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On 11 November 2019, the first 
known case of the novel 
coronavirus, SARS-CoV-2 
(COVID-19), was reported.1 On 

14 January 2020, the World Health Orga-
nization warned that the fast-spread-
ing virus could become cross-na-
tional.2 By March 2020, COVID-19 had 
spread across the globe, and the disease 
was officially considered a pandemic.3 
Since then, countries implemented 
lockdown policies intended to limit 
mobility (the amount of a population 
that is in a public space) and the forma-
tion of human clusters, both of which 
contribute to the spread of the disease  
in epidemiology models.

UNDERSTANDING THE 
REACTIONS TO LOCKDOWN 
POLICIES 
Understanding people’s responses to 
lockdown policies is important for 
evaluating the effectiveness of the 
policy and making adjustments. How-
ever, gathering meaningful data about 
people’s mobility over time is chal-
lenging. Any form of in-person obser-
vation would risk infection of the 
observers, introduce observation bias, 
and generally be infeasible to sustain 
consistently for a long time period.

The current automated solutions 
for gathering data describing mobility 
are limited in the following ways. First, 
automated attempts to quantify mobil-
ity as it relates to public activity started 
on a large scale only in 2020. While 
the COVID-19 pandemic has spurred 
advancements in mobility research, 
current data collection methods are 
usually based on voluntary opt-in via 
mobile phone networks. These meth-
ods introduce collection bias and limit 
the ability to generalize to the entire 
population. Second, tracking mobile 
phone users raises questions about 

privacy. Third, the evaluation method 
should consider the responses of the 
general public, not specific individuals 
of mobile phone users.

This article presents a method to 
observe mobility over time at a global 
scale using computer vision applied to 
the data captured by network cameras. 
Through the camera discovery method 
previously developed by this team,4 we 
discover 30,254 existing public network 
cameras. The list of cameras is reduced 
to 17,795 by applying an image scene 
archetype classifier to exclude data 
from cameras unlikely to see people or 
vehicles. The list is further reduced to 
3,469 cameras from five countries (Aus-
tralia, Austria, France, Germany, and 
Italy) and three U.S. states (Georgia, 
Oregon, and Hawaii) with distinct lock-
down policies. The analysis method 
detects people and vehicles from 1 April 
2020 to 8 March 2021 (334 days).

This study counts the number of 
people and vehicles in nearly six million 
images. The analysis is able to observe 
meaningful mobility trends and relative 
mobility levels with a resolution down 
to a single day. The observed mobility 
trends reflect specific policy changes in 
each region. This article compares these 
trends of mobility in relation to the 
Oxford Stringency Index5; this index 
measures governments’ responses 
to COVID-19. The observed mobility 
trends demonstrate that this method 
has the potential for understanding 
how people will respond to policies in 
future pandemics.

RELATED WORK
Before the COVID-19 pandemic, there 
were few methods for the quantifica-
tion of mobility. Since then, efforts 
have been made to quantify mobility 
using mobile phone data. Google6 col-
lects data from smartphone users who 

have opted into sharing their location 
history and aggregates those data into 
“movement trends over time.” Apple7 
reports mobility through the number 
of Apple Maps requests for directions 
made in a given geographical region, 
categorizing requests into three cate-
gories of walking, driving, and using 
public transit. Both reports anonymize 
the data they collect. 

A web application8 allows users to 
compare data from Apple’s Mobility 
Trends Reports, confirmed numbers 
of COVID-19 cases, and government 
response policies for a particular coun-
try or U.S. state or county. Pedestron9 is 
a popular repository for person detec-
tion for counting the number of people 
in images. Computer vision can clas-
sify images into archetypes. CSAIL-
Places36510 is an image data set with 365 
scene categories, such as highway, cross-
walk, and restaurant. CrowdHuman11 is 
a data set and can be used to train neu-
ral network models (such as Cascade 
R-CNN12,13) to count the number of peo-
ple in an image. The MS COCO data set14 
contains different types of vehicles, such 
as cars, trucks, motorcycles, and buses.

