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Tree-Based 
Unidirectional Neural 
Networks for Low-Power 
Computer Vision

 Convolutional Neural Networks (CNNs) 
have led to significant breakthroughs in many com-
puter vision tasks [1]. The high accuracy of CNNs on 
computer vision is mainly attributed to their ability 
to train billions of parameters for learning complex 
functions [2]. The trend in computer vision research 
is to improve accuracy by using more resources 

making CNNs deeper, 
wider, and more strongly 
connected [2]. Thus, the 
accuracy gains come 
with high energy con-
sumption, memory, and 
computation overheads.

The state-of-the-art 
CNNs require several seconds to run on most embed-
ded devices, for example, Raspberry Pi [3]. To use 
such CNNs to process data captured by cameras 
on embedded devices, the computation is often 
offloaded to the cloud. However, many applications 
cannot be offloaded, for example, computer vision 
deployed on drones in areas without high-speed net-
works. Privacy concerns also limit the applicability 
of cloud-based solutions [3].

Most existing CNNs like ResNet [4] use large 
monolithic architectures as seen in Figure 1. 
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Such architectures contain a single CNN to iden-
tify every feature associated with all categories to 
make decisions. To understand the shortcomings 
of monolithic architectures, consider the image 
classification problem: assign a single label from 
a set of categories to every input image. These 
CNNs require a large number of layers to extract 
the features associated with every category. How-
ever, when classifying a single image, only a small 
fraction of the CNN activations have nonzero val-
ues [5]. Since all the CNN operations have to be 
performed, there are many redundant operations. 
These redundancies decrease the efficiency of 
CNNs considerably.

Our work develops a tree-based unidirectional 
neural network (TRUNK), a new CNN architecture 
that improves efficiency [6], [7], [8]. Instead of a 
single very deep CNN, multiple shallow CNNs in the 
form of a tree work together to perform computer 
vision tasks. TRUNK finds the similarity between dif-
ferent categories. Similar categories are grouped into 
clusters. Similar clusters are then grouped to form a 
tree. The shallow CNNs at every node of TRUNK clas-
sify between different clusters. Figure 1b illustrates 
the TRUNK architecture, where the categories are 
cat, dog, and so on. During inference, each image 
is first processed by the root CNN. Once a cluster is 
selected by the root, another CNN further classifies 
among the children of the chosen cluster. This pro-
cess continues until one of the leaves of the tree is 
reached. The CNNs associated with other clusters 

are not used during the inference of that image, 
thus avoiding redundant arithmetic and memory 
operations.

Hierarchical computer vision techniques can be 
categorized as: 1) ensemble or 2) divide-and-con-
quer. Existing ensemble techniques combine the 
output of multiple large CNNs to increase accuracy 
at the expense of efficiency [9]. Existing divide-and-
conquer techniques improve efficiency, but result in 
significant accuracy losses [10]. This article presents 
methods to combine visual similarities with neural 
architecture search to construct divide-and-conquer 
hierarchies that achieve high efficiency and high 
accuracy.

Tree-based unidirectional neural 
networks

This section describes the proposed TRUNK 
architecture. We use image classification to explain 
the architecture in more detail.

As seen in Figure 1b, the proposed architecture 
contains multiple small CNNs in the form of a tree. 
Note that: 1) each input follows a single root-leaf 
path and 2) the output of the parent is the input to 
the child, ensuring that the operations performed by 
a CNN are not repeated multiple times. Therefore, 
each root-leaf path of TRUNK acts like an independ-
ent CNN with several layers (divided into small 
CNNs), leading to an architecture with fewer redun-
dant operations.

Properties required for TRUNK
Before TRUNK can be used, the hierarchy struc-

ture must be selected. We highlight two properties 
that TRUNK hierarchies must satisfy to be both accu-
rate and efficient.

Property 1: The hierarchy structure should per-
form easy classifications near the root and hard clas-
sifications near the leaves.

