin-parity assignments are also proposed [5,30]. Besides
that, the mass of A.(2940)" is lower than the expected
AC(%‘,ZP) state in the quark models [13,18,19,23], in
which its mass is expected to be above 3 GeV/c? and the
mass of the undiscovered A (37, 2P) state is slightly lighter
than that of A.(37, 2P) by not more than 25 MeV/c?. Such
a low-mass puzzle for A.(2940)" can be explained by
introducing the D*N channel contribution [31], while the
mass of A.(}7,2P) state is higher than that of A (37,2P)
by around 40 MeV/c? in this scenario, which leads to an
interesting mass inversion. Thus, it is important to verify
the quantum number of A.(2940)" or search for other
candidates of A.(2P).

Compared to the previous inclusive analyses
[27-29], the study of A.(2P) can be performed in B —
AF(2P)(— Z,.(2455)+*7%)p exclusive decays, which
can constrain the spin and parity of the possible excited
AF(2P) and provide a simpler background environment.
The B? — £,.(2455)**7* p decays have been previously
studied by CLEO [32], Belle [33,34], and BABAR [35]
Collaborations based on 9.17, 357, and 426 fb=! T(4S5)
data samples, respectively, with A reconstructed via
the pK~z" mode. The average branching fractions are
B[B" - %,(2455)°z" p] = (1.08+0.16) x 10~* and B[B° —
X.(2455)" 2= p] = (1.88 £ 0.24) x 107*. The invariant
mass spectra of My (y4s5)0++,+ and M, are found to be
inconsistent with phase-space distributions. In particular,
the Belle Collaboration analysis in Ref. [34] suggested that
there could be a structure or overlap of several known
excited A near the threshold of the M 3, (2455)07+ Spectrum,
which needs further study.

In this Letter, we present a study of the B —
¥.(2455)%**z%p decays [36] and study the possible
resonance in the My (545500++,+ spectrum using the full

data sample of 711 fb~! collected at the Y(4S) resonance
by the Belle detector [37] at the KEKB asymmetric energy
electron-positron collider [38]. Simulated signal events
with BY meson decays are generated using EVTGEN [39].
These events are processed by a detector simulation based
on GEANT3 [40]. The generic Monte Carlo (MC) samples
of T(4S) - BB (B=B" or B®) and e"e™ = ¢qg (¢ = u,
d, s, ¢) events at /s = 10.58 GeV are used to check the
backgrounds [41], corresponding to 5 times the integrated
luminosity of the data.

For charged track identification, information from differ-
ent detector subsystems is combined to form the likelihood
L; for species i, where i = z, K, or p [42]. Except for the
charged tracks from A — pz~ and Kg — xtr~ decays, a
track with a likelihood ratio R% = Lx/(Lx + L;) >
0.6(< 0.4) is identified as a kaon (pion) [42]. With this
selection, the kaon (pion) identification efficiency is about
93% (97%). A track with R}, = L,/(L, + L) > 0.6 and
RE =L,/(L,+ Lg) > 0.6 is identified as a proton with
an efficiency above 90%. The K% and A candidates are
reconstructed from pairs of oppositely charged tracks,
treated as 7z~ and pz~, with the similar method used
in Ref. [43]. The pz~ invariant mass should be within
3.5 MeV/c? (~36, where ¢ denotes the mass resolution) of
the A nominal mass [4]. The X.(2455)%** candidates are
reconstructed via their decay to Az T, while the Al are
reconstructed with the A7 - pK~z", pK%, and Az . The
mass windows of %.(2455)%** and A} are within 10 and
14 MeV/c? of their nominal masses [4], respectively,
which retain more than 94% of the signal events. About
8% of events have multiple candidates that are all used for
further analysis.

