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Abstract—Many modern wireless devices with accurate po-
sitioning needs have access to many vision sensors, such as a
camera, radar, and Light Detection and Ranging (LiDAR). In
numerous scenarios where wireless-based positioning is either
inaccurate or unavailable, using information from vision sensors
becomes highly desirable for determining the precise location of
the wireless device. While localization utilizing vision information
has been explored from different algorithmic perspectives, the
underlying mathematical underpinnings of this problem space
remain largely unexplored. Inspired by this, we develop a new
analytical framework for vision-based localization in which error-
free distance measurements in vision data are utilized to accu-
rately determine the position of the target. Compared to wireless-
based positioning, a notable differentiation of this approach
is the inclusion of non-unique landmarks, such as lampposts,
which may lack distinguishable features in the vision data. For
instance, when the target is located close to a lamppost, it becomes
challenging to precisely identify the specific lamppost (among
several in the region) that is near the target. By assuming that
the landmarks of various types follow a marked Poisson point
process (PPP), we establish that three range measurements are
sufficient for determining the correct combination of landmarks
in a two-dimensional plane. When the number of measurements
is less than three, there exists a potential for making errors in
associating these range measurements with the corresponding
landmark combination. We provide a mathematical characteri-
zation of this probability of error, which involves a novel joint
distribution of key random variables.

Index Terms—Landmark-based localization,
stochastic geometry, Poisson point process.
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I. INTRODUCTION

Wireless-based positioning systems, such as the global nav-
igation satellite system (GNSS), WiFi, and cellular networks,
have revolutionized how we navigate and localize ourselves
in the modern world. In order to obtain a precise position fix,
these systems require measurements from a certain minimum
number of anchor nodes. In the case of GNSS, this may not
be possible in certain situations, such as in urban alleys and in
the tunnels. On the other hand, since wireless networks (such
as cellular networks) are deployed to optimize communica-
tion performance, getting line of sight measurements from a
sufficient number of anchors is often challenging. Moreover,
all these systems are susceptible to infrastructure failures
and jamming attacks. Given these limitations, it is essential
to investigate complementary methods for self-localization
that rely on environmental information. This naturally leads
to vision-based positioning, where the target estimates its
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location using data from the imaging or vision sensors, such
as cameras, radars, and LiDAR systems.

The classical vision-based positioning is done by matching
the features of its surroundings with location-labeled images,
referred to as the map. Since it is natural to apply computer
vision, and more recently deep learning, approaches to this
setting, the problems often reduce to selecting and extracting
features that express constraints among observations. These
features are often hand-crafted depending upon the type of
content and application, such as object-level content [1],
geometric shapes [2], and visual vocabulary [3]. From the deep
learning perspective, the problem is usually handled using a
variety of convolutional neural networks, such as PoseNet [4],
MapNet [5], and CamNet [6], that extract useful features to
directly provide the target location. Two specific examples of
works along these lines are [7], [8], where [7] focuses on
reducing the candidate locations for the image and localizing
the image of mountains by matching skylines computed from
an elevation map, and [8] focuses on urban localization with
distinctive landmarks using Scale Invariant Feature Transform.

While vision-based localization has seen major advances
from the algorithmic perspective, the mathematical underpin-
nings of this problem have not been explored with the same
depth as wireless-based positioning. In [9] and this paper,
we initiate this study by formulating a rigorous mathematical
problem of estimating the position of a target using informa-
tion about geographical landmarks. These landmarks are dif-
ferent from anchors used in wireless-based positioning in the
sense that they may not necessarily be unique. For example,
without additional information, we may not necessarily know
which exact lamppost the target is close to, as many may
look similar. This differs significantly from wireless-based
localization where anchors are unique and easily identifiable.
Intuitively, being near a unique combination of landmarks, like
a lamppost, bus stop, and bank, may suggest a location not
replicated elsewhere in the city.

