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ABSTRACT. Stabilizing the escalating CO2 levels in the atmosphere is a grand challenge in view 

of increasing global demand for energy, the majority of which currently comes from burning of 

fossil fuels. Capturing CO2 from point source emissions using solid adsorbents may play a part in 

meeting this challenge., and metal-organic frameworks (MOFs) are considered to be a promising 

class of materials for this purpose. It is important to consider the co-adsorption of water when 

designing materials for CO2 capture from post-combustion flue gases. Computational high-

throughput screening (HTS) is a powerful tool to identify top performing candidates for a 

particular application from a large materials database. Using a multi-scale modeling strategy that 

includes a machine learning model, density functional theory (DFT) calculations, force field 

optimization, and grand canonical Monte Carlo (GCMC) simulations, we carried out a systematic 

computational HTS of the all-solvent-removed version of the Computation-Ready Experimental 

Metal-Organic Framework (CoRE-MOF-2019) database for selective adsorption of CO2 from a 

wet flue gas mixture. After initial screening based on the pore diameters, a total of 3703 unique 

MOFs from the database were considered for screening based on the force field interaction 

energies of CO2, N2, and H2O molecules with the MOFs. MOFs showing stronger interaction with 

CO2 compared to that with H2O and N2 were considered for next level of screening based on the 

interaction energies calculated from DFT. CO2 selective MOFs from DFT screening were further 

screened using two-component (CO2 and N2) and finally three-component (CO2, N2 and H2O) 

GCMC simulations to predict the CO2 capacity and CO2/N2 selectivity. Our screening study 

identified MOFs that show selective CO2 adsorption under wet flue gas conditions with significant 

CO2 uptake capacity and CO2/N2 selectivity in the presence of water vapor. We also analyzed the 

nature of pore confinements responsible for the observed CO2 selectivity.  

INTRODUCTION  
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Increasing carbon dioxide (CO2) levels in the atmosphere and resulting extreme weather conditions 

are a major problem around the globe.1,2 CO2 is the major greenhouse gas, and the primary source 

of anthropogenic CO2 is the burning of fossil fuels.2 Although the renewable energy sector is 

growing rapidly, its contribution to the overall energy supply today is not large in most countries, 

and some sectors of the economy are difficult to decarbonize.1,3,4 CO2 capture is considered to be 

an important technique which could be installed at stationary emission points to restrict the further 

increase of CO2 levels in the atmosphere, but conventional capture through aqueous amine 

scrubbing is an energy intensive process.5–7  CO2 capture using solid adsorbents is considered a 

promising alternative to amine scrubbing, and robust solid sorbents with desired working capacity 

and selectivity are urgently needed.8–11 Many publications have focused on the primary CO2/N2 

separation, but the co-existence of water vapor in emission streams can lead to loss of CO2 working 

capacity due to blocking of the adsorption sites by water.12–14  

Metal-organic frameworks (MOFs), a class of crystalline porous materials composed of 

inorganic (metal or metal oxide) nodes and organic linkers, are reported to have potential 

applications in separation and storage of various important gases,15–18  and there are several 

databases that report large numbers of MOF structures, including the Computation-Ready 

Experimental (CoRE) MOFs,19 Cambridge Structural Database (CSD) MOFs,20 Quantum MOFs 

(QMOFs),21 hypothetical MOFs (hMOFs),22 etc.   In addition to these reported structures, the 

chemical space of MOFs is virtually unlimited due to the large number of possible combinations 

of linkers, nodes, and crystal topologies.23,24 Computational high-throughput screening (HTS) is 

therefore a helpful technique to screen these large databases to find MOFs for specific application 

like CO2 capture.25–27 Though a good number of HTS studies on CO2 capture using MOFs are 

reported, many of them focused on CO2/N2 mixtures28–31 and did not take into account the presence 
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of water vapor.  There are two major difficulties in simulating water adsorption in MOFs.  First, 

there are uncertainties in the force field models and their ability to capture the unusual properties 

of water resulting from the characteristic hydrogen bonding networks.  Second, Monte Carlo 

simulations of water adsorption sometimes exhibit extremely slow convergence, especially for 

hydrophobic pores.32,33  

Several recent HTS studies have considered water vapor along with CO2 and N2. Li et al.34 

screened 5109 CoRE MOFs for CO2 capture from wet flue gas mixtures, wherein the selectivity 

for CO2/H2O was assessed from the ratio of the calculated Henry’s law constants (KH) for CO2 and 

