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We present measurements of the first to fourth moments of the lepton mass squared ¢> of B — X,.£0,
decays for £ = e, 4 and with X a hadronic system containing a charm quark. These results use a sample of
electron-positron collisions at the Y(4S) resonance corresponding to 62.8 fb~! of integrated luminosity
and collected by the Belle IT 2 experiment in 2019 and 2020. To identify the X, system and reconstruct ¢,
one of the B mesons from an Y (4S) — BB decay is fully reconstructed in a hadronic decay mode using a

multivariate B tagging algorithm. We report raw and central moments for ¢> > 1.5 GeV?/c* up to
q* > 8.5 GeV?/c*, probing up to 77% of the accessible B — X,./7, phase space. This is the first
measurement of moments in the experimentally challenging range of [1.5, 2.5] GeV?/c*. The results can be
used for a new determination of |V ,| using inclusive B — X .£7, decays.

DOI: 10.1103/PhysRevD.107.072002

I. INTRODUCTION

Existing measurements of |V, | use either exclusive final
states with B - D*¢D, and B — D¢, providing the most
precise values or inclusive final states. In inclusive deter-
minations of |V |, the total decay rate can be expressed
as an expansion of a small number of nonperturbative
matrix elements with the heavy-quark expansion (HQE).
Using HQE, the total semileptonic rate can be expanded in
powers of Agcp/my, the ratio of the QCD scale parameter
and the bottom-quark mass and perturbative corrections
proportional to the strong coupling constant a can also be
systematically incorporated [1-8].

The current world averages [9] for |V ,| determined from
inclusive and exclusive approaches are

Vi = (42.19 £ 0.78) x 107 and (1)
V| = (39.25 £ 0.56) x 1072, (2)

respectively. The uncertainties are the sum of experimental
and theoretical uncertainties; the world averages differ by
about 3 standard deviations. The 2% relative uncertainty in
the world average for the inclusive approach is largely
due to the theory uncertainty associated with the truncation
of HQE and perturbative expansion [10,11]. To further
reduce this uncertainty, higher order nonperturbative matrix
elements must be determined from measured spectral
moments. This is complicated by the proliferation of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

HQE parameters at higher orders in the expansion. At
O(1/m3) in the HQE 13 nonperturbative matrix elements
contribute to the total rate and the spectral energy and mass
moments.

Reference [12] outlines a novel and alternative approach
to determine |V,| from inclusive decays avoiding this
proliferation of terms. Exploiting reparametrization invari-
ance, the authors reduce the number of parameters neces-
sary to calculate the total rate at O(1/m7}) to only eight.
Unfortunately, spectral moments of lepton-energy and
hadron-mass spectra violate reparametrization invariance.
However, reparametrization invariance is retained in the
spectral moments of the lepton mass squared ¢ =
(ps + py)* = (ps — px,)* Where p; is the four-momentum
of the particle i.

We present measurements of the spectral moments
of the lepton mass squared (¢g*") with n = 1 — 4 for ¢*> >
1.5 GeV?/c* up to 8.5 GeV?/c*. The simultaneous analy-
sis of these moments can determine the nonperturbative
matrix elements as their contributions vary with the g?
threshold [12]; moments with a lower g> threshold retain
more information about the inclusive B — X .£7, process.
Charge conjugation is implied throughout this paper, and
B(B — X.¢0,) is defined as the average of the branching
fraction with B and B* and Z = e, p.

We present raw and central moments, with the latter
having the benefit of smaller correlations between g?
thresholds and the orders of moments. The first measure-
ment of the first g> moment was reported in Ref. [13] with
an implicit lower requirement on the lepton energy of
1 GeV. This requirement renders the measured moment
unsuitable for the analysis outlined in Ref. [12].

A measurement of the q2 moments, similar to the one
presented in this paper, using the full Belle data set
was recently reported by the Belle Collaboration [14] for
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q*> > 3.0 GeV?/c*, covering 58% of the accessible B —
X .2, phase space. We report measurements of the raw and
central g> moments with comparable precision and include
for the first time the experimentally challenging low ¢>
region ¢> > 1.5 GeV?/c*, covering up to 77% of the
accessible B — X .Zv, phase space.

The remainder of this paper is organized as follows:
Section II describes the data set used in this analysis, the
Belle II 2 detector, and the simulation of e*e~ collision
events. Section III introduces the tag-side and the inclusive
reconstruction of semileptonic B decays. Section IV
describes the background subtraction, calibration, and
calculation of the Ilepton mass squared moments.
Section V discusses the systematic uncertainties affecting
the measurement. Section VI presents the main findings,
and Sec. VII contains our conclusions.

II. BELLE II DETECTOR, DATA SET,
AND SIMULATED SAMPLES

A. SuperKEKB and the Belle II detector

We analyze data collected in 2019 and 2020 by the
Belle II 2 detector [15] at the SuperKEKB e e~ accelerator
complex [16]. At SuperKEKB, 7 GeV electrons collide with
4 GeV positrons giving a c.m. energy of /s = 10.58 GeV,
corresponding to the mass of the Y (4S) resonance. This
results in a boost of fy = 0.28 of the c.m. frame relative to
the laboratory frame. The integrated luminosity of 62.8 fb~!
[17] of the data corresponds to (68.2 4 0.9) x 10° B pairs.
We use 9.2 fb~! of data recorded 60 MeV below the Y (45)
resonance to constrain contributions from ete™ — gg
continuum processes.

The Belle II 2 detector is a substantial upgrade of the
Belle detector [18] with improved reconstruction of
charged and neutral particles and particle identification
performance. The detector consists of several subdetectors
arranged in a cylindrical structure around the e e~ inter-
action point (IP). The IP is enclosed by a beryllium beam
pipe with an inner radius of 1 cm. The part of the detector
closest to the IP is the pixel detector (PXD), consisting of
two layers of depleted p-channel field-effect-transistor
pixel-sensor modules [19]. The first layer comprises sixteen
modules arranged in eight ladders. The second layer was
only partially installed for data taking and consists of four
modules. The PXD is surrounded by four layers of double-
sided silicon strip modules: the silicon vertex detector
(SVD). The first SVD layer is arranged parallel to the beam
axis, while the forward sections of the second to fourth
layers are tilted with respect to the beam axis in order to
reduce the overall material budget and the number of
sensors. Both silicon tracking detectors are enclosed by the
central drift chamber (CDC), which is filled with a He
(50%) and C,Hg (50%) gas mixture. The CDC contains
56,576 sense and field wires oriented along the beam
direction or tilted and arranged into 56 radial layers.

