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Abstract

The stopping rule for a sequential experiment is the rule or procedure for determin-
ing when that experiment should end. Accordingly, the stopping rule principle (SRP)
states that the evidential relationship between the final data from a sequential exper-
iment and a hypothesis under consideration does not depend on the stopping rule:
the same data should yield the same evidence, regardless of which stopping rule was
used. | clarify and provide a novel defense of two interpretations of the main argument
against the SRP, the foregone conclusions argument. According to the first, the SRP
allows for highly confirmationally unreliable experiments, which concept | make pre-
cise, to confirm highly. According to the second, it entails the evidential equivalence
of experiments differing significantly in their confirmational reliability. | rebut several
attempts to deflate or deflect the foregone conclusion argument, drawing connections
with replication in science and the likelihood principle.

1 Introduction

Many types of scientific and engineering studies involve repeated observations or tests on sub-
jects of the same type in the service of making inferences about that type. For example, lake
ecologists selectively net fish to determine the their species distribution; mechanical engineers
randomly test widgets coming off of a factory line to infer the reliability of the manufactur-ing
process to implement their design; and medical scientists enroll willing patients meeting
selection criteria to test the effectiveness of new procedures and drugs. Within statistics,
such studies are known as sequential experiments,! and a natural question to ask about their
design is how the designer ends them. It could be according to some predetermined number
of observations; it could instead be determined by the content of the observations; it could
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1Despite their name, sequential experiments need not involve any robust experimenter control or manip-
ulation.



even be fixed by some independent random mechanism, or some complicated combination
of all of these. This determination is called the sequential experiment’s stopping rule.

In principle, the stopping rule for a sequential experiment can be informative, in the sense
that learning it provides information or evidence about the hypotheses under consideration,
beyond the information or evidence provided in the data themselves. | will provide a more
in-depth discussion of this property in section 4.2, but until then, | assume that the stopping
rule under consideration is not informative in this sense. (I define what it means for a
stopping rule to be non-informative in section 2.1.)

Can the (non-informative) stopping rule of a sequential experiment affect its evidential
interpretation? In other words, given two sequential experiments that yield qualitatively the
same observations, must those experiments bear evidentially in the same way on statistical
hypotheses, even if the experiments had different stopping rules? This question is relevant
not just for philosophers of science interested in how data provide evidence for hypotheses,
but also for scientific practitioners. An afirmative answer would entail the need for especial
care in understanding how sequential experiments end, thus, how they are to be directly
replicated (a theme to which | return in sections 3.4 and 6): evidence could depend not just
on what was observed, but what could have been observed. A negative answer, meanwhile,
would entail a great simplification in the aspects of experimental design relevant for evidential
evaluation: data always bear the same evidence, no matter how their collection ended.

This latter negative answer is provided by the Stopping Rule Principle (SRP):

Stopping Rule Principle (Informal): The evidential relationship between the data from
a completed sequential experiment and a statistical hypothesis does not depend on the
experiment’s stopping rule.

Adherents of the SRP typically apply it to experiments with complicated stopping rules,
analyzing those experiment as if they were based instead on simpler fixed stopping rules.
Thus, according to this strategy, if you accept the SRP,

It is not even necessary that you stop according to a plan. You may stop when
tired, when interrupted by your telephone, when you run out of money, when
you have the casual impression that you have enough data to prove your point,
and so on. (Edwards et al., 1963, p. 239)

The SRP is neutral about the structure of evidence, such as whether it is comparative—
i.e., whether it applies to individual hypotheses or is a relation between two of them—and
whether it is qualitative or quantitative. Rather, it is a constraint on evidence’s equivalence
conditions.