H2O using framework charges calculating with the extended charge equilibration (EQeq) method, 

which is a rapid but approximate method for obtaining framework atom charges. Comparison of 

the CO2/H2O selectivity in the top 15 MOFs from KH calculated using two different charge 

methods, EQeq and DFT based Repeating Electrostatic Potential Extracted ATomic (REPEAT), 

revealed that the CO2/H2O selectivity values using EQeq charges was overestimated and the KH 

of H2O is more sensitive to the charge method than those of CO2 and N2. Li and coworkers35 further 

demonstrated the importance of accurate atomic charges on computational HTS predictions by 

screening the CoRE MOF database with DDEC6 atomic charges. Coelho et al.36 studied the effect 

of relative humidity (RH) on gas uptake using an alternate approach where MOFs were preloaded 

with water molecules at different RH through NVT (constant number of atoms, volume, and 

temperature) simulations followed by adsorption of other gas molecules through GCMC 

simulations. They showed that the CO2 uptake at 40% RH was negligible in the MOFs considered. 

Erucar et al.37 explored the impact of water vapor on the CO2 separation performance of 13 top 

MOFs from their previous computational HTS studies through two different techniques, 

simulating the (1) ternary mixtures (CO2/CH4/H2O and CO2/N2/H2O) in the MOFs and (2) binary 
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mixtures (CO2/CH4 and CO2/N2) in MOFs with preloaded water at 80% RH. A significant decrease 

in both the CO2 and N2 uptakes for the MOFs preloaded with water is reported due to the high 

affinity for water in all the top MOFs selected for CO2/N2 separation. In another interesting study, 

Boyd et al.38 reported the data driven discovery of MOFs for CO2 capture from wet flue gas 

mixture. Here, they screened a library of 325,000 computationally generated MOFs that were 

categorized into three classes depending on the pore shapes and CO2 adsorption sites. MOFs with 

parallel aromatic rings separated by around 7 Å were proposed to be effective for CO2 capture in 

the presence of water vapor, and the authors also reported the synthesis of such MOFs with optimal 

CO2 binding sites, which showed minimal influence of water on the CO2 capture capacity.   

In the present study, we followed a multi-scale modeling strategy as depicted in Figure 1 for 

high-throughput screening of the all-solvent removed (ASR) version of the CoRE-MOF-2019 

database19 to identify the top MOFs for CO2 capture under wet flue gas conditions.  In view of the 

long computational hours required for simulating the adsorption of water in this large number of 

MOFs, we used the interaction energies of CO2, N2 and H2O molecules with the MOFs calculated 

from classical force field minimizations followed by more accurate DFT calculations as the first 

two steps of the HTS study. To treat the Coulombic interactions accurately in the force field 

simulations, we used the atomic charges generated using our machine learning model, namely, 

partial atomic charges in metal−organic frameworks (PACMOF),39 which was trained and tested 

previously using DDEC6 atomic charges.40–42  Since the single-molecule interaction energies 

neglect important sorbate/sorbate interactions, finally, we calculated the loading capacity and 

selectivity in selected MOFs from the previous step at flue gas conditions using GCMC 

simulations, and top candidates with high CO2 selectivity and CO2 loading capacity under humid 

conditions were identified. In addition to screening the MOF database, we also attempted to 
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understand how the nature of the pore confinement affects the CO2 selectivity and capacity in the 

presence of water vapor.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: High-throughput screening procedure used on the CoRE-MOF-2019 database to identify 

top-performing materials for CO2 capture under wet flue gas conditions. 

