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Transiting consolidated ice strongly influenced
polynya area during a shrink event in Terra Nova
Bay in 2013
Yichen Lin1, Qinghua Yang 1✉, Matthew Mazloff2, Xingren Wu3, Xiangshan Tian-Kunze4, Lars Kaleschke 4,

Lejiang Yu 5 & Dake Chen1

Coastal polynyas in Antarctica are a window of air-sea energy exchange and an important

source of Antarctic Bottom Water production. However, the relationship between the

polynya area variation and the surrounding marine environment is yet to be fully understood.

Here we quantify the influence of the volume of transiting consolidated ice on the Terra Nova

Bay Polynya area with ice thickness data. Changes in transiting consolidated ice volume are

shown to dominate the evolution and variation of the polynya during a typical polynya

shrinking event that occurred between 19 June to 03 July, 2013, rather than katabatic winds

or air temperature, which are commonly assumed to be the main drivers. Over the cold

seasons from 2013 to 2020, the Terra Nova Bay Polynya area is highly correlated to the

transiting consolidated ice volume. We demonstrate that thick transiting ice limits the

polynya area by blocking the newly-formed sea ice from leaving.
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Polynyas, the nonlinearly shaped open water and/or thin ice
surrounded by sea ice1, are a frequent phenomenon in the
polar region. In Antarctica, by one estimate, there are 37

typical coastal polynya areas2. They play a key role in the polar
and global climate and marine system3. When warm water is
exposed to the cold air, there is a large air-sea heat exchange,
which results in enhanced sea ice formation4,5 accompanied by
brine rejection6,7. Despite their small areas in Antarctica (~1% of
the maximum Antarctic ice area)8, coastal polynyas generate over
10% of the Antarctic sea ice volume9. Associated with the for-
mation of sea ice, the brine is rejected, and in some polynyas, it
produces Dense Shelf Water as an ingredient for Antarctic Bot-
tom Water formation10,11, which is exported in the lower limb of
the global overturning circulation12,13. Moreover, high salinity
and convection in polynyas lead to high primary production,
which is important for the marine ecosystem2,14,15.

In general, the overall surface area is the most important
characteristic of polynyas. Its variation is thought to result from
differing offshore winds speeds, which export the newly formed
sea ice16–19. Air temperature is another factor, which controls ice
production20–22. Moreover, with a case study of Mertz Glacier
Polynya, Massom et al.23 qualitatively described that the thicker
fast-ice passing the outflowing zone of the polynya can also
reduce its area. On interannual time scales, the polynya area is
related to climate indices such as the Southern Annular Mode and
El Niño Southern Oscillation24–26.

In this study, we focus on a coastal polynya: the Terra Nova
Bay Polynya (TNBP) in the western Ross Sea (Fig. 1). The TNBP
is well known for a great heat flux per area and high ice formation
rates4,9,11, although the area of TNBP is small (annual average
~4200 km2)27. Numerical modeling suggests that 33% of Ross Sea
high-salinity shelf water, a major component of Antarctic Bottom
Water, forms in TNBP28. The TNBP is thought to be caused by
the characteristics of the strong offshore katabatic winds from
Reeves Glacier driving the sea ice and the presence of the Dry-
galski Ice Tongue (DIT) blocking sea ice carried by the winds and
currents from the south29–33. There are 9 of the 13 major coastal
polynyas that are influenced by both offshore winds and land-fast
sea ice/ice tongue in Antarctic13. TNBP can represent them to a
certain extent.

As with other coastal polynyas34, previous studies of TNBP
areas focused only on the influence of winds and atmospheric
temperature (e.g., refs. 35–38.). Massom et al.23 qualitatively
described that the upstream fast-ice can limit the extent of Mertz
Glacier Polynya, but to the best of our knowledge, no previous
study has quantified the effect of the ice drift from the south and
transiting the TNBP. Novel Antarctic sea-ice thickness data
derived from the brightness temperatures measured by the Eur-
opean Space Agency’s Soil Moisture and Ocean Salinity (SMOS)
mission were recently made available39,40, providing a new
opportunity to study such events and examine the impact of the
upstream sea ice on the TNBP area variations.