We assume that we have range (or depth) measurements
from a set of landmarks, which can be obtained from the depth
analysis of the images [10]. We focus on utilizing pairwise
geometric constraints to localize the target and derive the
corresponding error probability. We formulate this problem
mathematically by using ideas from stochastic geometry. We
first develop a statistical model in which landmarks of different
types are modeled as a marked PPP. Assuming three perfect
(error-free) ranges to landmarks, we rigorously establish that
it is possible to almost surely identify the correct combination
of landmarks that corresponds to these measurements. Further,



if we have two range measurements, it is not possible to
identify the correct combination of landmarks every time. For
this scenario, we derive an analytical expression for the error
probability in identifying the correct landmark combination.
In addition to characterizing the final result, this analysis
also exposes the underlying structure of the problem which
is expected to inspire further investigation of this model.

II. SYSTEM MODEL

In this section, we describe the system model, including
different attributes of the landmarks, the map, and the problem
statement. As the statistical approach developed in this paper
represents a fundamentally new direction, this system model
also stands as a notable contribution of our work.

A. Landmark Types

We categorize landmarks into different types, such that
landmarks within the same type share similar appearances
and are indistinguishable from one another. For example,
using vision information, we may be able to determine that
the target is near a lamppost, but pinpointing which exact
lamppost (out of potentially many in a given region) may
not be feasible. This is due to two interconnected factors:
(a) the limited resolution of vision sensors, which might
not allow us to distinguish between two landmarks that are
similar in appearance, and (b) the prohibitive amount of prior
information and computational resources are required to match
the exact landmark seen in the visual information, which is not
practically achievable for mobile devices.

B. Visibility Regions of Landmarks

The concept of a visibility region captures the fact that
some types of landmarks, like lampposts, are visible only
from short distances, while others, such as telephone towers
on hilltops, can be seen from much farther away. We assume
that each of the landmarks has an associated visibility region,
denoted as b(x,dy), which is a ball with radius d, centered
at x, where d, is the maximum visibility distance and x
is the landmark location. This notation assumes that the
landmarks are isotropic, meaning they are visible from all
directions. This simple step-function assumption for landmark
visibility (landmark visible until a certain distance and not
visible beyond that) is a reasonable first step to understanding
the structure of the problem. We will explore more general
visibility functions in the future work.

C. The Map

Using some side information, such as the IDs of the serving
base stations, the target can be placed in a specific region,
which we term the Area of Interest (AOI). Note that this AOI
could span tens of kilometers in some situations (such as
when the target is connected to a Low Earth Orbit (LEO)
satellite). For analytical purposes, we consider the AOI to
be a circular area with radius dps, centered at xg, denoted
as S = b(xo,dps). The map of AOI includes labels for
all landmarks, each represented as a tuple (x;,m;), where
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Fig. 1. An illustration of the map. There are five types of landmarks: lamppost,
bus stop, parking lot, gas station, and tree. Three landmarks can be seen from
Loc 1. However, we cannot uniquely localize the target since the exact same
combination is visible from somewhere else in the map (Loc 2).

x; € R? denotes the location of the landmark and m; is the
landmark type. We consider that the maps of different places
form realizations of the random set ® = {(x;,m;)}, which can
be naturally modeled as a marked point process. For the sake
of analysis, we assume that ® is a marked PPP. We restrict
our attention to R? because of its practical relevance, but our
analysis can also be extended to R"™.

D. Range Measurements

By utilizing data from imaging or vision sensors, the target
can, in principle, determine the depth of each landmark de-
tected. In the context of localization applications, we will refer
to this depth as the range measurement of the landmark from
the target, or simply, the range. To understand the structure of
the problem, we assume that the exact ranges (i.e., free of noise
or error) to visible landmarks are available at the target. Since
landmarks of the same type are indistinguishable, the range
measurement cannot be associated with a specific landmark,
but simply be labeled by the corresponding landmark type.
Therefore, the ranges and their corresponding types can be
represented as a set of two-tuples Z = {(m;,r;)}, where r;
is the range measurement from one of the landmarks of type
m;. The noise and error in the measurements will be included
in the journal extension of this work.