 

 

Computational Methods 
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Selection of MOFs: For the HTS study, MOF structures were selected from the all-solvent-

removed (ASR) version of the CoRE MOF-2019 database.19 As the screening process involves 

computationally expensive DFT studies, we  tried to limit the number of MOFs using different 

criteria as depicted in Figure S1. From the 14142 CoRE MOFs, the number was reduced to 7199 

by considering only MOFs having largest cavity diameter (LCD) values up to 6 Å based on a 

previous study,34 which reported that the MOFs with smaller pore sizes are more selective for CO2 

capture and also that large pore MOFs are not suitable for CO2 capture at low partial pressures, 

such as those in flue gas. As a next condition, the maximum number of atoms per unit cell of MOF 

was limited to 500, due to the computationally expensive DFT calculations; this reduced the 

number of MOFs to 6967.  Within these selected MOFs, some were found to have disorder or 

missing atoms, which we corrected manually followed by relaxation of the corrected structures 

using DFT at the PBE+D3 level of theory. The manually corrected structures are reported in the 

Supporting Information.  MOF structures with missing charge balancing ions can lead to 

(incorrectly) charged unit cells, and the presence of extra-framework ions may also increase the 

hydrophilicity of the material. Hence, MOFs with charge-balancing ions were also exempted from 

the MOFs considered for HTS; this reduced the number of MOFs further to 4431.  Since there 

were multiple MOFs with same structure and different CSD REFCODEs, we further screened for 

the presence of identical MOFs using the 'structure_matcher’ module from the pymatgen 

software.43 After exempting such identical MOFs, 3703 unique MOFs were considered for HTS.  

Force Field Model: In the force field calculations (energy minimization and Monte Carlo 

simulations), the non-bonded interactions between atoms of the adsorbate molecules and the MOF 

atoms were modeled as a sum of Lennard−Jones (LJ) and Coulomb potentials 

𝐸𝑖𝑗 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +  
1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
    (1) 
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where 𝑟𝑖𝑗 is the distance between atoms i and j,  𝜎𝑖𝑗  and 𝜀𝑖𝑗 are the LJ parameters, and 𝑞𝑖 is the 

partial atomic charge on atom i. The LJ parameters for the MOF atoms were taken from the 

universal force field (UFF),44 and the cross interactions were calculated using the 

Lorentz−Berthelot mixing rules. A cut-off distance of 12.8 Å was considered for the LJ interactions 

without any tail correction, and sufficiently large super cells were considered to obey the minimum 

image convention.  Partial atomic charges for the MOF atoms were assigned using the PACMOF39 

package, which was reported to give DDEC6 quality atomic charges. The LJ parameters and partial 

charges for guest molecules were treated using the TraPPE45,46 (CO2 and N2) and TIP4P47 (H2O) 

force fields.  

Force Field Optimization: To find the minimum energy adsorption configuration and calculate 

the interaction energy of the guest molecules (CO2, H2O and N2) with the selected MOFs, 150 

random initial configurations were generated for each molecule in each MOF. From each of these 

150 configurations, the position of the guest molecule was optimized using the Baker minimization 

method as implemented in the RASPA package.48  

DFT Calculations: Adsorption energies of guest molecules with the selected MOFs were 

calculated using spin-polarized periodic DFT calculations as implemented in the Vienna ab initio 

simulation package (VASP)49–51 with a plane-wave kinetic energy cut-off of 520 eV. Projector 

augmented wave (PAW) potentials were used to treat the interactions between the core and valence 

electrons.52 The exchange−correlation energy density functional was treated using the generalized 

gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE).53 Grimme’s DFT-D3 

method with Becke-Johnson damping (PBE-D3) was used to treat the weak van der Waals 

interactions.54 In view of the large number of calculations involved in the HTS and the large size 

of the MOF unit cells, only the Γ point was sampled in the Brillouin zone. Initial calculations 
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treated the framework atoms as fixed and optimized only the guest atom positions (so-called 

“selective dynamics”). For selected systems with stronger CO2 interaction energy compared to the 

H2O interaction energy at the DFT level, we also relaxed the MOF structures. A 

Hellmann−Feynman force cut-off of 0.01 eV Å−1 was used for all the structural optimizations. 

