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The dark photon A’ and the dark Higgs boson A’ are hypothetical particles predicted in many dark sector
models. We search for the simultaneous production of A’ and A’ in the dark Higgsstrahlung process

et

e~ — A'NW with A’ - u*u~ and ' invisible in electron-positron collisions at a center-of-mass energy of

10.58 GeV in data collected by the Belle II experiment in 2019. With an integrated luminosity of 8.34 tb~!,
we observe no evidence for signal. We obtain exclusion limits at 90% Bayesian credibility in the range of
1.7-5.0 fb on the cross section and in the range of 1.7 x 1078200 x 1078 on the effective coupling > x aj,
for the A’ mass in the range of 4.0 GeV/c* < My < 9.7 GeV/c? and for the /' mass M;, < M/, where ¢
is the mixing strength between the standard model and the dark photon and @ is the coupling of the dark
photon to the dark Higgs boson. Our limits are the first in this mass range.

DOI: 10.1103/PhysRevLett.130.071804

Several astrophysical observations in the last decades
suggest the existence of a large quantity of dark matter in
the universe coupled with ordinary matter, at least through
gravitational interactions. In recent years, theoretical mod-
els (commonly called dark sector models) with light
particles mediating new interactions have gained consid-
erable attention as solutions to the long-standing problem
of reproducing the observed relic density of dark matter.
A well-motivated model predicts the existence of an addi-
tional massive vector gauge boson, a dark photon A’,
coupled to the standard model (SM) only through its
kinetic mixing e with the hypercharge field [1-10]. In this
model, dark matter particles can annihilate to SM particles,
and vice versa, through the exchange of dark photons: this
process contributes to the relic density of dark matter so as
to match the observed value. The mass of the A’ can arise
from spontaneous symmetry breaking, which introduces a
new scalar particle: a dark Higgs boson /' [11]. Several
searches for the A’ have set upper limits on ¢ [12-24]; they
depend on the mass of the dark photon and are typically of
the order €2 <5 x 1077 for masses below 10.6 GeV/c?.

In this Letter, we search for the so-called dark
Higgsstrahlung process ete™ — A’ using data collected
by the Belle II experiment at the SuperKEKB collider. We
consider the minimal secluded model of Ref. [11] in which
either the dark Higgs boson does not mix with the SM
Higgs boson or its mixing can be neglected and any
additional particles (in particular, dark matter candidates)
are heavier than both A" and A'. The cross section for dark
Higgsstrahlung is proportional to € x a,, where aj, is the
coupling constant of the secluded model [11]. Two scenar-
ios exist, differentiated by the hierarchy of the masses M 4/
and M. If M,y > M 4, then the /' decays dominantly to an
A’A'™) pair (where A'*) can be virtual), which is a final
state searched for by the BABAR [25] and Belle [26]
experiments. If M, < M/, then the i’ is long lived and
invisible because it does not interact with the detector

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

material. We focus on the latter scenario, which was
previously investigated by KLOE-2 [27] but in a much
smaller mass range than is accessible to Belle II. Our search
is limited to the decay of the A’ into a muon pair.

The dark Higgsstrahlung process studied here produces a
pair of oppositely charged muons with a mass M,,
distributed around M, and a recoil against them with a
mass M ..o that, in the absence of radiated photons, is
distributed around M, . In the following, recoil quantities
are computed against the dimuon system. The accessible
search region is the mass plane M. ;—M,,: it has a
triangular shape, limited by the conditions M ..,;; < M iy
(corresponding to M, < M) and Myeon + M, < +/s/c”,
resulting from energy conservation. Our analysis uses
events with exactly two tracks, identified as muons, and
negligible extra energy. The backgrounds are SM processes
that produce final states with two tracks identified as muons
and missing energy. These are dominantly ete™ —
utu(y) with typically one or more photons undetected
due to inefficiency or limited acceptance; e™e™ — 777 (y)
with both 7 leptons decaying to muons and neutrinos; and
ete™ — eTe uTu~ with electrons outside acceptance. We
search for the signal as a narrow enhancement in the two-
dimensional My, ;-M;, distribution. We scan the search
region for local excesses above the expected background
with a counting technique that uses a set of two-dimen-
sional M2, ,—M?, overlapping windows. Event selection is
optimized using simulated events prior to examining data.