Figure 1 shows the scatter plot of AM versus M, of the
selected B? — X.(2455)%**z*p candidates from data
after applying the selection criteria above. The My, is

defined as \/EZ,./c>— (> p:)?/c, where Epeyn and
p; are the beam energy and the three-momenta of the

0.1

0.05

AM, (GeV/c?)
o

-0.05

-0.1

5.06 5.07 528 529
M, (GeV/c?)

FIG. 1. The scatter distribution of AMp versus My, from data.
The blue and red boxes are the B sideband regions described in
the text. The green box indicates the signal region.
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B®-meson decay products in the center-of-mass system of
the ete™ collision. The AMy is defined as Mg — myg,
where My is the invariant mass of the B® candidate
and my is the nominal B°-meson mass [4]. The B° signal
region is |AMp|<0.023GeV/c* (~2.56) and M, >
5.272 GeV/c?* (~2.56), which is illustrated by the green
box in Fig. 1.

After releasing the requirements on M. and the mass
window of X.(2455)%**, the signal yields of B’ —
¥.(2455)%**z*p are extracted by unbinned two-
dimensional (2D) extended maximum likelihood fits to
the My, and M.+ distributions of the selected B —
Afn~ntp candidates. The 2D fitting function is para-
metrized as

F(My, My) = N¥&s(M,)S(M5) + Ngs(M,)b' (M)

+ Notb(M1)S(M>) + Nybg(M,)g (M),

where s(M) and S(M,) are the 1D signal function in My,
and M - =, respectively, while b(M,), g(M,), b'(M,) and
g (M,) are the background functions for the same argu-
ments. Here, s(M) is a Gaussian function, S(M,) is a non-
relativistic Breit-Wigner (BW) function with the phase
space factor p,+/M,+,+ considered, convoluted with a
triple-Gaussian function whose parameters determined by
MC simulation. Moreover, p,+ is the momentum of the
selected #7T in the rest frame of A7z T system. Here, b and g
are ARGUS functions [44] while 5" and ¢ are second-order
Chebyshev polynomial. All the parameters of the fitting
functions are free to float except for those of triple-
Gaussian functions. The projections of the 2D fits to the
selected B — Az~ 7" p candidates from data are shown
in Fig. 2 with the contribution from each component
indicated in the legends.

To reduce the influence of the possible interme-
diate resonances or other non-phase-space contribu-
tions in calculating the branching fractions of B? —

2.(2455)% 2% p, the M=, versus M, planes
are divided uniformly into 4 x4 bins. The B° —
%.(2455)** 2% p signal yield, N: where i rep-

%,(2455)0++
resents each M+ =+ versus M+ bin, is extracted by the
simultaneous fit to all the bins with the same method used
in Fig. 2, where the signal functions share the same set of
parameters. The total yields of B® — £.(2455)°z% p and
BY — %.(2455)* T2~ p are 767 £44 and 1213 473,
respectively, obtained by summing the corresponding
signal yield in each bin. The total yields are consistent
with the overall fit results shown in Fig. 2.

The branching fractions of B® — X.(2455)%*z%p
are calculated from {1/[2 x Ngg x B(Y(4S) - B°B°)]}x
zi(N;C(2455)0'++/€i)’ where, Nz = 772 x 10° is the num-

ber of BB pairs and B(Y(4S) — B°B°) = 0.486 + 0.006
[4]. Furthermore, &; = X;[e¥ x B(Al — f;)] is the reduced
detection efficiency in each M p+ 5+ versus My - bin,
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FIG. 2. The projections of (a) MbC and (b) M x: .- of the 2D fit
to the selected B® — £.(2455)°z" p candidates, and the projec-
tions of (¢) My, and (d) My+,+ of the 2D fit to the selected
BY — .(2455)" 2~ p candidates. The dots with error bar are
from data; the blue solid curves are the best fits; the green areas
are from non-My. peaking backgrounds or non-X.(2455)%*F
combinatorial backgrounds; the purple dashed curves are the total
fitted backgrounds. Here, the X.(2455)%* (M) signal region is
required when projecting the corresponding My, (M y+,+) dis-
tribution.