Energies of the CO2, H2O, and N2 molecules in the gas phase were calculated in a cubic cell of 15 

Å length, and the interaction energy of guest molecule ‘X’ with the MOF was calculated as  

ΔE = E(X@MOF) –[E(MOF)+E(X)]   (2) 

where E(X@MOF), E(MOF) and E(X) refer to energies of MOF with adsorbed guest molecule, 

empty MOF, and gas-phase molecule respectively.  

GCMC Simulations: Although the DFT interaction energies should be more accurate than those 

calculated from the force field, these calculations considered only a single molecule interacting 

with the framework. To simulate the effect of loading of guest molecules beyond a single molecule, 

we studied the adsorption of binary (CO2/N2) and ternary (CO2/N2/H2O) gas mixtures at the flue 

gas conditions using the grand canonical Monte Carlo (GCMC) simulation technique as 

implemented in the RASPA code.48 For all MOFs selected from the previous screening step, we 

simulated the adsorption isotherm for a 15:85 mixture of CO2 and N2 at 313 K up to 1 bar total 

pressure. In a set of selected MOFs with high CO2/N2 selectivity and high CO2 loading capacity 

from the binary mixture simulations, we simulated adsorption of a ternary mixture of CO2/N2/H2O 

at a relative humidity of 80% to test the effect of moisture on the CO2/N2 selectivity and CO2 

capacity. To calculate the relative humidity, the saturation pressure of water at 313 K was 

considered to be 7375 Pascals as per the reported results for TIP4P water by Vorholz et al.55  For 

the binary mixtures, 50,000 Monte Carlo cycles were used for each equilibration and production 

considering insertion, deletion, translation, rotation, and identity change moves. A cycle is defined 
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as N move attempts, with N being the number of molecules in the system with a minimum of 20 

moves per cycle. Since water adsorption is known to converge extremely slowly, we considered 1 

x 106 cycles for both equilibration and production for the ternary mixtures. The selectivity for CO2 

over N2 from GCMC simulations of binary and ternary gas mixtures was calculated as 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
(

𝑛𝐶𝑂2
𝑝𝐶𝑂2

⁄ )

(
𝑛𝑁2

𝑝𝑁2
⁄ )

    (3) 

where n and p represent the uptake in mol/kg and the partial pressure, respectively.  All HTS jobs 

were managed using the workflow managing code Fireworks.56 Figures of the MOF structures 

were generated using the graphical software VESTA.57 
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Results and Discussion  

For each MOF-guest molecule pair of 3703 MOFs and three guest molecules (CO2, N2 and H2O), 

150 random single molecule adsorption configurations were generated and optimized using the 

Baker optimization method, and the corresponding MOF-guest molecule interaction energies were 

calculated. Plots of the calculated N2 versus CO2 and H2O versus CO2 interaction energies using 

the force field methods are reported in Figure 2. It can be observed that most of the MOFs have a 

stronger interaction with CO2 than with N2 and a stronger interaction with water than with CO2, as 

expected from the chemical nature of the guest molecules. Out of the 3703 MOFs considered, 458 

MOFs are found to have stronger affinity toward CO2 than toward both N2 and H2O.  

 

Figure 2: Interaction energies of MOFs with (a) CO2 and N2 and (b) CO2 and H2O molecules from 

force field energy minimizations. 