HOW WE OBSERVE  
MOBILITY
This article uses the visual data 
(images and video) from network 
cameras to observe human mobility 
over time. The mobility is measured 
by the number of people or vehicles 
in public locations. Figure 1 shows 
three examples of network cameras. 
Network cameras capture visual data 
and transmit the data over the Inter-
net. This study uses only public data; 
the data are available to anyone that 
is connected to the Internet, without 
any password protection. This study 
discovers network cameras worldwide 
and then selects the cameras that are 
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FIGURE 1. Three snapshots captured on different days from three locations. We counted the people in each image by hand and found 
33, 85, and 70 people in each image, respectively. Pedestron found 31, 84, and 68 people, respectively. The right images show cor-
rectly detected bounding boxes containing people (green), false positives (red), and false negatives (blue). (a) Aydat, France, 11 August 
2020. (Source: www.meteosurfcanarias.com.) (b) Kerns, Switzerland, 29 December 2020. (Source: Snoweye.com.) (c) Žatec, Czech 
Republic, 15 May 2020. (Source: webcam.mesto-zatec.cz.)

(a)

(b)

(c)
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likely to see humans or vehicles. This 
study captures data regularly from 
these selected cameras between April 
2020 and March 2021. The numbers 
of humans and vehicles are compared 
over time as well as the Oxford Strin-
gency. This analysis suggests that the 
visual data can be an effective method 
for quantifying people’s responses to 
the lockdown policies. Figure 2 shows 
the flow of this study.

Discover and select 
network cameras
The first step of this study is to discover 
network cameras. Many organizations 
(such as departments of transporta-
tion and national parks) and individu-
als deploy network cameras and make 
the data available on the Internet.15 
This team has created an Internet 
crawler that can discover visual data4; 
this crawler captures multiple snap-
shots from each camera to determine 
whether the visual data change over 
time. This method discovers 30,254 
cameras deployed in different parts of 
the world; three examples are shown 

in Figure 1. Between April 2020 and 
March 2021, five snapshots were taken 
per day from each camera to estimate 
the number of people and vehicles. The 
locations of the cameras can be deter-
mined using several methods. Many 
cameras are deployed by departments 
of transportation, and the locations 
are marked by the owners. This study 
further validates the locations using 
Google Street View/Google Earth data 
found at the latitude and longitude 
reported by the camera (see Figure 3).

Some of the discovered cameras do 
not provide insightful data for observ-
ing mobility trends. For instance, 
some cameras see mountains and can-
not see people or vehicles. Some other 
cameras have very low refresh rates. 
Due to the large number of discovered 
cameras, this study uses automated 
methods to select the discovered cam-
eras. The first step is to eliminate the 
cameras whose data do not refresh 
frequently. This study captures five 
snapshots from each camera per day; 
thus, this step keeps only the 23,291 
cameras that refresh at least five times 

per day. The second step uses the Wide 
Resnet18 model trained on the CSAIL-
Places365 data set to determine the 
scene archetypes of the cameras and 
selects the scenes that likely observe 
people or vehicles, such as “park,” 
“crosswalk,” “highway,” or “road.” This 
process keeps 17,795 cameras, includ-
ing 2,077 for observing people, 13,808 
for observing vehicles, and 1,910 for 
both. The third step considers the 
regions where lockdown policies have 
been announced and adjusted over 
time and identifies the regions with 
multiple cameras. Finally, 3,469 cam-
eras are selected for this study.

Localize network cameras
To correlate the mobility trends observed 
from network cameras and the lock-
down policies, knowing the cameras’ 
locations is essential. Several meth-
ods are used to determine the cameras’ 
locations. Many camera owners set up 
the cameras with location information. 
The information may be longitude/lat-
itude, street intersections, marks on 
highways, or tourist attractions. This 

FIGURE 2. The workflow of the method presented in this article. The first step is to discover network cameras on the Internet. Some 
discovered cameras are discarded because they provide no meaningful data for quantifying human mobility (defined as seeing people 
or vehicles). Then, the numbers of observed people and vehicles are counted at the specific locations and time. 
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study validates the cameras’ geograph-
ical locations using Google Earth and 
Google Street View where available. The 
study selects 100 cameras to validate 
the reported locations. Figure 3 shows 
an example. Figure 3(a) is an image 
from one discovered network camera; 
Figure 3(b) shows the image obtained 
from a Google Street View at the cam-
era’s reported location of (40.7514, 
−73.9934). The green circles indicate 
the displays seen in both images.