E. Problem Formulation

Assuming that the target is located within the AOI, our goal
is to localize it by determining the correct set of landmarks that
are seen in its vision data. We assume that the target measures
ranges to a subset of visible landmarks, which are denoted as
Z. Since the ranges are only associated with landmark types,
the problem is equivalent to identifying the combination of
correct observed landmarks c* using type-labeled ranges Z
and a specific map (, where ¢ represents a realization of
the random set ®. Since the actual geometric configuration
of landmarks and the target is unknown, our interest lies in
evaluating the performance across the whole map. Specifically,
we aim to determine the probability of correctly identifying the



Fig. 2. An illustration of possible locations for the second landmark. The
orange point represents the location of the first landmark, while the red points
indicate the potential locations of the target. The blue annulus shows possible
locations for the second landmark, such that the orange and green circles
intersect.

combination of landmarks using Z. This probability is defined
as P(¢ = ¢* | N), where N = |Z| is the number of ranges, c*
is the correct landmark combination, and ¢ is the estimate of
the landmark combination obtained from Z. We term this the
localizability probability or simply localizability. In order to
understand the technical challenges as well as the fundamental
differences of this problem from more familiar wireless-based
localization, please refer to Fig. 1, where the target is located
at Loc 1 and can see three distinct landmarks. It turns out
that the same combination of landmarks is also visible from
a different location (Loc 2) on the map. Therefore, there is
no way of uniquely determining the location of the target in
this case. However, as is perhaps intuitive, as we detect more
landmarks or the detected landmarks (or the combination of
landmarks) are rare, our chances of uniquely determining the
target location improve significantly.

From a mathematical perspective, our objective in this paper
is to determine the exact combination of landmarks that gener-
ated the measurements in Z. In other words, our goal is to label
each element of Z with the correct landmark identification.
Once accomplished, we can then unambiguously determine
the location of the target on the map.

III. IDENTIFYING CORRECT LANDMARKS

To understand localizability, let us begin with the simplest
case of a single measurement Z = {(mq,r1)}. This represents
that a landmark of type m; is visible from the target location
at a distance of r1. As a result, the target is located on a circle
with a radius of r; from one of the landmarks of type m;.
By definition, it is impossible to uniquely identify the specific
landmark of type m; that is visible at the target. Therefore, it
is not possible to localize the target in this case.

Now, let us suppose that we have two range measurements
Z = {(my,r1),(ma,r2)}. Our objective is to determine
whether it is possible to uniquely map these measurements
to the correct pair of landmarks ¢*, which is visible from the
target’s location. The answer to this question is no, which can
be understood through a simple geometric argument illustrated

Fig. 3. An illustration of possible locations for the third landmark.

in Fig. 2. Let us consider the landmark that could potentially
correspond to (mq,r1), and place it at the origin. Using the
information in Z, we can constrain the location of the second
landmark to an annulus centered at the origin, with an outer
radius of r; + ro and an inner radius of |ry — 72|. This
comes from the triangle inequality constraint, as discussed in
Section III-A. If we draw two circles, each centered at one of
the two landmarks and with radii r; and 7y respectively, the
possible locations of the target are the two intersection points,
X, and x,. Since the measure of the possible locations for the
second landmark is nonzero, there is a non-zero probability
that any pair of landmark combinations can generate the given
range measurements r; and r9. Therefore, it is impossible
to correctly identify the landmark combination with certainty
using only two measurements. In Section IV, we explore the
probability of incorrectly identifying the landmark pair.

Howeyver, if we assume that we have three error-free mea-
surements, it is possible to uniquely identify the correct set of
three landmarks corresponding to these measurements. In the
following lemma, we prove that there is almost certainly no
other combination of three landmarks (other than the correct
one) capable of yielding the given three measurements.

Lemma 1. Assuming that the landmarks form a marked PPP
on R?, there is almost surely no combination of landmarks
other than the current combination c¢* that will lead to three
error-free range measurements at any target location.

