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Using the data sample of 980 fb~! collected with the Belle detector operating at the KEKB asymmetric-
energy ete™ collider, we present the results of an investigation of the Az and Az~ invariant mass
distributions looking for substructure in the decay A} — Az"z"z~. We find a significant signal in each
mass distribution. When interpreted as resonances, we find for the Az™ (Az~) combination a mass of
1434.3 £ 0.6(stat) & 0.9(syst) MeV/c? [1438.5 4 0.9(stat) 4 2.5(syst) MeV/c?], an intrinsic width of
11.5 £ 2.8(stat) & 5.3(syst) MeV/c? [33.0 + 7.5(stat) + 23.6(syst) MeV/c?] with a significance of 7.5¢
(6.20). As these two signals are very close to the KN threshold, we also investigate the possibility of a KN
cusp, and find that we cannot discriminate between these two interpretations due to the limited size of the
data sample.
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Hyperon spectroscopy near the KN threshold has been a
source of excitement for more than half a century. There
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are many different scenarios that can generate states in this
mass region. The interplay of these scenarios makes the
hyperon spectroscopy in this mass region particularly
interesting. A typical example is the A(1405)(/ = 0) state,
which has been interpreted as an orbitally excited quark-
diquark [1], or as a KN bound state [2]. On the other hand,
the only known / =1 state in this mass region is the
%(1385). The standard quark model does not predict any

Published by the American Physical Society
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(a) (b)

FIG. 1. Al —» Azx"z~zn" decay as a virtual A — z collider. The
left side of the dashed line for both (a) and (b) contains an
unknown A, decay form factor; the right side of the dashed line
can be used to search for ©* resonances (a) and study KN (re-)
scattering with a cusp (b), respectively.

more states near the A(1405) mass, so if a X* resonance is
observed, it may be exotic. The KN(I = 1) interaction is,
most likely, not strong enough to produce a bound state,
but a virtual state could exist [3] and could be observed as a
threshold cusp. The shape of such a cusp reflects the
scattering length of the KN(I = 1) interaction, which is
particularly interesting in relation with kaon condensation
in neutron stars, where K~ n interaction is most important.

In this Letter we report a study of Az " and Az~ invariant
mass distributions in the region above the £(1385), in the
decay Al — AxtzTn~. The charge conjugate mode is
implied throughout the current Letter. Heavy baryon (A})
decay provides a unique chance to investigate hyperon
spectroscopy. In particular, study of the [Az*] pair in the
decay Al — [Az*]zTaT provides data comparable to a
A — 7 collider in the range of 0 to 0.7 GeV/c? above the
An* mass threshold. This allows analysis of the I = 1,
S = —1 sector to be performed in this range. In the present
analysis, as shown in Fig. 1, we consider possible X*
resonances, and a KN threshold cusp.

Our data sample corresponds to the 980 fb~! integrated
luminosity collected with the Belle detector at the KEKB
asymmetric-energy e e~ collider [4]. Most of the data are
taken at the Y'(nS)(n = 1-5) resonances together with a
small integrated luminosity collected off resonance. Belle
detector is a large-solid-angle magnetic spectrometer con-
sisting of a silicon vertex detector (SVD), a 50-layer central
drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter made of CsI(TI) crystals (ECL).
These components are surrounded by a superconducting
solenoid with a 1.5 T magnetic field. The details of the
Belle detector can be found in [5].

We use a set of Monte Carlo simulation tools to optimize
the event selections. Event generation uses the EVTGEN [6]
package and GEANT3 is used for Belle detector response
simulation [7]. The event reconstruction starts with charged
hadron (%) identification to select p and z*. For each
charged track, a likelihood [£(%)] of particle identification
(PID) is assigned based on the measurement with CDC,
TOF, and ACC [8]. The ratio of the PID likelihoods,

70%0 o
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FIG. 2. The invariant mass of the Az 7"z~ system after event
selection. The green, red, and blue curves represent the back-
ground, signal, and total fit function, respectively. See text for
details.