By combining the information from axial and stereo wires,
the full three-dimensional trajectory of a charged particle is
reconstructed, and its specific ionization dE/dx is mea-
sured. Outside the CDC, a time-of-propagation detector
(TOP) and an aerogel ring-imaging Cherenkov detector
(ARICH) cover the barrel and forward endcap regions of
the detector, respectively. The TOP reconstructs spatial and
temporal coordinates of the ring of Cherenkov light cones
emitted from charged particles passing through quartz
radiator bars. The information from both the TOP and
ARICH and the CDC are combined together to identify
charged particles. The electromagnetic calorimeter (ECL)
consists of a 3 m long barrel section with an inner radius of
1.25 m and annular endcaps. In total 8736 CsI(T1) crystals
arranged in a pointing geometry allow for precise energy
and timing measurements of neutral and charged particles.
The ECL is located outside the TOP and inside the
remaining volume of a superconducting solenoid with a
field strength of 1.5 T. The Kg and muon detector (KLM) is
located outside of the coil. It consists of an alternating
structure of 4.7 cm thick iron plates and active detector
elements. The iron plates are used as the magnetic flux
return yoke for the solenoid and absorber material to range
out charged hadrons. The detector elements are glass-
electrode resistive plate chambers and plastic scintillators
in the barrel and endcap regions, respectively.

We define the z axis of the laboratory frame as the central
axis of the solenoid with the positive direction in the
direction of the electron beam. The polar angle € and the
longitudinal and transverse directions are defined with
respect to the z axis. Variables with asterisk superscripts
are measured in the c.m. frame; variables without asterisks
are measured in the laboratory frame.

B. Reconstruction

Charged particle tracks are reconstructed by combining
information from the PXD, SVD, and CDC [20]. The
reconstruction of energy depositions from neutral and
charged particles in the ECL (ECL clusters) uses shower
shapes and timing information [21]. Tracks are identified as
electron or muon candidates by combining information
from several subdetectors into a single lepton identification
likelihood £, (PID). Muons are identified reliably by
extrapolating tracks to the KLM. The main features used
for the construction of the likelihood are the longitudinal
penetration depth and the transverse scattering of the
extrapolated track in the KLM. For electrons, the likelihood
is constructed from information from the ECL, CDC, TOP,
and ARICH. The most important discriminant is the ratio of
the reconstructed energy in the ECL to the estimated track
momentum, which should be close to unity for electrons.
The identification of charged pions, kaons, and protons is
based on likelihood information from the CDC, TOP, and
ARICH. Their likelihoods are denoted as £, L, and Ep.
Hadrons with momenta less than 700 MeV/ ¢ are primarily
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identified using dE/dx measurements from the CDC.
Hadrons with momenta larger than 700 MeV/c are pri-
marily identified using the TOP and ARICH measure-
ments. Photon candidates are identified using the ECL
shower shape of clusters not matched to a track. We require
each photon candidate to have a transverse energy greater
than 30 MeV when reconstructed in the barrel or 20 MeV
when reconstructed in either endcap. A loose selection on a
multivariate shower-shape classifier that uses multiple
Zernike moments [22] is imposed. A more detailed over-
view of the Belle II 2 PID algorithms and the photon
reconstruction algorithms can be found in Ref. [21].

C. Simulation

Monte Carlo (MC) samples are used to determine
reconstruction efficiencies and acceptance effects as well
as to estimate background contamination. MC samples of B
decays are simulated using the EvtGen generator [23]. The
simulation of e*e™ — ¢g continuum processes is carried
out with KKMC [24] and PYTHIAS [25]. Electromagnetic
final-state radiation (FSR) is simulated using PHOTOS [26]
for all charged final-state particles. Interactions of particles
with the detector are simulated using GEANT4 [27].

The simulation is corrected using data-driven weights to
account for differences in identification and reconstruction
efficiencies. The PID for electrons is corrected as a function
of the laboratory-frame momentum and polar angle and
charge of the electron candidate using samples of e*e™ —
ete (y) and ete” — ete"ete™ events and events with
J/w — ete™ decays. The PID for muons is corrected using
samples of eTe™ —» uTu"y and ete™ — eTe uTu~, and
events with J/yy — putu~ decays. The average multiplicative
corrections are 0.95 and 0.89 for electron and muon
candidates, respectively. The rates of misidentifying charged
hadrons as charged leptons are corrected using samples of
K% - ntn~, D** - D", and ete™ — 7777, with aver-
age multiplicative misidentification-rate corrections of 1.50
and 0.98 for electron and muon candidates, respectively.

All recorded e*e™ collision data and simulated events
are reconstructed and analyzed with the open-source
basf2 framework [28].

D. Simulation of B — X ¢7,

The analysis relies on accurate modeling of B — X .£7,
decays. Inclusive semileptonic B — X.£v, decays are
dominantly B - D¢y, and B — D*¢D, decays. The B —
D¢v, decays are modeled using the BGL parametrization
[29] with form-factor parameter values and uncertainties
from the fit in Ref. [30]. For B — D*¢7, decays, the BGL
implementation proposed in Refs. [31,32] with form-factor
parameter values and uncertainties from a fit to the
measurement of Ref. [33] is used. Both branching fractions
are normalized to the average branching fraction of Ref. [9]
assuming isospin symmetry.

Semileptonic B — D**¢v, decays with D** = Dy,
D|.D,,D} are modeled using heavy-quark-symmetry-
based form factors proposed in Ref. [34] and with D**
masses and widths from Ref. [35].

For the B — D**¢v, branching fractions, we adopt the
values of Ref. [9] to account for missing isospin-conjugated
and other established decay modes observed in studies of B
decays into fully hadronic final states. This follows the
prescription outlined in Ref. [34]. All existing exclusive
B — D**¢D, measurements only use D™ — Dt)tz~
decay modes. To correct for the missing isospin modes
we multiply the branching fractions with a multiplicative
factor of 3/2.

In the average in Ref. [9], all measurements of B —
D3¢, are relative to Dy — D*~zt. To account for D} —
D~z contributions, we apply a multiplicative factor of
1.54 £0.15 calculated from the branching fractions
of Ref. [35].