In this study, we analyze the influence of the thickness of
transiting consolidated ice (TCI) from the south on the TNBP
area in addition to the air temperature and wind speed. To
demonstrate the importance of TCI to the TNBP area, we show
first a case that clearly shows that the TCI dominates the extent
change of the polynya, then a statistical analysis in the cold
seasons of 2013–2020. Finally, we confirm the mechanism of TCI
affecting polynya area by the analysis of sea ice in the TNBP
potentially affected region.

Results
A shrinking event in late June 2013. Between 19 June to 03 July,
2013, the TNBP shrank rapidly (Figs. 2b and 3). In the beginning,

the TNBP was ~5200 km2 expanding to the east of DIT and
sustained for about 5 days. On 24 June the area of TNBP
decreased to ~10 km2. During the last 9 days, the mean area of
TNBP was about 47 km2.

Previous studies suggested that the offshore katabatic wind
speed and air temperature force the change of TNBP area29,35.
However, during this shrink event, the mean air temperature of
TNBP increased from 20 June to 25 June, then decreased. 3 days
before 24 June, the offshore katabatic wind speed reduced from
17.1 m s−1 to 4.3 m s−1, and on 03 July, although the offshore
winds were as strong as that of 19 June, while the TNBP was still
far smaller than that of 19-June (Fig. 2b). This indicates that the
trend of rapid area decrease from 23 June to 24 June and
steadiness for the rest of the period cannot simply be the result of
the offshore katabatic wind and air temperature. Moreover, we
also calculated the cumulative offshore wind anomaly and sea ice
production (see Supplementary Discussion 2), which are also
found to not have dominant roles in this case (Supplementary
Fig. 5).

Figure 2b shows that the trend of the thickness of TCI was
highly correlated with the TNBP area. From 23 June to 25 June,
the TCI thickness observed upstream of the current (the black
dashed box in Fig. 3) rose from ~0.5 m to ~0.8 m, corresponding
to a rapid increase in thickness. The correlation coefficient
between the TCI thickness and TNBP area is −0.93.

The TCI thickening is related to the ice drift caused by wind.
The large-scale wind/pressure field (Fig. 4) shows that there was
a cyclone in the north of the Oates Land until 22 June. Due to a
barrier of land, it had less influence on the TNBP. On 23 June,
the cyclone moved to the east of Cape Adare, and on 24 June,
the winds over the region of TCI abruptly turned from westerly
to southerly, which corresponds to the abrupt TNBP area
change.

Following the wind direction variation caused by the cyclone,
the upstream sea ice (the black dashed box in Fig. 3) drifted to
the south of DIT rather than bypassing it. Meanwhile, due to the
blockage of DIT, the TCI increased gradually. With wind and
ocean currents41, sea ice accumulated from south to north and
formed a blocking in the east of TNBP, which led to this shrink
event (Fig. 3). After 24 June, the northward TCI flow and
accumulation of sea ice has not stopped, which contributed to
the increase of ice thickness in the dashed box (Fig. 3), while at
this time, the TNBP cannot shrink any further (the area is
~0 km2).

The connection between the TNBP area and the transiting
consolidated ice thickness. Figure 5b shows the seasonal evolu-
tion of the TNBP area (See Supplementary Methods). The TNBP
always connects to the open sea directly in summer (Fig. 5c).
During the cold season, the mean polynya area is 2361 km2 (in
winter (JJA), the mean area is 1740 km2) and the mean ice
thickness in the Terra Nova Bay is 0.25 m (Fig. 5a). The mean
thickness of TCI in the cold season is 0.6 m, which is within the
SMOS ice thickness measurement range.