By doing so, the difficult classifications are per-
formed after more layers have processed the input 
to extract informative features. Generally, such hier-
archies can achieve high accuracy even when using 
smaller CNNs for high efficiency.

When forming the clusters in TRUNK, we can use 
two main types of similarity metrics: 1) semantic: 
objects are linked to one another using conceptual 
and lexical relations, for example, cats and dogs as 
animals and 2) visual: objects are linked based on 

Figure 1. (a) Existing CNN architectures: A single 
monolithic architecture classifies images into their 
categories. (b) Proposed TRUNK: The input image 
is processed incrementally using small CNNs. After 
detecting the type of images, finer classifications 
are made.
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their appearances, for example, pizzas and plates 
because of their circular shape. Our experiments 
find that visual and semantic similarities do not 
always overlap [6].

When using semantic similarities, visually simi-
lar categories like plates and pizzas may belong to 
different clusters. In this case, the CNNs close to the 
root face the difficult task of distinguishing between 
pizzas and plates. To perform such operations accu-
rately, larger and inefficient CNNs may be required. 
In comparison, with visual similarities, the CNNs 
near the root encounter a relatively easy task. They 
distinguish between clusters of visually similar cat-
egories. The more difficult classifications between 
the visually similar categories within clusters are per-
formed farther from the root.

Property 2: The hierarchy should have an interme-
diate structure that is neither too wide nor too tall. Dif-
ferent visual similarity metrics may result in different 
hierarchies with varying structures. Each hierarchy 
structure provides a different accuracy-efficiency 
tradeoff. For a given hardware configuration and 
accuracy requirement, TRUNK hierarchies should 
have a hierarchy with appropriate width and height.

Consider a tall-and-narrow hierarchy, with multi-
ple nodes in each root-leaf path and a few children 
under each node. This hierarchy uses smaller CNNs 
at each node because each CNN only classifies 
between a small number of clusters (thus, few chil-
dren). Although the CNNs perform relatively easy 
tasks, they usually do not obtain 100% accuracy. As 
a result, the error in each level of the hierarchy gets 
compounded, resulting in lower overall accuracy. 
On the other extreme, a short-and-wide hierarchy 
has many children at each node. To classify more 
children accurately, larger and more complex CNNs 
are required. Such CNNs may resemble the existing 
monolithic CNNs that TRUNK aims to replace. If 
short-and-wide hierarchies use large CNNs at each 
node, then TRUNK can achieve high accuracy, at the 
cost of lower efficiency.

Constructing efficient and accurate TRUNK 
hierarchies

We now present a method to build TRUNK hierar-
chies that follow these properties. Our work finds that 
most existing visual similarity metrics require exten-
sive manual fine-tuning for different data sets, have 
constraints on the number of possible clusters, or 

are inconsistent in reporting the similarity between 
objects. Thus, we first develop a novel visual simi-
larity metric that can solve these problems. We then 
vary the parameters of this visual similarity metric to 
control the hierarchy structure.

Confusion between categories
Our work [6] develops a new visual similar-

ity metric called the averaged softmax likelihood 
(ASL). The softmax layer is the CNN’s output layer 
that assigns the prediction confidence to each possi-
ble output. Analyzing a CNN’s softmax outputs helps 
us identify the categories that are often confused by 
the CNN. This CNN confusion is a measure of the 
visual similarity between categories. The greater the 
confusion between categories, the more visually 
similar they are.

The use of ASL can be understood with the 
example in Figure 2. Suppose horse and cow are 
two categories in the training data. The following 
equation describes how the ASL is computed:

LC(H) =
∑H softmaxC(H)

H 
.	 (1)

The term softmax sinC(H) denotes the value 
obtained at the output (softmax) layer of the CNN 
corresponding to the object cow, when the input 
actually contains a horse. H  represents the num-
ber of input samples labeled as horses. Equation 
(1) is the CNN’s average output for the object 
category cow, when the inputs are horses. A large  
LC(H) implies that the CNN often mispredicts (with 
high confidence) that images of horses are cows. 
In other words, a larger LC(H) implies greater con-
fusion between categories.