Collect and analyze data
From April 2020 to March 2021, this 
study uses cron in Linux running on 
a computer cluster with large-scale 
storage (in petabytes) for retrieving 
five images per camera each day, sav-
ing, and analyzing the data. Pedes-
tron is used to count people; vehicles 
are detected using YOLOv3. Nearly six 
million images (five images/camera-day ×  
3,469 cameras × 334 days = 5,793,230, 
2.56 TB portable network graphics 
files) are analyzed. Due to the volume 
of the data, it is not possible to check 
the correctness of every image in the 
same way as Figure 1. If a person spent 

1 min counting people or vehicles in 
each image, this person would spend 
11 years. This is obviously impractical. 
Instead, this study uses 1,000 images as 
a validation data set to select the tuning 
parameters and to quantify the accu-
racy of the computer vision methods. 
These images are labeled manually with 
the correct counts; Figure 4 shows three 
examples in the validation data set.

Figure 5 shows the object detection 
F1 score (the metric we use to evalu-
ate object detection model accuracy) 
with different confidence thresholds. 
When the threshold is low, too many 
false positives are detected. When the 
threshold is high, too many false neg-
atives are neglected. The figure shows 
that 0.2 is a good value for both people 
and vehicle detection.

ANALYSIS OF  
MOBILITY TRENDS
This section presents the observed 
changes in mobility in five coun-
tries (Austria, Australia, France, Ger-
many, and Italy) and three U.S. states 
(Hawaii, Georgia, and Oregon). These 
regions are selected because 1) they 

have specific policies, and these pol-
icies changed over time, and 2) suffi-
cient numbers of cameras were dis-
covered to observe different locations 
in each region. For the United States, 
different states have different policies, 
and they changed at different times.

Figure 6 summarizes the observed 
mobility changes. Each region is repre-
sented by three curves: the seven-day 
average of 1) the number of people, 
2) the number of vehicles, and 3) the 
leniency of mobility restrictions. The 
third curve is obtained by taking the 
Oxford Stringency Index (a larger 
value means more restrictions) from 
each region and subtracting from the 
maximum possible stringency value (a 
larger value means fewer restrictions). 
Since our analysis is region wide, we do 
not include policies that are labeled as 
“targeted policies,” which are policies 
targeting a subregion. This is referred 
to as the leniency index in this article. 
The markers in the figure indicate sig-
nificant dates relating to the policy 
changes. These regions gradually lifted 
restrictions in the summer of 2020, 
indicated by the gradual rising of the 

FIGURE 3. Validating a camera’s location. (a) A snapshot from a discovered network camera. (b) Google Street View near the camera’s 
reported location. (a) and (b) New York City, NY, USA, 1 August 2020. (Source: http://207.251.86.238/cctv19.jpg.)

(a) (b)
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indexes. The figure shows close correla-
tions between the people and vehicle 
counts and the leniency index. When 
a region’s policy changed (indicated by 

the leniency index), the mobility rose 
and declined accordingly.

The figure shows a dichotomy; 
the mobility in the first four regions 

(France, Germany, Austria, and Italy) 
follows the index closely, but the other 
four regions (Australia, Hawaii, Geor-
gia, and Oregon) do not show similar 
correlations. This can be explained by 
the different degrees of restrictions. The 
first four regions had extensive lock-
downs, practically shutting down all 
businesses. The other four regions were 
less restrictive, resulting in much flatter 
leniency curves. The first four regions 
show noticeable changes in mobility, 
but the other four regions do not show 
similar patterns. Australia and Hawaii 
are two unique cases; they imposed 
travel restrictions for visitors, while 
the residents enjoyed relatively high 
degrees of freedom. There are small 
gaps in the data arising from supercom-
puter maintenance and rare occasions 
where jobs were not scheduled for up to 
one day. The missing data do not affect 
the observed trends.

To quantify the correlations between 
the people and vehicle counts and leni-
ency index, we performed two Pear-
son correlation tests for each region: 

FIGURE 4. (a)–(c) Three examples of images labeled by hand for our validation data set. Blue bounding boxes denote people, and red 
bounding boxes denote vehicles. (a) Dublin, Ireland, 8 June 2020. (Source: www.earthcam.com.) (b) Washington State, USA, 22 June 
2020. (Source: dev.whidbeytel.com/cams/clinton/.) (c) Krakow, Poland, 23 June 2020. (Source: imageserver.webcamera.pl.)

