Tree-Based
Uni

directional Neural
Networks for Low-Power

Computer Vision

Abhinav Goel, Caleb Tung, and

Nick Eliopoulos

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907 USA

Amy Wang
West Lafayette Junior-Senior High School
West Lafayette, IN 47906 USA

James C. Davis

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907 USA

Editor’s notes:

Convolutional neural networks (CNNs) have paved paths for high-
accuracy computer vision. This article presents a tree-based hierarchy
of multiple shallow CNNs to enable their low-power implementations for

embedded devices.

—Muhammad Shafique, New York University Abu Dhabi

I ConvorLuTtioNAL NEURAL NETWORKS (CNNs)
have led to significant breakthroughs in many com-
puter vision tasks [1]. The high accuracy of CNNs on
computer vision is mainly attributed to their ability
to train billions of parameters for learning complex
functions [2]. The trend in computer vision research
is to improve accuracy by using more resources

Digital Object Identifier 10.1109/MDAT.2022.3217016
Date of publication: 2 November 2022; date of current
version: 24 April 2023.

May/June 2023

Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC

George K. Thiruvathukal
Department of Computer Science
Loyola University Chicago
Chicago, IL 60660 USA

Yung-Hsiang Lu

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907 USA

making CNNs deeper,
wider, and more strongly
connected [2]. Thus, the
accuracy gains come
with high energy con-
sumption, memory, and
computation overheads.

The state-of-the-art
CNNs require several seconds to run on most embed-
ded devices, for example, Raspberry Pi [3]. To use
such CNNs to process data captured by cameras
on embedded devices, the computation is often
offloaded to the cloud. However, many applications
cannot be offloaded, for example, computer vision
deployed on drones in areas without high-speed net-
works. Privacy concerns also limit the applicability
of cloud-based solutions [3].

Most existing CNNs like ResNet [4] use large
monolithic architectures as seen in Figure 1.

2168-2364/220©2022 |IEEE

53

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

General Interest

Such architectures contain a single CNN to iden-
tify every feature associated with all categories to
make decisions. To understand the shortcomings
of monolithic architectures, consider the image
classification problem: assign a single label from
a set of categories to every input image. These
CNNs require a large number of layers to extract
the features associated with every category. How-
ever, when classifying a single image, only a small
fraction of the CNN activations have nonzero val-
ues [5]. Since all the CNN operations have to be
performed, there are many redundant operations.
These redundancies decrease the efficiency of
CNNs considerably.

Our work develops a tree-based unidirectional
neural network (TRUNK), a new CNN architecture
[8]. Instead of a
single very deep CNN, multiple shallow CNNs in the

that improves efficiency [6], [7],

form of a tree work together to perform computer
vision tasks. TRUNK finds the similarity between dif-
ferent categories. Similar categories are grouped into
clusters. Similar clusters are then grouped to form a
tree. The shallow CNNs at every node of TRUNK clas-
sify between different clusters. Figure 1b illustrates
the TRUNK architecture, where the categories are
cat, dog, and so on. During inference, each image
is first processed by the root CNN. Once a cluster is
selected by the root, another CNN further classifies
among the children of the chosen cluster. This pro-
cess continues until one of the leaves of the tree is
reached. The CNNs associated with other clusters

=

)
Root

| Cluster 1 |

()
| Cluster 2 | | Cluster 3 |

Large CNN

| Cluster 4 || Cluster 5 " Cluster 6 " Cluster 7 |© @
= plate pizza

eI - @ﬁﬁ?:ﬁl) & dhanih

cat dog duck owl motor cqr truck
cat dog duckowl! pizza 0g duckow! bike bike

(@) (b)

Figure 1. (a) Existing CNN architectures: A single
monolithic architecture classifies images into their
categories. (b) Proposed TRUNK: The input image
is processed incrementally using small CNNs. After
detecting the type of images, finer classifications
are made.

54

are not used during the inference of that image,
thus avoiding redundant arithmetic and memory
operations.

Hierarchical computer vision techniques can be
categorized as: 1) ensemble or 2) divide-and-con-
quer. Existing ensemble techniques combine the
output of multiple large CNNs to increase accuracy
at the expense of efficiency [9]. Existing divide-and-
conquer techniques improve efficiency, but result in
significant accuracy losses [10]. This article presents
methods to combine visual similarities with neural
architecture search to construct divide-and-conquer
hierarchies that achieve high efficiency and high
accuracy.