The ASL technique described so far can find 
similarities between categories only for image 

Figure 2. Workflow to use the ASL to automatically 
identify clusters of visually similar categories.
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classification data sets (each image has only one 
object); it cannot be used for images containing 
multiple objects (e.g., object counting and detec-
tion tasks). In a subsequent study [7], we find that 
a region proposal network (RPN) can be used to 
extend the ASL similarity metric to images with 
multiple objects. RPNs are small CNNs that propose 
regions of interest (RoIs): areas in images that may 
contain objects. By doing so, the RPN isolates each 
object in the image. Since CNNs accept only fixed-
sized images, we use a technique called RoI-pooling 
to resize the RoIs without distorting their features. 
ASL can now be used with the labeled and resized 
RoIs to find the similarity between categories. The 
workflow for using ASL for images with a single 
object and images with multiple objects is depicted 
in Figure 2. Details about the implementation of ASL 
are available in our prior publications [6], [7].

Varying similarity metric parameters to control 
hierarchy structure

The similarity metric parameter is a measure of 
the strictness of the similarity metric. The similarity 
metric parameter decides how similar categories 
should be to get grouped into a single cluster. By tun-
ing the parameter to increase the strictness, the sim-
ilarity metric enforces small intracluster distances 
and large intercluster distances. In such cases, small 
clusters are formed only between highly similar 
categories, resulting in a short-and-wide hierarchy. 
On the other hand, tuning the parameter to reduce 
the similarity metric strictness will make the sim-
ilarity metric group many categories to form fewer 
but larger clusters. This leads to a tall-and-narrow 
hierarchy.

By changing the CNN architecture used to com-
pute ASL, we can tune the similarity metric parame-
ter. The CNN’s confusion is used to identify clusters 
of similar categories, for example, horse and cow in 
Figure 2. Larger and more complex CNNs are more 
accurate and hence are less confused between 
categories. Using ASL with larger CNNs tunes the 
parameter to increase the strictness of the visual sim-
ilarity metric and consequently makes the hierarchy 
shorter and wider.

We use an architecture search technique that 
progressively grows the CNN, until it finds an archi-
tecture until the similarity metric parameter is tuned 
appropriately. In the following section, we describe 
how to find appropriate similarity metric parameters 

for different application requirements. Using this 
technique, TRUNK is constructed in a root-down 
fashion. First, a CNN architecture is found at the root. 
Then ASL groups categorize and find the first level of 
children. This process continues to grow the TRUNK. 
Finally, back-propagation is used to train the root 
CNN to classify between its children. For each newly 
formed child node, the process is repeated, continu-
ing until all categories have been placed as leaves in 
the hierarchy. The algorithm to build TRUNK using 
this technique is beyond the scope of this article and 
is available in our prior publication [6].

Adaptation for different hardware 
configurations

In this section, we describe how to control the 
attributes of TRUNK to meet different hardware con-
straints and accuracy requirements. Edge devices 
have different computing resources. The following 
examples present different scenarios where different 
TRUNK architectures may be beneficial.

1)	 On a powerful edge device equipped with a GPU 
(e.g., NVIDIA Jetson Nano with 4 GB GPU mem-
ory), it may be acceptable to use a shorter-wider 
hierarchy to increase the overall accuracy at the 
expense of an increased computing workload 
due to the larger CNNs at each node.

2)	 On resource-scarce IoT devices with limited 
memory and no GPU (e.g., ARM Cortex M with 
500 KB memory), the small CNNs in a taller-nar-
rower hierarchy may be required.

3)	 If TRUNK is unable to achieve the target accuracy 
on a given device, then an alternate device with 
more memory may be required. The larger mem-
ory would be able to accommodate larger CNNs, 
thus allowing a more accurate shorter-wider (also 
less efficient) hierarchy.