where f; represents pK~x", pKY, and Az for j =1, 2,
and 3, respectively; ef is the detection efficiency of

2.(2455)% " 7% p with A, — f; in the correspond-
ing bin; B(Al — f) is the branching fraction of A} — f;
including the decay branching fractions of K9 — 7'z~
and A — pz~. Then, the branching fractions of
BY - £,.(2455)% " z*p are calculated to be B[B® —
X.(2455) " 7~ p] = (1.84 +0.11) x 10* and B[B* —
2.(2455)%z* p] = (1.09 £ 0.06) x 10~*. The uncertainties
here are statistical only.

We combine the spectra of My (5455)0,+ and Ms (2455)++ -
(denoted hereinafter as the My (2455), spectrum) to search
for a possible resonance. We estimate the background
contributions from non-M, peaking backgrounds using the
events in the three blue sideband regions minus the events
in the two red sideband regions in Fig. 1, which are denoted
as B sidebands, and the sidebands of X.(2455)%*+, defined
as 2.470 < M+ ,= < 2.491 MeV/c? or 2.425 < MA+,,; <
2.437 MeV/c?, to estimate the non-X.(2455)%** back-
grounds. The distributions of the (a) Mg (2455
(b) My (24550, +> and (¢) My (a4s5)++, Of the selected B’ —
¥.(2455)%** 2% p candidates in the B° signal region and
the corresponding X.(2455) signal region are shown in
Fig. 3, where a structure around 2.91 GeV/c? can be seen
in all plots that cannot be well described by any known
resonance. The filled histograms in plots (a), (b), and (c) are
from the normalized B sidebands, X.(2455)° sidebands,
and X.(2455)"" sidebands, respectively. There is no
peaking contribution from any sideband.
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candidates from data. Here, the data distribution in plot (a) is the sum of those in plots (b) and (c). The dots with error bars represent the
data, the solid blue curves are the best fits, and the dashed curves are the fitted backgrounds.

To determine the parameters of the structure, an
unbinned extended maximum likelihood fit is performed
to the My (y455), spectrum. The signal shape is a non-
relativistic BW convoluted with a Gaussian function
(whose width equals to 5.3 MeV/c? determined from
MC simulation) with the detection efficiency curve con-
sidered. The background is represented with a second-
order Chebyshev polynomial. The corresponding fitted
signal yield of the structure is 150 4 40; its mass and
width are determined to be (2913.8 & 5.6) MeV/c? and
(51.8 £20.0) MeV, respectively. For the mass measure-
ment, the —1.5 MeV/c? shift between the output and input
mass determined by MC simulation has been corrected
(“mass correction factor”). The uncertainties here are
statistical only. The statistical significance of the structure
is 6.10, estimated from the difference of the logarithmic
likelihoods of the fits without and with a signal component
with the difference in the number of degrees of freedom, 3,
considered [45]. Alternative fits to the My (24s5), spectrum
are performed: (a) using a first- or third-order polynomial
as the background shape; (b) changing the mass resolution
by 10%; and (c) using an energy-dependent relativistic BW
function as the signal shape. The statistical significances of
the structure are larger than 5.8¢ in all cases. When only
taking the contributions of A.(2880)" and A.(2940)" as
the signal shapes in the fit with their parameters constrained
to be within lo of their world average values [4], their
significances are 1.5¢ and 2.60, respectively. However,
when introducing A.(2880)" and A.(2940)" as additional
background components into the above fit with the new
structure, their yields are consistent with zero and the
significance of the new structure decreases to 4.2¢.
Therefore, we take the fit with only one signal component
as a nominal result, and take 4.2¢ as the signal significance
of the new structure with the systematic uncertainty
included.