Discussions of the SRP and related principles are typically couched in terms of evidential
equivalence, or the irrelevance of stopping rules to evidence, where the structure and pos-
sible polysemy of evidence is otherwise left unspecified. For example, Berger and Wolpert
(1988, p. 25) afirm that “We presuppose nothing about what this evidence is; it could (at
this stage) be any standard measure of evidence, or something entirely new”, including some
multidimensional measure. Following Steel (2003), | presuppose further that evidence should
be understood as incremental confirmation. | do not assume that confirmation is quantita-
tive, but only that its degrees are partially ordered, their order interpreted as “at least as



confirmatory as,” and that they have a distinguished element, the neutral degree. Elements
larger than the neutral degree are (positive) confirmatory degrees, while elements smaller
than the neutral degree are disconfirmatory degrees.? In these terms, the SRP is a constraint
on the “level sets” of incremental confirmation—which data sets are equally confirmatory of
certain hypotheses.?

After introducing some terminology and concepts to make the SRP more precise in section
2, | describe how the SRP is typically seen as a central point of contention between Bayesian
and classical schools of statistical inference and evidence. But, | point out, in part following
Steel (2003) again, that this actually depends on how confirmation is formalized in the two.
In section 3 | then reformulate in these confirmation-theoretic terms a version of an important
argument against the SRP, sometimes known as “reasoning to a foregone conclusion.” This
argument proceeds by modus tollens: accepting the SRP entails the evidential irrelevance
of an extreme failure of reliability, in the sense of “how well an experiment can distinguish
a true hypothesis from among alternatives” (Backe, 1999, p. S355). If one demands either
a modicum of reliability for confirmation or that equally confirmatory experiments do not
differ too much in their reliability, then one must reject the SRP.

Now, the basic idea of this “foregone conclusion” argument has been much discussed
in the literature—see, e.g., Feller (1940); Robbins (1952); Anscombe (1954); Savage (1962);
Kerridge (1963); Cornfield (1970); Berger and Wolpert (1988); Mayo (1996); Kadane et al.
(1996); Backe (1999); Mayo and Kruse (2001); Steele (2013); Gandenberger (2015). However,
essentially all of this discussion situates this argument within the conceptual and evidential
framework of classical statistics. Those skeptical of this framework thus have had little
motivation to take the argument seriously. My reformulation, by contrast, articulates the
argument using concepts of evidence, evidential support, or confirmation that most schools
of statistics share. This allows me to synthesize, strengthen, and clarify the foregone con-
clusion argument so as to bypass objections and attempts to deflate it in sections 4 and 5.
My reformulation is therefore not primarily intended to convince obstinate adherents of the
SRP (although | would welcome such conversions!). Rather, it is to show that their grounds
for accepting must lie in biting a bullet: their complete rejection of the minimal evidential
relevance of confirmational reliability to confirmation. This reframes the debates on statisti-
cal methodology away from the confusing clash of grand statistical frameworks and towards
the status of a concept well-defined for all.

Readers knowledgeable of debates between classical and Bayesian statistical schools will
recognize that their conflict over the SRP (with the qualification about the formalization of
confirmation notwithstanding) is really just a special case of their conflict over a wider (and
deeper) principle, the Likelihood Principle (LP), which entails the SRP (Birnbaum, 1962;
Berger and Wolpert, 1988). | have chosen to focus on the SRP in this essay because of its
concreteness and the existing literature surrounding it, but a rejection of it entails by modus

2] leave open the possibility that there are degrees of confirmation incomparable with the netural degree.
These might be interpreted as degrees that are partially confirmatary in some resepects and partially dis-
confirmatory in others, although this interpretation may demand a further structural assumption, e.g., that
for any degree, it and the neutral degree have a lower bound and an upper bound.

3|f one did not wish to identify evidential equivalence with equality of incremental confirmation, one could
instead postulate that the former, understood as a separate, primitive concept, entails the latter in all casesin
which it is defined. Nothing else substantial in the following would then change.



tollens a rejection of the LP, too. | will return to my arguments’ implications for the LP in
the concluding section 6.

