
1.  Introduction
The Antarctic has experienced different changes in the sea ice extent (SIE) from the Arctic during the satellite era, 
and the underlying mechanisms are still disputed (Turner & Comiso, 2017). To understand these changes, many 
Antarctic sea ice studies often depend on models because of the scarcity of observations in the polar regions. 
However, accurately reproducing the Antarctic sea ice in models still faces many challenges (e.g., Massonnet 
et al., 2011; Shu et al., 2020). Therefore, the uncertainty of models cannot be ignored in these studies.

Due to the highly non-linear nature of sea ice physics (Carrieres et al., 2017), an ensemble of sea ice simulations 
can improve simulation accuracy and also provide an associated uncertainty estimate. Although many model 
perturbation methods have been proposed, such as perturbing initial conditions (e.g., Buizza & Palmer, 1995; 
Toth & Kalnay, 1997) or perturbing model parameters (e.g., Buizza et al., 2007; Evensen, 2003), here we focus 
on adopting an atmospheric ensemble to perturb sea ice-ocean coupled model runs for the following reasons. 
First, sea ice-ocean coupled models are strongly influenced by atmospheric forcing (e.g., Barthélemy et al., 2018; 
Marchi et al., 2020; Q. Wang et al., 2021), and the recent changes in the Antarctic sea ice may be related to 
atmospheric circulation anomalies (e.g., J. Wang et  al.,  2022; Z. Wang et  al.,  2019). Second, perturbing the 
sea ice-ocean coupled model indirectly through the atmospheric forcing can ensure the dynamic consistency of 
model states (Sakov et al., 2012).
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As the latest generation of ECMWF atmospheric reanalysis, ERA5 provides not only hourly reanalysis but also a 
10-member ensemble at three-hourly intervals (Hersbach et al., 2020). Studies on the intercomparison of atmos-
pheric reanalysis reveal that ERA5 can reproduce the surface atmospheric condition over the Antarctic effec-
tively (e.g., Dong et al., 2020; Gossart et al., 2019; G. J. Marshall et al., 2022; G. Wang et al., 2021), and ERA5 
has been widely used in studies on the Antarctic climate (e.g., Christie et al., 2022; Chung et al., 2022; Neme 
et al., 2022; Shields et al., 2022). Furthermore, the uncertainty estimated by the ERA5 ensemble can identify the 
relative accuracy of the ERA5 data, though it is unable to directly describe all the uncertainties of ERA5, espe-
cially the systematic model errors. Luo et al. (2021) pointed out that the underestimation of sea ice simulation 
uncertainty is caused by adopting the ERA5 ensemble as the atmospheric forcing directly. Nevertheless, given 
the positive impacts of high-frequency atmospheric forcing in the Antarctic sea ice simulation (Wu et al., 2020), 
the hourly ERA5 reanalysis is still of great value. Although atmospheric forcing perturbation is adopted in many 
studies, enough attention is not paid to relationships between different variables. For instance, Sakov et al. (2012) 
considered the geostrophic balance between sea level pressure and wind in the perturbation, while ignoring the 
impact of air temperature perturbation on the circulation, which would increase the possibility that perturbations 
to the various forcing variables are not physical consistent and would reduce their effectiveness in maintaining 
ensemble spread. Thus, an open question is how to perturb hourly ERA5 reanalysis in a balanced way to maintain 
the physical relationships of different variables. In this paper, we develop a multivariate balanced atmospheric 
ensemble forcing and investigate its impact on the Southern Ocean coupled sea ice-ocean modeling.

2.  Methodology
2.1.  Model

The sea ice-ocean coupled model used in this study is the Massachusetts Institute of Technology general circu-
lation model (MITgcm, J. Marshall et al., 1997) with the same regional Southern Ocean configuration as used 
in Verdy and Mazloff (2017). It has a 1/3° zonal spacing with equidistant meridional spacing, and 52 unevenly 
spaced vertical levels from the surface to 5800 m. The sea-ice component of the model is the viscous-plastic 
dynamic-thermodynamic sea-ice model (Losch et al., 2010). The dynamic part of the sea-ice model is solved 
by line successive over-relaxation (Zhang & Hibler, 1997) on a C grid, and the thermodynamic counterpart is a 
“zero-layer” model (Semtner, 1976). MITgcm also provides a diagnosis of the sea-ice thickness (SIT) budget, 
including the change rates of SIT due to the atmospheric heat flux at the ice surface, the oceanic heat flux 
at the ice bottom, the atmospheric heat flux at the sea surface in the open water area, the snow flooding, the 
zonal advection flux, and the meridional advection flux. The atmospheric forcing variables required by MITgcm 
consist of air temperature at 2 m, zonal and meridional wind speed at 10 m, surface downward shortwave and 
longwave radiation flux, surface pressure, specific humidity, and total precipitation.