The world average for B — D) £, in Ref. [9] combines
measurements that only marginally agree with each other
(the probability of the combination is below 0.01%). We
exclude the measurement of Ref. [36] that is in conflict
with the measured branching fractions of Refs. [37,38].
That measurement also conflicts with the expectation that
B(B— D\¢v,) is comparable to B(B — D{¢v,) [39,40].
By excluding Ref. [36] we obtain

B(B* - D (- D n")¢fv,)=(0.28+£0.06)x 1072, (3)

The world average for B(B — D,¢v,) does not include
contributions from D; — Dzz. To account for these, we
use a multiplicative factor 0.43 £ 0.11 calculated from the
branching fractions of D; = D*~z% and D, — D%z*z~
from Ref. [41]. The contribution of D; — Dzzx decays is
subtracted from the B — Danfv, branching fraction mea-
sured in Ref. [42]. The three-hadron final states must be
corrected for missing isospin-conjugated modes. Following
Ref. [42], we use an average isospin correction multipli-
cative factor of

Sar = = = =

(4)

whose uncertainty covers the isospin hypotheses for differ-
ent resonant final states [f((500) — zz and p — 7z result
in f,, = 2/3 and 1/3, respectively] and nonresonant three-
body decays (f,, = 3/7).

Furthermore, it is assumed that the resulting branching
fractions saturate the branching fractions of orbitally
excited states:
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B(D3 — Dr) + B(D5 — D*n) =1,
B(D, - D*z) + B(D, — Dzrn) =1,
B(D| - D*z) =1, and B(Dj— Dzn)=1. (5)

For the B — D™ znfv, contributions not covered by
decays into D; — Dzz, we use values measured in
Ref. [42]. We neglect the small contribution from B —
Dg*)Kfvf decays.

There is still a difference between the sum of all
exclusive modes and the inclusive B — X .£v, branching
fraction of Ref. [35]. In the following, this missing
component contributing to the total branching fraction is
referred to as the “gap.” We fill this gap with equal parts
of B— Dnfv, and B — D*yfv, decays and assign an
uncertainty of 100% to its branching fraction. These decays
are simulated with final-state momenta uniformly distrib-
uted in the available phase space or an alternative model
involving a broad resonance for the hadronic X, final state.

Figure 1 shows the resulting ¢”> spectrum evaluated
without reconstruction effects for the different X, final
states, and Table I summarizes the semileptonic branching
fractions. At high ¢?, contributions from B — D*£v,
dominate, whereas at low qz, B — D**¢v, and nonresonant
X, (B— DWzrntv, and gap processes) have sizable
contributions.

III. INCLUSIVE RECONSTRUCTION
OF B — X,¢v, DECAYS
AND EVENT SELECTION

A. Tag-side reconstruction

We reconstruct Y(4S) — BB events with the full
event interpretation (FEI) algorithm [43]. The algorithm
reconstructs one of the B mesons of the BB pair in

0.175 | Belle Il (simulation) I B-Dlv
= B-D"Iv
0.150 | Em B->D v

I nonres. B - X Av

0.125

0.100

0.075

0.050

Probability / (0.46 GeV?/c?)

0.025

0.000
0 2 4 6 8 10 12

Qen [GeV?/c*]

FIG. 1. The g? spectrum for different X, final states without
reconstruction effects (“gen”). Details about the simulation are
given in the text.

TABLE 1. Branching fractions used in the simulation of
B — chljf.

Decay B(BT) B(B)

B — D¢y, (24+0.1) x 1072 (22£0.1) x 1072
B - D*¢v, (5.5+0.1) x 1072 (5.1£0.1) x 1072
B — D\tv, (6.6 +1.1)x 1073 (6.2+1.0) x 1073
B — D3tv, (29+0.3) x 1073 (2.7+£0.3) x 1073
B — Djtv, (42+0.8) x 1073 (3.9+£0.7) x 1073
B — D\tv, (4240.9) x 1073 (3.94£0.8) x 1073
B — Dzantv, (0.6 +0.9) x 1073 (0.6 +£0.9) x 1073
B - D*nrntv, (22+1.0)x 1073 (20+1.0)x 1073
B — Dntv, (4.0 +4.0) x 1073 (4.0 +£4.0) x 1073

B - D*ntv,
B — chl_/f

(4.0+4.0) x 1073
(10.8 £ 0.4) x 1072

(4.04+4.0) x 1073
(10.1 +0.4) x 1072

fully hadronic decays. In the following, the tag-side B
candidate reconstructed by the FEI is denoted as By,.
The FEI uses a hierarchical bottom-up approach starting
with the selection of charged and neutral final-state
particles (e~, u=, n~, K=, p, y) from tracks, and ECL
clusters, combining them into intermediate particles
(J/w,7°, K%, D,D;,D*, D, A, A, ="), and finally form-
ing By, candidates. At each stage, the FEI uses an
optimized implementation of gradient-boosted decision
trees [44] to estimate the signal probability Prg; of each
candidate in a distinct decay chain to be correctly recon-
structed. For each candidate, the decision trees combine the
signal probability of previous stages with additional kin-
ematic and vertex-fit information. More than 100 decay
channels are reconstructed, resulting in O(10,000) decay
chains.

We select events that have at least three charged particles
and three ECL clusters to suppress By, candidates from
continuum processes. The total visible energy of the event
in the c.m. frame must be greater than 4 GeV, and the total
energy in the ECL is required to be between 2 and 7 GeV.
To reduce continuum background, events must have
R, < 0.4, with R, the ratio of the second and zeroth
Fox-Wolfram moments [45]. We suppress continuum
events by requiring cos(fr) < 0.7, where Oy is the angle
between the thrust axis of the decay products of the B,, and
the thrust axis of the rest of the event [46]. Note that By,,
candidates are selected by requiring Pgg; > 0.01. The
reconstruction efficiencies with this requirement are
approximatively 0.26% and 0.35% for neutral and charged
By, candidates, respectively. More details on the FEI
performance with Belle II 2 data can be found in Ref. [47].

We require By, candidates to have beam-constrained
mass values satisfying

My = | /%_ P, I > 5.27 GeV/c?, (6)
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where pgmg is the three-momentum of the By,, candidate.
The energy difference

AE=Ej - ? (7)

must be within [-0.15,0.1] GeV, where Egmg is the energy

of the By,. All tracks and ECL clusters not used in the
reconstruction of the By,, candidate are used to define and
reconstruct the signal side. At this stage, we allow for
multiple By,, candidates in each event.