Tree-based unidirectional neural
networks

This section describes the proposed TRUNK
architecture. We use image classification to explain
the architecture in more detail.

As seen in Figure 1b, the proposed architecture
contains multiple small CNNs in the form of a tree.
Note that: 1) each input follows a single root-leaf
path and 2) the output of the parent is the input to
the child, ensuring that the operations performed by
a CNN are not repeated multiple times. Therefore,
each root-leaf path of TRUNK acts like an independ-
ent CNN with several layers (divided into small
CNNs), leading to an architecture with fewer redun-
dant operations.

Properties required for TRUNK

Before TRUNK can be used, the hierarchy struc-
ture must be selected. We highlight two properties
that TRUNK hierarchies must satisfy to be both accu-
rate and efficient.

Property 1: The hierarchy structure should per-
form easy classifications near the root and hard clas-
sifications near the leaves.

By doing so, the difficult classifications are per-
formed after more layers have processed the input
to extract informative features. Generally, such hier-
archies can achieve high accuracy even when using
smaller CNNs for high efficiency.

When forming the clusters in TRUNK, we can use
two main types of similarity metrics: 1) semantic:
objects are linked to one another using conceptual
and lexical relations, for example, cats and dogs as
animals and 2) visual: objects are linked based on

IEEE Design&Test

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

their appearances, for example, pizzas and plates
because of their circular shape. Our experiments
find that visual and semantic similarities do not
always overlap [6].

When using semantic similarities, visually simi-
lar categories like plates and pizzas may belong to
different clusters. In this case, the CNNs close to the
root face the difficult task of distinguishing between
pizzas and plates. To perform such operations accu-
rately, larger and inefficient CNNs may be required.
In comparison, with visual similarities, the CNNs
near the root encounter a relatively easy task. They
distinguish between clusters of visually similar cat-
egories. The more difficult classifications between
the visually similar categories within clusters are per-
formed farther from the root.

Property 2: The hierarchy should have an interme-
diate structure that is neither too wide nor too tall. Dif-
ferent visual similarity metrics may result in different
hierarchies with varying structures. Each hierarchy
structure provides a different accuracy-efficiency
tradeoff. For a given hardware configuration and
accuracy requirement, TRUNK hierarchies should
have a hierarchy with appropriate width and height.

Consider a tall-and-narrow hierarchy, with multi-
ple nodes in each root-leaf path and a few children
under each node. This hierarchy uses smaller CNNs
at each node because each CNN only classifies
between a small number of clusters (thus, few chil-
dren). Although the CNNs perform relatively easy
tasks, they usually do not obtain 100% accuracy. As
a result, the error in each level of the hierarchy gets
compounded, resulting in lower overall accuracy.
On the other extreme, a short-and-wide hierarchy
has many children at each node. To classify more
children accurately, larger and more complex CNNs
are required. Such CNNs may resemble the existing
monolithic CNNs that TRUNK aims to replace. If
short-and-wide hierarchies use large CNNs at each
node, then TRUNK can achieve high accuracy, at the
cost of lower efficiency.

Constructing efficient and accurate TRUNK
hierarchies

We now present a method to build TRUNK hierar-
chies that follow these properties. Our work finds that
most existing visual similarity metrics require exten-
sive manual fine-tuning for different data sets, have
constraints on the number of possible clusters, or

May/June 2023

are inconsistent in reporting the similarity between
objects. Thus, we first develop a novel visual simi-
larity metric that can solve these problems. We then
vary the parameters of this visual similarity metric to
control the hierarchy structure.

Confusion between categories

Our work [6] develops a new visual similar-
ity metric called the averaged softmax likelihood
(ASL). The softmax layer is the CNN’s output layer
that assigns the prediction confidence to each possi-
ble output. Analyzing a CNN’s softmax outputs helps
us identify the categories that are often confused by
the CNN. This CNN confusion is a measure of the
visual similarity between categories. The greater the
confusion between categories, the more visually
similar they are.

