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ABSTRACT. Stabilizing the escalating CO> levels in the atmosphere is a grand challenge in view
of increasing global demand for energy, the majority of which currently comes from burning of
fossil fuels. Capturing CO> from point source emissions using solid adsorbents may play a part in
meeting this challenge., and metal-organic frameworks (MOFs) are considered to be a promising
class of materials for this purpose. It is important to consider the co-adsorption of water when
designing materials for CO; capture from post-combustion flue gases. Computational high-
throughput screening (HTS) is a powerful tool to identify top performing candidates for a
particular application from a large materials database. Using a multi-scale modeling strategy that
includes a machine learning model, density functional theory (DFT) calculations, force field
optimization, and grand canonical Monte Carlo (GCMC) simulations, we carried out a systematic
computational HTS of the all-solvent-removed version of the Computation-Ready Experimental
Metal-Organic Framework (CoRE-MOF-2019) database for selective adsorption of CO; from a
wet flue gas mixture. After initial screening based on the pore diameters, a total of 3703 unique
MOFs from the database were considered for screening based on the force field interaction
energies of CO2, N2, and H2O molecules with the MOFs. MOFs showing stronger interaction with
CO; compared to that with H,O and N> were considered for next level of screening based on the
interaction energies calculated from DFT. CO; selective MOFs from DFT screening were further
screened using two-component (CO2 and N3) and finally three-component (CO2, N> and H>O)
GCMC simulations to predict the CO> capacity and CO2/N; selectivity. Our screening study
identified MOFs that show selective CO2 adsorption under wet flue gas conditions with significant
CO; uptake capacity and CO2/N; selectivity in the presence of water vapor. We also analyzed the

nature of pore confinements responsible for the observed CO> selectivity.

INTRODUCTION



Increasing carbon dioxide (CO») levels in the atmosphere and resulting extreme weather conditions
are a major problem around the globe.!> CO; is the major greenhouse gas, and the primary source
of anthropogenic COz is the burning of fossil fuels.> Although the renewable energy sector is
growing rapidly, its contribution to the overall energy supply today is not large in most countries,
and some sectors of the economy are difficult to decarbonize.!** CO, capture is considered to be
an important technique which could be installed at stationary emission points to restrict the further
increase of CO: levels in the atmosphere, but conventional capture through aqueous amine
scrubbing is an energy intensive process.””’ COz capture using solid adsorbents is considered a
promising alternative to amine scrubbing, and robust solid sorbents with desired working capacity
and selectivity are urgently needed.> ! Many publications have focused on the primary CO»/N,
separation, but the co-existence of water vapor in emission streams can lead to loss of CO; working

capacity due to blocking of the adsorption sites by water.!? 4

Metal-organic frameworks (MOFs), a class of crystalline porous materials composed of
inorganic (metal or metal oxide) nodes and organic linkers, are reported to have potential

1518 and there are several

applications in separation and storage of various important gases,
databases that report large numbers of MOF structures, including the Computation-Ready
Experimental (CoRE) MOFs,!® Cambridge Structural Database (CSD) MOFs,?° Quantum MOFs
(QMOFs),?! hypothetical MOFs (hMOFs),?? etc.  In addition to these reported structures, the
chemical space of MOFs is virtually unlimited due to the large number of possible combinations
of linkers, nodes, and crystal topologies.”*** Computational high-throughput screening (HTS) is
therefore a helpful technique to screen these large databases to find MOFs for specific application
like CO» capture.?> 2’ Though a good number of HTS studies on CO, capture using MOFs are
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reported, many of them focused on CO2/N; mixtures and did not take into account the presence



of water vapor. There are two major difficulties in simulating water adsorption in MOFs. First,
there are uncertainties in the force field models and their ability to capture the unusual properties
of water resulting from the characteristic hydrogen bonding networks. Second, Monte Carlo
simulations of water adsorption sometimes exhibit extremely slow convergence, especially for

hydrophobic pores.*>3?