B. Signal-side reconstruction

Semileptonic B decays are identified by selecting
electron and muon candidates with laboratory frame
momenta greater than 0.5 GeV/c. These tracks are
required to originate from the IP by requiring d, < 1 cm
and |d,| <2 cm. Here, d, and d, are the distances of
closest approach to the IP transverse to and along the 7 axis,
respectively. Each lepton candidate is required to have a
polar angle within the CDC acceptance [17°, 150°] and at
least one hit in the CDC.

The momentum and polar angle selection affects the
selection efficiency as a function of g2, which is illustrated
in Fig. 2. At low ¢° thresholds, the efficiency depends on
the final states. A lower selection efficiency is observed
for the D** and nonresonant contributions, introducing a
dependence of the moments on modeling of B — X .Z70,.
To minimize extrapolation of the moments to unmeasured
phase-space regions, we require ¢> > 1.5 GeV?/c*.

Lepton candidates are selected using P, = L,/
(Lo+ L, + L+ Ly + Ly, + Ly), and we require P, >
0.9 for both electrons and muons. To account for the
energy of electrons lost to bremsstrahlung photons, the

1.0
& &, 6 G A DO -—ﬂqﬁ “
®
08} T
®8
T 06}
c
[
S
Eooal
oal é B—)Dl*l) Belle Il (simulation)
2 8 BoD'W Plab > 0.5 GeV
A B-D""fv 17° <6<150°
00l # nonres.B-Xcy
0 2 4 6 8

qi, [GeV?/c?]

FIG. 2. Selection efficiencies as functions of ¢ threshold qﬁ].
The points for different X, final states and the same lower ¢>
threshold are shifted horizontally, and the gray and white bands
visually group the same ¢> threshold.

four-momenta of such photons are added to the four-
momenta of electrons. Bremsstrahlung photons are iden-
tified using the electron track, extrapolating its PXD and
SVD hits and the estimated track intersections with the
beam pipe and inner wall of the CDC to the ECL to search
for clusters. ECL clusters with energies between 2% and
100% of the electron energy and without any other track
association are identified as potential bremsstrahlung pho-
tons. All clusters that lie within 3 times the expected
resolutions in polar and azimuthal angles are used to correct
the electron candidate. These clusters are then removed
from consideration for the remainder of the analysis. For
charged By, candidates, we require the signal-side lepton
to have a charge opposite to that of the B,,.

Particles with transverse momenta less than 275 MeV/c
have radii of curvature in the magnetic field sufficiently
small that they loop within the CDC volume and may be
reconstructed as multiple tracks. To identify such tracks, we
compare the proximity and the magnitude of the momenta
of all low-momentum tracks. When there are potential
duplicates, we select the track with the smallest value of
(5 xd,)* + |d.|*. The size of the scaling factor on d, is
optimized to minimize track duplicates.

After reconstructing the By, and signal-side lepton
candidate, the X, system is identified as the remaining
charged particles and photons. The four-momentum for a
charged particle is calculated from the reconstructed track
momentum and the assigned mass hypothesis based on the
largest identification probability. As we do not explicitly
reconstruct charmed states, we denote the reconstructed
system in the following as X and its four-momentum py
and mass My. A signal-side candidate is rejected if the X
system does not contain at least one charged particle and
the absolute event charge is > 1.

The missing four-momentum in the event is recon-
structed as

Priss = Pete- = PBy, = Px = Pé» (8)

where p,+,- is the four-momentum of the colliding
electron-positron pair. We require E;, > 0.5 GeV and
|Pmiss| > 0.5 GeV/c to improve the resolution on the mass
of the hadronic system. The average multiplicity of By,,¢
candidates is 1.5 per event. In each event, we retain only the
one with the highest lepton momentum. When multiple
By, candidates share the same lepton, one is chosen
randomly.
The lepton mass squared is reconstructed as

(Ph,. — Px)* 9)

2
Greco = sig

with pp = (\/s/2, —pj;,ng). To improve the resolution of
G%reco» We exploit the known kinematics of the efe”
collision and fit for the four-momenta of Btag, X, ¢,
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and v,. We construct a y* function for each candidate of
the form

X = Z (Pi = Pi)C7 (Pi = pi), (10)
i€{Bag X.0}

where p; is the fitted four-momentum, and C; is the
covariance matrix of the four-momentum of a given
final-state particle. Note that C, is given by the track fit
result, while Cg ~and Cy are estimated using the corre-
sponding four-momentum residuals.

Overall, we fit 14 parameters: the four-momenta com-
ponents of the By, and X candidates and the momenta
components of the signal lepton and neutrino. The energies
of the lepton and neutrino are calculated from the momenta
assuming p2 = m2 and p? = 0. The kinematic fit is then
performed by imposing the following constraints,
(Pe+px+p)=my  (11)

px>0.  py, =mp

and
(i’e*e' - I,\)ng - i?f - IA’X - [A)U) =0 (12)

using Lagrange multipliers. For each event the y? function
is numerically minimized with the constraints, following
the algorithm described in Ref. [48] implemented in
SciPy [49].

Figure 3 shows the distribution of the residuals of ¢>
before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results in
more symmetric residuals and a reduction in the tails of
the residuals. The rms improves from 5.76 GeV?/c* to
2.65 GeV?/c*, and the bias reduces from 3.43 GeV?/c*
to 1.20 GeV?/c*.

Belle Il (Simulation) Kinematic Fit
0.5} / =3 Reconstructed

Kinematic Fit
Mean: 1.20 GeV?/c*
0.4 | rms: 2.65 GeV?/c*

B — X Lv Signal MC

Reconstructed
Mean: 3.43 GeV?/c*

03T 1ms: 576 Geve/ct

Events norm. in arb. units

-4 -2 0 2 4 6 8 10
Qrzeco - q§en [GeVZ/C4]

FIG. 3. Comparison of reconstructed, fitted, and generated ¢>
for B - X .£v,. The residuals are the difference of estimated
(“reco”) and generated (“‘gen”) values.

