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Abstract To deal with the great challenges in simulating the highly non-linear physics of Antarctic sea ice,
a multivariate balanced atmospheric ensemble forcing is developed based on the high-resolution component
of ERAS, which considers the relationship between different variables and adjacent times. To validate the
performance of this new forcing, experiments were conducted from 1 January 2016 to 28 February 2017.
Compared to simulations forced with the ensemble component of ERAS, a more reasonable ensemble of
simulations is produced by the atmospheric ensemble forcing developed in this study, which suppresses the
sea-ice concentration (SIC) simulation errors and produces a better estimation of SIC simulation uncertainties.
Further sea-ice thickness budget analysis reveals that this impact of atmospheric ensemble forcing on sea ice
simulation is due to a modulation of atmosphere-ocean and sea ice-ocean thermodynamic processes. These
results lay the foundation for further improvements in Antarctic sea ice data assimilation and probabilistic
prediction.

Plain Language Summary Antarctic sea ice plays an important role in the Earth system. However,
its accurate simulation still faces many challenges. Considering the highly non-linear sea ice processes,
adopting an ensemble simulation procedure is a way to improve Antarctic sea ice modeling skill. Perturbing
the sea ice-ocean coupled model indirectly through the atmospheric ensemble forcing can ensure the dynamic
consistency of model states. In this study, we developed a method to perturb high-frequency ERAS reanalysis
in a multivariate balanced way for the Southern Ocean coupled sea ice-ocean model. Results show obvious
improvements in the Antarctic sea ice simulation with the newly developed atmospheric ensemble forcing from
both deterministic and probabilistic perspectives, which is achieved by modulation of atmosphere-ocean and
sea ice-ocean thermodynamic processes. This is an important step toward the development of a comprehensive
reanalysis for the sparsely observed Antarctic sea ice, which should benefit the scientific research and human
activities in the Southern Ocean.

1. Introduction

The Antarctic has experienced different changes in the sea ice extent (SIE) from the Arctic during the satellite era,
and the underlying mechanisms are still disputed (Turner & Comiso, 2017). To understand these changes, many
Antarctic sea ice studies often depend on models because of the scarcity of observations in the polar regions.
However, accurately reproducing the Antarctic sea ice in models still faces many challenges (e.g., Massonnet
et al., 2011; Shu et al., 2020). Therefore, the uncertainty of models cannot be ignored in these studies.

Due to the highly non-linear nature of sea ice physics (Carrieres et al., 2017), an ensemble of sea ice simulations
can improve simulation accuracy and also provide an associated uncertainty estimate. Although many model
perturbation methods have been proposed, such as perturbing initial conditions (e.g., Buizza & Palmer, 1995;
Toth & Kalnay, 1997) or perturbing model parameters (e.g., Buizza et al., 2007; Evensen, 2003), here we focus
on adopting an atmospheric ensemble to perturb sea ice-ocean coupled model runs for the following reasons.
First, sea ice-ocean coupled models are strongly influenced by atmospheric forcing (e.g., Barthélemy et al., 2018;
Marchi et al., 2020; Q. Wang et al., 2021), and the recent changes in the Antarctic sea ice may be related to
atmospheric circulation anomalies (e.g., J. Wang et al., 2022; Z. Wang et al., 2019). Second, perturbing the
sea ice-ocean coupled model indirectly through the atmospheric forcing can ensure the dynamic consistency of
model states (Sakov et al., 2012).
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As the latest generation of ECMWF atmospheric reanalysis, ERAS provides not only hourly reanalysis but also a
10-member ensemble at three-hourly intervals (Hersbach et al., 2020). Studies on the intercomparison of atmos-
pheric reanalysis reveal that ERAS can reproduce the surface atmospheric condition over the Antarctic effec-
tively (e.g., Dong et al., 2020; Gossart et al., 2019; G. J. Marshall et al., 2022; G. Wang et al., 2021), and ERAS
has been widely used in studies on the Antarctic climate (e.g., Christie et al., 2022; Chung et al., 2022; Neme
et al., 2022; Shields et al., 2022). Furthermore, the uncertainty estimated by the ERAS ensemble can identity the
relative accuracy of the ERAS data, though it is unable to directly describe all the uncertainties of ERAS, espe-
cially the systematic model errors. Luo et al. (2021) pointed out that the underestimation of sea ice simulation
uncertainty is caused by adopting the ERAS5 ensemble as the atmospheric forcing directly. Nevertheless, given
the positive impacts of high-frequency atmospheric forcing in the Antarctic sea ice simulation (Wu et al., 2020),
the hourly ERAS reanalysis is still of great value. Although atmospheric forcing perturbation is adopted in many
studies, enough attention is not paid to relationships between different variables. For instance, Sakov et al. (2012)
considered the geostrophic balance between sea level pressure and wind in the perturbation, while ignoring the
impact of air temperature perturbation on the circulation, which would increase the possibility that perturbations
to the various forcing variables are not physical consistent and would reduce their effectiveness in maintaining
ensemble spread. Thus, an open question is how to perturb hourly ERAS reanalysis in a balanced way to maintain
the physical relationships of different variables. In this paper, we develop a multivariate balanced atmospheric
ensemble forcing and investigate its impact on the Southern Ocean coupled sea ice-ocean modeling.