More statistical results are obtained to support the deduction in
the case. Similar to the shrink event above, the relationship
between the TNBP area and the TCI thickness is also important
in the cold seasons from 2013 to 2020 (Table 1). The partial
correlation analysis of these factors shows that the TNBP area has
a large partial correlation with the TCI thickness (R2= 0.22,
p < 0.005), which is comparable to the air temperature (R2= 0.19,
p < 0.005) and offshore wind speed (R2= 0.09, p < 0.005), and
much larger than the winds parallel to the coast (R2= 0.01). This
implies that the upstream TCI flow (Fig. 1c) plays a primary role
in the extent of TNBP.
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In Table 1, we also show the correlation coefficients in winter
(June-August, JJA). Although there is a lower correlation in
winter, due to the expansion/shrinkage of the polynya and the
thinning/thickening of TCI, it is still significant (p < 0.005). This
indicates that our conclusion is still valid.

Another interesting result is that the relationship between the
TNBP area and the TCI thickness may be nonlinear, which can
be found in the scattering of the two (Fig. 6a). Taking the
logarithm of the transiting ice thickness, the partial R-squared
(partial R2) between the area and logarithmic TCI increases by
14% (from 0.22 to 0.25, both of them p < 0.005), and the R2 also

rises from 0.30 to 0.33 (Fig. 6b, p < 0.005), which suggests a
nonlinear relationship. In general, the area-to-wind-speed; and
area-to-air-temperature relationship are often considered to be
linear. For the offshore wind speed, the assumption is
reasonable in a simplified one-dimensional model;19,42 for the
air temperature, through scale analysis (parameters from
refs. 43,44), the effect can also be simplified to a linear model
from a polynomial function45. However, the extreme deforma-
tion measured in the outlet zone of the TNBP strongly suggests
a nonlinear process of TCI blocking46. More details will be
given in the sections below.

Fig. 1 Antarctic polynyas distribution, TNBP, and its surrounding geographic information. a is the occurrence ratio of Antarctica polynyas in the cold
seasons in 2013~2020. Some well-known polynyas are marked. b The details in the red box shown in (a), the location of Manuela AWS position (green
dot) and mean winds field from ERA-5 data. The base map is from MODIS (https://worldview.earthdata.nasa.gov/) on 25 November, 2015. cMean sea ice
thickness (m) in the cold season (from 15 April to 15 October) from 2013 to 2020 respectively. The streamlines are ice drift derived from the empirical
formula used in Thomas46. The grey line is the mean extent of the TNBP. The red box is the study area of the TNBP area, the blue box is where the TCI
thickness is obtained, and the yellow box is the potentially affected region. The grey land mask comes from the GSHHG (a Global Self-consistent
Hierarchical, High-resolution Geography database) coastline resources. d As in (c) but for the probability of polynya occurrence over TNBP.
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Furthermore, with the rolling correlation, there are some
periods when the correlation coefficient exceeds 0.8 (dotted line
in Supplementary Fig. 6), in which the TCI thickness is more
crucial than other factors. This high correlation may also relate
to the large-scale wind field. Under strong southerly wind, the
ice drift is closer to the TNBP rather than deflecting eastward,
and the influence of TCI on the area can be enhanced. More
frequent cyclones leading to stronger southerly winds in the
Ross Sea may result in a greater correlation between the area
and the TCI thickness, as shown in the Supplementary
Discussion 3.

Relationships between the TNBP area and the transiting con-
solidated ice in different situations. Some other characteristics
of TCI are shown by the correlation coefficient between the
TNBP area and the TCI thickness in different intervals of air
temperature and offshore wind speed in Fig. 7. The correlation is
insignificant when both the temperature and wind speed are low.
Under this condition, the TNBP is small and tight against DIT
(such as after 25 June in 2013 in Fig. 3), which is far away from
the transiting ice. With the increase in air temperature or offshore
wind speed, the TNBP expands and approaches the TCI flow; the
correlation between the TCI thickness and TNBP area increases.
The correlation reaches a maximum (R2= 0.45) when the air
temperature is between −11.5 °C and −17.5 °C, and the offshore
wind speed is between 10 m s−1 and 20 m s−1.

