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n 11 November 2019, the first

known case of the novel

coronavirus, SARS-CoV-2

(COVID-19), was reported.! On
14 January 2020, the World Health Orga-
nization warned that the fast-spread-
ing virus could become cross-na-
tional.2 By March 2020, COVID-19 had
spread across the globe, and the disease
was officially considered a pandemic.>
Since then, countries implemented
lockdown policies intended to limit
mobility (the amount of a population
thatisinapublic space)and the forma-
tion of human clusters, both of which
contribute to the spread of the disease
in epidemiology models.

UNDERSTANDING THE
REACTIONS TO LOCKDOWN
POLICIES
Understanding people’s responses to
lockdown policies is important for
evaluating the effectiveness of the
policy and making adjustments. How-
ever, gathering meaningful data about
people’s mobility over time is chal-
lenging. Any form of in-person obser-
vation would risk infection of the
observers, introduce observation bias,
and generally be infeasible to sustain
consistently for along time period.
The current automated solutions
for gathering data describing mobility
are limited in the following ways. First,
automated attempts to quantify mobil-
ity as it relates to public activity started
on a large scale only in 2020. While
the COVID-19 pandemic has spurred
advancements in mobility research,
current data collection methods are
usually based on voluntary opt-in via
mobile phone networks. These meth-
ods introduce collection bias and limit
the ability to generalize to the entire
population. Second, tracking mobile
phone users raises questions about

privacy. Third, the evaluation method
should consider the responses of the
general public, not specific individuals
of mobile phone users.

This article presents a method to
observe mobility over time at a global
scale using computer vision applied to
the data captured by network cameras.
Through the camera discovery method
previously developed by this team,* we
discover 30,254 existing public network
cameras. The list of cameras is reduced
to 17,795 by applying an image scene
archetype classifier to exclude data
from cameras unlikely to see people or
vehicles. The list is further reduced to
3,469 cameras from five countries (Aus-
tralia, Austria, France, Germany, and
Italy) and three U.S. states (Georgia,
Oregon, and Hawaii) with distinct lock-
down policies. The analysis method
detects people and vehicles from 1 April
2020 to 8 March 2021 (334 days).

This study counts the number of
people and vehicles in nearly six million
images. The analysis is able to observe
meaningful mobility trends and relative
mobility levels with a resolution down
to a single day. The observed mobility
trends reflect specific policy changes in
eachregion. This article compares these
trends of mobility in relation to the
Oxford Stringency Indexs; this index
measures governments’ responses
to COVID-19. The observed mobility
trends demonstrate that this method
has the potential for understanding
how people will respond to policies in
future pandemics.

RELATED WORK

Before the COVID-19 pandemic, there
were few methods for the quantifica-
tion of mobility. Since then, efforts
have been made to quantify mobility
using mobile phone data. Google® col-
lects data from smartphone users who

have opted into sharing their location
history and aggregates those data into
“movement trends over time.” Apple7
reports mobility through the number
of Apple Maps requests for directions
made in a given geographical region,
categorizing requests into three cate-
gories of walking, driving, and using
publictransit. Bothreports anonymize
the data they collect.

A web application® allows users to
compare data from Apple's Mobility
Trends Reports, confirmed numbers
of COVID-19 cases, and government
response policies for a particular coun-
try or U.S. state or county. Pedestron? is
a popular repository for person detec-
tion for counting the number of people
in images. Computer vision can clas-
sify images into archetypes. CSAIL-
Places365'° is an image data set with 365
scene categories, such as highway, cross-
walk, and restaurant. CrowdHuman'! is
a data set and can be used to train neu-
ral network models (such as Cascade
R-CNN'2'3) to count the number of peo-
ple in an image. The MS COCO data set'*
contains different types of vehicles, such
as cars, trucks, motorcycles, and buses.