After analysing the structures of the 458 MOFs selected based on the force field interaction 

energies, we found that some of them have either missing atoms or disordered atoms. These 

structures were consequently dropped from the computationally more expensive DFT screening, 

and only 387 MOFs were selected for DFT studies. For each of these 387 MOFs, the five lowest 

(a) (b) 
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energy adsorption configurations (from the force field interaction energies) for each molecule 

(CO2, N2 and H2O) were considered as initial configurations for periodic DFT calculations using 

selective dynamics where the guest molecule alone is allowed to relax with fixed framework 

atoms. The energy of the lowest energy configuration from the five minimizations was used for 

calculating the interaction energy of the guest molecule with the MOF using equation 2. From the 

parity plots of the CO2 and H2O interaction energies calculated from force field and DFT methods 

in Figure 3, it can be observed that the CO2 interaction energies (Figure 3a) are near the parity line 

for the majority of the MOFs. However, for H2O interaction energies (Figure 3b), most of the 

MOFs are far from the parity line, and the DFT interaction energies are generally larger in 

magnitude than those from force field calculations, indicating that the water interaction energies 

from force field optimization were underestimated in many cases. Out of the 387 MOFs considered 

for DFT screening, 63 MOFs were found to have stronger interaction with CO2 than with H2O; 

parity plots of the interaction energies from force field and DFT studies on these 63 MOFs are 

reported in Figure S2.  

 

 

(a) (b) 
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Figure 3. Interaction energies of MOFs with (a) CO2 and (b) H2O molecules with 387 selected 

MOFs calculated from force field (FF) and DFT methods.   

 

For the 63 MOFs showing stronger CO2 interactions than H2O interactions, the lowest minimum 

energy adsorption configuration for each molecule (from the 5 configurations considered) was 

fully relaxed including relaxation of the framework atoms. Though the framework relaxation has 

minimal effect in many cases, in a few MOFs like OCEGUB (SIFSIX-3-Ni), we observed 

interesting effects. In most of the computational studies reported on SIFSIX-3-M MOFs,58,59 the 

framework structures were considered as shown in Figure 4(a), which is the same as what we 

considered for the selective dynamics calculations. However, upon relaxing the framework atoms 

of SIFSIX-3-Ni with adsorbed water, the pyrazine rings were found to rotate to facilitate hydrogen 

bonding with the water molecule as shown in Figure 4(b), and, in fact, even for the pure MOF 

structure (with no adsorbed water) the structure with tilted pyrazine rings is found to be the 

minimum energy structure by an energy difference of 123.5 kJ/mol compared to the structure in 

4(a).  A similar transition of pyrazine rotational configurations in SIFSIX-3-M induced by Xe 

adsorption was reported by Elsaidi et al.60 The SIFSIX-3-Ni structure in Figure 4(a) with fixed 

framework atoms was found to have stronger interaction with CO2 compared to H2O and the order 

of interaction energy was found to reverse upon the framework relaxation because of the strong 

hydrogen bonding environment in the pore for water adsorption.  After considering the framework 

relaxation effect, 48 MOFs were found to have the stronger affinity for CO2 than for H2O.  

 

 
(b) (a) 
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Figure 4. Optimized geometries of SIFSIX-3-Ni (a) without adsorbed water and (b) with adsorbed 

water.  

 

Table 1: Top 20 MOFs with stronger CO2 binding energy compared to H2O binding energy 

calculated from periodic DFT studies after the framework atoms were relaxed. 

MOF refcode BE of CO2 (kJ/mol)  BE of H2O (kJ/mol) ΔBE (kJ/mol)  

CAYBAH01 -35.88 -24.34 11.54 

RURPAW -44.60 -33.14 11.46 

CUIMDZ01 -45.72 -36.70 9.02 

YUBFUX -33.78 -25.63 8.15 

ITAHEQ -30.22 -22.19 8.03 

RURPEA -42.59 -34.72 7.87 

FALQEQ -34.15 -26.55 7.60 

FALQOA -33.97 -26.50 7.47 

FALQIU -33.97 -26.53 7.44 

XENZEX -37.69 -30.41 7.27 

ZADWIN -26.99 -20.68 6.30 

NUYQUU -41.37 -35.17 6.20 

WOMCUY -36.17 -30.24 5.94 

RITDAB -30.80 -26.23 4.57 

SINZIA -38.54 -34.37 4.17 

PAPXUB -35.13 -31.11 4.02 

PIHJOH01 -34.82 -31.16 3.66 

MUVGUG -33.45 -30.00 3.45 

C O H N F Si Ni 



 15 

EMUYAM01 -35.16 -31.82 3.34 

AMUCOB -31.06 -27.75 3.31 

 