The known particle with the closest mass and width to
the structure is A.(2940)". However, the mass of the
structure differs from that of A.(2940)" [4] by 3.8¢ with
systematic uncertainty described below considered. Since
the mass difference between the structure and A.(2940)"

agrees with the expected mass gap between A, (%‘ 2P) and
A.(37,2P) state in quark models [13,18,19,23], the struc-
ture is a good candidate for the A, (%‘,ZP) state and is
tentatively named as A.(2910)". The B — A.(2910)"p
and A.(2910)" — £.(2455)% 7% are S-wave decays
under this assumption. However, further study is needed
to confirm whether this state is an excited A, or Z..

To determine the signal yields of B® — A.(2910)*p
with  A.(2910)" — =.(2455)%** 2%, a simultaneous
unbinned extended maximum-likelihood fit to the
My (455)0,+ and My (o455)++,- spectra is performed, where
the signal function is the same to both spectra. The fit
functions are the same as those used in the nominal fit to
My, (2455), spectrum above with all the parameters free
to float. The fit results are shown in panels (b) and (c)
of Fig. 3. The fitted signal yields are Ny (ps55)0,+ =
63 £24 and Ny (uss)++ = 83 £23 for A.(2910)" —
2.(2455)%z% and A,.(2910)" — %.(2455)" z~, respec-
tively. The fitted mass and width of A.(2910)" are
(2914.7 +5.6) MeV/c? and (50.1 +20.5) MeV, respec-
tively, which are consistent with those from the fit to the
My (2455); spectrum.

The branching fraction product of B[B’ —
A.(2910)" p] x B[A.(2910)" — £.(2455)% 7] is cal-
culated with N (o4550.+ 5+ /{2 X N x B[Y(4S) = BB x

S B(AL = f) xsf“(2910)+]}, where sf\”(2910)+ is the detec-

tion efficiency of BY — A.(2910)*p with A.(2910)* —
2. (2455)% g%, £.(2455)%FF - Afxt, and AY - fi,
which is 10.60%, 12.14%, and 11.24% for A} —
pK=z*, pKY, and Ax™, respectively. The detection effi-
ciencies here include the particle identification (PID)
correction factors described below and the decay branching
fractions of Kg — atax~ and A — pr~. The detection
efficiencies are the same for £.(2455)"" and X (2455)°
intermediate states, according to the MC simulations.
The branching fraction products are calculated to be
B[B® — A.(2910)* p] x B[A.(2910)* — £.(2455)°z"] =
(9.54+3.6) x 107° and B[B® = A.(2910)* p]x
B[A.(2910)" — %.(2455)"Tz7] = (1.24 £ 0.35) x 107°.
The errors here are statistical only.
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TABLE I. Summary of the systematic uncertainties on the
branching fraction measurements (%). Here, B; means
B[B® — =,.(2455)* 2~ p], B[B" - £.(2455)°z*p], B[B’ —
A.(2910)*p] x B[A.(2910)" — X.(2455)°z*], and B[B" —
A:(2910)" p] x B[A.(2910)" — Z.(2455) 77| for i =1, 2,
3, and 4, respectively.

B; Detection efficiency Fit Np Sum
B, 5.9 1.6 1.8 6.4
B, 5.9 1.9 1.8 6.5
Bs 5.6 16 1.8 17
By 5.8 5.6 1.8 8.2

There are several sources of systematic uncertainties in
the branching fraction measurements. Using D** — Dz*,
DY - K—zt, and A - pr~ samples, the efficiency ratios
between data and MC simulations are 0.998 4+ 0.013,
0.970 £ 0.006, 0.900 £ 0.005, and 0.987 £0.005 for
kaon, pion, proton from AJ, and proton directly from
B, respectively, whose central values are taken as the
efficiency correction factors and the errors are taken as the
systematic uncertainties due to PID. The uncertainties on
the branching fractions of Al decay chains are 5.1%, 5.1%,
and 5.4% for Al — pK~z~, pK?, and Az" modes [4],
respectively. The uncertainties on the detection efficiency
include those from PID, the branching fractions of A}
decays, tracking efficiency (0.35%/track), as well as A
(2.95%) and K(S) (0.5%) selection efficiencies. Assuming all
the sources of the above systematic uncertainties are
independent, the uncertainties from the same sources are
summed linearly weighted by the expected signal yields
over the three A decay modes. Then, the uncertainties
from different sources are added in quadrature to yield the
total uncertainties on detection efficiency, which are listed
in Table I.