R(hg: hg) = L(hg)/[L(hs) + L(hg)], is used for event
selection. Only z* with R(z:K) > 0.2 and R(z: p) > 0.4
and p with R(p:z) > 0.6 are used in the following data
analysis. The PID efficiency is approximately 99% for 7+
and 91% for proton, respectively. The kinetic information of
the 7+ and p obtained from the tracking device (SVD and
CDC) are used to reconstruct A and AJ. During the
reconstruction, daughter particles of the corresponding
decay are fitted to the common vertex with the mass of
the mother particle as a mass-constraint vertex fit. The so
reconstructed A trajectory is used for the A reconstruction.
A confidence level > 0.001 is required to select good A and
A candidates. To optimize the signal to noise ratio (S/N)
of the final [Az*] spectrum, we require the scaled momen-

tum of A7 to satisfy x, = pc/,/s/4- Mf\:c4 > 0.43,

where p is the reconstructed A7 momentum in the
center-of-mass frame, c is the speed of light, s is the square
of the center-of-mass energy and M ,+ is the mass of AF A
mass window of AM < 8 MeV/c? centered at the A}
nominal mass corresponding to +2.1¢ of A signal is also
applied [9]. The A decay vertex is required to satisfy dr <
0.2 cm and dz < 2 cm, where dr and dz are the distance
from the interaction point transverse to, and along, the e™
beam direction. In addition, to further improve the signal
sensitivity in the Azt spectrum, we veto X(1385) — Az~
contributions to the A7 — Az*z~z" decay with a mass
window of 10 MeV centered at the nominal mass of
X(1385)~ [9]. This method is only effective for the Az™
mode because of the different background level in the
Az~ mode.

The reconstructed A invariant mass from A} —
AxtnTz~ decay after event selection is shown in Fig. 2.
The A} invariant mass is fitted with a second order
Chebyshev polynomial for background and a Gaussian
function for signal. The fitted A invariant mass in our data
analysis is 2286.12 & 0.01 and 0.34 & 0.14 MeV/c? lower
than the world average value, where the uncertainty is

151903-2



PHYSICAL REVIEW LETTERS 130, 151903 (2023)

w10}
%} L
=
S |
PR
4 L N N STameaetilne " N " X ]
_ of | ]
5 2f | e il ]
a _g 1 M!meﬁpw#ﬁ% WWW W wm#m ]
1.35 1.4 1.45 1.5 1.55
M, ., Breit-Wigner [GeV/c?]
(a)
= ]
g ]
: Ul
1.35 1.4 1.45 1.5 1.55

M, Breit-Wigner [GeV/c?]

(b)

FIG. 3. Az™ (a) and Az~ (b) invariant mass distribution fitted
with a Breit-Wigner signal and a background function. The solid
(dotted) green, red, and blue curves represent the (breakdown)
background, signal, and total fit function, respectively. Fitting
range: 1.380-1.530 GeV/c?. See text for details.

dominated by the reference value [9]. We consider this
—0.34 MeV/c? shift as the absolute Belle energy scale
uncertainty and will use it to estimate the systematic
uncertainty for the Az invariant mass.

The [Az*] invariant mass resolution is obtained by
simulation and parametrized as a sum of two Gaussian
functions with 6, = 1.15 MeV/c?, 6, = 2.52 MeV/c?, an
area ratio of 3.5, and a common mean. The systematic
uncertainty for the resolution function is estimated by
comparing the reconstructed A/ invariant mass from sim-
ulation and Belle data. The simulated resolution is ~4%
wider than the data, which will be used to evaluate the
systematic uncertainty in our data analysis. In the following
data analysis, the resolution function is convoluted with
the signal functions Eq. (1) and Eq. (2) to derive the fit
parameters of interest.

The reconstructed [Az*] invariant mass spectrum from
Al = [Ant|zTrt decay after all event selections is
shown in Figs. 3 and 4 for two different fitting models
as will be explained in the text. The reconstruction
efficiency is evaluated to be ~8% based on simulation.

Clear enhancements near the KN mass thresholds are
observed in the Az" and Az~ invariant mass spectrum,
respectively. We have confirmed that these enhancements
originate from A decays by comparing the Az* invariant
mass spectrum from the A mass window and the side
band regions centered at A nominal mass +5¢ with
+1.16 width.

We investigate the signals using two different para-
metrizations of the signal shape: a Breit-Wigner function
which describes a X* resonance, and the Dalitz model [10]
which describes a KN cusp. A common background
function for both Az* charge modes is used. It consists
of two components: a Breit-Wigner function for the
¥(1385)* contribution and a second-order Chebyshev
polynomial function for the high-mass background events.
Five free parameters, i.e., relative yield between these two
components, peak and width of the Breit-Wigner function,
and two coefficients of the Chebyshev polynomial func-
tion are used for the fit.

To interpret the signals as X* resonances, we use a
nonrelativistic Breit-Wigner function defined as

r/2
E— Egw)* +T1?%/4°

faw = ( (1)
where E is the Azx® invariant mass, Egy is the X*
mass, and I is the resonance width. A binned least-y?
fit to the spectrum is shown in Fig. 3 and the fit results are
summarized in Table I.