2. Methodology
2.1. Model

The sea ice-ocean coupled model used in this study is the Massachusetts Institute of Technology general circu-
lation model (MITgcm, J. Marshall et al., 1997) with the same regional Southern Ocean configuration as used
in Verdy and Mazloff (2017). It has a 1/3° zonal spacing with equidistant meridional spacing, and 52 unevenly
spaced vertical levels from the surface to 5800 m. The sea-ice component of the model is the viscous-plastic
dynamic-thermodynamic sea-ice model (Losch et al., 2010). The dynamic part of the sea-ice model is solved
by line successive over-relaxation (Zhang & Hibler, 1997) on a C grid, and the thermodynamic counterpart is a
“zero-layer” model (Semtner, 1976). MITgcm also provides a diagnosis of the sea-ice thickness (SIT) budget,
including the change rates of SIT due to the atmospheric heat flux at the ice surface, the oceanic heat flux
at the ice bottom, the atmospheric heat flux at the sea surface in the open water area, the snow flooding, the
zonal advection flux, and the meridional advection flux. The atmospheric forcing variables required by MITgem
consist of air temperature at 2 m, zonal and meridional wind speed at 10 m, surface downward shortwave and
longwave radiation flux, surface pressure, specific humidity, and total precipitation.

2.2. Atmospheric Forcing Perturbation

To maintain the physical consistency between different variables induced by perturbing ERAS reanalysis, a
perturbation method proposed by Zheng and Zhu (2008) is adopted here, which is based on the multivariate
empirical orthogonal function (MEOF) and a first-order Markov chain model. The detailed description is as
follows,

nmode

P/ =Dj+ ) MEOF, 0; - o,

ij
J=1

N | _ 2wt
w; = g + /11— W

i=1,2,---,nens

where P! denotes the atmospheric perturbation field for the ith ensemble member at time ¢, D! denotes the ERAS
reanalysis field for ith ensemble member at time #, MEOF; denotes the spatial pattern of the jth MEOF mode,
and o; denotes the standard deviation for the principal component of the jth MEOF mode. w}; denotes a random
normalized time coefficient of the jth MEOF mode for the ith ensemble member at time ¢, and «; denotes the
first-order autocorrelation of the principal component of jth MEOF mode. VV,; denotes the random number of

LUO ET AL.

20f9

QSUQDIT SUOWWO)) dA1EAI) o[qedr|dde oy £q pauIoA0s ale sa[oIIe YO ash JO S9Nl 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[ Im AIeIqI[oul[uo//:sd)y) suonipuo)) pue swd [ oY1 39S "[£707/L0/2g] uo Areiqry auruQ L9[IM ‘6€1101TDTT0T/6T01°01/10p/wod Kopim Krelqiaurjuo sqndnSe//:sdyy wol papeojumod ‘S ‘€702 ‘L00SHH6 1



| Yell .
A\ Geophysical Research Letters 10.1029/2022GL101139
0.4 (a) 1
g
w03 —-108 .E
2 g
= B
S0z —06 £
il 0
g g
— L
©
So1 - — 04 E
- E
1S
3
9