Figure 7 also shows that when the TNBP extent is not beyond
the shelter of DIT (>3500 km2, the area of Terra Nova Bay), i.e.,
the TNBP is still at the western part of the bay, the influence of
TCI, which is always east of DIT, is very significant. This indicates
that the influence of TCI flow is so strong that its impact on the
area can be observed when it is at a distance from TNBP.
However, if the offshore wind is strong enough it can force the
ice-flow direction further east, reduce its effect and lower the
correlation. The partial correlation coefficient in different
intervals also shows similar characteristics (Supplementary
Fig. 8).

The sea ice thickness in the potentially affected region. To
explain the nonlinear relationship between the TNBP area and
TCI, we do a decomposition on the normalized thickness of sea
ice in the potentially affected region (the yellow box in Fig. 1c) by
factor analysis (Fig. 8). The factor analysis depends on the
Rotated Empirical Orthogonal Function (REOF) decomposition

and reflects the latent common source of the change of variables
(see Data and Methods)47.

Figure 8 shows that the first 3 dominant modes explain 33%,
29%, and 22% of the signal respectively. The second mode
decreases gradually with the distance from TNBP (the dark grey
line). The temporal coefficient of mode 2 (PC2) is correlated with
the TNBP area significantly (R2= 0.36, Fig. 8c). Moreover, PC2
also closely relates to the offshore wind speed (R2= 0.15), air
temperature (R2= 0.27), and TCI thickness (R2= 0.17). These
three factors are the key roles governing the TNBP area.
Therefore, we assume that mode 2 represents the effect of
polynya controlled by offshore wind, temperature, and TCI. The
spatial pattern also indicates the direct influence of TNBP is
within 25 km of the polynya.

The third mode has a structure of increasing amplitude with
distance from the TNBP (Fig. 8a). The PC3 is correlated with the
sea ice thickness in the meridional extension region where mode
3 is of high amplitude (Fig. 8e). This implies association with the
ice flow in Fig. 1c, and therefore mode 3 reflects the effect of
flowing sea ice in the open Ross Sea.

The first mode only has strong amplitude northeast of the
TNB, where the newly-formed sea ice in TNBP outflows and the
TCI passes through (Fig. 1c). It leads to a significant correlation
between the PC1 and TCI thickness (R2= 0.16). The collision of
newly-formed sea ice and TCI may be a major source of the
signal in PC1. The convergence of sea ice flux estimated by
winds from ECMWF Reanalysis v5 (ERA-5) with the winds-ice
drift relationship in the potentially affected region can verify it
partially, although there are some uncertainties in ice drift (see
Data and Methods). After a 30-day smoothing, the convergence
of sea ice flux exhibits a correlation coefficient of 0.57 with PC1
(Fig. 8b), suggesting that mode 1 represents the sea ice
deformation, which is driven by ice convergence. Similar results
were obtained using higher resolution wind fields from
Antarctic Mesoscale Prediction System (Supplementary Fig. 10).
Hollands and Dierking (2016)48 which used sea ice flow data
from Synthetic Aperture Radar to estimate sea ice divergence
also suggests that sea ice accumulates in this region and
deforms.

Figure 7 shows a nonlinear relationship that when the TCI is
thick enough, the thickness effect that limits the polynya size
becomes “saturated” and further increases in ice thickness have
less effect on the polynya area. The internal ice stress is the key
factor and reason that TCI is nonlinearly related to polynya
area. As the ice gets thicker it is able to transmit the internal
stress generated by the ice in the open ocean into the Terra
Nova Bay region. The thinner ice formed in the polynya pushes
against the older ice, but the internal stress prevents it from
moving, ice deformation occurs, and the polynya growth
becomes limited.