The top 20 MOFs showing high affinity towards CO2 compared to H2O from the DFT studies are 

tabulated in Table 1 along with their binding energies.  The full list of all 48 MOFs is provided in 

Table S1. We also compared the computed minimum energy adsorption sites of CO2 with reported 

experimental studies in a few MOFs. For example, in ZIF-7 (RIPNUB), which has two different 

cavities ('A type' and 'B type'), CO2 was reported to preferentially occupy the 'B type' cavity, and 

our optimized minimum energy configuration reported in Figure S3(a) is consistent with the 

reported result.61 Similarly, in the case of SIFSIX-3-Ni (OCEGUB), our DFT calculations predict 

that CO2 adsorbs along the one-dimensional channel with the 𝐶∞ axis of CO2 along the 𝐶4 axis of 

the lattice as reported in Fire S3(b) such that the positively charged carbon atom of CO2 interacts 

with the framework halogen sites while the negatively charged oxygen atoms of CO2 interact with 

the framework pyrazine hydrogen atoms, which is consistent with the experimentally reported 

results from in situ PXRD.62   

We also examined the nature of the pore environment around the adsorption sites in the CO2-

selective MOFs to understand the observed strong affinity for CO2 over H2O and to provide 

insights for the design of improved porous materials for CO2 capture under humid conditions. We 

mainly observed two chemical confinements that drive the observed affinity for CO2 over H2O, 

namely pores with (1) complementary charged sites to the atomic charges in the CO2 molecule and 

(2) parallel cyclic aromatic (π) ligands separated by around 7 Å. In the former case, MOFs like 

YUBFUX63 (Figure S4) have framework atomic charges that create an optimal site for strong 

Coulombic attraction with the CO2 molecule while there were no such strong Columbic 

interactions for water adsorption. In an earlier study by Deria et al.,64 it was reported that the 
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incorporation of complementary organic motifs in MOFs with precise charge alignment 

complementary to CO2 atomic charges can enhance the CO2 uptake. In the later type of 

confinement shown in MOFs like HIMSAY/BUSQEM65,66 and RITDAB67 (Figure S5), CO2 

binding is driven by the strong π-π interactions between the π electron systems of the aromatic 

ligands and the CO2 molecule. To verify the optimum separation between the parallel aromatic 

rings, we calculated the CO2 binding energy from DFT when placed between two pyrene rings at 

various fixed separation distances as shown in Figure S6.  The results indicate that a separation 

distance of 6.8 Å is the optimum for CO2 binding, and the corresponding binding energy is 

calculated to be -25.0 kJ/mol. Interestingly, this optimum separation is nearly double the interlayer 

separation in graphite, and hence it can be visualized as replacing one of the graphene layers in 

graphite with CO2, which also has π electrons and can have similar π-π interactions as those present 

in graphite. Our findings are consistent with the reported results of Boyd et al.38 where MOFs with 

parallel aromatic rings separated by around 6.7 Å were reported to show negligible effect of water 

on CO2 uptake. Our explanation in terms of π-π interactions is further supported by a previously 

reported DFT study on CO2 adsorption in single walled carbon nanotubes of different sizes, where 

a (9, 0) CNT with a diameter of 7.05 Å was shown to have the strongest CO2 interaction energy 

compared to other CNTs with lower or higher diameters.68   

 