Several recent HTS studies have considered water vapor along with CO and Na. Li et al.>*
screened 5109 CoRE MOFs for CO; capture from wet flue gas mixtures, wherein the selectivity
for CO2/H20 was assessed from the ratio of the calculated Henry’s law constants (Ky) for CO; and
H>O using framework charges calculating with the extended charge equilibration (EQeq) method,
which is a rapid but approximate method for obtaining framework atom charges. Comparison of
the CO2/H20 selectivity in the top 15 MOFs from Ku calculated using two different charge
methods, EQeq and DFT based Repeating Electrostatic Potential Extracted ATomic (REPEAT),
revealed that the CO2/H20 selectivity values using EQeq charges was overestimated and the Kn
of H>0 is more sensitive to the charge method than those of CO2 and N». Li and coworkers* further
demonstrated the importance of accurate atomic charges on computational HTS predictions by
screening the CORE MOF database with DDEC6 atomic charges. Coelho et al.*¢ studied the effect
of relative humidity (RH) on gas uptake using an alternate approach where MOFs were preloaded
with water molecules at different RH through NVT (constant number of atoms, volume, and
temperature) simulations followed by adsorption of other gas molecules through GCMC
simulations. They showed that the CO; uptake at 40% RH was negligible in the MOFs considered.
Erucar et al.*’ explored the impact of water vapor on the CO> separation performance of 13 top

MOFs from their previous computational HTS studies through two different techniques,

simulating the (1) ternary mixtures (CO2/CH4/H20 and CO2/N2/H>0) in the MOFs and (2) binary



mixtures (CO2/CH4 and CO2/Nz) in MOFs with preloaded water at 80% RH. A significant decrease
in both the CO; and N uptakes for the MOFs preloaded with water is reported due to the high
affinity for water in all the top MOFs selected for CO»/N» separation. In another interesting study,
Boyd et al.*® reported the data driven discovery of MOFs for COx capture from wet flue gas
mixture. Here, they screened a library of 325,000 computationally generated MOFs that were
categorized into three classes depending on the pore shapes and CO» adsorption sites. MOFs with
parallel aromatic rings separated by around 7 A were proposed to be effective for CO> capture in
the presence of water vapor, and the authors also reported the synthesis of such MOFs with optimal
CO; binding sites, which showed minimal influence of water on the CO> capture capacity.

In the present study, we followed a multi-scale modeling strategy as depicted in Figure 1 for
high-throughput screening of the all-solvent removed (ASR) version of the CoRE-MOF-2019
database!” to identify the top MOFs for CO, capture under wet flue gas conditions. In view of the
long computational hours required for simulating the adsorption of water in this large number of
MOFs, we used the interaction energies of CO2, N2> and H>O molecules with the MOFs calculated
from classical force field minimizations followed by more accurate DFT calculations as the first
two steps of the HTS study. To treat the Coulombic interactions accurately in the force field
simulations, we used the atomic charges generated using our machine learning model, namely,
partial atomic charges in metal—organic frameworks (PACMOF),* which was trained and tested

previously using DDEC6 atomic charges.**

Since the single-molecule interaction energies
neglect important sorbate/sorbate interactions, finally, we calculated the loading capacity and
selectivity in selected MOFs from the previous step at flue gas conditions using GCMC

simulations, and top candidates with high CO. selectivity and CO; loading capacity under humid

conditions were identified. In addition to screening the MOF database, we also attempted to



understand how the nature of the pore confinement affects the CO> selectivity and capacity in the

presence of water vapor.
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Figure 1: High-throughput screening procedure used on the CoORE-MOF-2019 database to identify

top-performing materials for CO capture under wet flue gas conditions.
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Selection of MOFs: For the HTS study, MOF structures were selected from the all-solvent-
removed (ASR) version of the CORE MOF-2019 database.!® As the screening process involves
computationally expensive DFT studies, we tried to limit the number of MOFs using different
criteria as depicted in Figure S1. From the 14142 CoRE MOFs, the number was reduced to 7199
by considering only MOFs having largest cavity diameter (LCD) values up to 6 A based on a
previous study,** which reported that the MOFs with smaller pore sizes are more selective for CO,
capture and also that large pore MOFs are not suitable for CO» capture at low partial pressures,
such as those in flue gas. As a next condition, the maximum number of atoms per unit cell of MOF
was limited to 500, due to the computationally expensive DFT calculations; this reduced the
number of MOFs to 6967. Within these selected MOFs, some were found to have disorder or
missing atoms, which we corrected manually followed by relaxation of the corrected structures
using DFT at the PBE+D3 level of theory. The manually corrected structures are reported in the
Supporting Information. MOF structures with missing charge balancing ions can lead to
(incorrectly) charged unit cells, and the presence of extra-framework ions may also increase the
hydrophilicity of the material. Hence, MOFs with charge-balancing ions were also exempted from
the MOFs considered for HTS; this reduced the number of MOFs further to 4431. Since there
were multiple MOFs with same structure and different CSD REFCODEs, we further screened for
the presence of identical MOFs using the 'structure matcher’ module from the pymatgen
software.*? After exempting such identical MOFs, 3703 unique MOFs were considered for HTS.