2.2.  Atmospheric Forcing Perturbation

To maintain the physical consistency between different variables induced by perturbing ERA5 reanalysis, a 
perturbation method proposed by Zheng and Zhu  (2008) is adopted here, which is based on the multivariate 
empirical orthogonal function (MEOF) and a first-order Markov chain model. The detailed description is as 
follows,
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 denotes the atmospheric perturbation field for the ith ensemble member at time t, 𝐴𝐴 𝐴𝐴𝑡𝑡
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reanalysis field for ith ensemble member at time t, 𝐴𝐴 MEOF𝑗𝑗 denotes the spatial pattern of the jth MEOF mode, 
and 𝐴𝐴 𝐴𝐴𝑗𝑗 denotes the standard deviation for the principal component of the jth MEOF mode. 𝐴𝐴 𝐴𝐴𝑡𝑡
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normalized time coefficient of the jth MEOF mode for the ith ensemble member at time t, and 𝐴𝐴 𝐴𝐴𝑗𝑗 denotes the 
first-order autocorrelation of the principal component of jth MEOF mode. 𝐴𝐴 𝐴𝐴 𝑡𝑡
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the jth MEOF mode for the ith ensemble member at time t with a mean equal to 0 and a variance equal to 1, 
and the correlations between the random vector of each mode should be zero to retain the orthogonality of each 
mode. It should be noted that 𝐴𝐴 𝐴𝐴 𝑡𝑡

𝑖𝑖𝑖𝑖
 changes with different time for the same mode and the same ensemble member. 

Therefore, this equation ensures that the variance in 𝐴𝐴 𝐴𝐴𝑡𝑡
𝑖𝑖𝑖𝑖
 i is equal to 1 as long as the variance of 𝐴𝐴 𝐴𝐴𝑡𝑡−1

𝑖𝑖𝑖𝑖
 is also equal 

to 1. 𝐴𝐴 𝐴𝐴mode is the number of selected MEOF modes, and 𝐴𝐴 nens is the number of ensemble members. And the 
differences between variables in each mode are reflected by different but temporally covarying spatial patterns 
for the individual variables.

In this study, MEOF analysis is performed for anomalies of the required atmospheric forcing variables based on 
ERA5 reanalysis from 1979 to 2019. Notably, anomalies of different atmospheric variables are normalized with 
their standard deviation before MEOF analysis, and the atmospheric fields in the resulting modes are re-scaled 
to their original variability after MEOF analysis. Figure 1a shows the variance contribution of the first 19 MEOF 
modes. The first mode accounts for about 25.3% of the total variance, the second and third modes drop to 11.0% 
and 9.7% rapidly, and the variance contributions of the rest of the modes decrease gradually. For example, the 
difference in variance contributions between the 18th and 19th modes is less than 0.08%. The total variance 
contribution of the first 19 MEOF modes is more than 90%. Under affordable computing resources, therefore, 
we choose 𝐴𝐴 𝐴𝐴mode to be 19 and 𝐴𝐴 nens to be 20 to achieve reasonable amplitudes and maintain the orthogonality of 
each mode. Considering the greater variance contribution of the first 3 modes, the corresponding spatial patterns 
for these modes are shown in Figures 1b–1d, respectively. The anomaly fields of the surface pressure field and 
the horizontal wind satisfy the quasi-geostrophic balance, and the air temperature anomaly can be regarded as the 
response to the surface pressure anomaly. The spatial pattern of the first mode resembles the Southern Annular 
Mode, and the second and third modes resemble the first and second Pacific–South American patterns. All these 
imply the physical consistency of atmospheric perturbation fields. Finally, we can apply these principal compo-
nents and the corresponding spatial patterns derived from MEOF analysis to the above equation to generate an 
ensemble of atmospheric forcing.