To estimate the adsorbed phase loadings under flue gas conditions, we first used GCMC 

simulations to predict the adsorption isotherms of a binary mixture of CO2 and N2 in a 15:85 ratio 

at 313 K and 0.1 bar to 1 bar total pressure in the 48 selected MOFs from the previous screening 

step. From the binary mixture adsorption studies, only 10 MOFs are observed to show a reasonably 

high CO2/N2 selectivity and CO2 uptake capacity as reported in Table S2. These materials were 
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then considered for the simulation of the ternary mixture. In the ternary adsorption studies, we 

fixed the partial pressure of water at 80% relative humidity (5900 Pa at 313 K) based on the 

saturation pressure reported for the TIP4P water model.55,69 For the three-component adsorption, 

we simulated only at three pressures (sum of the partial pressures of CO2 and N2 with 15:85 

composition), namely 0.1 bar, 0.5 bar, and 1.0 bar. In some cases, where the fluctuations in the 

loading were high even after 2 x 106 cycles, we extended the simulations for another 1 x 106 cycles. 

The simulated two- and three-component isotherms of the top 6 MOFs are reported in Figure 5. 

while the isotherms for the remaining MOFs are reported in Figure S7. From the ternary mixture 

simulation studies, the presence of water is found to have a negligible effect on the CO2 uptake 

and CO2/N2 selectivity with the exception of GAYGAQ,70 which has one-dimensional channels, 

where adsorbed water forms hydrogen bonded chains. Since the error bars in gas loading values 

calculated as the 95% confidence interval are smaller than the marker size, they were not reported 

in the isotherm plots.  

 

We also studied both two and three component adsorption in two MOFs, SIFSIX-3-Ni 

(OCEGUB02) and NbOFFIVE-1-Ni (OWIKAI), in which water adsorption leads to rotation of 

pyrazine rings by considering both the structures with and without the ring rotation. The isotherms 

are reported in Figure S8, and it can be observed that the CO2 uptake from both two and three 

component simulations in the structures with rotated pyrazine rings is lower compared to that in 

the structures with symmetrically oriented pyrazine rings (as in Figure 4(a)). The presence of water 

was found to reduce the CO2 uptake in OWIKAI, while the effect was minimal in OCEGUB01.  
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Figure 5. 

Two- and three-component adsorption isotherms at 313 K for the top 6 MOFs identified from the 

screening process: (a) HIMSAY, (b) LUFQUZ, (c) RIPNUB, (d) VEJZEQ, (e) BUSQEM and (f) 

EREFEN01. The selectivity is calculated at 1 bar pressure with 80% relative humidity.  
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Conclusion 

 

We carried out a systematic computational high-throughput screening study to identify the top 

performing MOFs from the CoRE-MOF-2019 database for CO2 capture from a wet flue gas 

mixture. Multi-scale computational techniques, viz. a machine learning model to quickly obtain 

MOF partial atomic charges, force field optimization, DFT studies, and GCMC simulations were 

used for the HTS study.  Screening using the force field interactions calculated between the MOF 

and guest molecules was able to reduce the number of MOFs to be studied using the 

computationally more expensive DFT studies. From the DFT studies, it was observed that 

framework relaxation can alter the selectivity in certain MOFs where ligand rotations are induced 

by guest molecule adsorption. Preferred adsorption sites for guest molecules were compared with 

experimental results where available and found to be consistent. For the top selected MOFs from 

the DFT screening, grand canonical Monte Carlo simulations were used to study the adsorption on 

both two- (CO2 and N2) and three-component mixtures (CO2, N2 and H2O at 80% relative 

humidity).  For the 10 MOFs where three-component adsorption simulations were performed, only 

one MOF showed reduced CO2 uptake and CO2/N2 selectivity from the presence of water, 

validating the screening process. In addition to screening to find the top candidates, we also used 

the simulation results to understand the nature of pore confinement that is responsible for the 

observed CO2/H2O selectivity. Most of the selective MOFs have either strong π- π confinement 

from pores with parallel aromatic rings or confinement with framework atom charges that are 

complementary to the CO2 atomic charges. These design rules may allow for the future synthesis 

of improved materials for CO2 capture. 
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