Given the overlap of the observed signals and the
KN mass threshold, it is natural to expect a strong
KN contribution via K-N rescattering as illustrated in
Fig. 1(b). In particular, by neglecting the A} decay form
factor, the KN cusp can be related to the K-N complex
scattering length (A = a + ib) with the Dalitz model [10]:

4rb
p— N E 17
I = 0 kb + (ka)? = RN
4xb
- ” E < mgy, (2)

(1 +xa)® + (xb)?*’

where k and k are the magnitude of the KN relative
momentum above and below threshold, respectively.

Specifically, k = \/2u(E — mgy) for E > mgy and k =
2u(mgy — E) for E < mgy, where p=1/(1/my +
1/mg) is the reduced mass of the KN system.

TABLE 1. Breit-Wigner fitting results. The quoted errors are
statistical only.

Mode Epw MeV/c?) ' MeV/c?) % /NDF
Ax* 14343 £ 0.6 11.5£2.38 74.4/68
An~ 1438.5£0.9 33.0£75 92.3/68
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FIG. 4. Az™ (a) and Az~ (b) invariant mass distribution fitted
with the Dalitz model for the signal and a background function.
The solid (dotted) green, red, and blue curves represent the
(breakdown) background, signal, and total fit function, respec-
tively. Fitting range: 1.380 ~ 1.530 GeV/c?. See text for details.

Figure 4 shows the fit result with the Dalitz model by
using binned least-y?> method. The obtained scattering
length is given in Table II. The quoted uncertainties are
statistical only.

To test the interpretation of the observed signal as KN
cusps, we adopt the Flatté parametrization given in [11]:

r
— N E > My
Jr (E —mgy — Egw)* + (I' 4 gk)*/4 o
r E <
= 9 mg ’
(E—mgy — Egw — gc/2)* +T2/4 N
3)
TABLE II. Dalitz model fitting results.
Mode a (fm) b (fm) x*/NDF
An™ 0.48 £0.32 1.224£0.83 68.9/68
An~ 1.24 +0.57 0.18 +£0.13 78.1/68

where E, Egyw, and I" have the same definition as in Eq. (1),
g s the coupling constant to KN, and k (k) is the magnitude
of the KN relative momentum above (below) threshold as
defined in Eq. (2). However, it is known that the three
parameters (Egw, [, and g) in Flatté parametrization are not
independent, but are correlated by the so-called scaling
behavior [11].

The scaling behavior suggests that by fixing Egyw far
away from the KN mass threshold (~1.435 GeV/c?), the
Flatté parametrization effectively describes a cusp. This can
be made explicit with the help of the effective range
expansion, which relates the Flatté parametrization to the
scattering lengths as [11]

g
Wy -

A=a+ib=
This relation is based on the process of K-N rescattering
into the A final state as illustrated in Fig. 1(b). In particular,
we can customize the Flatté parametrization by replacing
[ = 2Egwh/a, g = 2Egw(a + b*/a)/hc, and set an arbi-
trarily large Egw (10 GeV was used in this analysis). The
scattering length derived this way is largely consistent with
the Dalitz model. The difference is summarized in Table IV
as a systematic uncertainty.

In the Breit-Wigner fit, three types of systematic uncer-
tainties are considered: uncertainty due to the absolute Belle
energy scale, uncertainty induced by the resolution function,
and uncertainty due to the fitting procedure. The absolute
Belle energy scale is estimated to be 0.34 MeV/c?
lower than the reference value as previously described.
We therefore shift the Azt invariant mass spectrum by
+0.34 MeV/c? to derive the systematic uncertainty. The
uncertainty induced by the resolution function is checked by
shrinking the resolution by 4%, which is obtained by
comparing A} mass distribution between simulation and
data as mentioned before. To evaluate the uncertainty due to
the fitting procedure, we define a new background function

TABLE III. Systematic uncertainties for the Breit-Wigner
fitting parameters in [MeV].

Source Mode  Egyw MeV/c?) T (MeV/c?)
Energy scale Axt +0.5 -0.1
Resolution Ax™t 0.0 +0.1
Fitting procedure Ax* +0.8 -53
Total Art By o
Final value +0.9 +5.3
Energy scale An~ +0.2 -29
Resolution Arn~ 0.0 +0.1
Fitting procedure Az~ -2.5 —-23.4
Tou A 93 o,
Final value +2.5 +23.6

151903-4



PHYSICAL REVIEW LETTERS 130, 151903 (2023)

TABLE IV. Systematic uncertainties for the Dalitz fitting
parameters in [fm].