Figure 1.  The multivariate empirical orthogonal function (MEOF) of atmospheric surface quantities for ERA5 reanalysis from 1979 to 2019. (a) Variance contributions 
of the first 19 modes from the MEOF. (b, c) The spatial pattern of the first 3 modes from the MEOF respectively. The shading is for surface pressure, the contours are 
for the air temperature at 2 m with the solid (dashed) line denoting the positive (negative) value, and the arrows are for horizontal wind at 10 m.
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2.3.  Experiment Design

To investigate the impact of atmospheric ensemble forcing on the simulation of Antarctic sea ice, two exper-
iments are conducted with different ensembles of atmospheric forcing and the same initial conditions. These 
simulations run from 1 January 2016 to 28 February 2017, when an unprecedented retreat of Antarctic sea ice 
occurred in the melting season of 2016/2017. The initial conditions are from the Data Assimilation System for 
the Southern Ocean (DASSO, Luo et al., 2021) which assimilates sea ice concentration (SIC) from the Ocean 
and Sea Ice Satellite Application Facility (OSISAF, Lavergne et al., 2019) on 31 December 2015. The control 
experiment is forced by the ERA5 ensemble directly (denoted Ctrl), and the ERA5 ensemble is derived from the 
ensemble data assimilations component of ERA5 whose horizontal resolution is 0.5° and temporal resolution 
is 3 hr. The other experiment is forced by the atmospheric ensemble forcing based on ERA5 reanalysis and the 
perturb method described in Section 2.2 (denoted AEF), and the ERA5 reanalysis is from the high-resolution 
component of ERA5 whose horizontal resolution is 0.25° and temporal resolution is 1 hr. Thus, differences in 
atmospheric ensemble forcing between Ctrl and AEF can be found both in the ensemble mean and ensemble 
spread. By comparing Ctrl with AEF, we can determine whether the proposed atmospheric forcing perturbation 
method is beneficial and quantify the effects on the simulation. The results inform future studies on Antarctic 
sea-ice probabilistic prediction and data assimilation.

3.  Results
Figure 2a shows the time evolution of SIE from 1 January 2016 to 28 February 2017. The observed SIE decreases 
from 1 January 2016 to 17 February 2016 (i.e., P1), then increases slowly from 18 February 2016 to 28 August 
2016 (i.e., P2), and finally drops rapidly from 29 August 2016 to 28 February 2017 (i.e., P3), which reflects the 
asymmetry in the seasonal cycle of Antarctic SIE. Both simulations reproduce this asymmetric SIE evolution and 
capture the timing when the maximum/minimum SIE occurred, while the simulated maximum/minimum SIE is 
stronger than the observed ones. Notably, the SIE evolution of AEF is closer to the observation than that of Ctrl, 

Figure 2.  The deterministic and probabilistic evaluation of Antarctic sea ice simulation from 1 January 2016 to 28 February 2017. (a) The time series of sea ice extent 
(SIE) in the observation as well as in the ensemble mean of the simulations. (b) The time series of Spatial Probability Score in the ensemble of the simulations against 
the observation. The blue, orange, and yellow colors denote observations derived from Ocean and Sea Ice Satellite Application Facility, simulations from Ctrl, and AEF, 
respectively. Two vertical dashed lines indicate the time for the maximum and minimum SIE in 2016, and divide the whole experiments into three periods (i.e., P1 from 
1 January 2016 to 17 February 2016, P2 from 18 February 2016 to 28 August 2016, and P3 from 29 August 2016 to 28 February 2017).
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and the overestimation of the SIE change rates is suppressed in AEF to some extent, which implies the positive 
impact of atmospheric forcing with enhanced spatiotemporal resolution on the Antarctic sea ice modeling. To 
evaluate the spatial distribution of sea ice edge from a probabilistic perspective, the Spatial Probability Score 
(SPS, Goessling & Jung, 2018) is introduced as another verification metric, which is defined as follows,

SPS = ∫
𝐴𝐴

[𝑃𝑃𝑠𝑠(𝑥𝑥) − 𝑃𝑃𝑜𝑜(𝑥𝑥)]
2
𝑑𝑑𝑑𝑑�

𝐴𝐴 𝐴𝐴 (𝑥𝑥) is the probability of SIC being above 15% at location 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 is the area of the grid cell, and the subscripts 𝐴𝐴 𝐴𝐴 and 
𝐴𝐴 𝐴𝐴 denote simulation and observation respectively. Thus, 𝐴𝐴 𝐴𝐴𝑜𝑜(𝑥𝑥) is a binary field (i.e., either 1 or 0) under the assump-

tion that the observation is perfect, and 𝐴𝐴 𝐴𝐴𝑠𝑠(𝑥𝑥) is generally a field of numbers in the continuous range [0, 1] and is 
defined as the relative frequencies of event occurrence derived from the ensemble. Figure 2b shows the variation of 
SPS with time. In Ctrl, the SPS increases quickly before mid-June, then remains at a high level until September, and 
decreases gradually to February of the next year except for the rise during November 2016, which is similar to the 
evolution of SIE simulation errors (Figure 2a). The SPS of AEF is relatively stable and less than that of Ctrl except 
at the start of integration, and the amplitude of high-frequency SPS fluctuation is much weaker in AEF, indicating a 
more reasonable probability distribution of the Antarctic sea ice edge can be estimated from the ensemble of AEF.