To understand how to adapt TRUNK for varying 
requirements, we build two mathematical models 
that describe the TRUNK accuracy (AT) and TRUNK 
workload size (WT). The overall workload size rep-
resents the overall memory requirement, number 
of operations, or energy consumption. For simplic-
ity, our experiments measure the overall memory 
requirement of TRUNK. Since the CNN’s number 
of operations, energy consumption, and memory 
requirement are related, the same mathematical 
model and analysis can be extended for the other 
metrics [2], [3]. These models are built using five 
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key attributes (listed in Table 1) that impact TRUNK’s 
performance.

The overall TRUNK accuracy (AT) depends on 
the average CNN accuracy (A) and the average path 
length (L). The following example presents a simple 
analysis. Suppose A is 95% and there are 100 images 
in the test set. At the root, we can expect that 95/100 
images are classified correctly. At the next level of 
the hierarchy, 95% of these 95 images are correctly 
classified again. For an entire hierarchy with depth 
L, the expected overall test accuracy is modeled by 
the following:

AT = AL.	 (2)

Here, we see that TRUNK’s accuracy decreases 
as the depth of the hierarchy increases. When L is 
large, A → 1.0 is needed to achieve high accuracy. 
For example, to achieve AT > 0.95, with L = 2, A must 
exceed 0.97. However, prior research shows that 
to achieve A → 1.0, the CNN model, S, needs to 
increase significantly [2]. In most cases, we can say 
that A and S are positively correlated. Thus, increas-
ing A may not always be useful. We may need to 
decrease L.

L can be controlled by varying the similarity met-
ric parameter (P) and the average fan-out (F) at each 
node of the hierarchy. P is a measure that decides 
if categories are similar enough to be grouped into 
a cluster. A large P leads to the formation of many 
small clusters of highly similar categories. This results 
in a short-and-wide hierarchy with a large fanout (F). 
A smaller P reduces the strictness of the similarity 
metrics and forms fewer but larger clusters, resulting 
in a tall-and-narrow hierarchy. In tall hierarchies, the 
paths are longer and hence we can see that P and F 
are positively correlated with one another, and they 
are negatively correlated with L.

The TRUNK overall workload size (WT) can also 
be modeled. Thus, the worst-case WT is the sum of 

the individual CNN workloads along the longest 
root-leaf path. Thus, WT depends on L and the aver-
age workload size of each CNN S and is modeled by

WT = S × L.	 (3)

Our analysis uses the memory requirement of TRUNK 
as a proxy for the workload size, because prior 
research shows that the CNN number of operations, 
energy consumption, and memory requirement are 
related [2], [3].

Similar to L, S can also be controlled by varying 
P and F. As P and F increase, the problem at each 
CNN becomes larger and more complex. A large F 
resembles the existing monolithic CNNs like ResNet 
[4] and requires large CNNs for high accuracy. Thus, 
as F increases, the CNN workload size (S) needs to 
increase to maintain the same accuracy A.

An ideal TRUNK hierarchy increases AT and 
simultaneously decreases WT. To increase AT, the 
hierarchy needs a small depth (L) and consequently 
a large fan-out (F) (L and F are negatively corre-
lated). A large F requires large CNNs (S) to ensure 
no change in the accuracy at each node (A). This 
in turn increases WT significantly. Thus, using these 
models, the TRUNK attributes can be tuned to 
achieve the desired tradeoff after considering the 
hardware constraints and accuracy requirements. 
We describe experiments in the upcoming section 
to validate these relationships.

TRUNK for efficient computer vision 
applications

In this section, we use object counting and rei-
dentification (reID) problems to show how TRUNK 
can solve different computer vision tasks beyond 
image classification. In the object counting prob-
lem, the goal is to report the number of occur-
rences of a queried object category in an image 
with multiple objects. To avoid counting the same 
object multiple times, object counting is commonly 
combined with object reID. In the object reID prob-
lem, the goal is to identify if an image contains an 
object that has been seen before (possibly from a 
different angle or camera).