HOW WE OBSERVE

MOBILITY

This article uses the visual data
(images and video) from network
cameras to observe human mobility
over time. The mobility is measured
by the number of people or vehicles
in public locations. Figure 1 shows
three examples of network cameras.
Network cameras capture visual data
and transmit the data over the Inter-
net. This study uses only public data;
the data are available to anyone that
is connected to the Internet, without
any password protection. This study
discovers network cameras worldwide
and then selects the cameras that are
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(b)

(c)

FIGURE 1. Three snapshots captured on different days from three locations. We counted the people in each image by hand and found
33,85, and 70 people in each image, respectively. Pedestron found 31, 84, and 68 people, respectively. The right images show cor-
rectly detected bounding boxes containing people (green), false positives (red), and false negatives (blue). (a) Aydat, France, 11 August
2020. (Source: www.meteosurfcanarias.com.) (b) Kerns, Switzerland, 29 December 2020. (Source: Snoweye.com.) (c) Zatec, Czech
Republic, 15 May 2020. (Source: webcam.mesto-zatec.cz.)
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likely to see humans or vehicles. This
study captures data regularly from
these selected cameras between April
2020 and March 2021. The numbers
of humans and vehicles are compared
over time as well as the Oxford Strin-
gency. This analysis suggests that the
visual data can be an effective method
for quantifying people’s responses to
the lockdown policies. Figure 2 shows
the flow of this study.

Discover and select

network cameras

The first step of this study is to discover
network cameras. Many organizations
(such as departments of transporta-
tion and national parks) and individu-
als deploy network cameras and make
the data available on the Internet.'”
This team has created an Internet
crawler that can discover visual data%;
this crawler captures multiple snap-
shots from each camera to determine
whether the visual data change over
time. This method discovers 30,254
cameras deployed in different parts of
the world; three examples are shown

Discover camera and
continuously sample
the camera for data.

Discard Camera

Is the camera
consistently reporting
live data?

in Figure 1. Between April 2020 and
March 2021, five snapshots were taken
per day from each camera to estimate
thenumber of people and vehicles. The
locations of the cameras can be deter-
mined using several methods. Many
cameras are deployed by departments
of transportation, and the locations
are marked by the owners. This study
further validates the locations using
Google Street View/Google Earth data
found at the latitude and longitude
reported by the camera (see Figure 3).
Some of the discovered cameras do
not provide insightful data for observ-
ing mobility trends. For instance,
some cameras see mountains and can-
not see people or vehicles. Some other
cameras have very low refresh rates.
Due to the large number of discovered
cameras, this study uses automated
methods to select the discovered cam-
eras. The first step is to eliminate the
cameras whose data do not refresh
frequently. This study captures five
snapshots from each camera per day;
thus, this step keeps only the 23,291
cameras that refresh at least five times

Are the data
relevant to
human mobility?

Yes
—

No

Discard Camera

per day. The second step uses the Wide
Resnetl8 model trained on the CSAIL-
Places365 data set to determine the
scene archetypes of the cameras and
selects the scenes that likely observe
people or vehicles, such as “park,”
“crosswalk,” “highway,” or “road.” This
process keeps 17,795 cameras, includ-
ing 2,077 for observing people, 13,808
for observing vehicles, and 1,910 for
both. The third step considers the
regions where lockdown policies have
been announced and adjusted over
time and identifies the regions with
multiple cameras. Finally, 3,469 cam-
eras are selected for this study.

Localize network cameras

To correlate the mobility trends observed
from network cameras and the lock-
down policies, knowing the cameras’
locations is essential. Several meth-
ods are used to determine the cameras’
locations. Many camera owners set up
the cameras with location information.
The information may be longitude/lat-
itude, street intersections, marks on
highways, or tourist attractions. This

Apply the relevant person/
vehicle detection model to
the collected pool
Yes of camera data.

Validate the location
metadata of camera pool.

v

Aggregate detection data
based on location.

v

Plot Results

FIGURE 2. The workflow of the method presented in this article. The first step is to discover network cameras on the Internet. Some
discovered cameras are discarded because they provide no meaningful data for guantifying human mobility (defined as seeing people
or vehicles). Then, the numbers of observed people and vehicles are counted at the specific locations and time.
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study validates the cameras’ geograph-
ical locations using Google Earth and
Google Street View where available. The
study selects 100 cameras to validate
the reported locations. Figure 3 shows
an example. Figure 3(a) is an image
from one discovered network camera;
Figure 3(b) shows the image obtained
from a Google Street View at the cam-
era’s reported location of (40.7514,
-73.9934). The green circles indicate
the displays seen in both images.