Given the distinct regional variation of Antarctic sea ice, the spatial distribution of skill for Antarctic SIC simula-
tions is displayed in Figure 3. In Ctrl, the spatial mean of root mean square error (RMSE) of SIC is about 0.160, 
and the larger values of RMSE are mainly located at the sea ice edge and the coast of the Antarctic (Figure 3a). 
However, as Figure 3c shows, the spatial mean of the SIC ensemble spread is about 0.008 in AEF, which is far 
less than the RMSE of SIC in Ctrl. And the spatial pattern of ensemble spread is very different from that of 
RMSE. Thus, the ensemble of Ctrl is underdispersed, and the uncertainty of simulations cannot be represented 

Figure 3.  The spatial distribution of skill for Antarctic sea-ice concentration (SIC) simulations. (a, b) The root mean square 
error of the ensemble means of SIC simulations compared to the observation derived from OSI SAF. (c, d) The time-mean of 
ensemble spread of Antarctic SIC simulations. The 1st column is for Ctrl and the 2nd column is for AEF.
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by the ensemble of Ctrl. Although the spatial pattern of RMSE in AEF is similar to that in Ctrl, the spatial mean 
of RMSE of SIC is about 0.063 in AEF, and the RMSE is suppressed effectively at the sea ice edge as well as the 
coast of the Antarctic compared to Ctrl (Figure 3b). Besides, the spatial mean of the SIC ensemble spread is about 
0.048 in AEF, which is close to the SIC RMSE of AEF. And the spatial pattern of ensemble spread resembles that 
of RMSE, which means the uncertainty of simulations can be well depicted by the ensemble of AEF.

To quantify the impact of atmospheric ensemble forcing on the ensemble of sea ice simulation, the SIT budget 
analysis is applied to the sea ice freezing and melting seasons individually (Figure 4). For the total change rate 
of SIT, the melting rate is faster than the growth rate, which is in line with the asymmetric evolution of SIE 
(Figure 2a). For the whole Antarctic, the dynamic processes (i.e., advection and diffusion) have almost no effect 
on the SIT changes, while thermodynamic processes play an important role. Among thermodynamic processes, the 
opposite effect of the oceanic heat flux at the ice bottom and the atmospheric heat flux in the open water area are 
the most important factors, and the contribution of flooding is weak. Compared to Ctrl, the total change rate of SIT 
in AEF is faster in P1 while slower in the rest time of the experiment, which is also consistent with the difference 
in the SIE evolution between Ctrl and AEF (Figure 2a). For the whole period of the experiment, this difference 
between Ctrl and AEF can be mainly attributed to their differences in the oceanic heat flux at the ice bottom and the 
atmospheric heat flux in the open water area. The difference in the atmospheric heat flux at the ice surface between 
Ctrl and AEF is also obvious during P1 (Figure 4a). The ensemble spread of thermodynamic processes in AEF is 
generally greater than that in Ctrl. These results indicate that the new multivariate balanced atmospheric ensemble 
forcing can not only perturb sea ice simulations effectively but also improve the accuracy of sea ice simulation.

4.  Conclusions and Discussion
Accurate Antarctic sea ice simulations are still a scientific challenge. Considering the highly non-linear sea ice 
processes, an ensemble of sea ice simulations is a way to improve simulation accuracy and estimate simulation 

Figure 4.  The mean sea-ice thickness (SIT) budget for Antarctic sea ice simulations during different periods, including (a) from 1 January 2016 to 29 February 
2016, (b) from 1 March 2016 to 31 August 2016, and (c) from 1 September 2016 to 28 February 2017. The X-axis represents the processes related to the change rate 
of SIT involved in the SIT budget. AI is the atmospheric heat flux at the ice surface, OI is the oceanic heat flux at the ice bottom, AO is the atmospheric heat flux at 
the sea surface in the open water area, Fl is the snow flooding, XA is the zonal advection flux, YA is the meridional advection flux, and Total is the sum of the above 
processes. The blue and orange colors denote Ctrl and AEF, respectively.
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uncertainties. In this study, a multivariate balanced atmospheric ensemble forcing based on hourly ERA5 reanal-
ysis is introduced to perturb a coupled sea ice-ocean model, which is a generalized application of the method 
proposed by Zheng and Zhu (2008), from constructing a model-error model to establishing atmospheric forcing 
as well as from single to multiple equilibrium relationships. In this atmospheric ensemble forcing, the balance 
between atmospheric forcing variables as well as the relationship between atmospheric forcings at an adjacent 
time is taken into account by MEOF and a first-order Markov chain model, respectively. To specify the influ-
ence of the atmospheric ensemble forcing on the Antarctic sea ice simulation, two experiments with different 
atmospheric ensemble forcings and the same initial condition are carried out from 1 January 2016 to 28 February 
2017.