The use of ASL can be understood with the
example in Figure 2. Suppose horse and cow are
two categories in the training data. The following
equation describes how the ASL is computed:

>y softmax-(H)

1
K M

Le(H) =
The term softmax sings(H) denotes the value
obtained at the output (softmax) layer of the CNN
corresponding to the object cow, when the input
actually contains a horse.| H| represents the num-
ber of input samples labeled as horses. Equation
(1) is the CNN’s average output for the object
category cow, when the inputs are horses. A large
Lc-(H) implies that the CNN often mispredicts (with
high confidence) that images of horses are cows.
In other words, a larger L-(H) implies greater con-
fusion between categories.
The ASL technique described so far can find
similarities between categories only for image

/K 0.503

Input Pre-processing Averaged Softmax Likelihood
("Case 1. Image with one object \K Softmax Layer
] .
Image gggg élrplane
Resizing o 0.153] Cow
Case 2. Image with multiple objects N\ Sir‘:)ilar
bl] . 7 - CNN
e e Region T Region of category
£ | ¥ || Interest
i Proposal Pootin 0.015 | Sofa
B g 0.004 | Chair
Horse
g

Figure 2. Workflow to use the ASL to automatically

identify clusters of visually similar categories.

55

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

56

General Interest

classification data sets (each image has only one
object); it cannot be used for images containing
multiple objects (e.g., object counting and detec-
tion tasks). In a subsequent study [7], we find that
a region proposal network (RPN) can be used to
extend the ASL similarity metric to images with
multiple objects. RPNs are small CNNs that propose
regions of interest (Rols): areas in images that may
contain objects. By doing so, the RPN isolates each
object in the image. Since CNNs accept only fixed-
sized images, we use a technique called Rol-pooling
to resize the Rols without distorting their features.
ASL can now be used with the labeled and resized
Rols to find the similarity between categories. The
workflow for using ASL for images with a single
object and images with multiple objects is depicted
in Figure 2. Details about the implementation of ASL
are available in our prior publications [6], [7].

Varying similarity metric parameters to control
hierarchy structure

The similarity metric parameter is a measure of
the strictness of the similarity metric. The similarity
metric parameter decides how similar categories
should be to get grouped into a single cluster. By tun-
ing the parameter to increase the strictness, the sim-
ilarity metric enforces small intracluster distances
and large intercluster distances. In such cases, small
clusters are formed only between highly similar
categories, resulting in a short-and-wide hierarchy.
On the other hand, tuning the parameter to reduce
the similarity metric strictness will make the sim-
ilarity metric group many categories to form fewer
but larger clusters. This leads to a tall-and-narrow
hierarchy.

By changing the CNN architecture used to com-
pute ASL, we can tune the similarity metric parame-
ter. The CNN’s confusion is used to identify clusters
of similar categories, for example, horse and cow in
Figure 2. Larger and more complex CNNs are more
accurate and hence are less confused between
categories. Using ASL with larger CNNs tunes the
parameter to increase the strictness of the visual sim-
ilarity metric and consequently makes the hierarchy
shorter and wider.

We use an architecture search technique that
progressively grows the CNN, until it finds an archi-
tecture until the similarity metric parameter is tuned
appropriately. In the following section, we describe
how to find appropriate similarity metric parameters

for different application requirements. Using this
technique, TRUNK is constructed in a root-down
fashion. First, a CNN architecture is found at the root.
Then ASL groups categorize and find the first level of
children. This process continues to grow the TRUNK.
Finally, back-propagation is used to train the root
CNN to classify between its children. For each newly
formed child node, the process is repeated, continu-
ing until all categories have been placed as leaves in
the hierarchy. The algorithm to build TRUNK using
this technique is beyond the scope of this article and
is available in our prior publication [6].

Adaptation for different hardware
configurations

In this section, we describe how to control the
attributes of TRUNK to meet different hardware con-
straints and accuracy requirements. Edge devices
have different computing resources. The following
examples present different scenarios where different
TRUNK architectures may be beneficial.

1) On a powerful edge device equipped with a GPU
(e.g., NVIDIA Jetson Nano with 4 GB GPU mem-
ory), it may be acceptable to use a shorter-wider
hierarchy to increase the overall accuracy at the
expense of an increased computing workload
due to the larger CNNs at each node.

2) On resourcescarce loT devices with limited
memory and no GPU (e.g., ARM Cortex M with
500 KB memory), the small CNNs in a taller-nar-
rower hierarchy may be required.

3) If TRUNK is unable to achieve the target accuracy
on a given device, then an alternate device with
more memory may be required.The larger mem-
ory would be able to accommodate larger CNNs,
thus allowing a more accurate shorterwider (also
less efficient) hierarchy.