400

300

200

100

0

Pa

-100

-200

-300

-400

Figure 1. The multivariate empirical orthogonal function (MEOF) of atmospheric surface quantities for ERAS reanalysis from 1979 to 2019. (a) Variance contributions
of the first 19 modes from the MEOF. (b, ¢) The spatial pattern of the first 3 modes from the MEOF respectively. The shading is for surface pressure, the contours are
for the air temperature at 2 m with the solid (dashed) line denoting the positive (negative) value, and the arrows are for horizontal wind at 10 m.

the jth MEOF mode for the ith ensemble member at time ¢ with a mean equal to 0 and a variance equal to 1,
and the correlations between the random vector of each mode should be zero to retain the orthogonality of each
mode. It should be noted that W} changes with different time for the same mode and the same ensemble member.
Therefore, this equation ensures that the variance in wj; 1 is equal to 1 as long as the variance of wf-;l is also equal
to 1. nmode is the number of selected MEOF modes, and nens is the number of ensemble members. And the
differences between variables in each mode are reflected by different but temporally covarying spatial patterns
for the individual variables.

In this study, MEOF analysis is performed for anomalies of the required atmospheric forcing variables based on
ERAS reanalysis from 1979 to 2019. Notably, anomalies of different atmospheric variables are normalized with
their standard deviation before MEOF analysis, and the atmospheric fields in the resulting modes are re-scaled
to their original variability after MEOF analysis. Figure 1a shows the variance contribution of the first 19 MEOF
modes. The first mode accounts for about 25.3% of the total variance, the second and third modes drop to 11.0%
and 9.7% rapidly, and the variance contributions of the rest of the modes decrease gradually. For example, the
difference in variance contributions between the 18th and 19th modes is less than 0.08%. The total variance
contribution of the first 19 MEOF modes is more than 90%. Under affordable computing resources, therefore,
we choose nmode to be 19 and nens to be 20 to achieve reasonable amplitudes and maintain the orthogonality of
each mode. Considering the greater variance contribution of the first 3 modes, the corresponding spatial patterns
for these modes are shown in Figures 1b-1d, respectively. The anomaly fields of the surface pressure field and
the horizontal wind satisfy the quasi-geostrophic balance, and the air temperature anomaly can be regarded as the
response to the surface pressure anomaly. The spatial pattern of the first mode resembles the Southern Annular
Mode, and the second and third modes resemble the first and second Pacific—-South American patterns. All these
imply the physical consistency of atmospheric perturbation fields. Finally, we can apply these principal compo-
nents and the corresponding spatial patterns derived from MEOF analysis to the above equation to generate an
ensemble of atmospheric forcing.

LUO ET AL.

30f9

QSU0dIT SUOWWO)) dA1EAI) d[qedr|dde oy £q pauIoA0s aie sa[dIIR YO ash JO sa[nI 10f A1eIqI dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID) /W0 K[ Im ATeIqI[oul[uo//:sd)y) suonIpuoy) pue swId [ oYy 39S "[£707/L0/2] uo Areiqry autuQ A[IM ‘6€1101T1DTT0T/6T01°01/10p/wod Kapim Kreiqiautjuo sqndnSe//:sdpy woly papeojumod ‘S ‘€702 ‘L008TH61



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2022GL101139

(a)

- N
[3,] o

SIE (mill. km?)
>

—Obs

| .
17-Feb-2016

28-Aug-2016

5 I I

N w I

SPS (mill. km?)

-

0
20160101 20160201 20160301 20160401 20160501 20160601 20160701 20160801 20160901 20161001 20161101 20161201 20170101 20170201

Figure 2. The deterministic and probabilistic evaluation of Antarctic sea ice simulation from 1 January 2016 to 28 February 2017. (a) The time series of sea ice extent
(SIE) in the observation as well as in the ensemble mean of the simulations. (b) The time series of Spatial Probability Score in the ensemble of the simulations against
the observation. The blue, orange, and yellow colors denote observations derived from Ocean and Sea Ice Satellite Application Facility, simulations from Ctrl, and AEF,
respectively. Two vertical dashed lines indicate the time for the maximum and minimum SIE in 2016, and divide the whole experiments into three periods (i.e., P1 from
1 January 2016 to 17 February 2016, P2 from 18 February 2016 to 28 August 2016, and P3 from 29 August 2016 to 28 February 2017).