Proof: Consider a pair of landmarks at a distance d
that satisfies |r; — ro| < d < 71 + 79, where r; and ro
are two measurements corresponding to the first and second
landmarks, respectively. As illustrated in Fig. 3, the target
could be located at one of the intersection points, either x,
or x,. Now, if we were to position the third landmark at a
distance of 73 from the target, the potential locations for this
landmark would be represented by the two blue circles in
Fig. 3. Since the landmark locations are modeled as a PPP,
the probability that the third landmark will land exactly on
one of the two blue circles in Fig. 3 is zero. Therefore, in this
scenario, the probability that combinations of three landmarks,
other than the correct combination, could yield the specific
measurements 71, r9, and 73 is also zero. This concludes the
proof. [ ]



Lemma 1 demonstrates that it is possible to identify the
correct combination of visible landmarks using three error-free
measurements. This result largely stems from two factors: the
assumption of error-free measurements, and the positioning of
landmarks as a PPP in continuous space.

From the algorithmic perspective, we can determine the
correct combination by utilizing the geometric constraints
between landmarks, which is the information readily available
on the map. Such constraints can be the distance between
different landmarks or their relative placement on the plane. In
the rest of this section, we will delve into a specific pairwise
constraint, the triangle inequality that appeared above.

A. The Triangle Inequality

When we view the target and two landmarks as vertices of
a triangle, the lengths of the triangle’s edges must satisfy the
triangle inequality, given as

Iri =il <dij <ri+ry, D

where d;; = +/(z; —x;)% + (v — y;)? is the distance be-
tween two landmarks, r; and r; are two range measurements.
As depicted in Fig.2, this constraint can be interpreted as
follows: when we draw circles centered at two landmarks
(x;,y:) and (x;,y;) with radii ; and r;, respectively, the two
possible target locations are the intersection points of these
circles. The triangle inequality needs to be satisfied for these
circles to intersect. If we have more than two measurements
in Z, this constraint must hold pairwise for any two landmarks
selected from the correct landmark combination.

IV. LOCALIZABILITY ANALYSIS

In the previous section, we thoroughly investigated the prob-
lem of identifying the correct set of landmarks visible from
the target using three or more range measurements. However,
there are numerous situations where we might only have access
to two measurements. For instance, landmarks may be sparse
in certain regions (such as rural areas), or it might simply be
too time-consuming or resource-intensive to take additional
measurements, even if more landmarks are visible. While
Section III has already established that we cannot always
identify the correct set of visible landmarks using just two
range measurements, this section aims to characterize how
often we can correctly identify these landmarks, with a specific
focus on the probability of incorrectly identifying the landmark
pair. Our approach relies on the triangle inequality to constrain
the set of possible landmark combinations. When there are
multiple candidate combinations, we select one uniformly at
random as the solution.

Given two labeled range measurements, denoted as 7 =
{(my,r;),(mj,r;)}, we next define two key entities: the
combination set and the solution set.

Definition 1 (Combination Set). The combination set, denoted
as C, is defined as the set of all possible pairs of landmarks
of corresponding types p and q, within the AOL It can be
mathematically written as follows:

C= {{Xi,Xj} | Vx; € Bp,Xj S Bq}, 2)

where x; and x; are the locations of two potential landmarks
that correspond to the measured ranges, and B, = ®,NS and
By = ®, NS are the random sets of the landmark locations
of type p and q, respectively, within the AOI S.

For each element in the combination set, there exists a cor-
responding distance d;; = |x; — x;| between two landmarks.
We derive the distribution of these distances next.

Lemma 2. For an arbitrary landmark combination c € C, the
distribution of the distance between landmarks d;; is

-1
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Proof: Since landmarks are modeled as a PPP, condi-
tioned on the number of landmarks in AOI, they are dis-
tributed uniformly at random independently from each other
in S = b(xg, dps) [11]. Therefore, the calculation essentially
reduces to determining the distribution of the distance between
two points that are uniformly distributed at random within S.
This is a well-established result, as referenced in [12]. |

3)

Remark 1. The distribution of the distance fp(s) is indepen-
dent of the size of the combination set. For any given pair of
landmarks c;; € C, the corresponding distance d;; follows the
same distribution fp(s).

Since mapping from two range measurements to the correct
combination of landmarks is not always possible, we first
consider mapping to the set of all eligible combinations that
satisfy the triangle inequality. Following this, we construct the
solution set, as defined below.