2 The Stopping Rule Principle and Experimental Re-
liability in Bayesian and Classical Statistics

2.1 The Formal Stopping Rule Principle

To state the SRP more precisely and illustrate how it interfaces with typical methods in
Bayesian and classical statistics, it will be helpful to define mathematically what it means for
a stopping rule to be noninformative, for which | roughly follow Raiffa and Schlaifer (1961,
pp. 36—42). Consider an experiment whose data is represented by the sequence of random
variables Z = Xi,...,X;,..., where |Z| is the length of Z. The stopping rule for the
experiment should determine the probability that a certain number of these random
variables are actually observed. Thus | suppose that the probabilities of the experiment’s
various outcomes depend in general on two parameters: the hypothesis of interest 8 @ © and
the stopping parameter ¢ @ @. The probability of making at least one observation is Pg (|Z]|
> 1), while that of making at least one more observation, given that k observations have been
made, is Po,o(|Z] 2 k+ 1|Xq, ..., Xk).

A sequential experiment is one for which each conditional probability Pg o (Xi| X1, ..., Xi-1, i
|Z|) does not vary with ¢, i.e., once one conditions on past data and the fact that there will
be at least one more datum recorded, the stopping parameter no longer makes a difference to
the probability distribution. To emphasize this, | drop ¢ from this expression, writing
Po(Xi|X1,...,Xi=1,i £ |Z]). (The relevant probability for the first element in the sequence,
X1, is Pg(X1]1 < |Z]). The probability of observing Z with exactly |Z| = n is then just

Yn
Pe,(p(zl |Z| = n)= PS,(p(lzl 2 ilxol'"IXi—l)Pe(Xil)(OI'"IXi—lli < |Z|)
i=1

x (1_ Pe,(P(lzl 2 n+ 1|X1,---,Xn)); (1)

where X is a constant (“dummy”) random variable. This likelihood may be factored into
two components, g¢(Z) and sg,4(Nn, Z), representing the “data-generating process” and the
“stopping process,” respectively:
Yn
ge(Z) = Po(XilXo,...,Xi-1,i < |Z]) (2)
i=1
Yn
Sg,e(N,Z) = Po,o(lZ] 2 i|Xo,.-.,Xi-1) x (1= Pool(|Z] 2 n+ 1|Xq,...,X%X4)), (3)
i=1
i.e., Po,o(Z, |Z| = n) = ge(Z)se,e(Nn, Z). The stopping process (or stopping rule) is said to be
proper when the experiment will stop almost surely, i.e., Pg(|Z| < =) = 1, and improper
otherwise.

These preliminaries allow for a precise definition of what it means for a stopping rule to
be noninformative.

<



Noninformative Stopping Rule: A sequential experiment with data-generating process
g6(Z) has a noninformative stopping rule for 6 just when

1. its stopping process sg,¢(n, Z) does not depend on 8,
2. (6, @) can take on any value in © x O, and

3. if Pg,p(Z) is determined according to Pg,,(Z) = P(Z|® = 8,0 = ¢) by the
experiment, where P is a probability measure and © and @ are random variables,
then ® and @ are independent.

Informally, noninformative stopping rules do not provide information about the parameter
(hypothesis) of interest beyond what the data themselves provide, even indirectly—that is,
by providing information about a different parameter that is not independent of the one
of interest.* This includes probabilistic information, which is available typically (but not
exclusively) for Bayesian analyses.

The SRP then provides a constraint on how data z from sequential experiments Z may
confirm an hypothesis 8,> i.e, on the incremental confirmation measure ¢(Z = z,8,8'). This
measure may be comparative or non-comparative. Comparative measures specify the confir-
mation of 8 over, or relative to, 8" by data z from experiment Z. Non-comparative measures
specify the confirmation of 8 simpliciter; for these, 8" is a dummy variable (i.e., c is constant
with respect to 8').

Stopping Rule Principle (Formal): Consider a confirmation measure ¢ and two sequen-
tial experiments, with noninformative stopping rules, for the parameter 6 @ ©, whose
outcomes are described by the respective random variables Z and Z'. If for particular
outcomesZ = z and Z' = z their data-generating processes are equal for all 6 @ O, i.e.,
go(z) = go(z'), then c(Z = 2,0,08') = c(Z' = 2,0,6') forall 6,0’ @ ©.°

In a word, the outcomes of sequential experiments which differ only by a noninformative
stopping rule are evidentially equivalent.