Source Mode a (fm) b (fm)
Energy scale Ax™ +0.03 -0.17
Resolution Axt —-0.01 —-0.03
Fitting procedure Art +0.37 +2.54
Model Axt +0.05 —-0.05
Toul Art g 33

Final value +0.38 +2.54
Energy scale An~ +0.19 —-0.10
Resolution Arn~ —0.01 0.00

Fitting procedure Anm~ +1.55 -0.17
Model A~ —-0.16 —0.05
Total Ar™ “oie 020

Final value +1.56 +0.20

as a third-order Chebyshev polynomial and change the
fitting range to 1.420-1.520 GeV/c? for both Az charge
modes. By excluding £(1385)* from the fitting range, we
estimate the uncertainty related to the £(1385)* background
component. The resulting systematic uncertainties for the
Breit-Wigner fitting are summarized in Table III, where
the independent contributions are added in quadrature for the
total. To be conservative, we take the larger value of any
uncertainty that is asymmetric and use it as a symmetric
uncertainty for the final result.

For the Dalitz model fit, we also consider the absolute
Belle energy scale uncertainty, resolution uncertainty, and
the fitting procedure uncertainty, where the same treatment
as the Breit-Wigner case is used. In addition, we also
include the uncertainty induced by the data fitting model,
which is obtained by comparing the difference between the
Dalitz model and Flatté parametrizations. The systematic
uncertainties are summarized in Table IV, where the
independent contributions are added in quadrature for
the total. Similar to the Breit-Wigner case, we take the
larger value of any uncertainty that is asymmetric and use
it as a symmetric uncertainty for the final result.

The statistical significance of the signals is derived by
excluding the peaks from the fit, finding the change in the
log-likelihood (A[In(L)]) and converting this to a p value,
taking into account the change in the number of degrees in
freedom. This is then converted to an effective number of
standard deviations. The same treatment is applied for the
two fitting procedures and for each Az charge mode. The
lowest significance out of four combinations is reported in
this Letter as 7.56 for the Az mode and 6.2¢ for the Az~
mode, respectively.

To understand the Az* invariant mass enhancement,
two interpretations as X* resonances and KN threshold
cusps are tested. For the X* interpretation, we have

the final results for Az™ (An~) peak of M = 1434.3 +
0.6(stat) & 0.9(syst) MeV/c?>  [1438.5 + 0.9(stat) &
2.5(syst) MeV/c?], width = 11.5 & 2.8(stat) + 5.3(syst)
MeV/c? [33.0 & 7.5(stat) & 23.6(syst) MeV/c?]. It is
noticeable that the Azt peak Egyw=1433.9+
0.6MeV/c? is lower than the K°p mass threshold
mgo, = 14359 MeV/c? and the Az~ peak Epy =
1437.74+ 0.9 MeV/c? is higher than the K~n mass
threshold mg-, = 1433.2 MeV/c?, where the reference
values for the kaon and nucleon mass are taken from
world average [9].

If we interpret the signals as threshold cusps, we can
derive the following scattering lengths: K°-p (K~-n) with
Arnt (Az7) mode as a = 0.48 + 0.32(stat) + 0.38(syst) fm
[1.24 £+ 0.57(stat) & 1.56(syst) fm] and b=1.22+0.83
(stat) £2.54(syst) fm [0.18 £ 0.13(stat) = 0.20(syst) fm].
The scattering length derived in our data analysis is larger
than the previous results [12—14]. This difference may be
due to the neglected decay form factor of an order of 0.5 fm.

On the theoretical side, both interpretations are dis-
cussed, but the cusp interpretation may be more favored.
Oller and MeiBner discussed the possibility of a resonance
in the 7 =1 channel and reported a pole at (1444.0 —
i69.4) MeV in the second Riemann sheet [3]. However, the
imaginary part is too large to explain the present structure.
Many theories [13—15] predicted a threshold cusp in the
I =1 channel. In addition, Ref. [3] also reported another
(virtual) pole in the third Riemann sheet below the thresh-
old, which could produce a cusp at the threshold.

We report the first observations of Az* invariant mass
enhancements near the KN mass thresholds in the sub-
structure of the A7 — An"z"z~ decay. The significance
for the observed signals are 7.5¢ for Az combination, and
6.20 for Az~ combination, respectively. Limited by the
statistics and the shape of the background, we cannot
distinguish between X* resonances and KN threshold
cusps, since both fits give similar y’s.
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