IV. MEASUREMENT OF LEPTON MASS
SQUARED MOMENTS

To measure the lepton mass squared moments, back-
ground contributions from other processes must be sub-
tracted from the g distribution. Binned likelihood fits are
applied to the My distribution to determine the number of
signal and background events. With this information and
the shapes of backgrounds from simulation, an event-wise
signal probability w is constructed as a function of gZ,.
Both steps are discussed in Sec. IVA. We correct for
acceptance and reconstruction effects by applying an event-
wise calibration ¢Z., — g%, and two additional calibra-
tion factors Ceyip, and Cge,, discussed in Sec. IV B. The
background-subtracted g> moment of order n is calculated
as a weighted mean

Ndata 2 2n
2 Sty i) X alib, i
my = = (rccot) X 4" cai X Ceatip X Cgen,  (13)

<q Z?’dm w(qlgeco,j)

with sums over all events. For each reconstructed g>
threshold, the binned likelihood fit to My is repeated to
update the event-wise signal probability weights. We use
thresholds in the range [1.5,8.5] GeV?/c* in steps of
0.5 GeV?/c*.

A. Background subtraction

The likelihood fit to the binned My distribution is
carried out separately in the B¥#~, B%~, and B’/
channels to account for efficiency differences in the
FEI algorithm. Electron and muon channels are not
separated. Contributions from B — X, /7, decays are
treated as background and have, on average, high ¢° ...
We suppress this background by fitting the range with
My > 0.5 GeV/c?. To determine the number of back-
ground events in each of these channels as well as for each
reconstructed ¢ threshold, we distinguish the following
three event categories:

(1) B — X £, signal (with yield ),

2) e*_e‘ — ¢g continuum processes (17,5), and

(3) BB background dominated by secondary leptons

and hadronic B decays misidentified as signal lepton
candidates (773p).
The likelihood is the product of Poisson likelihoods
for each bin i with n; observed events and v; expected
events, with

vi = Zﬂkfki’ (14)
k

where f}; is the fraction of events of category k recon-
structed in bin i as determined with simulated events. The
yield 7,5 is constrained to its expectation as determined
from off-resonance data. To reduce the dependence on the
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modeling of signal and backgrounds, the fit is carried out in
five My bins. For each channel and reconstructed ¢>
threshold, an adaptive binning is chosen. The likelihood
is numerically maximized using the MINUIT algorithm [50]
in scikit-hep/iminuit [51].

The sample composition projections for ¢, >
1.5 GeV?/c* are shown in Appendix A. The My and
g2, distributions with the fitted MC yields are shown in
Fig. 4 for ¢’eo > 1.5 GeV?/c* with finer granularity
than used in the fit. The agreement is fair, and the p value
from a y? test for the g°,, distribution in the range of
1.5 — 15 GeV?/c* is 30%.

The event-wise signal probability w is obtained by
constructing a binned probability as a function of g2, via

Wi(qzrem) = (ni - ﬁBB}?B - ﬁqq}?q)/niv (15>

with n; the observed events in bin i of ¢° ... Furthermore,
f; are the fractions of events for a given background
category estimated from the simulation, and # denote the
sum of the number of background events from the My fits.

We calculate a continuous signal probability w(g2.,) by
interpolating the binned distribution with smoothed cubic
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FIG. 4. The My and g2, spectra with B — X.£7, and back-
ground components normalized to the results of the My fits are
shown for gZ., > 1.5 GeV?/c".

splines [52]. Negative probabilities are set to zero. The
cubic-spline fit and statistical uncertainties of the signal
probability are shown in Fig. 5. The statistical uncertainty
on {g*") is evaluated by a bootstrapping procedure [53],
and a selection of spline fits from replicas is shown in
Fig. 5. The statistical uncertainty of w(gZ.,) increases
towards large ¢ cco-

B. ¢? calibration

The ¢, distribution is calibrated by exploiting the
linear relationship between reconstructed and generated
moments. Figure 6 shows the linear relationship for
simulated events for the first moment and as functions
of ¢* threshold between the reconstructed and true g>
distribution. We calibrate each event with

1.2 | Bellell —— Cubic Spline

[Ldt = 62.8fb1

)

2

reco
=
o

T

0.8

0.6 |

0.4

0.2}

Signal Probability w(qg

0.0

! 1 !

25 50 75

10.0 12.5 15.0 17.5 20.0
Q. [GeV2/c?]

FIG. 5. Binned signal probability w; for g2, > 1.5 GeV?/c*
together with a smoothed cubic-spline fit (dark red). In addition,
variations of the signal spline fit (light red) determined with
bootstrap replicas are shown.
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FIG. 6. Linear calibration function for the first moments.
The first moments are shown as a function of the minimum
g* requirement on the reconstructed and true underlying g>
distributions.
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Gt = (ditko = Cu)/ M, (16)

with ¢, and m, the intercept and slope of the linear
relationship for a given moment of order n. More details
on the linear calibration for the higher moments can be
found in Appendix B.

Due to the linearity of the calibration, a small bias
remains, which we corrected with an additional multipli-
cative calibration factor in Eq. (13) calculated from
simulated events by comparing the calibrated (g2, ) and
true generated (g7, ;) moments,

Ccalib = <q§’eln,sel>/<nglib>‘ (17)

The B, reconstruction and the Belle II 2 detector accep-
tance and performance result in an additional bias. To
account for these effects we apply a second multiplicative
calibration factor C,,, by comparing the generated
moments with all selection criteria applied ((gge, 1)) t©

their value without any selection applied ((qég’n}),

Cgen = <Q§gn>/<Q§gn,sel>' (18)

The <q§g,,> are determined from a MC sample without
PHOTOS simulation which also corrects for FSR.

Both Ceyip, and C,e, are determined for each g* threshold
and from independent samples from those used to deter-
mine the linear calibration function. The C_,;;, factors range
between 0.98 and 1.02 depending on the reconstructed and
generated g threshold. The Ceen factors vary between 0.90
and 1.00 with lower ¢ selection threshold values tending to
have more sizable corrections. More details on the event-
wise calibration can be found in Appendix C.

C. Closure tests and stability checks

We use simulated samples to test the robustness of the
measurement method and the background subtraction.
Closure tests are carried out with ensembles built from
independent simulated samples. We observe small devia-
tions of 0.01% to 0.66% caused by imperfections in the
interpolation of w(gZ,,) in the extracted g> moments. This
deviation is treated as a systematic uncertainty; see Sec. V.