2.3. Experiment Design

To investigate the impact of atmospheric ensemble forcing on the simulation of Antarctic sea ice, two exper-
iments are conducted with different ensembles of atmospheric forcing and the same initial conditions. These
simulations run from 1 January 2016 to 28 February 2017, when an unprecedented retreat of Antarctic sea ice
occurred in the melting season of 2016/2017. The initial conditions are from the Data Assimilation System for
the Southern Ocean (DASSO, Luo et al., 2021) which assimilates sea ice concentration (SIC) from the Ocean
and Sea Ice Satellite Application Facility (OSISAF, Lavergne et al., 2019) on 31 December 2015. The control
experiment is forced by the ERAS ensemble directly (denoted Ctrl), and the ERAS ensemble is derived from the
ensemble data assimilations component of ERAS5 whose horizontal resolution is 0.5° and temporal resolution
is 3 hr. The other experiment is forced by the atmospheric ensemble forcing based on ERAS reanalysis and the
perturb method described in Section 2.2 (denoted AEF), and the ERAS reanalysis is from the high-resolution
component of ERA5 whose horizontal resolution is 0.25° and temporal resolution is 1 hr. Thus, differences in
atmospheric ensemble forcing between Ctrl and AEF can be found both in the ensemble mean and ensemble
spread. By comparing Ctrl with AEF, we can determine whether the proposed atmospheric forcing perturbation
method is beneficial and quantify the effects on the simulation. The results inform future studies on Antarctic
sea-ice probabilistic prediction and data assimilation.

3. Results

Figure 2a shows the time evolution of SIE from 1 January 2016 to 28 February 2017. The observed SIE decreases
from 1 January 2016 to 17 February 2016 (i.e., P1), then increases slowly from 18 February 2016 to 28 August
2016 (i.e., P2), and finally drops rapidly from 29 August 2016 to 28 February 2017 (i.e., P3), which reflects the
asymmetry in the seasonal cycle of Antarctic SIE. Both simulations reproduce this asymmetric SIE evolution and
capture the timing when the maximum/minimum SIE occurred, while the simulated maximum/minimum SIE is
stronger than the observed ones. Notably, the SIE evolution of AEF is closer to the observation than that of Ctrl,

LUO ET AL.

4 0f9

QSUQDIT SUOWWO)) dA1EAI) o[qedr|dde oy £q pauIoA0s ale sa[oIIe YO ash JO S9Nl 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[ Im AIeIqI[oul[uo//:sd)y) suonipuo)) pue swd [ oY1 39S "[£707/L0/2g] uo Areiqry auruQ L9[IM ‘6€1101TDTT0T/6T01°01/10p/wod Kopim Krelqiaurjuo sqndnSe//:sdyy wol papeojumod ‘S ‘€702 ‘L00SHH6 1



A .
NI Geophysical Research Letters 10.1029/2022GL101139

ADVANCING EARTH
AND SPACE SCIENCE

0.5

Ctrl AEF

(a) - (b)

By D , : 0.4

RMSE

0.35

’J
- 0.3

5 0.25

(c) ' (d)

-10.15

Spread

-10.05

=0

Figure 3. The spatial distribution of skill for Antarctic sea-ice concentration (SIC) simulations. (a, b) The root mean square
error of the ensemble means of SIC simulations compared to the observation derived from OSI SAF. (c, d) The time-mean of
ensemble spread of Antarctic SIC simulations. The 1st column is for Ctrl and the 2nd column is for AEF.

and the overestimation of the SIE change rates is suppressed in AEF to some extent, which implies the positive
impact of atmospheric forcing with enhanced spatiotemporal resolution on the Antarctic sea ice modeling. To
evaluate the spatial distribution of sea ice edge from a probabilistic perspective, the Spatial Probability Score
(SPS, Goessling & Jung, 2018) is introduced as another verification metric, which is defined as follows,

SPS = / [P(x) = P,(x)I’d A
A

P(x)is the probability of SIC being above 15% at location x, A is the area of the grid cell, and the subscripts s and
o denote simulation and observation respectively. Thus, P,(x)is a binary field (i.e., either 1 or 0) under the assump-
tion that the observation is perfect, and P;(x) is generally a field of numbers in the continuous range [0, 1] and is
defined as the relative frequencies of event occurrence derived from the ensemble. Figure 2b shows the variation of
SPS with time. In Ctrl, the SPS increases quickly before mid-June, then remains at a high level until September, and
decreases gradually to February of the next year except for the rise during November 2016, which is similar to the
evolution of SIE simulation errors (Figure 2a). The SPS of AEF is relatively stable and less than that of Ctrl except
at the start of integration, and the amplitude of high-frequency SPS fluctuation is much weaker in AEF, indicating a
more reasonable probability distribution of the Antarctic sea ice edge can be estimated from the ensemble of AEF.