Discussion and conclusions
In this study, we show that a rapid TNBP shrinking event from 19
June to 03 July, 2013 is explained by TCI changes, but not the
commonly referenced factors of katabatic wind and air tem-
perature. The upstream TCI thickness, which explains the TNBP
area change well, is in turn driven by large-scale winds trans-
porting more sea ice to the outlet zone. The leading role played by
the TCI thickness can be also seen in the cold seasons from 2013
to 2020, especially when the background southerly winds are
strong. Further analysis of sea ice thickness in the potentially
affected region shows that it may relate to nonlinear processes
associated with the deformation with TCI.

The study area in this article is close to the coast, meaning that
the ERA-5 winds have larger uncertainties49,50, and there may be
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Fig. 3 The sea ice thickness surrounding the TNBP from 19 June to 03 July, 2013. The color map responds to the sea ice thickness with the land mask
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a possible underestimation of the SMOS SIT data here, compared
with the report by Rack et al.51, while it can reflect the real
variation of TCI SIT (see Sea ice data). However, our study
provides strong evidence that the TCI blocks outflowing ice and
can govern the TNBP area change. It implies that the sea ice
production and even the formation of dense shelf water can be
affected by TCI indirectly.

The impact of TCI on the polynya area is unlikely to be
unique to the TNBP. For example, in Mertz Glacier polynya,
which is the 4th largest polynya in Antarctica and located to the
west of the Mertz Glacier Tongue, the inhibitory effect of TCI
on the polynya extent was also qualitatively obtained23. Nihashi
and Ohshima (2015) point out that the upstream land-fast sea
ice, which is common for Antarctic polynyas, can also play a
similar role as the ice tongues13. There are 9 of 13 major coastal
polynyas in Antarctica where ice tongues/land-fast sea ice
promote their formation52, including the Cape Darnley

polynya, which is considered an important source of Antarctic
Bottom Water10. We suspect that these polynyas are also
influenced by TCI, though it is hard to verify at this time due to
the thick ice surrounding them being beyond the SIT mea-
surement range of SMOS. Moreover, in these polynyas, asso-
ciated with the effect of thicker TCI tending to be saturated,
TCI’s influence may decrease, although it lacks a quantification
verification. Our result suggests the pressing need to investigate
the role of TCI blocking in governing the area of these polynyas.

Data and methods
Meteorology data. The meteorology data used in this study
during the cold seasons of 2013-2020 include near-surface
winds and air temperature from the automatic meteorological
station (AWS) of Manuela at Inexpressible Island in Terra Nova
Bay (74.946°S, 163.687°E, the green dot in Fig. 1)53 and ERA-5
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reanalysis (pink box in Fig. 1) from the European Centre for
Medium-Range Weather Forecasts with a horizontal resolution
of 0.25° × 0.25°. The ERA-5 data is also used to analyze the
large-scale atmospheric circulation from 19 June to 03
July, 2013.

While the reanalysis dataset can be used for synoptic weather
situations over space and time, the meteorology data observed by
AWS is more accurate. The average correlation between ERA-5
and Manuela AWS is 0.95 for air temperature, 0.6 for wind speed,
and 0.4 for wind direction. Due to the larger error of the wind
field in ERA-5 at Manuela, we use the data from Manuela AWS in
the nearshore areas. Here we define the prevailing wind direction
in the cold season perpendicular to the coastline (263.7°) as the
offshore direction.

Sea ice data. The polynya area in the cold season of 2013-2020
is obtained by the polynya signature simulation method
algorithm based on the Advanced Microwave Scanning
Radiometer 2 brightness temperature data, with a resolution
of 6.25 km × 6.25 km. Sea-ice thickness data derived from
SMOS brightness temperatures are provided by the Alfred
Wegener Institute for the period of 2010–2020 for Antarctica.

Table 1 Correlation coefficients among the TNBP area and its inflecting factors in the cold season (15-April~15-October) and
winter (June-August).