Definition 2 (Solution Set). The solution set is a subset of
the combination set, where all pairs of landmarks satisfy the
triangle inequality, written as

S:{Cij|Cijeca|ri_rj|§dijgri""”j}a (4)
where d;; = |x; — X;| is the distance of two landmarks.

Remark 2. In the noise-free case, the correct combination,
denoted by c* = {Xz‘,x;}, will always be contained in the
solution set. Therefore, the cardinality of S is lower bounded
by one, i.e., |S| > 1.

When the size of the solution set |S| = 1, we can directly
determine the correct solution. However, when |S| > 2, a
unique solution is not guaranteed. In these situations, we select
one solution uniformly at random from S, denoted as ¢ € S.
The probability of selecting an incorrect solution is

k—

1
P(e £ e |IS| = k) = =, ke N, )

which is a direct result of selecting one solution uniformly
and randomly.

Next, we consider the conditional probability related to the
size of the solution set, as given in the following Lemma.

Lemma 3. The size of the solution set depends on the range
measurements 1, their corresponding types m, and the size of



the combination set |C|. The associated conditional probability
mass function (pmf) is as follows:

P(|S| =k [ r,m,|C|=n) = (}_))pE (1 —po)" 7", (6)

rl—&-rj
e
|

ri—Tj]

where

)

is the probability that any pair of landmarks satisfies the
triangle inequality.

Proof: The size of the solution set is the number of
landmark pairs that satisfy the triangle inequality. When given
two range measurements r = [r;, r;], the probability that an
arbitrary landmark pair ¢;; € C\{c*} satisfies the triangle
inequality is

®)
(€))

P(Lij | r,m) = Ep, {1(]r; —7;| < Dij <ri +15)}
T,;+’r‘j
:/ fp(s)ds,
|

=Tl

where I;; = 1(|r; —rj| < D;; <r; +1;) is a binary random
variable that serves as an indicator of the event where the
triangle inequality is satisfied by c;;. We assume that for all
landmark pairs c;; € C, the corresponding indicator I;; is
independent and identically distributed. Under aforementioned
conditioning, the size of |S]| is the sum of the binary random
variables I;;, hence a binomial random variable with condi-
tional pmf

P(|S| =k | r,m,[C| =n)) (10)
=P Zlij:k|r,m,|C|:n (11)
cijeC

=P(I*=1|r,m,|C| =n)

12

<P Y Iy—k-tirmic=n| 7

cij€C\{c*}
= (ZDPU=1]r,m)" " P(I £ 1 r,m)" ", (13)

where I* = 1 is the indicator that the correct pair of landmarks
satisfies the triangle inequality, while I is the indicator that any
arbitrary pair of landmarks, excluding the correct one, satisfies
the triangle inequality. This concludes the proof. ]

Remark 3. As noted above, |S| = 1 will ensure unique identi-
fication of the correct landmark combination. The probability
of this event can be obtained from Lemma 3 as

P(S|=1|r,m,|C|=n) = (1 —p.)" " (14)

As expected, we can infer from the above equation that when
the size of combinations set n increases, the probability of
obtaining the correct solution decreases.

We now mathematically characterize the error probability
for the case with two observations, defined as

P(é#c* | N=2)=

15
Enaae{BE#¢ [rm(cl=n)},

where N is the number of range measurements. Using the
previous Lemmas, we derive this in the next Theorem.

Theorem 1. The probability of making an error in identifying
the correct pair of landmarks using two observations is

L 1—(1—p)c
Pe# ¢ | V=2) =g {1 - g 29—} ao)
Proof: For the setup described above, the probability of
making an error depends upon the size of the solution set.

Therefore, we can write this probability as follows:

P(é¢#c* |r,m,|C| =n)

@ S R £ | IS) = BB(S| =k | rm, || =n) (17)
k=1

k=1

where (a) follows from the law of total probability and the
fact that the error probability is only dependent on the size of
the solution set.