Force Field Model: In the force field calculations (energy minimization and Monte Carlo
simulations), the non-bonded interactions between atoms of the adsorbate molecules and the MOF

atoms were modeled as a sum of Lennard—Jones (LJ) and Coulomb potentials
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where 7;; is the distance between atoms i and j, o0;; and ¢;; are the LJ parameters, and q; is the

partial atomic charge on atom i. The LJ parameters for the MOF atoms were taken from the
universal force field (UFF),** and the cross interactions were calculated using the
Lorentz—Berthelot mixing rules. A cut-off distance of 12.8 A was considered for the LJ interactions
without any tail correction, and sufficiently large super cells were considered to obey the minimum
image convention. Partial atomic charges for the MOF atoms were assigned using the PACMOF*
package, which was reported to give DDEC6 quality atomic charges. The LJ parameters and partial
charges for guest molecules were treated using the TraPPE*>*¢ (CO, and N») and TIP4P*’ (H,0)
force fields.

Force Field Optimization: To find the minimum energy adsorption configuration and calculate
the interaction energy of the guest molecules (CO2, H2O and Nz) with the selected MOFs, 150
random initial configurations were generated for each molecule in each MOF. From each of these
150 configurations, the position of the guest molecule was optimized using the Baker minimization
method as implemented in the RASPA package.*®

DFT Calculations: Adsorption energies of guest molecules with the selected MOFs were
calculated using spin-polarized periodic DFT calculations as implemented in the Vienna ab initio

simulation package (VASP)#-!

with a plane-wave kinetic energy cut-off of 520 eV. Projector
augmented wave (PAW) potentials were used to treat the interactions between the core and valence
electrons.’” The exchange—correlation energy density functional was treated using the generalized
gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE).* Grimme’s DFT-D3
method with Becke-Johnson damping (PBE-D3) was used to treat the weak van der Waals

interactions.>* In view of the large number of calculations involved in the HTS and the large size

of the MOF unit cells, only the I point was sampled in the Brillouin zone. Initial calculations



treated the framework atoms as fixed and optimized only the guest atom positions (so-called
“selective dynamics”). For selected systems with stronger CO> interaction energy compared to the
H>O interaction energy at the DFT level, we also relaxed the MOF structures. A
Hellmann—Feynman force cut-off of 0.01 eV A™!' was used for all the structural optimizations.
Energies of the CO2, H>O, and N> molecules in the gas phase were calculated in a cubic cell of 15
A length, and the interaction energy of guest molecule ‘X’ with the MOF was calculated as
AE = E(X@MOF) -[E(MOF)+E(X)] (2)

where E(X@MOF), E(MOF) and E(X) refer to energies of MOF with adsorbed guest molecule,
empty MOF, and gas-phase molecule respectively.

GCMC Simulations: Although the DFT interaction energies should be more accurate than those
calculated from the force field, these calculations considered only a single molecule interacting
with the framework. To simulate the effect of loading of guest molecules beyond a single molecule,
we studied the adsorption of binary (CO2/N2) and ternary (CO2/N2/H20) gas mixtures at the flue
gas conditions using the grand canonical Monte Carlo (GCMC) simulation technique as
implemented in the RASPA code.*® For all MOFs selected from the previous screening step, we
simulated the adsorption isotherm for a 15:85 mixture of CO2 and N2 at 313 K up to 1 bar total
pressure. In a set of selected MOFs with high CO2/N: selectivity and high CO> loading capacity
from the binary mixture simulations, we simulated adsorption of a ternary mixture of CO2/N2/H20
at a relative humidity of 80% to test the effect of moisture on the CO2/N: selectivity and CO»
capacity. To calculate the relative humidity, the saturation pressure of water at 313 K was
considered to be 7375 Pascals as per the reported results for TIP4P water by Vorholz et al.>> For
the binary mixtures, 50,000 Monte Carlo cycles were used for each equilibration and production