Collect and analyze data

From April 2020 to March 2021, this
study uses cron in Linux running on
a computer cluster with large-scale
storage (in petabytes) for retrieving
five images per camera each day, sav-
ing, and analyzing the data. Pedes-
tron is used to count people; vehicles
are detected using YOLOv3. Nearly six
millionimages (fiveimages/camera-day x
3,469 cameras x 334 days = 5,793,230,
2.56 TB portable network graphics
files) are analyzed. Due to the volume
of the data, it is not possible to check
the correctness of every image in the
same way as Figure 1. If a person spent

1 min counting people or vehicles in
each image, this person would spend
11 years. This is obviously impractical.
Instead, this study uses 1,000 images as
avalidation data set to select the tuning
parameters and to quantify the accu-
racy of the computer vision methods.
These images are labeled manually with
the correct counts; Figure 4 shows three
examples in the validation data set.

Figure 5 shows the object detection
F1 score (the metric we use to evalu-
ate object detection model accuracy)
with different confidence thresholds.
When the threshold is low, too many
false positives are detected. When the
threshold is high, too many false neg-
atives are neglected. The figure shows
that 0.2 is a good value for both people
and vehicle detection.

ANALYSIS OF

MOBILITY TRENDS

This section presents the observed
changes in mobility in five coun-
tries (Austria, Australia, France, Ger-
many, and Italy) and three U.S. states
(Hawaii, Georgia, and Oregon). These
regions are selected because 1) they

(b)
FIGURE 3. Validating a camera’s location. (a) A snapshot from a discovered network camera. (b) Google Street View near the camera’s
reported location. (a) and (b) New York City, NY, USA, 1 August 2020. (Source: http://207.251.86.238/cctv19.jpg.)

have specific policies, and these pol-
icies changed over time, and 2) suffi-
cient numbers of cameras were dis-
covered to observe different locations
in each region. For the United States,
different states have different policies,
and they changed at different times.
Figure 6 summarizes the observed
mobility changes. Each region is repre-
sented by three curves: the seven-day
average of 1) the number of people,
2) the number of vehicles, and 3) the
leniency of mobility restrictions. The
third curve is obtained by taking the
Oxford Stringency Index (a larger
value means more restrictions) from
each region and subtracting from the
maximum possible stringency value (a
larger value means fewer restrictions).
Since our analysis is region wide, we do
not include policies that are labeled as
“targeted policies,” which are policies
targeting a subregion. This is referred
to as the leniency index in this article.
The markers in the figure indicate sig-
nificant dates relating to the policy
changes. These regions gradually lifted
restrictions in the summer of 2020,
indicated by the gradual rising of the
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hidbey Telecom (c) 2020-06-22 14:14:26

(b)

(c)

FIGURE 4. (a)-(c) Three examples of images labeled by hand for our validation data set. Blue bounding boxes denote people, and red
bounding boxes denote vehicles. (a) Dublin, Ireland, 8 June 2020. (Source: www.earthcam.com.) (b) Washington State, USA, 22 June
2020. (Source: dev.whidbeytel.com/cams/clinton/.) (c) Krakow, Poland, 23 June 2020. (Source: imageserverwebcamera.pl.)

indexes. The figure shows close correla-
tions between the people and vehicle
counts and the leniency index. When
a region’s policy changed (indicated by

the leniency index), the mobility rose
and declined accordingly.

The figure shows a dichotomy;
the mobility in the first four regions

Object Detection F1 Score
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FIGURE 5. An F1 score plot for YOLOv3 (blue) and Pedestron (red) expressing how the
F1 score on our validation data set varied when different values for the confidence

hyperparameter were applied.

(France, Germany, Austria, and Italy)
follows the index closely, but the other
four regions (Australia, Hawaii, Geor-
gia, and Oregon) do not show similar
correlations. This can be explained by
the different degrees of restrictions. The
first four regions had extensive lock-
downs, practically shutting down all
businesses. The other four regions were
less restrictive, resulting in much flatter
leniency curves. The first four regions
show noticeable changes in mobility,
but the other four regions do not show
similar patterns. Australia and Hawaii
are two unique cases; they imposed
travel restrictions for visitors, while
the residents enjoyed relatively high
degrees of freedom. There are small
gaps in the data arising from supercom-
puter maintenance and rare occasions
where jobs were not scheduled for up to
one day. The missing data do not affect
the observed trends.