Using the result from Lemma 3, we get

T =

1—(1—p)"
P4 rm|Cl=n)=1— 120 =P) (g
- Pe
Now, using the definition in (15) completes the proof. [ ]

Equation (16) provides an analytical expression for the prob-
ability of making an error. This probability is an expectation
over range measurements r, each with their corresponding
types m, and the size of the combination set |C|. To obtain
the average probability of error across the entire region, or
equivalently, over the whole point process of landmarks, we
need the joint distribution of these three random variables,
which we will derive in the next section.

V. THE JOINT DISTRIBUTION

In Section IV, we considered two landmarks and utilized the
pairwise constraint to find the target location. The error proba-
bility is expressed in the form of an expectation over three key
parameters: the range measurement R with its corresponding
types M and the size of the combination set |C|. In order to
determine the joint distribution of these parameters, we need
to specify how the two landmarks of interest were chosen from
amongst the visible landmarks. For this analysis, we assume
that the two landmarks (and consequently the two ranges) are
selected independently and uniformly at random from the vis-
ibility region. Further, we consider m types of landmarks with
different visibility distances {dy,,dy,,...,dy,, }. To simplify
the notation, we denote the PPP of the p*” type of landmarks as
®,, with a density of A,. Under this setup, the joint distribution

can be expressed as
fR,M,\C\(rv m,n) = (20)
P(M = m) - faj (r | m) - B(C| = n | m),

which follows from the fact that the two landmarks are selected
uniformly at random from the visibility region. Therefore, the



joint distribution of range measurements is independent of the
size of C when conditioned on the landmark type. In the rest
of this section, we derive expressions for each of the three
terms in the expression above.

Lemma 4. The marginal distribution of landmark types that
correspond to range measurements is

AP (SVP) ! Aq (SVQ)
(0 Ai(Se)*

where m = |[p,q| are two different landmark types, and
A, (Svp) = )\pﬂ'd?,p.

P(M =

m) = 1)

Proof: Because the ranges are obtained from two land-
marks selected uniformly at random from the visibility region,
the two observations (and hence their types) are independent,

P(MM =m) =P(M; =p)P(Mz = q). (22)
Therefore, to obtain the joint probability in (21), it is sufficient
to characterize the marginal distribution of one of the landmark
types, for example, P(M; = p). Since the visibility distances
of landmarks vary among different types, we scale the distance
to xg for all point processes ®q,...,P,,, such that visible
landmarks of different types are mapped onto a unit circle,
denoted as b(xg, 1). The scaled (or transformed) PPP of the
pt" type of landmarks @p, has density )\;, = )\pd?,p. Then,
equivalently, we can select marked points uniformly at random
from & = Upes ®,. The probability of selecting a point of
a particular type, which is independent of their locations, is
given by

A (Sy,)
P(My =p) = = e (23)

21:1 Ai(Sy,)
We can derive P(My = ¢) in the same way and this completes
the proof. ]

Lemma 5. The conditional joint distribution of distance
measurements is frnm(r | m) =

27’1]1“ ((Oa dvp]) 27’2]17,2 ((Oa dvq])
42 ' 42 '

(24)

Proof: Because of the independence of the two observa-
tions, it is again sufficient to consider the marginal distribution
of range values to obtain (24).

When conditioned on the type of landmarks, the correspond-
ing visibility distance is known. The location of the selected
landmark in type p is uniformly distributed in the circle with
radius d,, which gives

2r11,,((0,dy,])

- 25)

le\M1 (ri]p) =

This is a straightforward consequence of the PPP assumption
of the landmark locations. ]

Lemma 6. The conditional probability of the size of the
combination set is P(|C| =n | M =m) =

U3s n]—1i1 b;i;l (bp _ a)*il

2 { 2 . (nq —i1)!

nins=n -~ i;=1
exp(—a — cp)}

F(Zl) — F(il, bp — CL)

L) : (26)
{ i 222 (by — )"
o1 (ng - ’Lg)'
F(ZQ) — F(i27 bp — a)

Tiy) exp(—a — cq)},
where p and q are different landmark types, a =
S A(Sy) by = Ay(Sy,) and ¢, = A (S\S,,) =
Mo (2, — 2,).
Proof: When two distance measurements are of different
types, the size of the combination set is