Given the distinct regional variation of Antarctic sea ice, the spatial distribution of skill for Antarctic SIC simula-
tions is displayed in Figure 3. In Ctrl, the spatial mean of root mean square error (RMSE) of SIC is about 0.160,
and the larger values of RMSE are mainly located at the sea ice edge and the coast of the Antarctic (Figure 3a).
However, as Figure 3c shows, the spatial mean of the SIC ensemble spread is about 0.008 in AEF, which is far
less than the RMSE of SIC in Ctrl. And the spatial pattern of ensemble spread is very different from that of
RMSE. Thus, the ensemble of Ctrl is underdispersed, and the uncertainty of simulations cannot be represented
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Figure 4. The mean sea-ice thickness (SIT) budget for Antarctic sea ice simulations during different periods, including (a) from 1 January 2016 to 29 February
2016, (b) from 1 March 2016 to 31 August 2016, and (c) from 1 September 2016 to 28 February 2017. The X-axis represents the processes related to the change rate
of SIT involved in the SIT budget. Al is the atmospheric heat flux at the ice surface, OI is the oceanic heat flux at the ice bottom, AO is the atmospheric heat flux at
the sea surface in the open water area, Fl is the snow flooding, XA is the zonal advection flux, YA is the meridional advection flux, and Total is the sum of the above
processes. The blue and orange colors denote Ctrl and AEF, respectively.

by the ensemble of Ctrl. Although the spatial pattern of RMSE in AEEF is similar to that in Ctrl, the spatial mean
of RMSE of SIC is about 0.063 in AEF, and the RMSE is suppressed effectively at the sea ice edge as well as the
coast of the Antarctic compared to Ctrl (Figure 3b). Besides, the spatial mean of the SIC ensemble spread is about
0.048 in AEF, which is close to the SIC RMSE of AEF. And the spatial pattern of ensemble spread resembles that
of RMSE, which means the uncertainty of simulations can be well depicted by the ensemble of AEF.

To quantify the impact of atmospheric ensemble forcing on the ensemble of sea ice simulation, the SIT budget
analysis is applied to the sea ice freezing and melting seasons individually (Figure 4). For the total change rate
of SIT, the melting rate is faster than the growth rate, which is in line with the asymmetric evolution of SIE
(Figure 2a). For the whole Antarctic, the dynamic processes (i.e., advection and diffusion) have almost no effect
on the SIT changes, while thermodynamic processes play an important role. Among thermodynamic processes, the
opposite effect of the oceanic heat flux at the ice bottom and the atmospheric heat flux in the open water area are
the most important factors, and the contribution of flooding is weak. Compared to Ctrl, the total change rate of SIT
in AEF is faster in P1 while slower in the rest time of the experiment, which is also consistent with the difference
in the SIE evolution between Ctrl and AEF (Figure 2a). For the whole period of the experiment, this difference
between Ctrl and AEF can be mainly attributed to their differences in the oceanic heat flux at the ice bottom and the
atmospheric heat flux in the open water area. The difference in the atmospheric heat flux at the ice surface between
Ctrl and AEF is also obvious during P1 (Figure 4a). The ensemble spread of thermodynamic processes in AEF is
generally greater than that in Ctrl. These results indicate that the new multivariate balanced atmospheric ensemble
forcing can not only perturb sea ice simulations effectively but also improve the accuracy of sea ice simulation.