considering insertion, deletion, translation, rotation, and identity change moves. A cycle is defined



as N move attempts, with N being the number of molecules in the system with a minimum of 20
moves per cycle. Since water adsorption is known to converge extremely slowly, we considered 1
x 10° cycles for both equilibration and production for the ternary mixtures. The selectivity for CO2

over N> from GCMC simulations of binary and ternary gas mixtures was calculated as
Selectivity =

e 3
) 3)

where 7 and p represent the uptake in mol/kg and the partial pressure, respectively. All HTS jobs
were managed using the workflow managing code Fireworks.>® Figures of the MOF structures

were generated using the graphical software VESTA.®’
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Results and Discussion
For each MOF-guest molecule pair of 3703 MOFs and three guest molecules (CO2, N> and H>0),
150 random single molecule adsorption configurations were generated and optimized using the
Baker optimization method, and the corresponding MOF-guest molecule interaction energies were
calculated. Plots of the calculated N; versus CO; and H>O versus CO; interaction energies using
the force field methods are reported in Figure 2. It can be observed that most of the MOFs have a
stronger interaction with CO; than with N> and a stronger interaction with water than with CO», as
expected from the chemical nature of the guest molecules. Out of the 3703 MOFs considered, 458

MOFs are found to have stronger affinity toward CO; than toward both N> and H>O.
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Figure 2: Interaction energies of MOFs with (a) CO2 and N2 and (b) CO2 and H2O molecules from

force field energy minimizations.

After analysing the structures of the 458 MOFs selected based on the force field interaction
energies, we found that some of them have either missing atoms or disordered atoms. These
structures were consequently dropped from the computationally more expensive DFT screening,

and only 387 MOFs were selected for DFT studies. For each of these 387 MOFs, the five lowest
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energy adsorption configurations (from the force field interaction energies) for each molecule
(CO2, N2 and H>0) were considered as initial configurations for periodic DFT calculations using
selective dynamics where the guest molecule alone is allowed to relax with fixed framework
atoms. The energy of the lowest energy configuration from the five minimizations was used for
calculating the interaction energy of the guest molecule with the MOF using equation 2. From the
parity plots of the CO> and H>O interaction energies calculated from force field and DFT methods
in Figure 3, it can be observed that the CO; interaction energies (Figure 3a) are near the parity line
for the majority of the MOFs. However, for H>O interaction energies (Figure 3b), most of the
MOFs are far from the parity line, and the DFT interaction energies are generally larger in
magnitude than those from force field calculations, indicating that the water interaction energies
from force field optimization were underestimated in many cases. Out of the 387 MOFs considered
for DFT screening, 63 MOFs were found to have stronger interaction with CO2 than with H>O;
parity plots of the interaction energies from force field and DFT studies on these 63 MOFs are

reported in Figure S2.
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Figure 3. Interaction energies of MOFs with (a) CO; and (b) HoO molecules with 387 selected

MOFs calculated from force field (FF) and DFT methods.

For the 63 MOFs showing stronger CO; interactions than H>O interactions, the lowest minimum
energy adsorption configuration for each molecule (from the 5 configurations considered) was
fully relaxed including relaxation of the framework atoms. Though the framework relaxation has
minimal effect in many cases, in a few MOFs like OCEGUB (SIFSIX-3-Ni), we observed
interesting effects. In most of the computational studies reported on SIFSIX-3-M MOFs,>%% the
framework structures were considered as shown in Figure 4(a), which is the same as what we
considered for the selective dynamics calculations. However, upon relaxing the framework atoms
of SIFSIX-3-Ni with adsorbed water, the pyrazine rings were found to rotate to facilitate hydrogen
bonding with the water molecule as shown in Figure 4(b), and, in fact, even for the pure MOF
structure (with no adsorbed water) the structure with tilted pyrazine rings is found to be the
minimum energy structure by an energy difference of 123.5 kJ/mol compared to the structure in
4(a). A similar transition of pyrazine rotational configurations in SIFSIX-3-M induced by Xe
adsorption was reported by Elsaidi et al.®® The SIFSIX-3-Ni structure in Figure 4(a) with fixed
framework atoms was found to have stronger interaction with CO compared to H>O and the order
of interaction energy was found to reverse upon the framework relaxation because of the strong

hydrogen bonding environment in the pore for water adsorption. After considering the framework

relaxation effect, 48 MOFs were found to have the stronger affinity for CO, than for H>O.