The Belle II detector [28] operates at the SuperKEKB
electron-positron e™e~ collider [29], located at KEK in
Tsukuba, Japan. The beam energies are 7 GeV for ¢~ and
4 GeV for e, resulting in a boost of fy = 0.28 of the
center-of-mass (c.m.) frame relative to the laboratory
frame. Data used in this analysis were collected in
2019 at a c.m. energy /s corresponding to the mass of
the Y(4S) resonance for an integrated luminosity of
8.34 £0.08 fb~! (see Ref. [30] for the description of the
luminosity measurement technique).

The Belle II detector consists of several subdetectors
arranged around the beam pipe in a cylindrical structure.
Subdetectors relevant for this analysis are briefly described
here in the order of innermost out; a description of the
full detector is given in Refs. [28,31]. The innermost
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subdetector is the vertex detector, which consists of two
inner layers of silicon pixels and four outer layers of silicon
strips. The second pixel layer was only partially installed
for the data sample we analyze, covering only one sixth of
the azimuthal angle. The main tracking subdetector is a
large helium-based small cell drift chamber (CDC). The
relative charged-particle transverse momentum resolution
is typically 0.1% py @ 0.3%, with p; expressed in GeV/c.
An electromagnetic calorimeter (ECL) consists of a barrel
and two end caps made of CsI(Tl) crystals. A super-
conducting solenoid, situated outside of the calorimeter,
provides a 1.5 T magnetic field. A K? and muon sub-
detector (KLM) is made of iron plates, which serve as a
magnetic flux-return yoke, alternated with resistive-plate
chambers and plastic scintillators in the barrel as well as
with plastic scintillators only in the end caps. The longi-
tudinal direction, the transverse plane, and the polar angle 6
are defined with respect to the detector’s solenoidal axis in
the direction of the electron beam. In the following,
quantities are defined in the laboratory frame unless
specified otherwise.

The identification of muons uses criteria that rely mostly
on track penetration in the KLM for momenta larger than
0.7 GeV/c and on information from the CDC and ECL
otherwise. Electrons are identified mostly by comparing
measured momenta in the CDC with energies of the
associated ECL clusters. Photons are identified as ECL
clusters with energies greater than 100 MeV that are not
associated with tracks. Details of the particle reconstruction
and identification algorithms are in Refs. [31-33].

Simulated signal events are generated using
MadGraphb5 [34] with and without initial-state radiation
(ISR) for A’ masses ranging from 0.21 to 10.45 GeV/c?
and 7’ masses ranging from 0.01 GeV/c? to the minimum
of (M, \/s/c* — My in variable steps that follow the
mass resolutions. The resolution on M, ranges between 3
and 50 MeV/c?, with an average value of 25 MeV/c?. The
resolution on M, ranges between 30 and 900 MeV/c?,
with an asymmetric distribution peaking at 100 MeV /c?.
We generate samples of 10 000 events for each of the 9003
pairs of M, and M.

The considered background processes are simulated
using the specified generators: u*u~(y) with KKMC [35];
777 (y) with KKMC interfaced with TAUOLA [36];
ete utu~ and eTeeTe” with AAFH [37]; eTe nta”
with TREPS [38]; #7 7~ (y) with PHOKHARA [39]; eTe™ (y)
with BabaYaga@NLO [40]; bb with EvtGen [41]; ¢g
(@ = u, d, s, c) with KKMC interfaced with PYTHIAS [42]
and EvtGen; J/yy, w(2S)y with J/w,w(2S) - putpu~
with PHOKHARA; and p*u~vr with KoralW [43]. Only
utu=(y), 777 (y), and e* et pu~ actually contribute to the
background, with the others being negligible.

The detector geometry and interactions of final-state
particles with detector materials are simulated using
GEANT4 [44] and the BELLE II ANALYSIS SOFTWARE

FRAMEWORK (basf2) [45]. Both real data and simulated
events are reconstructed and analyzed using basf2.