We estimate the systematic uncertainties on the fitting
procedure by changing the order of the background
polynomial, the range of the fit, and the mass resolution
(enlarged by 10%). The deviations from the nominal fitted
results are taken as systematic uncertainties. For
B(B® — %.(2455)** 2% p), the fitting uncertainties in
M piz7 5+ versus M . bins are summed in quadrature
weighted by 1/¢;. These uncertainties are added in quad-
rature to yield the total uncertainties due to fit.

The uncertainties on the world average value of
B[Y(4S) — B°B"] and Ny (45) are 1.2% and 1.37%, respec-
tively. Thus, the uncertainty of the BY count is 1.8%.

Assuming all sources listed in Table I are independent,
the uncertainties from different sources are added in
quadrature to yield the total systematic uncertainties.

The following systematic uncertainties are considered
for the mass and width of A.(2910)*. Half of the mass
correction factor is taken as a systematic uncertainty. By
changing the order of the background polynomial and fit
region, the differences in the fitted A.(2910)" mass

(3.42 MeV/c?) and width (18.3 MeV) are taken as sys-
tematic uncertainties. By replacing the nonrelativistic BW
function by a relativistic BW function with a mass-
dependent width of T, =T?[®(My ,)/®(My 2910)+)]s
where TV is the width of the resonance, ®(M,) =
(P/M,) is the S-wave phase space factor [P is the «
momentum in the X.z or A.(2910)" center-of-mass
frame], the difference in the measured A.(2910)" mass
(1.2 MeV/c?) is taken as a systematic uncertainty. When
considering the background contributions from A.(2880)"
and A.(2940)", by changing their masses and widths by
+10 [4], the differences in mass and width of A.(2910)7
are 1.0 MeV/c? and 4.3 MeV, respectively, which are taken
as systematic uncertainties. Assuming all the sources are
independent, we add them in quadrature to obtain the total
systematic uncertainties on the A.(2910)" mass and width,
which are 3.8 MeV/c? and 18.8 MeV, respectively.

In summary, based on 772 x 10° pairs of BB data
samples collected with the Belle detector at the KEKB
asymmetric-energy ete~ collider, we analyze the B —
¥.(2455)**92F p decays with the branching fractions
measured to be B[BY — X.(2455) "z p] = (1.84 +
0.11+0.12) x 10™*  and B[B" » £.(2455)z"p| =
(1.09 £ 0.06 + 0.07) x 10~#, which are consistent with
the previous measurements [4,32-35] with improved pre-
cision. A structure around 2.91 GeV/c? is found in the
My (2455), spectrum with a statistical significance of 6.10.
The significance changes to 4.26 when introducing
possible background contributions from A,(2880)"
and A.(2940)*. The mass and width of the state are
measured to be (2913.84 5.6 +3.8) MeV/c* and
(51.8 £20.0 £ 18.8) MeV, respectively. This state is pos-
sibly a good candidate for A.(37,2P) and is tentatively
named as A.(2910)*, with its nature needing more inves-
tigation. The products of branching fractions concerning
the A.(2910)* are measured to be B[B® — A.(2910)" p]x
B[A.(2910)" — Z.(2455)""727] = (1.24 £ 0.35 £ 0.10)x
107°,  and  B[B" - A.(2910)" p] x B[A.(2910)" —
2.(2455)%z%] = (9.5 4+ 3.6 £ 1.6) x 107°. Here, the first
and second uncertainties are statistical and systematic,
respectively. The B[B® — X.(2455)°**z*p] measure-
ments in this analysis supersede the previous Belle mea-
surements [33].
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