OC @0 OH @N ©OF (Osi @Ni
Figure 4. Optimized geometries of SIFSIX-3-Ni (a) without adsorbed water and (b) with adsorbed

water.

Table 1: Top 20 MOFs with stronger CO: binding energy compared to H,O binding energy

calculated from periodic DFT studies after the framework atoms were relaxed.

MOF refcode BE of CO, (kJ/mol)  BE of H,0 (kJ/mol) ABE (kJ/mol)
CAYBAHO1 -35.88 -24.34 11.54
RURPAW -44.60 -33.14 11.46
CUIMDz01 -45.72 -36.70 9.02
YUBFUX -33.78 -25.63 8.15
ITAHEQ -30.22 -22.19 8.03
RURPEA -42.59 -34.72 7.87
FALQEQ -34.15 -26.55 7.60
FALQOA -33.97 -26.50 7.47
FALQIU -33.97 -26.53 7.44
XENZEX -37.69 -30.41 7.27
ZADWIN -26.99 -20.68 6.30
NUYQUU -41.37 -35.17 6.20
WOMCUY -36.17 -30.24 5.94
RITDAB -30.80 -26.23 4.57
SINZIA -38.54 -34.37 4.17
PAPXUB -35.13 -31.11 4.02
PIHJOHO1 -34.82 -31.16 3.66
MUVGUG -33.45 -30.00 3.45
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EMUYAMO1 -35.16 -31.82 3.34
AMUCOB -31.06 -27.75 3.31

The top 20 MOFs showing high affinity towards CO> compared to H>O from the DFT studies are
tabulated in Table 1 along with their binding energies. The full list of all 48 MOFs is provided in
Table S1. We also compared the computed minimum energy adsorption sites of CO; with reported
experimental studies in a few MOFs. For example, in ZIF-7 (RIPNUB), which has two different
cavities (‘A type' and 'B type'), CO2 was reported to preferentially occupy the 'B type' cavity, and
our optimized minimum energy configuration reported in Figure S3(a) is consistent with the
reported result.%! Similarly, in the case of SIFSIX-3-Ni (OCEGUB), our DFT calculations predict
that COz adsorbs along the one-dimensional channel with the C,, axis of CO; along the C, axis of
the lattice as reported in Fire S3(b) such that the positively charged carbon atom of CO; interacts
with the framework halogen sites while the negatively charged oxygen atoms of CO» interact with
the framework pyrazine hydrogen atoms, which is consistent with the experimentally reported
results from in situ PXRD.%

We also examined the nature of the pore environment around the adsorption sites in the CO»-
selective MOFs to understand the observed strong affinity for CO2 over H>O and to provide
insights for the design of improved porous materials for CO; capture under humid conditions. We
mainly observed two chemical confinements that drive the observed affinity for CO> over H2O,
namely pores with (1) complementary charged sites to the atomic charges in the CO2 molecule and
(2) parallel cyclic aromatic (m) ligands separated by around 7 A. In the former case, MOFs like
YUBFUX® (Figure S4) have framework atomic charges that create an optimal site for strong
Coulombic attraction with the CO2 molecule while there were no such strong Columbic

1"64

interactions for water adsorption. In an earlier study by Deria et a it was reported that the
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incorporation of complementary organic motifs in MOFs with precise charge alignment
complementary to CO, atomic charges can enhance the CO» uptake. In the later type of
confinement shown in MOFs like HIMSAY/BUSQEM®* and RITDAB®’ (Figure S5), CO
binding is driven by the strong n-m interactions between the © electron systems of the aromatic
ligands and the CO> molecule. To verify the optimum separation between the parallel aromatic
rings, we calculated the CO; binding energy from DFT when placed between two pyrene rings at
various fixed separation distances as shown in Figure S6. The results indicate that a separation
distance of 6.8 A is the optimum for CO: binding, and the corresponding binding energy is
calculated to be -25.0 kJ/mol. Interestingly, this optimum separation is nearly double the interlayer
separation in graphite, and hence it can be visualized as replacing one of the graphene layers in
graphite with CO2, which also has 7 electrons and can have similar n-w interactions as those present
in graphite. Our findings are consistent with the reported results of Boyd et al.*® where MOFs with
parallel aromatic rings separated by around 6.7 A were reported to show negligible effect of water
on CO; uptake. Our explanation in terms of n-m interactions is further supported by a previously
reported DFT study on CO; adsorption in single walled carbon nanotubes of different sizes, where
a (9, 0) CNT with a diameter of 7.05 A was shown to have the strongest CO> interaction energy