The search uses an online event selection (trigger) that
requires at least one pair of tracks in a restricted polar angle
acceptance, 6 € [37,120]°, with an azimuthal opening
angle A¢ larger than 90° and rejects events consistent with
Bhabha scattering through a dedicated veto based on the
pattern of energy depositions in the ECL. The efficiency of
this trigger for A¢ > 90° is 89%, measured in u*u(y)
events. The trigger requirement on the opening angle leads
to large signal inefficiencies for M, < 4 GeV/c?.

To suppress misreconstructed and beam-induced back-
ground tracks, we require that the transverse and longi-
tudinal projections of their distances of closest approach to
the interaction point be smaller than 0.5 and 2.0 cm,
respectively. We require that events have exactly two
oppositely charged particles, identified as muons, with
polar angles 6 € [37, 120]° and with A¢ larger than 90° to
match the trigger requirements. In addition, the energy of
each ECL cluster associated with a muon track must be
below 1.5 GeV to suppress background events from muon
pairs, with final-state radiation and unresolved photons
close to the muons. We require that the recoil momentum
point into the ECL barrel, 6 € [32, 125]°, to exclude regions
where photons from radiative backgrounds can escape
undetected. This selection also increases the signal-to-
background ratio by suppressing p*u~(y) and eTe " utu"
processes that, unlike the signal, have recoil momenta
dominantly in the forward direction. To reduce radiative
muon-pair backgrounds, we require that the total energy of
all photons be less than 0.4 GeV and no photon be within
15° of the recoil momentum. To suppress background
events from p"u~(y) and eTe~p" ™ processes, we require
that the transverse c.m. frame momentum of the muon pair
be greater than 0.1 GeV/c.

We count events in 9003 partially overlapping regions
(search windows) of the two-dimensional space of squared
dimuon and recoil masses, which span the M ..ii—M,
search plane. We search for signal by comparing the
observed yields with expectations from known back-
grounds. The squared dimuon and recoil masses are
negatively correlated in signal events and, to a lesser
extent, in background events, with the correlation varying
across the plane. Initial-state radiation partially spoils this
correlation because it affects the M., distribution only.
The search window boundaries are chosen as ellipses in the
ML . —M;, plane that take the local correlation into
account. Each window is centered at one of the values
of (M%,, M?,) used to produce a simulated dataset. We fit a
sum of two two-dimensional Gaussian distributions that
share a common mean and correlation to simulated data
without ISR. The elliptical search window boundaries
correspond to the two-dimensional two-standard-deviation
contours resulting from the fit. Search windows partially
overlap to maximize signal efficiency, with an overlap in
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area typically around 75%. The average fraction of signal
events retained in a search window is 71%, with variations
due to the different effects induced by ISR depending on
My, and M. Accounting for correlation in defining the
window increases the signal-to-background ratio by a
factor of three to five.

A final selection is based on the helicity angle #, defined
as the angle in the dimuon rest frame between the
momentum direction of the c.m. system and the momentum
direction of the u~. The 7 distribution for the signal is that
of a massive vector particle decaying into two fermions. For
an unpolarized A’, the distribution of C, = |cosy| is
uniform. In background events, C, peaks at one because
the muons come either from independent decays, as in
7777 (y), or from physics processes of a different nature, as
in utu~(y) and e"e” ' u~. We exclude high values of C,,
typically larger than 0.9, by maximizing the figure of merit
of Ref. [46] in each search window.

The resulting signal efficiency depends on the masses of
the A’ and /' and ranges between 10 and 25% for
M, > 4 GeV/c?. The efficiency drops considerably for
M, < 4 GeV/c? and becomes too low to allow analysis
for My < 1.65 GeV/c*. We restrict our analysis to the
range M, > 1.65 GeV/c?. Backgrounds are typically
reduced by factors of 10-1000. The surviving background
events come 78.5% from u*u~(y), 18.5% from 7777 (y),
and 3% from ete utu~: they dominantly populate the
regions of the search plane close to the kinematical limit
Mecon + My, = V/s/c?, where the C, selection is less
effective and u"p~(y) contributes more, leaving most of
the mass plane almost background free.