Object counting
Existing object counters are based on object 

detectors. Most techniques use RPNs to propose RoIs 
in an image [11]. These methods then process all the 
RoIs with large CNNs to find all objects; finally, the 

 
Table 1. Symbols reference.
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occurrences of the queried object are counted. This 
process is highly redundant, because if we are only 
interested in counting workers wearing hard hats in 
an image, the computation involved in using large 
CNNs to detect every single object is not required.

TRUNK can perform object counting more effi-
ciently than existing techniques, as seen in Figure 3a. 
An RPN is used to find RoIs (shown with red bound-
ing boxes) in the image. Instead of processing each 
RoI with a large CNN, when using TRUNK, the RoIs 
are processed by the small CNN at the root. Only the 
RoIs that get classified onto the root-leaf path that 
contains the queried object (e.g., workers wearing 
hard hats) are processed by the next CNN. The other 
RoIs are not processed further, thus allowing us to 
increase efficiency.

Object reidentification
Most existing reID techniques use large CNNs to 

extract features from the query image. The Euclidean 
distance is used to compare these features with the 
features of every gallery image. The gallery images 
are ranked based on their distance from the query 
image. This typical approach performs many redun-
dant operations because query images need not be 
compared with every gallery image. For example, 
the query image in Figure 3b (a person with long hair 
and a bag) could be compared only to other people 
with long hair and bags in gallery images (b) and (f). 
When using TRUNK for object reID, each small CNN 
of the hierarchy extracts features from the query and 
routes the query among its subsequent branches. Fig-
ure 3b illustrates this approach. The query image of a 
pedestrian is processed by the root CNN to determine 
if the person has long hair. After the first attribute iden-
tification, the gallery reduces to images (a), (b), and 
(f). The next CNN continues to process the image and 
identifies if the person is carrying a bag. This attribute 
identification reduces the gallery to images (b) and 
(f). This process continues until a leaf CNN is reached. 
The features from the leaf CNN are used to perform 
comparisons with the remaining gallery images to rei-
dentify the person. Because each node specializes in 
processing images with specific attributes, small, effi-
cient CNNs can be used to obtain high accuracy.

Experimental evaluation
We conduct experiments to evaluate the TRUNK 

architecture for three computer vision applica-
tions: image classification, object counting, and 

object reidentification. We implement TRUNK using 

PyTorch. More details about the experimental setup 

and backbone architectures are available in our prior 

publications [6], [7], [8], and links to the prototypes.

Table 2 compares the test error of the proposed 

approach with existing techniques: hierarchical 

clustering, semantic similarities, and random group-

ing. Using ASL with NAS, TRUNK has the lowest error 

when the model sizes are the same.

Table 3 compares TRUNK with representa-

tive energy-efficient techniques: MobileNet v2 

Figure 3. TRUNK used for different 
computer vision applications. (a) Object 
counting: When attempting to count the 
number of workers wearing hard hats, 
only the RoIs classified into Cluster 1 and 
subsequently Cluster 4 are processed. 
All other RoIs are discarded to improve 
efficiency. (b) Object reID: Each small CNN 
identifies an attribute in the query image. 
With TRUNK, we only rank gallery images 
with the same attributes as the query. 
Image source: Market-1501 data set.
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[1] for image classification on the CIFAR-10 data 
set, YOLOv3 [12] for object counting on the PAS-
CAL-VOC data set, and ResNet50 [4] for object reID 
on the Market-1501 data set. These techniques are 
existing (nonhierarchical) architectures that con-
sume the least energy. The techniques are evalu-
ated in terms of test error, memory requirement (in 
MB), number of arithmetic operations, and energy 
consumption when deployed on an NVIDIA Jetson 
Nano. The test error for classification, counting, and 
reID are measured as 1 − test accuracy, root mean 
squared error [7], and Rank-1 error [8] metrics, 
respectively. For TRUNK, we report the worst-case 
memory, operations, and energy requirement per 
image, that is, the sum of the values along the longest 
root-leaf path. Experiments in our prior publications 
show that TRUNK can be used to improve efficiency 
on larger data sets, for example, ImageNet, MS 
COCO, and VRAI [6]. On the larger data sets, TRUNK 
requires 70% less energy and memory, but achieves 
∼3% lower accuracy.