compared to other CNTs with lower or higher diameters.®

To estimate the adsorbed phase loadings under flue gas conditions, we first used GCMC
simulations to predict the adsorption isotherms of a binary mixture of CO; and N> in a 15:85 ratio
at 313 K and 0.1 bar to 1 bar total pressure in the 48 selected MOFs from the previous screening
step. From the binary mixture adsorption studies, only 10 MOFs are observed to show a reasonably

high CO2/N2 selectivity and CO; uptake capacity as reported in Table S2. These materials were
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then considered for the simulation of the ternary mixture. In the ternary adsorption studies, we
fixed the partial pressure of water at 80% relative humidity (5900 Pa at 313 K) based on the
saturation pressure reported for the TIP4P water model.>>® For the three-component adsorption,
we simulated only at three pressures (sum of the partial pressures of CO> and N, with 15:85
composition), namely 0.1 bar, 0.5 bar, and 1.0 bar. In some cases, where the fluctuations in the
loading were high even after 2 x 10° cycles, we extended the simulations for another 1 x 10° cycles.
The simulated two- and three-component isotherms of the top 6 MOFs are reported in Figure 5.
while the isotherms for the remaining MOFs are reported in Figure S7. From the ternary mixture
simulation studies, the presence of water is found to have a negligible effect on the CO; uptake
and CO2/N; selectivity with the exception of GAYGAQ,”® which has one-dimensional channels,
where adsorbed water forms hydrogen bonded chains. Since the error bars in gas loading values
calculated as the 95% confidence interval are smaller than the marker size, they were not reported

in the isotherm plots.

We also studied both two and three component adsorption in two MOFs, SIFSIX-3-Ni
(OCEGUBO02) and NbOFFIVE-1-Ni (OWIKALI), in which water adsorption leads to rotation of
pyrazine rings by considering both the structures with and without the ring rotation. The isotherms
are reported in Figure S8, and it can be observed that the CO; uptake from both two and three
component simulations in the structures with rotated pyrazine rings is lower compared to that in
the structures with symmetrically oriented pyrazine rings (as in Figure 4(a)). The presence of water

was found to reduce the CO> uptake in OWIKALI, while the effect was minimal in OCEGUBO1.
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Figure S.

Two- and three-component adsorption isotherms at 313 K for the top 6 MOFs identified from the

screening process: (a) HIMSAY, (b) LUFQUZ, (c) RIPNUB, (d) VEJZEQ, (e) BUSQEM and (f)

EREFENO1. The selectivity is calculated at 1 bar pressure with 80% relative humidity.
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Conclusion

We carried out a systematic computational high-throughput screening study to identify the top
performing MOFs from the CoRE-MOF-2019 database for CO, capture from a wet flue gas
mixture. Multi-scale computational techniques, viz. a machine learning model to quickly obtain
MOF partial atomic charges, force field optimization, DFT studies, and GCMC simulations were
used for the HTS study. Screening using the force field interactions calculated between the MOF
and guest molecules was able to reduce the number of MOFs to be studied using the
computationally more expensive DFT studies. From the DFT studies, it was observed that
framework relaxation can alter the selectivity in certain MOFs where ligand rotations are induced
by guest molecule adsorption. Preferred adsorption sites for guest molecules were compared with
experimental results where available and found to be consistent. For the top selected MOFs from
the DFT screening, grand canonical Monte Carlo simulations were used to study the adsorption on
both two- (CO; and N3) and three-component mixtures (COz, N> and H>O at 80% relative
humidity). For the 10 MOFs where three-component adsorption simulations were performed, only
one MOF showed reduced CO> uptake and CO2/N: selectivity from the presence of water,
validating the screening process. In addition to screening to find the top candidates, we also used
the simulation results to understand the nature of pore confinement that is responsible for the
observed CO2/H20 selectivity. Most of the selective MOFs have either strong n- © confinement
from pores with parallel aromatic rings or confinement with framework atom charges that are
complementary to the CO> atomic charges. These design rules may allow for the future synthesis

of improved materials for CO> capture.
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