ICl = N(Bp) - N(By) , 27

where N(B,) and N(B,) are the number of landmarks of
type p and ¢ in the AOI S, respectively. Since distance
measurements are independent, the numbers of the landmarks
in type p and g, respectively, are independent, which gives

P(N(By) = n1, N(By) = ny | M = m) =

P(N(Bp) =mn1 | My =p)P(N(By) =n2 | Mz = q).
Now, using the total probability law, the conditional distribu-
tion of N(B,) is

IP)(]V(Bp) =ni | My :p)

(28)

n1

-y {P(N(Bp) —ny | My =p, N(BY) = i1)

i1=1

(29)
P(N(BY) = i1 | My =p) }

where BY = @, N b(x,d,,). The first term denotes the
conditional probability of the presence of landmarks of type
p within the AOI, given that N (B;’) = 4; landmarks of
type p already exist within the visibility region. The second
term represents the probability associated with the number
of landmarks of type p present within the corresponding
visibility region b(xg,dy,). The first term in (29) can be
further expressed as

P(N(B,) =ny | My =p,N(B)) = i1)

= P(N(BP\B;/) =ny—iy | My = p) (30)
C?’Ll—il
= m exp(—cp), (31)

where ¢, = A(S\Sy,) = )\pw(dgs — d?,p). This is a direct
consequence of the PPP assumption [11].

Now, to derive the second term in (29), we consider the
joint probability that the type of the selected landmark is p,
the number of landmarks of type p in the visibility region is



N (B;’), and the total number of landmarks in the visibility
region is N (BV). First, N (BV) is written as

Z N(@z N b<XOa dv1))

N(BV) = (32)
=1
=1

_ N(fi)ﬂb(xo,l)), (34)

where ®; and ® are the transformed PPPs defined in the proof

of Lemma 4. Then, we can write the joint probability as
P(My =p,N(B)) =i1,N(BY) = j)
=P(My=p|N(BY) =i1,N(BY) =)

vy vy (35)

P(N(By) =i, N(BY) = j),

where the first component of (35) is the probability that the
selected landmark is of type p, given that we select (uniformly
at random) one landmark out of N(B)) visible landmarks,
which consist of N(BY) landmarks in type p, written as

P(M, =p|N(BY) =i,,N(BY) =j) = ?1 (36)
The second component of (35) is the joint probability of
numbers of the visible landmarks, which is

P(N(By) = i1, N(BY) =)
Wp(N(BY\BY) =j—ir | N(BY) = ir) (N (BY) = ir)
a—b,)i—h b;}
= <(]z)1)' exp(—a +bp) - il exp(—bp) -,
where a = 37" A;(Sy,) and b, = A, (S,,).

Now, we have the joint distribution of M;, N(B)) and
N (BY). We can derive the expression of the second compo-

nent of (29), written as
P(N(BY) =iy | My =p)
_$ P06 =pN(B) =i N(EY) =)

(37

(38)
j=it1 P =)
ab’t (T'(iy) — (i1, b, — a))
P e
= . exp(—a). (39)
by(b, — )T (=)
Then, equation (29) can be summarized as
P(N(Bp) =n1 | My =p)
B il: { Cgl_il b
i1=1 (bp - a)l1 (nl - Zl)' (40)

I'(i1) —T(i1,bp —a) }
. - exp(—a —c¢p) ¢.
F(Zl) p( P)
We can derive P(N(B;) =ns2 | M2 =¢) using the same
method. Because of the independence of N(B,) and N(B,),
we can construct the distribution of |C| by easily taking the
sum. This completes the proof. ]
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Fig. 4. The probability of making an error vs landmark densities.

Using the result from Lemmas 4, 5, 6, we obtain the joint
distribution of range measurements R, corresponding types M
and the size of combination set |C|, given next.