4. Conclusions and Discussion

Accurate Antarctic sea ice simulations are still a scientific challenge. Considering the highly non-linear sea ice
processes, an ensemble of sea ice simulations is a way to improve simulation accuracy and estimate simulation
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uncertainties. In this study, a multivariate balanced atmospheric ensemble forcing based on hourly ERAS5 reanal-
ysis is introduced to perturb a coupled sea ice-ocean model, which is a generalized application of the method
proposed by Zheng and Zhu (2008), from constructing a model-error model to establishing atmospheric forcing
as well as from single to multiple equilibrium relationships. In this atmospheric ensemble forcing, the balance
between atmospheric forcing variables as well as the relationship between atmospheric forcings at an adjacent
time is taken into account by MEOF and a first-order Markov chain model, respectively. To specify the influ-
ence of the atmospheric ensemble forcing on the Antarctic sea ice simulation, two experiments with different
atmospheric ensemble forcings and the same initial condition are carried out from 1 January 2016 to 28 February
2017.

Generally, a more reasonable ensemble of Antarctic sea ice simulations can be achieved by adopting the newly
developed multivariate balanced atmospheric ensemble forcing. From a deterministic perspective, although
both experiments can capture the asymmetric evolution of SIE and the timing of SIE maximum/minimum,
the overestimation of the SIE change rates can be suppressed in the simulation with a multivariate balanced
atmospheric ensemble forcing, implying the advantage of atmospheric forcing with enhanced spatiotemporal
resolution. From a probabilistic perspective, both experiments show a rise of SPS during the freezing season
as well as a decline of SPS during the melting season in 2016/2017, and using a multivariate balanced atmos-
pheric ensemble forcing can reproduce a more accurate simulation of the sea ice edge. The RMSE spatial
distribution of SIC shows that the simulation with the multivariate balanced atmospheric ensemble forcing
can suppress the error of SIC, especially at the sea ice edge as well as the coast of the Antarctic. And the
comparison of spatial distribution between RMSE of SIC and ensemble spread of SIC suggests that a more
reasonable simulation ensemble can be produced with AEF. Meanwhile, the SIT budget analysis reveals that
the influence of atmospheric ensemble forcing on the Antarctic sea ice simulation is achieved mainly through
the modulation of the opposite SIT change rates induced by the oceanic heat flux at the ice bottom and the
atmospheric heat flux in the open water area. The more accurate simulation achieved in AEF rather than that
in Ctrl can be owed to the higher spatiotemporal resolution of atmospheric forcing used in AEF. Previous
studies highlighted the impact of transient atmospheric activities on the variation of ocean circulation and
sea ice in the Southern Ocean through thermal and dynamic processes (e.g., Holland & Kwok, 2012; Stewart
et al., 2021; Z. Wang et al., 2014; Wu et al., 2020). In this study, AEF stems from the ERAS reanalysis with
high resolution and thus can better depict the fine structure of high-frequency transient atmospheric activi-
ties, which is also found in the direct comparison between ERAS reanalysis and ERAS ensemble (Hersbach
et al., 2020).

Although adopting a multivariate balanced atmospheric ensemble forcing can indeed improve the simulation of
the Antarctic, the ensemble spread is still slightly less than the RMSE as shown in Figures 3b and 3d. A larger
ensemble size of atmospheric forcing may relieve this issue, and the ensemble size should be increased if compu-
tational resources allow. Considering the long memory of sea ice and the same initial condition used in this study,
the above under dispersion of the ensemble can be relieved by perturbing the initial condition. It also should be
noted that considering higher MEOF modes in atmospheric forcing would certainly change the simulation of
Antarctic sea ice, and further investigations on perturbating higher mode variability will be considered in our
future studies. A more reasonable ensemble of sea ice simulations will contribute not only to a deeper understand-
ing of model-based sea ice studies but also to the improvement of sea ice probabilistic predictions as well as sea
ice data assimilation. And our preliminary result of the data assimilation experiment with this new forcing shows
that compared with our previous study based on the ERAS ensemble, this experiment can better reproduce the
condition of Antarctic sea ice and decrease reliance on the forgetting factor significantly, implying the effective-
ness of the new ensemble forcing. In future research, better estimations of background error and observation error
can be achieved via an ensemble of simulation with the multivariate balanced atmospheric ensemble forcing,
which is the foundation for further optimizations of DASSO and an important step to reconstruct the long-term
Antarctic sea ice state through sea ice data assimilation.

Data Availability Statement

The ERAS reanalysis is available from https://doi.org/10.24381/cds.adbb2d47. The daily OSISAF SIC data is
available from http://doi.org/10.15770/EUM_SAF_OSI_NRT_2008.
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