To quantify the correlations between
the people and vehicle counts and leni-
ency index, we performed two Pear-
son correlation tests for each region:
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dates are marked. The bold L represents a hard region-wide lockdown, the bold C represents government mandated closing of business

or schools, and the bold O represents reopening, followed by higher values of the leniency index.
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people detections versus the leniency
index and vehicle detections versus
the leniency index. The regions that
exhibited strong positive correla-
tion between observed mobility and
the leniency index are France (peo-
ple versus leniency = 0.5589, vehi-
cles versus leniency = 0.7949);
Germany (0.8140, 0.5328) (see also
Figure 7); Austria (0.5106, 0.67); and
Italy (0.5796, 0.6365). The regions that
exhibited relatively weak correlation
are Australia (-0.004, 0.2404); Hawaii
(0.0236, -0.06); Georgia (-0.7516,
0.3966); and Oregon (-0.4348, 0.0469).
Regions that exhibited a strong positive

correlation all had both Pearson coef-
ficients (for people and vehicle versus
leniency) average greater than +0.5,
while the weakly correlated regions all
had both Pearson coefficients average
between -0.25 and +0.25.

When examining the policies of
these two groups, we can see that the
aforementioned dichotomy is rein-
forced by the raw numbers as well. The
regions with high levels of correlation
between observed mobility and leni-
ency all have a policy timeline char-
acterized by hard “stay at home” lock-
downs, most lasting multiple months.
The policies of the regions with lower
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FIGURE 7. An example of a scatterplot of our data (Germany). The three groups of dates
are divided by the large lockdown changes in Germany (the same as the graph markings
in Figure 6). The scatterplot reveals three distinct clusters in the data that align with the

date groups.

levels of correlation had consider-
ably fewer, shorter lockdowns, largely
favoring selective school and business
closings instead.

It is important to note that discrep-
ancies between the Pearson correla-
tions of these two groups could be due
to avariety of reasons, for example, dif-
fering camera distribution relative to
population density, variations in cam-
era resolution, and sporadic policies.
These examples illustrate why a causal
link cannot be established between
policy changes and the current results.
Nevertheless, the results demonstrate
the real potential for computer vision
methods on network camera data to
provide a quantitative, meaningful,
and coherent component for reasoning
about the nuanced issue of observed
human activities during pandemics.
This method may be useful to epide-
miologists modeling behaviors, poli-
cymakers improving future policies,
and scientists conducting mobility
research of any kind.

We acknowledge that this study
has some limitations. First, the obser-
vation presents correlations, not
causation. Even though it would
be convenient to claim that people
responded to changes of policies,
the reality can be far more com-
plex. One noticeable factor is that
in summer 2020, many places in
the United States had protests for
racial equality, and the large crowds
were observed in the collected data.
Second, this study aggregates dif-
ferent types of locations and does
not consider seasonal factors. It is
noticed that Austria has signifi-
cantly high mobility at the begin-
ning of 2021. A closer inspection dis-
covers that many network cameras
were deployed by skiresorts and thus
showed many skiers.
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This study counts the numbers
of people and vehicles and does not
identify any individuals (for example,
it does not recognize faces or license
plates). The images used in this study
do not have enough pixels for iden-
tification (please see Figures 1 and
4 as examples). This study has been
approved by the Institutional Review
Board of Purdue University.

his article presents a method
using computer vision to quan-
tify mobility during the COVID-19
pandemic. This study counts the num-
ber of people and vehicles using data
from public network cameras across
five countries and three U.S. states.
The method produces mobility trends
that agree with the timeline of pol-
icy changes. In the future, analyzing
visual data could be used to corrobo-
rate other mobilization sources (such
as cell phone mobilization data sets and
public policy data sets) and could be
used as evidence to craft effective pol-
icy in any future events.
At the time of writing, there is
every reason to believe that this will
not be the last pandemic as contagious

variants continue to spread across the
world. The future will likely have even
greater network camera coverage as
deployments continue apace through-
out the world, especially in major
urban areas. The techniques presented
here show a strong potential for aid-
ing in the observation and analysis of
human response to future pandemics,
and at a minimum, there is a strong
case to include computer vision in the
toolbox for future public health and
policy purposes.
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