TRUNK consistently requires less memory and 
arithmetic operations, thus indicating higher effi-
ciency. The performance gains come with a marginal 
loss in accuracy when compared with the state-of-
the-art. Our experiments on the popular NVIDIA Jet-
son Nano reveal that the energy consumption and 

processing time of TRUNK are 80%–95% lower than 
existing techniques across different computer vision 
applications and data sets. Our prior publications 
contain more experiments that analyze the impact of 
similarity metrics, thermal throttling, and embedded 
device hardware on overall performance [6], [7], 
[8]. Due to space constraints, we do not tabulate all 
the results [13].

Figure 4 experimentally validates the mathemati-
cal models presented in (2) and (3). As mentioned 
in the previous section, the overall workload size 
represents the overall memory requirement, number 
of operations, or energy consumption. For simplic-
ity, our experiments measure the overall memory 
requirement of TRUNK. We construct hierarchies 
with varying fan-out (F) and plot the average CNN 
workload size (S) and hierarchy path length (L). For 
the CIFAR-100 data set, we find that F is negatively 
correlated with L, as depicted in Figure 4 (white cir-
cles). The black circles in Figure 4 show that as F 
increases, S grows superlinearly. Thus, these exper-
iments show that decreasing L to increase accuracy 
(AT) increases the workload size (WT) significantly. 
Thus, we use (2) and (3) to find appropriate hierar-
chy structures.

In this article, we describe the TRUNK architec-
ture that organizes multiple small CNNs in the form 

 
Table 2. Comparison of test error with different 
hierarchy construction techniques. Blue font 
indicates the best result.

 
Table 3. Comparison of TRUNK with existing 
techniques. Blue font indicates the best result for 
each application and metric.

Figure 4. As the fan-out (F) increases, the required 
workload size at one node (S) increases superlinearly 
and the hierarchy path length (L) decreases. Note that 
F is plotted on a logarithmic scale.
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of a hierarchy. We present two important proper-
ties that are required by TRUNK to ensure high effi-
ciency with high accuracy. Using those properties, 
we develop a method to combine our novel visual 
similarity metric with neural architecture search to 
define hierarchy structures. We then build mathe-
matical models that help adapt the TRUNK hierar-
chy structure to meet different hardware constraints 
and accuracy requirements. Finally, we also show 
the versatility of TRUNK to accurately perform dif-
ferent computer vision problems accurately on 
embedded devices. Our experiments confirm that 
TRUNK improves the deployability of computer 
vision systems.

This article highlights the application of TRUNK 
in three selected computer vision tasks. Looking 
forward, TRUNK can improve the efficiency of 
any deep-learning task that benefits from a smaller 
search space, which is often the case in the real 
world, where we are looking for very specific cate-
gories. The hierarchy structure effectively reduces 
the problem size, thus allowing smaller CNNs to 
complete the same task with fewer computational 
resources. Furthermore, this approach can be useful 
in other application scenarios. 

1)	 Incremental learning: Where new categories are 
discovered incrementally over time. When using 
TRUNK, only a small subset of CNNs need to be 
retrained to accommodate a new object cate-
gory. The other CNNs can be left unchanged. 

2)	 Imbalanced data sets: Some categories appear 
more often than others. The more frequently 
occurring objects can be placed closer to the 
root, thus allowing the objects to get classified 
faster.

The TRUNK approach represents a promis-
ing step for processing visual data on embedded 
devices. Future research could improve the utility 
of TRUNK by increasing its accuracy and versatility, 
without sacrificing efficiency.� 
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