Generally, a more reasonable ensemble of Antarctic sea ice simulations can be achieved by adopting the newly 
developed multivariate balanced atmospheric ensemble forcing. From a deterministic perspective, although 
both experiments can capture the asymmetric evolution of SIE and the timing of SIE maximum/minimum, 
the overestimation of the SIE change rates can be suppressed in the simulation with a multivariate balanced 
atmospheric  ensemble forcing, implying the advantage of atmospheric forcing with enhanced spatiotemporal 
resolution. From a probabilistic perspective, both experiments show a rise of SPS during the freezing season 
as well as a decline of SPS during the melting season in 2016/2017, and using a multivariate balanced atmos-
pheric ensemble forcing can reproduce a more accurate simulation of the sea ice edge. The RMSE spatial 
distribution of SIC shows that the simulation with the multivariate balanced atmospheric ensemble forcing 
can suppress the error of SIC, especially at the sea ice edge as well as the coast of the Antarctic. And the 
comparison of spatial distribution between RMSE of SIC and ensemble spread of SIC suggests that a more 
reasonable simulation ensemble can be produced with AEF. Meanwhile, the SIT budget analysis reveals that 
the influence of atmospheric ensemble forcing on the Antarctic sea ice simulation is achieved mainly through 
the modulation of the opposite SIT change rates induced by the oceanic heat flux at the ice bottom and the 
atmospheric heat flux in the open water area. The more accurate simulation achieved in AEF rather than that 
in Ctrl can be owed to the higher spatiotemporal resolution of atmospheric forcing used in AEF. Previous 
studies highlighted the impact of transient atmospheric activities on the variation of ocean circulation and 
sea ice in the Southern Ocean through thermal and dynamic processes (e.g., Holland & Kwok, 2012; Stewart 
et al., 2021; Z. Wang et al., 2014; Wu et al., 2020). In this study, AEF stems from the ERA5 reanalysis with 
high resolution and thus can better depict the fine structure of high-frequency transient atmospheric activi-
ties, which is also found in the direct comparison between ERA5 reanalysis and ERA5 ensemble (Hersbach 
et al., 2020).

Although adopting a multivariate balanced atmospheric ensemble forcing can indeed improve the simulation of 
the Antarctic, the ensemble spread is still slightly less than the RMSE as shown in Figures 3b and 3d. A larger 
ensemble size of atmospheric forcing may relieve this issue, and the ensemble size should be increased if compu-
tational resources allow. Considering the long memory of sea ice and the same initial condition used in this study, 
the above under dispersion of the ensemble can be relieved by perturbing the initial condition. It also should be 
noted that considering higher MEOF modes in atmospheric forcing would certainly change the simulation of 
Antarctic sea ice, and further investigations on perturbating higher mode variability will be considered in our 
future studies. A more reasonable ensemble of sea ice simulations will contribute not only to a deeper understand-
ing of model-based sea ice studies but also to the improvement of sea ice probabilistic predictions as well as sea 
ice data assimilation. And our preliminary result of the data assimilation experiment with this new forcing shows 
that compared with our previous study based on the ERA5 ensemble, this experiment can better reproduce the 
condition of Antarctic sea ice and decrease reliance on the forgetting factor significantly, implying the effective-
ness of the new ensemble forcing. In future research, better estimations of background error and observation error 
can be achieved via an ensemble of simulation with the multivariate balanced atmospheric ensemble forcing, 
which is the foundation for further optimizations of DASSO and an important step to reconstruct the long-term 
Antarctic sea ice state through sea ice data assimilation.

Data Availability Statement
The ERA5 reanalysis is available from https://doi.org/10.24381/cds.adbb2d47. The daily OSISAF SIC data is 
available from http://doi.org/10.15770/EUM_SAF_OSI_NRT_2008.
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