We also test the impact of systematically altered gen-
erated g”> shapes for B — X_.£7,. The altered shapes are
obtained by completely removing the nonresonant B —
X v, contributions or by applying scaling factors of 2 or
0.5 to the dominant B — D¢v, or B — D*¢D, contribu-
tions. These variations are significantly outside of the
quoted uncertainties of Table I. The moments of the
samples with the altered generated g* shapes are measured
with the nominal B — X_.£v, composition, and the
observed biases are well within the assigned uncertainties.

The consistency of the measurement for electron and
muon final states is checked by separately determining the
moments; we find good agreement.

V. SYSTEMATIC UNCERTAINTIES

Several systematic uncertainties affect the ¢g> moments.
Their sources can be grouped into two categories. The first
consists of systematic uncertainties originating from back-
ground subtraction. The fit to the My distribution assumes
the composition of B — X.£v, and relies on data-driven
corrections. These and other uncertainties affect w(gZ,)
and must be propagated to the moments. The second
category of uncertainties is related to assumptions when
calibrating the moments. Modeling of B — X_.£7, and of
the Belle II 2 detector affects the calibration function
and the calibration factors. To assess the effect of each
uncertainty source, we derive alternative sets of moments
based on either a varied signal probability function or
modified calibration. The deviation from the nominal result
is used to estimate the systematic uncertainty.

A. My fit and background subtraction

We include uncertainties from the signal and background
compositions, MC statistics, and the data-driven correction
factors directly into the likelihood function of the My fit.
This is achieved by introducing nuisance parameters 6;; for
event category k and bin i, which are constrained with
multivariate Gaussians in the likelihood. The fraction of
events is replaced in Eq. (14) by

Sii +01iOi
> i(frj+01ibk)

(19)

and o;; denotes the uncertainty on the fraction for event
category k and bin i.

The composition uncertainties of B — X .£v, are deter-
mined with the branching fraction uncertainties listed in
Table I. We evaluate the uncertainties of the BGL form-
factor parameters for B - D¢v,, B — D*¢v, using a set of
orthogonal parameter variations for each decay. We include
the uncertainty of the B — X7, branching fraction from
Ref. [35]. The efficiencies for identifying or misidentifying
leptons and hadrons are estimated from ancillary measure-
ments. We assign a track selection efficiency uncertainty of
0.69% per track on the signal side.

We propagate uncertainties on PID and tracking effi-
ciencies, the B — X,¢7, branching fraction, and the back-
ground yield obtained from the My fit to w;(gZ%.,) with all
uncertainties varied according to a multivariate Gaussian
distribution. We repeat the analysis with varied histograms
and take the variation of the resulting moments as the
systematic uncertainties due to these sources.
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We study the impact of the choice of the smoothing
factor for the interpolation of the cubic splines used to
derive w(gZ.,) and find it to be negligible.

B. Calibration of g*> moments

The calibration curves depend on the composition and
modeling of B — X.£v,. We evaluate the impact of the
branching fraction uncertainties in B — Dfv,, B —
D*¢v,, and B - D**¢D, by independently varying the
branching fraction of each simulated component by 1
standard deviation and determining the corresponding
variations of the calibration functions and calibration
factors. To assess the effect of the poorly known nonreso-
nant and gap modes, calibration procedures from two
different approaches are compared. The first model
removes contributions from B — D®zazfp, and B —
DWytw, decays. The second model replaces them with
decays to D** states (D and D). Although there is no
experimental evidence for additional decays of charm 1P
states into other final states or the existence of an additional
broad state in semileptonic transitions, this provides an
alternative kinematic description of the three-body decay,
B — Dy tvy. We also evaluate the sensitivity of the
calibration functions and factors to the B — D£7D, and B —
D*¢v, BGL form-factor parameters. For each orthogonal
variation of the BGL parameters we repeat the calibration.

Modeling of the photon and charged-particle multiplic-
ities directly affects the resolution on ¢> and contributes a
systematic uncertainty caused by differences between data
and MC in how final-state particles are assigned to the signal
and tag side. We select a signal-enriched region by requiring
My < 3.0 GeV/c* and p; > 1 GeV/c and calculate cor-
rection factors for both multiplicities independently.

We observe differences between data and MC in
Emiss — |Pmiss|- We parametrize the differences using a
smoothed cubic spline and correct MC events to evaluate
the impact on the calibration.

We evaluate the uncertainty from the track finding
efficiency and of PID efficiency on the calibration curves.

We propagate the statistical uncertainty on the param-
eters of the calibration function by varying the calibration
curve parameters by 1 standard deviation. For the calibra-
tion factors, we vary the statistical uncertainty on
Ceatib X Cgen Within 1 standard deviation and repeat the
calculation of the g moments.

The deviation from the closure for the measurement
method discussed in Sec. IV C is assigned as an uncer-
tainty. Its size is subdominant for all moments.

C. Breakdown of the systematic uncertainties

Figure 7 shows the relative systematic uncertainty for the
raw moments. A more detailed breakdown of the relative
systematic uncertainties is given in Appendix D. For each
moment, the total systematic uncertainty decreases with
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FIG. 7. Total (gray) and grouped (colored histograms) relative
systematic uncertainties of the raw ¢> moments as functions of
the ¢* threshold.
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increasing ¢ threshold, whereas the statistical uncertainty
increases. At low g thresholds and for the first and second
moments, the gZ., resolution from mismodeling of the
number of charged particles in the X system, the B —
X ¢V, modeling, and the uncertainty from the background
subtraction are of similar size.

The branching fraction and BGL parameter uncertainties
of the resonant decays B — D¢, and B — D*¢(D, are
smaller than the uncertainty due to the composition of the
higher mass states of the X, spectrum.

At high ¢? thresholds, MC simulation statistics also can
be sizable sources of uncertainty for the first and second
moments. For the third and fourth moments, the dominant
uncertainty at high ¢> thresholds is from the mismodeling
of the number of charged particles in the X system,
followed by MC simulation statistics and B — X £,
modeling.

VI. RESULTS

The (¢*") moments for n = 1 — 4 are shown in Fig. 8 for
g’ thresholds ranging from 1.5 GeV?/c* to 8.5 GeV?/c*
in 0.5 GeV?/c* increments. Numerical values are given in

Appendix D in Tables II-V. Moments with similar ¢>
thresholds are strongly correlated. The estimated correla-
tion coefficients are given in Appendix E.