The distribution of the observed event counts in the
search windows is shown in Fig. 1. Because of overlap,
events can be counted in multiple search windows: this
correlation creates groups of isolated, sparsely populated
windows. A total of 28 985 events pass all the selection
criteria, which is in agreement with the expectation from
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FIG. 1. Observed event counts inside the search windows after
all selection criteria. Points correspond to search window centers.
Search window boundaries are not shown.

simulation of 28486 4 331. The sum of the event counts
inside all mass windows is 78 740. On average, each event
is contained in 2.7 search windows.

We search for an excess of signal above the expected
background independently in the 9003 search windows.
Event counts N in a search window are interpreted
according to the relation N = ¢, X L X 6 + B, where o
is the cross section for the dark Higgsstrahlung process
ete” —» AW with A’ > pp~ and b’ invisible, L = [ Ldt
is the integrated luminosity, and ey, and B are the signal
efficiency and the expected background inside the window.
Both ¢, and B are determined from simulation and are
subject to systematic uncertainties.

Several sources of systematic uncertainties affecting the
signal efficiency and the background estimate are taken into
account. They are studied by comparing the data and
simulation on two control samples that emulate the two
main background processes uu~(y) and 7777 (y) and on
the search up~ sample. The uuy control sample contains
events that pass all selection criteria except for the veto on
the presence of photons, which is replaced by a requirement
that a photon with energy greater than 1 GeV be recon-
structed in the barrel of the ECL. This sample is dominantly
composed of ptu~(y) events. The eu control sample
contains events passing all the selection criteria but with
an identified electron replacing an identified muon. This
sample is almost entirely composed of 7777 (y) events. We
split the mass plane into six non-overlapping macroregions,
with each dominantly populated by a single background
source. Events are counted in the data and simulation for
each macroregion and their discrepancies used to evaluate
systematic uncertainties. When using the search pu*yu~
sample, a region ten times larger than the search window
under study is excluded from the counting to avoid that the
presence of a signal may bias the result.

Uncertainties affecting the background due to the trigger,
luminosity, tracking efficiency, muon identification, cross
sections, and the selection criteria are collectively evaluated
through the macroregion studies before applying the C,
selection. Over most of the mass plane, discrepancies
between the data and simulation, for both the control
and the search p"u~ samples, are of the order of 2%,
which are treated as relative systematic uncertainties. In a
small region, where M, > 9 GeV/c?, the search u*yu~
sample data yields are 9.1% lower than the simulation
yields. In this region, there are also discrepancies between
the data and simulation in the shapes of mass distributions
that lead to an additional relative systematic uncertainty of
9.3%: we sum it quadratically with the 9.1% normalization
uncertainty. We assume the 2 and 9.1% uncertainties
also hold for the signal efficiency below and above
My =9 GeV/c?, respectively.

Uncertainties affecting the background due to the C,
selection are evaluated by comparing the data and simu-
lation. The numbers of observed and expected events for
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both the control and the search y*u~ samples agree within
1%, which we use as a relative systematic uncertainty due
to this source. We evaluate the contribution due to this
effect on the signal efficiency to be negligible.

We also include systematic uncertainties due to discrep-
ancies in the dimuon and recoil mass resolutions in data and
simulation. A modified ppy control sample is used to check
the mass distributions in the region of the J/y resonance:
the requirement on the opening angle A is released and an
ECL-only trigger is used, which is allowed by the presence
of the photon. This trigger requires that the total energy
deposition in the barrel and in the forward end cap exceed
1 GeV. The search yp~ sample is also used to check the
mass distributions in the region where the dimuon mass is
close to /s/c?. We find differences between the data and
simulation in the dimuon and recoil mass resolutions of no
more than 10%. Their effects on the relative signal
efficiency range between 1 and 5%, depending on the
masses, with an average of 2.4%.

We evaluate a systematic uncertainty on the signal
efficiency due to M 4 and M, not coinciding with a window
center by recalculating the efficiency with the two mass
values randomly varied to points near the window center.
The signal efficiency varies 2% on average and no more than
5%, which we assign as a relative systematic uncertainty.