1 2 3 4 5

Cold season (15-Apr~ 15-
Oct)

1. Area (partial correlation) 1.00 (1.00) 0.09 (0.30) – 0.19 (0.44) 0.22 (−0.47)
1. Area (correlation) 1.00 (1.00) 0.08 (0.29) 0.01 (0.11) 0.18 (0.42) 0.30 (−0.55)
2. Offshore winds 1.00 (1.00) 0.00 (0.01)* 0.02 (−0.13) 0.05 (−0.23)
3. Parallel-to-coast wind 1.00 (1.00) 0.00 (−0.06)* 0.00 (0.00)*

4. Air temperature 1.00 (1.00) 0.04 (−0.20)
5. TCI volume 1.00 (1.00)

Winter (JJA) 1. Area (partial correlation) 1.00 (1.00) 0.12 (0.34) – 0.26 (0.51) 0.12 (−0.35)
1. Area (correlation) 1.00 (1.00) 0.11 (0.33) 0.01 (0.09)* 0.21 (0.46) 0.20 (−0.44)
2. Offshore winds 1.00 (1.00) 0.00 (0.05)* 0.01 (−0.10)* 0.09 (−0.30)
3. Parallel-to-coast wind 1.00 (1.00) 0.01 (−0.11) 0.01 (−0.10)*

4. Air temperature 1.00 (1.00) 0.02 (−0.13)
5. TCI volume 1.00 (1.00)

The first number in each cell is R2, and the number in the brackets is r. The first row shows the partial correlations. The asterisk (*) means that it has not passed the significant test (p= 0.005). The
parameter numbers in the first row match parameters in the first column.
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Its resolution is 12.5 km × 12.5 km. SMOS ice thickness is
retrieved under the assumption of 100% ice coverage, which
leads to considerable underestimation of ice thickness when
strong ice drift and ice divergence exist40,54. We define the
thickness of TCI as the mean sea-ice thickness over the area
southwest of the DIT and east of the Franklin Island (dark
grey box in Fig. 1). The sea ice >1 m is not frequently observed
here and is within SMOS ice thickness measurements range.
Moreover, we verify that the SIT obtained by SMOS here with
the underway observation and ICESat-2/CroySat-2 data (see
Supplementary Discussion 1). With the observation by Rack
et al.51, the SMOS SIT data can reflect the variation of ice
thickness here, while there may be an underestimate. The
potentially affected region is defined as the area including the
TNBP and the region to its east (yellow box in Fig. 1).

The ice drift is estimated by an empirical equation which is
that we take 2% of the wind speed as the sea-ice drift speed,
and the drift direction is 15° to the left of the wind direction55.
It should be noted that due to the influence of topography and
current, there should be some uncertainties in the sea ice drift
predicted by this method in the near-coastlines region56.

Partial Correlation. In this study, we use the linear partial cor-
relation coefficient to describe the relationship between one
meteorological factor y and the TNBP area, excluding effects
correlated to other factors. With the multiple linear regression, we
first remove the signal of other factors from the TNBP area and y.
The correlation of two residuals resulting from the regression is
defined as the partial correlation coefficient. For example, to
address the relationship between the TNBP area (ATNBP) and the
TCI thickness (TCI), and remove the effect of air temperature (T)
and offshore wind speed (U), we first calculate the residual eArea
and eTCI from linear regression of ATNBP with T, U and of TCI
with T, U:

ATNBP ¼ WTNBPX þ eArea ð1aÞ

TCI ¼ WTCIX þ eTCI ð1bÞ
where X is the matrix of controlled variables (i.e., [T U]T) with the
size n × 2, where n is the length of time series; W is the regression

coefficients which can be estimated by the least-squares method.
It is a 1 × 2 vector. The correlation coefficient between eArea and
eTCI is the linear partial correlation coefficient, and the variance
explained R2

Area TCI�T W is

R2
Area TCI�T W ¼ Cov2ðeArea; eTCIÞ

Var ATNBP

� �
Var TCIð Þ ð2Þ

where Cov is the covariance; Var is the variance.