To understand how to adapt TRUNK for varying
requirements, we build two mathematical models
that describe the TRUNK accuracy (A7) and TRUNK
workload size (Wy). The overall workload size rep-
resents the overall memory requirement, number
of operations, or energy consumption. For simplic-
ity, our experiments measure the overall memory
requirement of TRUNK. Since the CNN’s number
of operations, energy consumption, and memory
requirement are related, the same mathematical
model and analysis can be extended for the other
metrics [2], [3]. These models are built using five

IEEE Design&Test

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

key attributes (listed in Table 1) that impact TRUNK’s
performance.

The overall TRUNK accuracy (Ay) depends on
the average CNN accuracy (4) and the average path
length (L). The following example presents a simple
analysis. Suppose A is 95% and there are 100 images
in the test set. At the root, we can expect that 95/100
images are classified correctly. At the next level of
the hierarchy, 95% of these 95 images are correctly
classified again. For an entire hierarchy with depth
L, the expected overall test accuracy is modeled by
the following:

Ap=AL @)

Here, we see that TRUNK’s accuracy decreases
as the depth of the hierarchy increases. When L is
large, A — 1.0 is needed to achieve high accuracy.
For example, to achieve A;> 0.95, with L =2, A must
exceed 0.97. However, prior research shows that
to achieve A — 1.0, the CNN model, S, needs to
increase significantly [2]. In most cases, we can say
that A and S are positively correlated. Thus, increas-
ing A may not always be useful. We may need to
decrease L.

L can be controlled by varying the similarity met-
ric parameter (P) and the average fan-out (F) at each
node of the hierarchy. P is a measure that decides
if categories are similar enough to be grouped into
a cluster. A large P leads to the formation of many
small clusters of highly similar categories. This results
in a short-and-wide hierarchy with a large fanout (F).
A smaller P reduces the strictness of the similarity
metrics and forms fewer but larger clusters, resulting
in a tall-and-narrow hierarchy. In tall hierarchies, the
paths are longer and hence we can see that Pand F
are positively correlated with one another, and they
are negatively correlated with L.

The TRUNK overall workload size (Wy) can also
be modeled. Thus, the worst-case W is the sum of

Table 1. Symbols reference.

Symbol Definition

Similarity metric parameter

Average fan-out at each node
Average accuracy on each CNN
Average workload size on each CNN
Average hierarchy path length

Overall TRUNK accuracy
W Overall TRUNK workload size

RO I NS BV

b
S

May/June 2023

the individual CNN workloads along the longest
root-leaf path. Thus, W; depends on L and the aver-
age workload size of each CNN S and is modeled by

Wy=SxL. 3)

Our analysis uses the memory requirement of TRUNK
as a proxy for the workload size, because prior
research shows that the CNN number of operations,
energy consumption, and memory requirement are
related [2], [3].

Similar to L, S can also be controlled by varying
P and F. As P and F increase, the problem at each
CNN becomes larger and more complex. A large F
resembles the existing monolithic CNNs like ResNet
[4] and requires large CNNs for high accuracy. Thus,
as F increases, the CNN workload size (S) needs to
increase to maintain the same accuracy A.

An ideal TRUNK hierarchy increases A; and
simultaneously decreases Wy. To increase Ay, the
hierarchy needs a small depth (L) and consequently
a large fan-out (F) (L and F are negatively corre-
lated). A large F requires large CNNs (S) to ensure
no change in the accuracy at each node (A). This
in turn increases Wy significantly. Thus, using these
models, the TRUNK attributes can be tuned to
achieve the desired tradeoff after considering the
hardware constraints and accuracy requirements.
We describe experiments in the upcoming section
to validate these relationships.

TRUNK for efficient computer vision
applications

In this section, we use object counting and rei-
dentification (relD) problems to show how TRUNK
can solve different computer vision tasks beyond
image classification. In the object counting prob-
lem, the goal is to report the number of occur-
rences of a queried object category in an image
with multiple objects. To avoid counting the same
object multiple times, object counting is commonly
combined with object relD. In the object relD prob-
lem, the goal is to identify if an image contains an
object that has been seen before (possibly from a
different angle or camera).