Finally, a relative systematic uncertainty of 4% on the
theoretical prediction of the A’ decay branching fraction
to muons is used when interpreting results in terms of
the coupling product &> x ap. This uncertainty comes
dominantly from uncertainties on the measured ratio of
cross sections for the production of hadrons or muons in
ete™ collisions, which enter in the A’ width theoretical
calculation [11].

The average total relative systematic uncertainties are 2.2
and 5.4% on the background and signal efficiencies,
respectively. They rise up to 12.7 and 11.3% in the region
My >9 GeV/c%

We search for excesses in data in each window separately
with both a Bayesian technique based on Bayes factors [47]
and a frequentist technique based on significances from
one-sided Gaussian integral transformation of p values.
Background expectations and signal efficiencies are
assumed from the simulation. Systematic uncertainties are
taken into account as correlated Gaussian smearings of
background expectations and signal efficiencies, with
widths equal to the estimated uncertainties. We choose
thresholds of 80 for the Bayes factor and of 3.5¢ for the
significance before inspecting the data: they are larger than
normally used because we expect a relevant look-elsewhere
effect [48,49] due to the high number of search windows.
We find only one case of a local significance above the
threshold: 3.7, which also corresponds to the highest Bayes
factor of 45.6. It is in the search window centered at M, =
544 GeV/c?> and M,y = 3.18 GeV/c?. Taking into
account the look-elsewhere effect, this excess has a global
significance below 1o, showing no evidence for signal.
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FIG. 2. Observed 90% CL upper limit on the cross section of
ete” — A'W with A’ — u" ™ and A’ invisible as a function of the
A" and I/ masses. Values are computed at search window centers
and then interpolated to points of the search plane.

We compute upper limits (UL) at a 90% Bayesian
credibility level (CL) on the cross section for the dark
Higgsstrahlung process ete™ — A’h with A’ — Ty~ and
I invisible as a function of M 4 and M, using the BAYESIAN
ANALYSIS TOOLKIT software package [50]. We assume
uniform priors for all positive values of the cross section,
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FIG. 3. Observed 90% CL upper limits on &> x &, (top) as

functions of M, for four values of M, and (bottom) as functions
of M, for four values of M.
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Poissonian likelihoods for the number of observed and
simulated events, and Gaussian smearing to model system-
atic uncertainties, accounting for their correlations. The
result is shown in Fig. 2.

We translate the cross section result into 90% CL upper
limits on &> x ap. These limits are shown in Fig. 3 as
functions of M, for four different values of M, and as
functions of M, for four different values of M 4.

Our results are dominated by their statistical uncertain-
ties. In most of the search plane, systematic uncertainties
degrade the upper limits by less than 1%. Only in the small
region where M, > 9 GeV/c? are systematic uncertainties
significant, worsening the upper limits by 25%. We test for
prior dependence of the results by using logarithmic priors
for the cross section and find differences smaller than 3%.
Additional plots and detailed numerical results are provided
in the Supplemental Material [51].

In summary, we search for the dark Higgsstrahlung
process ete™ — A’W with A’ — up~ and /' invisible in a
data sample of electron-positron collisions at 10.58 GeV
collected by Belle II at SuperKEKB in 2019, corresponding
to an integrated luminosity of 8.34 fb~!. We find no
significant excess above the expected background and
set upper limits on the cross section and coupling
€2 x ap for M, between 1.65 and 10.51 GeV/c? and
M, < M. Our limits are the first in this mass range. The
excluded region is much larger than that previously covered
by other experiments [27]. Our 90% CL upper limits
range between 1.7 and 5.0 fb for the cross section and
between 1.7 x 1078 and 200 x 10~® for the coupling for
4.0 GeV/c> <My <9.7 GeV/c* and M, < M. For
specific values of ap and assuming the existence of a
light invisible dark Higgs, our results can be interpreted as
upper limits on €2 and compared with limits obtained by
other experiments. With ap = 1, our constraints would
improve on previous searches [22] across almost the full
mass range. For ap = 0.1, this conclusion would still hold
in a substantial part of the mass range. These results can be
interpreted in a wider class of models compared to that of
Ref. [11], for example, those with a long-lived invisible 4’
that mixes with the SM Higgs boson [52,53].
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