Theorem 2. The joint distribution of R, M,

47”1T2/\p)‘q]17'1 ((0, dva]lT'z ((07 dvp])
2

C| is given as

fR,M,|C|(ra m,n) =

>

a

{ i C;L1.—i1b;1
(bp —a)™ (n1 —i1)!

nins=n i1=1 (41)
T(iy) = TI'(i1. b, —
(@) F((;;; p — @) exp(—a— c,)
=1 (bg — a)®® (ng — iz)!
I'(iy) — IT'(i2, b, —
T(iz) F((11222) ¢ — @) exp(—a — ¢,) }}

This theorem along with the result in Theorem 1 completely
characterizes the probability of making an error in identifying
the correct landmark pairs, which is one of the key technical
contributions of this paper.

VI. SIMULATION RESULTS

Since the analytical results of Section IIl ensure unique
identification of the visible landmarks in the presence of
three or more observations, we will focus on the case of
two observations in this Section. Our simulation results will
provide sanity checks for the analytical results of Sections IV
and V as well as additional system design insights.

The simulation scenario is inspired by landmarks found
in the city. We consider the AOI with a radius of 500 m
centered at the origin, where there are 16 different types of
landmarks, each conforming to a PPP, with the same density .
We consider different visibility distances as per the following
three scenarios: low (ranging from 10 to 25 m), medium (from
20 to 35 m), and high (from 30 to 45 m). The target location x
is placed within AOI, where at least two landmarks are visible.

First, for A\ = ﬂ%%%z and medium visibility distances,
we plot the marginal distributions of R, M and |C| in
Figs. 5(a), 5(b), and 5(c), respectively. Since plotting their joint
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distribution is challenging, the comparison of these marginal
distributions with their analytical counterparts from Section V
serves as a sanity check for our analysis. As expected, Fig. 5(a)
demonstrates that landmarks with greater visibility distances
are more likely to be seen by the target. Furthermore, the
probability density of the range measurements exhibits an in-
triguing stepped pattern due to the different visibility distances
considered for different types. The probability mass function
of the number of landmark combinations in Fig. 5(c) fluctuates
significantly, while still showing a close match between the
analytical and simulation results. This is because the number
of combinations is determined by the multiplication of N(1,,)
and N (B,), both of which are integers.

Next, we vary the landmark density A from — 755 to
w.ﬁs%%z and simulate the probability of error. As Fig. 4 shows,
the simulation matches with the analytical result derived in
Theorem 1 with which we used the joint probability result
from Theorem 2. This serves as a vital validation for our
analyses in both Sections IV and V. It is worth noting that
as the visibility distances decrease, the probability of error
also reduces. This is to be expected, as a landmark with
a smaller visibility region will restrict the target’s location
more tightly, hence providing more precise information than
a landmark with a larger visibility region, assuming their
densities are the same. Interestingly, we observe that lower
landmark densities result in notably smaller error probabilities.
This suggests the feasibility of localization using landmarks
even in environments where we are restricted to only a few
number of measurements.
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VII. CONCLUSIONS

This paper developed a fundamentally new framework for
landmark-based localization, leveraging stochastic geometry.
The framework aims to determine the target’s position using
error-free depth/distance measurements to landmarks. These
measurements are obtained from vision sensors such as cam-
eras, radars, and LiDAR. Given that the landmarks detected
in vision data may not necessarily be unique, this approach
necessitates a distinct mathematical treatment compared to tra-
ditional wireless-based localization. Under the assumption that
the landmarks form a marked PPP, we demonstrated that three

o
20 25 30 35 0 20 40 60 80
Range

®) fr(r)

Number of Combinations

© P(ICl =n)

The marginal distribution of R, M and |C| corresponds to visibility distances of 16 types ranging from 21 to 36. The density A is set at 350.

error-free measurements are sufficient to accurately identify
the set of visible landmarks corresponding to those measure-
ments. For instances with two observations, we derived the
probability of error when identifying the correct landmark
combination. This new perspective presented in this paper
opens up several potential avenues for further research. Two
specific extensions related to this work include: (i) integrating
a suitable noise (or error) model for the measurements in the
analysis, and (ii) incorporating additional methods to select
a limited set of observations from a larger set of visible
landmarks. Overall, this paper connects stochastic geometry,
localization, and computer vision, which could inspire a com-
pletely new direction of investigation.
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