Factor analysis. Following Fischer et al.47, we employ factor
analysis to decompose the sea ice thickness in the potentially
affected region. The general step of factor analysis is to first
decompose the variables by EOF and then rotate the major modes
to maximize the sum of the variance of the factor loadings in
dominating each mode, i.e., make them close to 0 or ±1. This
rotation is called varimax rotation.

Lian and Chen57 discussed the advantages of the rotation
applied to EOF. In EOF, a single mode may contain multiple
signals, which leads to a too large weight of this mode and is
difficult to explain. For example, in this study (Supplementary
Fig. 9), the first mode of EOF accounts for over 65% of the total
variance and the amplitude difference between different regions is
small. We expect that the modes can highlight regions with large
signals while the variances explained by each mode remain close.
Therefore, we do a linear transformation on the primary modes,
which redistributes the signals concentrated on a single mode.
Supplementary Fig. 11 shows the progress of transformation.
Compared with the raw modes (black), the factor loadings of the
new mode 1 (blue) are polarized. Spatially, it means some regions
are highlighted (e.g., mode 1 in Fig. 8a and Supplementary Fig. 9).
The decrease of most factor loadings in mode 1 also leads to the
decrease of the variance occupied by the first mode, which
indicates that mode 1 may not contain too many signals. This
helps us to understand the physical meaning of each mode.
Supplementary Fig. 11 also shows that the linear transformation
is actually a rotation. Moreover, the rotation of factor analysis
relaxes the orthogonality constraint in EOF, which may avoid the
generation of some artificial signals.

Here are the steps of factor analysis in this study. First, the
matrix of normalized sea ice thickness (ASIT) is decomposed by
EOF

ASITn;m ¼ Xn;pTp:m ð3Þ
where rows (n) of ASIV represent spatial positions and columns
(m) represent time; T is principal components and X is factor
loadings of modes. Then we take the first k principal components
(here k= 3) and maximize the sum of the variance of each
column of X by an orthogonal rotation matrix Γ, i.e., under the
condition that Eq. 4b is satisfied, we need to obtain a matrix of Γ,
which maximize S:

S ¼ ∑
i
Var Xi;kΓk

� �
ð4aÞ

ΓTk Γk ¼ Ik ð4bÞ
where the I is an identity matrix. With the calculated Γ, the ASIT
can be written as

ASITn;m ¼ X0
n:kT

0
k:m þ εn;m ð5aÞ

X0
n:k ¼ Xn;kΓk ð5bÞ

T 0
k;m ¼ ΓTk Tk;m ð5cÞ
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Fig. 7 The correlation coefficient between the TCI thickness and the
TNBP area in different situations. The filled contour map shows the
correlation between the TCI volume and the TNBP area in different ranges
of offshore wind speed and air temperature; the contour map with labels
shows the mean area in this range. The range span of air temperature is
6 °C; that of offshore wind is 10m s−1. Dots on the map mark the
insignificant results (p > 0.01). The partial correlation/correlation
coefficient in winter is shown in Supplementary Fig. 8.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00712-w

8 COMMUNICATIONS EARTH & ENVIRONMENT | (2023)4:54 | https://doi.org/10.1038/s43247-023-00712-w |www.nature.com/commsenv

www.nature.com/commsenv


where ε is noise, which is called specific factors, X′ is the rotated
modes, which is called the loading matrix, T′ is rotated principal
components, which is also called the matrix of latent common
factors.

Data availability
All data used in this study are publicly accessible from these websites: Manuela AWS:
https://amrc.ssec.wisc.edu/aws/index.php?region=Reeves%20Glacier&station=Manuela;
ERA-5 dataset: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=form; Alfred Wegener Institute SMOS ice thickness dataset: https://doi.pangaea.

de/10.1594/PANGAEA.93473239; Advanced Microwave Scanning Radiometer 2 brightness
temperature data: https://seaice.uni-bremen.de/data/amsr2/tb_daygrid_swath/s6250.

Code availability
All codes used in this study are available upon request.
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