Object counting

Existing object counters are based on object
detectors. Most techniques use RPNs to propose Rols
in an image [11]. These methods then process all the
Rols with large CNNs to find all objects; finally, the

57

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

58

General Interest

occurrences of the queried object are counted. This
process is highly redundant, because if we are only
interested in counting workers wearing hard hats in
an image, the computation involved in using large
CNNs to detect every single object is not required.

TRUNK can perform object counting more effi-
ciently than existing techniques, as seen in Figure 3a.
An RPN is used to find Rols (shown with red bound-
ing boxes) in the image. Instead of processing each
Rol with a large CNN, when using TRUNK, the Rols
are processed by the small CNN at the root. Only the
Rols that get classified onto the root-leaf path that
contains the queried object (e.g., workers wearing
hard hats) are processed by the next CNN. The other
Rols are not processed further, thus allowing us to
increase efficiency.

Object reidentification

Most existing relD techniques use large CNNs to
extract features from the query image. The Euclidean
distance is used to compare these features with the
features of every gallery image. The gallery images
are ranked based on their distance from the query
image. This typical approach performs many redun-
dant operations because query images need not be
compared with every gallery image. For example,
the query image in Figure 3b (a person with long hair
and a bag) could be compared only to other people
with long hair and bags in gallery images (b) and (f).
When using TRUNK for object relD, each small CNN
of the hierarchy extracts features from the query and
routes the query among its subsequent branches. Fig-
ure 3b illustrates this approach. The query image of a
pedestrian is processed by the root CNN to determine
if the person has long hair. After the first attribute iden-
tification, the gallery reduces to images (a), (b), and
(). The next CNN continues to process the image and
identifies if the person is carrying a bag. This attribute
identification reduces the gallery to images (b) and
(f). This process continues until a leaf CNN is reached.
The features from the leaf CNN are used to perform
comparisons with the remaining gallery images to rei-
dentify the person. Because each node specializes in
processing images with specific attributes, small, effi-
cient CNNs can be used to obtain high accuracy.

Experimental evaluation

We conduct experiments to evaluate the TRUNK
architecture for three computer vision applica-
tions: image classification, object counting, and

| Cluster 1 |

T
| Cluster 2 | Cluster 3
Cluster4| Manager | ey, cter 5 | Hammer Bag Computer

Worker with Worker with Wrench Screwdriver
Hard Hat Eye Gear

(a)

Gallery Images

pink
CNN White
Shirt-color? Greein

Query Feature
Vector

1---- CNN K,
g; A .. Yes _,
hair-length? ™4 CNN b=~
Query Long
bag? No i

3
Distance between query and only gallery images
of people with long hair and bags (b, f)

(b)

Figure 3. TRUNK used for different
computer vision applications. (a) Object
counting: When attempting to count the
number of workers wearing hard hats,
only the Rols classified into Cluster 1 and
subsequently Cluster 4 are processed.

All other Rols are discarded to improve
efficiency. (b) Object relD: Each small CNN
identifies an attribute in the query image.
With TRUNK, we only rank gallery images
with the same attributes as the query.
Image source: Market-1501 data set.

object reidentification. We implement TRUNK using
PyTorch. More details about the experimental setup
and backbone architectures are available in our prior
publications [6], [7], [8], and links to the prototypes.

Table 2 compares the test error of the proposed
approach with existing techniques: hierarchical
clustering, semantic similarities, and random group-
ing. Using ASL with NAS, TRUNK has the lowest error
when the model sizes are the same.

Table 3 compares TRUNK with representa-
MobileNet v2

tive energy-efficient techniques:

IEEE Design&Test

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

Table 2. Comparison of test error with different
hierarchy construction techniques. Blue font
indicates the best result.

Classification Counting relD
CIFAR-10 PASCAL-VOC Market-1501

Clustering TRUNK | Semantic TRUNK | Random TRUNK

Test

i 0.231 0.079 ‘ 2.560 1.800 ‘ 0.212 0.115
Error

Table 3. Comparison of TRUNK with existing
techniques. Blue font indicates the best result for
each application and metric.