(a) (b) (c)

FIGURE 5. An F1 score plot for YOLOv3 (blue) and Pedestron (red) expressing how the 
F1 score on our validation data set varied when different values for the confidence  
hyperparameter were applied.
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FIGURE 6. The observed mobility and the leniency index. The blue curves represent the observed counts of people; the red curves are 
the observed numbers of vehicles; and the green curves represent the restrictions (higher values mean fewer restrictions). Key policy 
dates are marked. The bold L represents a hard region-wide lockdown, the bold C represents government mandated closing of business 
or schools, and the bold O represents reopening, followed by higher values of the leniency index.
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people detections versus the leniency  
index and vehicle detections versus 
the leniency index. The regions that 
exhibited strong positive correla-
tion between observed mobility and 
the leniency index are France (peo-
ple versus leniency = 0.5589, vehi-
cles versus leniency = 0.7949); 
Germany (0.8140, 0.5328) (see also 
Figure 7); Austria (0.5106, 0.67); and 
Italy (0.5796, 0.6365). The regions that 
exhibited relatively weak correlation 
are Australia (−0.004, 0.2404); Hawaii 
(0.0236, −0.06); Georgia (−0.7516, 
0.3966); and Oregon (−0.4348, 0.0469). 
Regions that exhibited a strong positive 

correlation all had both Pearson coef-
ficients (for people and vehicle versus 
leniency) average greater than +0.5, 
while the weakly correlated regions all 
had both Pearson coefficients average 
between −0.25 and +0.25. 

When examining the policies of 
these two groups, we can see that the 
aforementioned dichotomy is rein-
forced by the raw numbers as well. The 
regions with high levels of correlation 
between observed mobility and leni-
ency all have a policy timeline char-
acterized by hard “stay at home” lock-
downs, most lasting multiple months. 
The policies of the regions with lower 

levels of correlation had consider-
ably fewer, shorter lockdowns, largely 
favoring selective school and business 
closings instead.

It is important to note that discrep-
ancies between the Pearson correla-
tions of these two groups could be due 
to a variety of reasons, for example, dif-
fering camera distribution relative to 
population density, variations in cam-
era resolution, and sporadic policies. 
These examples illustrate why a causal 
link cannot be established between 
policy changes and the current results. 
Nevertheless, the results demonstrate 
the real potential for computer vision 
methods on network camera data to 
provide a quantitative, meaningful, 
and coherent component for reasoning 
about the nuanced issue of observed 
human activities during pandemics. 
This method may be useful to epide-
miologists modeling behaviors, poli-
cymakers improving future policies, 
and scientists conducting mobility 
research of any kind.

We acknowledge that this study 
has some limitations. First, the obser-
vation present s cor relat ion s, not 
cau sat ion. Even though it wou ld 
be convenient to claim that people 
responded to changes of policies, 
the reality can be far more com-
plex. One noticeable factor is that 
in summer 2020, many places in 
the United States had protests for 
racial equality, and the large crowds 
were observed in the collected data. 
Second, this study aggregates dif-
ferent types of locations and does 
not consider seasonal factors. It is 
noticed that Austria has signifi-
cantly high mobility at the begin-
ning of 2021. A closer inspection dis-
covers that many network cameras 
were deployed by ski resorts and thus  
showed many skiers.

FIGURE 7. An example of a scatterplot of our data (Germany). The three groups of dates 
are divided by the large lockdown changes in Germany (the same as the graph markings 
in Figure 6). The scatterplot reveals three distinct clusters in the data that align with the 
date groups.
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This study counts the numbers 
of people and vehicles and does not 
identify any individuals (for example, 
it does not recognize faces or license 
plates). The images used in this study 
do not have enough pixels for iden-
tification (please see Figures 1 and 
4 as examples). This study has been 
approved by the Institutional Review 
Board of Purdue University.

This article presents a method 
using computer vision to quan-
tify mobility during the COVID-19  

pandemic. This study counts the num-
ber of people and vehicles using data 
from public network cameras across 
five countries and three U.S. states. 
The method produces mobility trends 
that agree with the timeline of pol-
icy changes. In the future, analyzing 
visual data could be used to corrobo-
rate other mobilization sources (such 
as cell phone mobilization data sets and 
public policy data sets) and could be 
used as evidence to craft effective pol-
icy in any future events.

At the time of writing, there is 
every reason to believe that this will 
not be the last pandemic as contagious 

variants continue to spread across the 
world. The future will likely have even 
greater network camera coverage as 
deployments continue apace through-
out the world, especially in major 
urban areas. The techniques presented 
here show a strong potential for aid-
ing in the observation and analysis of 
human response to future pandemics, 
and at a minimum, there is a strong 
case to include computer vision in the 
toolbox for future public health and 
policy purposes. 
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