Figure 8 also shows the moments calculated from the
simulated B — X .£7, sample constructed with the assump-
tions described in Sec. IID. The simulated moments
include uncertainties from the B — X.£7, composition
and B — D"¢p, BGL-form-factor parameters. We
observe a fair agreement between measured and simulated
moments. We compare the raw moments for each order
with the simulated moments using y° tests. To obtain
numerically stable results, each test only includes mea-
surements with correlation below 95%. The resulting p
values range from 27% to 94%.

We calculate values for the central ¢g> moments by
expanding the binomial relation

and applying the following nonlinear transformation:
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The covariance matrix of the central moments C’ is
calculated wusing Gaussian uncertainty propagation
C' = JCJ'. Here, J is the Jacobian matrix for the trans-
formation in Eq. (21).

Figure 9 shows the second, third, and fourth central
moments as functions of > threshold. The central moments
are less correlated with each other than the raw moments
but have larger variances. We observe negative correlations
between some of the central moments. The full correlation
matrix is given in Appendix F. Comparisons of the
measured and simulated moments using y? tests show p
values greater than 98%.

The Belle Collaboration recently presented a measure-
ment similar to this one [14]. This work provides additional
new measurements of the raw and central g> moments with
comparable precision. We present measurements starting at
lower g* thresholds of 1.5, 2.0, and 2.5 GeV?/c*, which
retain more information about the inclusive X, spectrum
and allow for reductions of the uncertainty on |V ,|. We
compare the overlapping measurements of the raw
moments from both analyses for g> thresholds between
3.0 and 8.5 GeV?/c* using a y? test including again only
measurements with different lower g selections having an
observed correlation below 95%. The tests yield p values
between 5% and 72%. Here, we assume the systematic
uncertainties for the simulation of the X, spectrum are fully
correlated between the Belle and Belle II measurements.

=
Q

(21)

VII. SUMMARY AND CONCLUSION

We measure the first to fourth moments of the ¢°
spectrum of B — X.£v, from 1.5 to 8.5 GeV?/c*. The
precise determinations of these moments are a crucial
experimental input for determinations of |V,| and HQE
parameters, proposed by the authors of Ref. [12].

This analysis probes up to 77% of the accessible B —
X ¢V, phase space, improving on the measurement of
Ref. [14], and it includes the experimentally challenging ¢?
region of [1.5,2.5] GeV?/c*. The measured moments are
also transformed into central moments, which are less
correlated but have larger variances than the raw moments.

The uncertainty for the g> moments is dominantly
systematic, with the uncertainties from the background
yield and shape, composition of the X, system, and the
simulated detector resolution dominating. A better under-
standing of the detector and backgrounds will lead to a
more precise determination of the ¢g> moments in the future
and will allow measurements with a g threshold below
1.5 GeV?/c*.

Recently, a first value of |V ;| was determined using this
measurement: Reference [54] finds

V| = (41.70 £ 0.69) x 1073, (22)

which is in good agreement with other inclusive
determinations.

We provide numerical results and covariance matrices on
HEPData [55].
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APPENDIX A: My FIT RESULTS
FOR ¢2.., > 1.5 GeV?/c*

Figure 10 shows the binned likelihood fits of
My for BY¢~, B%%~, and B*#* tag candidates for
g% >1.5GeV?/c*. The fit uses a coarse binning in My
to reduce the dependence of the composition and modeling
of the B — X./U, transition (blue). The background
contribution from continuum (green) is constrained to its
expectation, whereas background contributions from B
meson decays (due to secondary and fake leptons, orange)
are allowed to float. The fits incorporate nuisance param-
eters for all templates to account for systematic uncertain-
ties. The total uncertainty on the sum of the post-fit
templates is shown as hatched histograms.
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FIG. 10. Fits to My for BT¢~, B’/~, BT¢* tag candidates for g2., > 1.5 GeV?/c*.
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APPENDIX B: LINEAR CALIBRATION

FUNCTIONS

Figure 11 shows the linear relationships for the second to
fourth moments, which are used to derive the linear calibra-
tion functions ¢, = (g2, — c,)/m,. The moments are
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FIG. 11. Values of the calibration curves (line) for the second to the fourth moment.
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APPENDIX C: CALIBRATION
FACTORS Cyi, AND Cye,

Figures 12 and 13 show the calibration factors C,;;, and
Ceen as functions of g* threshold. The factors are deter-
mined using independent simulated samples of signal
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B — X .¢v, decays. The corrections from C.,, are
small, typically below 2%, and correct deviations from
the linear relationships between reconstructed and gener-
ated moments. The corrections from Cy, decrease with the

g* threshold.
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FIG. 12. Calibration factors C,y;, applied in the calculation of the first to fourth g> moments.
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FIG. 13. Calibration factors Cye, applied in the calculation of the first to fourth g% moments.

APPENDIX D: NUMERICAL VALUES FOR THE
RAW ¢> MOMENTS

Tables 1I-V summarize the ¢g°> moments and the sys-
tematic uncertainties. The uncertainties are grouped into
uncertainties from the background subtraction and

calibration. At low ¢ thresholds the uncertainty on the
background shape limits the precision. At high ¢? thresh-
olds the uncertainties on the simulation of the Belle II
detector are the largest systematic uncertainties.
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TABLE II.  Central values and uncertainties for the measurement of {g?). All uncertainties are given as relative uncertainties in %.

g% [GeV?/c? 1.5 20 25 30 35 40 45 50 55 60 65 7.0 7.5 80 85
(¢*)[GeV?/cH 5.16 549 5.79 6.09 6.38 6.69 7.01 7.32 7.62 7.93 8.23 8.53 8.82 9.10 9.39

Calibration Calibration Curve (Statistical Uncertainty) 0.63 0.56 0.49 0.43 0.38 0.33 0.29 0.26 0.25 0.26 0.28 0.30 0.33 0.37 0.40
(MC Statistics) Bias Correction (Statistical Uncertainty) 0.10 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06