CIFAR-10 PASCAL-VOC Market-1501
MobileNet TRUNK ‘ YOLOV3 TRUNK‘ ResNet TRUNK

Classification ‘ Counting ‘ relD

Test

E 0.060 0.079 ‘ 1.610 1.800 ‘ 0.128 0.115
ITOr
Mem. ¢ g0 0.80 | 248.00 16.00 | 103.00 14.00
#Ops
(x108) 100 28 ‘ 141,000 44,000 ‘ 3,882 808
Enersy 5 5o 1.05 | 162.00 8.10 | 21.63 2.70
(J/img)

[1] for image classification on the CIFAR-10 data
set, YOLOv3 [12] for object counting on the PAS-
CAL-VOC data set, and ResNet50 [4] for object relD
on the Market-1501 data set. These techniques are
existing (nonhierarchical) architectures that con-
sume the least energy. The techniques are evalu-
ated in terms of test error, memory requirement (in
MB), number of arithmetic operations, and energy
consumption when deployed on an NVIDIA Jetson
Nano. The test error for classification, counting, and
relD are measured as 1 — test accuracy, root mean
squared error [7], and Rank-1 error [8] metrics,
respectively. For TRUNK, we report the worst-case
memory, operations, and energy requirement per
image, that is, the sum of the values along the longest
root-leaf path. Experiments in our prior publications
show that TRUNK can be used to improve efficiency
on larger data sets, for example, ImageNet, MS
COCO, and VRAI [6]. On the larger data sets, TRUNK
requires 70% less energy and memory, but achieves
~3% lower accuracy.

TRUNK consistently requires less memory and
arithmetic operations, thus indicating higher effi-
ciency. The performance gains come with a marginal
loss in accuracy when compared with the state-of-
the-art. Our experiments on the popular NVIDIA Jet-
son Nano reveal that the energy consumption and

May/June 2023

® CNN Size O Path Length

8010 @6
= 601 (o] _Sf,
= o
p (@) -4 C
N U 40] ﬂ,’—'
v o) 3.
= ©
=

20 1 o
© 8 o |2

(J
01 @ o [Ol
21 22 23 24 5 26
Fan-out
F

Figure 4. As the fan-out (F) increases, the required
workload size at one node (S) increases superlinearly
and the hierarchy path length (L) decreases. Note that
F is plotted on a logarithmic scale.

processing time of TRUNK are 80%-95% lower than
existing techniques across different computer vision
applications and data sets. Our prior publications
contain more experiments that analyze the impact of
similarity metrics, thermal throttling, and embedded
device hardware on overall performance [6], [7],
[8]. Due to space constraints, we do not tabulate all
the results [13].

Figure 4 experimentally validates the mathemati-
cal models presented in (2) and (3). As mentioned
in the previous section, the overall workload size
represents the overall memory requirement, number
of operations, or energy consumption. For simplic-
ity, our experiments measure the overall memory
requirement of TRUNK. We construct hierarchies
with varying fan-out (F) and plot the average CNN
workload size (S) and hierarchy path length (L). For
the CIFAR-100 data set, we find that F' is negatively
correlated with L, as depicted in Figure 4 (white cir-
cles). The black circles in Figure 4 show that as F
increases, .S grows superlinearly. Thus, these exper-
iments show that decreasing L to increase accuracy
(A7) increases the workload size (Wy) significantly.
Thus, we use (2) and (3) to find appropriate hierar-
chy structures.

In this article, we describe the TRUNK architec-
ture that organizes multiple small CNNs in the form

S

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

60

General Interest

of a hierarchy. We present two important proper-
ties that are required by TRUNK to ensure high effi-
ciency with high accuracy. Using those properties,
we develop a method to combine our novel visual
similarity metric with neural architecture search to
define hierarchy structures. We then build mathe-
matical models that help adapt the TRUNK hierar-
chy structure to meet different hardware constraints
and accuracy requirements. Finally, we also show
the versatility of TRUNK to accurately perform dif-
ferent computer vision problems accurately on
embedded devices. Our experiments confirm that
TRUNK improves the deployability of computer
vision systems.

This article highlights the application of TRUNK
in three selected computer vision tasks. Looking
forward, TRUNK can improve the efficiency of
any deep-learning task that benefits from a smaller
search space, which is often the case in the real
world, where we are looking for very specific cate-
gories. The hierarchy structure effectively reduces
the problem size, thus allowing smaller CNNs to
complete the same task with fewer computational
resources. Furthermore, this approach can be useful
in other application scenarios.

1) Incremental learning: Where new categories are
discovered incrementally over time. When using
TRUNK, only a small subset of CNNs need to be
retrained to accommodate a new object cate-
gory. The other CNNs can be left unchanged.