Calibration B(B — D¢v) 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.04 0.03 0.02 0.02 0.01 0.01 0.00 0.00
(X, Model) B(B — D*¢v) 0.33 0.29 0.24 0.21 0.17 0.14 0.11 0.09 0.07 0.05 0.04 0.03 0.02 0.01 0.00
B(B — D**¢v) 0.71 0.63 0.55 0.48 0.40 0.34 0.28 0.23 0.18 0.13 0.10 0.07 0.05 0.03 0.02
Non-resonant X, Dropped 0.31 0.63 0.75 0.76 0.69 0.60 0.48 0.39 0.32 0.25 0.18 0.14 0.11 0.08 0.06
Non-resonant X, Replaced w/ D, D§  0.34 0.49 0.51 0.45 0.37 0.29 0.18 0.10 0.04 0.02 0.00 0.03 0.03 0.03 0.01
B — D¢v Form Factor 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B — D*¢#v Form Factor 0.08 0.07 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03
Calibration PID Uncertainty 0.14 0.12 0.11 0.09 0.08 0.07 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01
(Reconstruction) N, Reweighted 0.30 0.27 0.24 0.22 0.20 0.18 0.16 0.14 0.14 0.13 0.13 0.12 0.11 0.10 0.10
Nyacks Reweighted 1.09 1.00 0.92 0.85 0.78 0.72 0.65 0.60 0.55 0.51 0.47 0.44 0.41 0.38 0.35
E iss — Pmiss Reweighted 0.26 0.22 0.21 0.19 0.18 0.17 0.15 0.15 0.14 0.14 0.13 0.12 0.12 0.11 0.09
Tracking Efficiency 0.13 0.12 0.11 0.10 0.09 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04
Background Spline Smooth Factor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Subtraction Background Yield and Shape 1.39 1.15 0.90 0.77 0.63 0.47 0.33 0.23 0.16 0.10 0.06 0.03 0.02 0.05 0.06
Other Nonclosure Bias 0.18 0.21 0.16 0.11 0.06 0.05 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.02
Statistical Uncertainty 0.27 0.24 0.21 0.20 0.18 0.16 0.16 0.15 0.14 0.14 0.13 0.13 0.13 0.13 0.13
Systematic Uncertainty 2.14 1.99 1.80 1.64 1.44 1.23 1.02 0.88 0.77 0.69 0.62 0.59 0.57 0.56 0.57
Total Uncertainty 2.16 2.00 1.81 1.65 1.45 1.24 1.03 0.89 0.78 0.70 0.64 0.61 0.59 0.58 0.58

TABLE III.  Central values and uncertainties for the measurement of {g*). All uncertainties are given as relative uncertainties in %.

g [GeV?/c* 1.5 20 25 30 35 40 45 50 55 60 65 70 75 80 85
{g*)[(GeV?/c*)?] 32.5535.44 38.21 41.18 44.31 47.92 51.82 55.90 60.00 64.35 68.90 73.62 78.40 83.33 88.47
Calibration Calibration Curve 096 0.85 0.75 0.67 0.58 0.50 0.44 0.41 040 042 045 049 0.54 0.59 0.64
(MC Statistics) (Statistical Uncertainty)
Bias Correction 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14
(Statistical Uncertainty)
Calibration B(B - D¢v) 0.18 0.16 0.15 0.13 0.12 0.10 0.08 0.07 0.06 0.04 0.03 0.02 0.01 0.01 0.01
(X, Model) B(B - D*¢v) 0.60 0.52 045 039 0.33 0.27 0.22 0.18 0.14 0.10 0.07 0.05 0.03 0.02 0.01
B(B - D**¢v) 1.30 1.17 1.04 091 0.79 0.67 0.56 045 0.36 0.27 0.20 0.14 0.09 0.06 0.05

Non-resonant X, Dropped 091 131 147 147 135 1.18 0.96 0.79 0.64 0.52 0.38 0.30 0.23 0.16 0.13
Non-resonant X. Replaced 0.69 0.87 0.89 0.79 0.66 0.51 0.31 0.17 0.07 0.03 0.02 0.06 0.07 0.06 0.03
w/ D}, D§

B — D¢v Form Factor 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
B — D*¢v Form Factor 0.17 0.16 0.15 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10 0.09 0.09 0.08 0.08

Calibration PID Uncertainty 0.25 0.23 0.20 0.17 0.15 0.13 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.02
(Reconstruction) N, Reweighted 0.61 0.57 0.52 0.49 0.45 0.40 036 0.33 0.32 030 0.28 0.26 0.25 0.23 0.22
Niracks Reweighted 227 211 198 1.85 1.72 1.58 146 134 1.24 1.14 1.05 0.97 0.90 0.83 0.76
Eiss — Pmiss Reweighted ~ 0.53 0.48 045 0.42 039 037 034 032 031 030 0.28 0.26 0.24 0.21 0.18
Tracking Efficiency 0.28 0.26 0.24 0.22 0.20 0.19 0.17 0.16 0.14 0.13 0.12 0.11 0.10 0.09 0.09
Background Spline Smooth Factor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Subtraction Background Yield and Shape 2.12 1.83 1.49 1.31 1.10 0.83 0.57 0.40 0.27 0.16 0.08 0.05 0.08 0.13 0.16
Other Nonclosure Bias 0.32 0.37 030 0.23 0.13 0.11 0.06 0.05 0.04 0.05 0.04 0.04 0.04 0.03 0.05
Statistical Uncertainty 0.49 0.46 0.43 040 037 035 034 033 031 031 030 029 0.29 0.29 0.29
Systematic Uncertainty 386 3.68 342 3.16 2.82 246 2.09 1.82 1.61 144 130 121 1.15 1.10 1.07
Total Uncertainty 3.89 371 345 3.18 285 248 212 1.85 1.64 147 134 125 1.19 1.14 1.11
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APPENDIX E: CORRELATION COEFFICIENTS thresholds are strongly correlated. Figure 15 shows the full
OF THE RAW MOMENTS experimental correlations taking systematic uncertainties
into account. Systematic uncertainties further increase the

The statistical correlation coefficients for the raw correlations of neighboring thresholds.

moments are shown in Fig. 14. Moments with similar g>
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FIG. 14. Statistical correlations between (g2) and (¢>") for n = 1 — 4.
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FIG. 15. Experimental correlations between (¢?) and (¢*") for n = 1 — 4.
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APPENDIX F: CORRELATION COEFFICIENTS moments of different order are shown in Fig. 16. The
OF THE CENTRAL MOMENTS central moments are less correlated, and some moments

. . . h nticorrelations.
The experimental correlation coefficients between the show anticorrelations

first raw moment and central moments and for the central
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FIG. 16. Correlations between (g?) and {(¢> — (¢*))") for n = 2 — 4 and for central moments of different order.
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