2) Imbalanced data sets: Some categories appear
more often than others. The more frequently
occurring objects can be placed closer to the
root, thus allowing the objects to get classified
faster.

THE TRUNK APPROACH represents a promis-
ing step for processing visual data on embedded
devices. Future research could improve the utility
of TRUNK by increasing its accuracy and versatility,
without sacrificing efficiency. [|

Il References
[1] A.G. Howard et al., “MobileNets: Efficient
convolutional neural networks for mobile vision
applications,” 2017, arXiv:1704.04861.
[2] S.Bianco et al., “Benchmark analysis of representative
deep neural network architectures,” IEEE Access,
vol. 6, pp. 64270-64277, 2018.

[3] G. K. Thiruvathukal, Low-Power Computer Vision:
Improve the Efficiency of Artificial Intelligence.
Boca Raton, FL, USA: CRC Press, 2022.

K. He et al., “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, Jun. 2016,

pp. 770-778.

S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning,

[4

[5

trained quantization and Huffman coding,” 2015,
arXiv:1510.00149.

[6] A.Goel et al., “Modular neural networks for low-power

image classification on embedded devices,” ACM
Trans. Design Autom. Electron. Syst., vol. 26, no. 1,
pp. 1-35, Jan. 2021.

[7] A.Goel et al., “Low-power object counting with
hierarchical neural networks,” in Proc. ACM/IEEE
ISLPED, Aug. 2020, pp. 163-168.

[8] A. Goel et al., “Low-power multi-camera object

re-identification using hierarchical neural
networks,” in Proc. IEEE/ACM ISLPED, Jul. 2021,

pp. 1-6.

[9] Z.Yan et al., “HD-CNN: Hierarchical deep convolutional

neural networks for large scale visual recognition,” in
Proc. IEEE ICCV, Dec. 2015, pp. 2740-2748.

[10] X.Zhu and M. Bain, “B-CNN: Branch convolutional
neural network for hierarchical classification,” 2017,
arXiv:1709.09890.

[11] S.Ren et al., “Faster R-CNN: Towards real-time
object detection with region proposal networks,” 2015,
arXiv:1506.01497.

[12] J. Redmon and A. Farhadi, “YOLOvV3: An incremental
improvement,” 2018, arXiv:1804.02767 .

[13] TRUNK Source Code. Accessed: Feb. 9, 2022.
[Online]. Available: https://github.com/abhinavgoel95/
TRUNK

Abhinav Goel is interested in efficient and low-
power computer vision systems. Goel has a Ph.D.
from the ElImore Family School of Electrical and Com-
puter Engineering, Purdue University, West Lafay-
ette, IN 47907 USA.

Caleb Tung is pursuing a Ph.D. in the EImore
Family School of Electrical and Computer Engineer-
ing at Purdue University, West Lafayette, IN 47907
USA. His research is on energy-efficient computer
vision on embedded devices.

Nick Eliopoulos is pursuing a Ph.D. in the
Elmore Family School of Electrical and Computer
Engineering at Purdue University, West Lafayette,

IEEE Design&Test

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

https://github.com/abhinavgoel95/TRUNK
https://github.com/abhinavgoel95/TRUNK

IN 47907 USA. His research interest is in real-time
computer vision and remote sensing.

Amy Wang is a high school student at West
Lafayette Junior-Senior High School, University, West
Lafayette, IN 47907 USA. She is interested in pursu-
ing research in computer science.

James C. Davis is an assistant professor in the
Elmore Family School of Electrical and Computer
Engineering at Purdue University, West Lafayette,
IN 47907 USA. His research is in empirical software
engineering, focused on factors influencing the
security of cyber- and cyber—physical systems.

George K. Thiruvathukal is a professor and a
chairperson in the Department of Computer Science
at Loyola University Chicago, Chicago, IL 60660

May/June 2023

USA. His research interests include parallel comput-
ing, software engineering, and computer vision.

Yung-Hsiang Lu is a professor in the Elmore
Family School of Electrical and Computer Engineer-
ing at Purdue University, West Lafayette, IN 47907
USA. He is a Fellow of IEEE and a Distinguished Sci-
entist of the ACM.

[l Direct questions and comments about this article
to Abhinav Goel, School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN
47907 USA,; goel39@purdue.edu.

61

Authorized licensed use limited to: Purdue University. Downloaded on July 22,2023 at 18:08:37 UTC from IEEE Xplore. Restrictions apply.