2.2 lllustration in Bayesian and Classical Statistics

The types of confirmation measures that typical Bayesian statistical methods use implicitly
satisfy the SRP, while those for typical classical statistical methods do not. To see this, it will be
helpful to consider a simple example of two sequential experiments with binary outcomes— say,
sampling fruit flies from a population with either red or white eyes to determine the
proportion of white-eyed flies, denoted by 6 (Savage, 1962, pp. 17-18). In both experiments,

%See, e.g., Raiffa and Schlaifer (1961, pp. 38-40) for examples of directly and indirectly informative
stopping rules.

3In this essay, aside from the stopping parameters ® as described in the foregoing, | am setting aside
the possibility of nuisance parameters, parameters whose values are necessary to determine the probability
distribution for the data but which are not the object of inference or confirmation. While | believe the
essential ideas here extend to such cases, | leave demonstrating that to future work.

6Some statements of the SRP require, effectively, that z = z' (e.g., Berger and Wolpert, 1988, p. 76). But
this needlessly excludes situations where there is a trivial relabeling of the values of the data, or when the
order of the data recorded from the sequential experiment is different.



flies are caught, observed, and released sequentially and fairly, with the number of white-
eyed flies reported in the end. Furthermore, assume each catch is statistically independent
of each other, and that the population of flies does not change during the experiment (i.e., no
births or deaths). If the random variable X; represents the outcome of the ith catch, with the
values 1 and 0 representing white and red, respectively, then both experiments have the same
data-generating process gg(Z) = 8 Xi(1 - 8) {1-X), However, the two experiments

have different stopping rules:

P
1. Observe N flies. The probability of observing W; = ii‘l Xi white-eyed flies is then

Po(Ws) = V“\'/ BWi(1 - B)NW:, (4)

1
Thus W; has a binomial distribution with N independent trials and “success” proba-
bility 6.

2. Continue %bserving until R red-eyed flies have been caught. The probability of observ-
ingW, = 'ZI"RX white-eyed flies is then

i=1
Po(W,) = 2t R Tgwag _g)r, (5)

2
w
Thus W, has a negative binomial distribution with R “successes” needed for stopping
and 1 - 0 the probability of “success”.

In both cases, one can show that the stopping process is simply sg,o(n,Z) = &, n, Where
6n..n is @ Kronecker delta.” Hence, both stopping rules are uninformative for 6 (Raiffa and
Schlaifer, 1961, pp. 38—39). Note that the number of white- and red-eyed flies caught in both
experiments will be the same if and only if W; = W, and W, + R = N. In what follows |
assume these equalities.

A Bayesian analysis of these experiments assumes a prior probability P (8) for the pop-
ulation proportions and sets P(W;|0) = Pg(W;) fori = 1,2. To consider compatibility with
the SRP, one must select a Bayesian confirmation measure, a variety of which exist (Huber,
nd, §6b). Following Steel (2003, §4), we may note that any Bayesian confirmation measure
that depends only on the prior and posterior probabilities of a hypothesis of interest satis-fies
the SRP in cases where the experiments to which it is applied share the same space of
hypotheses.® For example, both the log-ratio confirmation measure

, P(O]|Z =
(Z=2008)=In 012=2) (6)
P(6)
and the log-likelihood confirmation measure
, P(Z = z|B)
(Z = =In —— 7
(2=280)=Mh ;oo (7)

78n,n = 1if n= N and vanishes otherwise.

8This argument, which proceeds via the Likelihood Principle introduced in section 6, had been much
earlier stated (Edwards et al., 1963, p. 237), its conclusion well-known (Savage, 1962, p. 17), but Steel (2003)
was, as far as | know, the first to point out the implicit assumption about the dependence of the confirmation
measure.




satisfy the SRP for the binomial/negative binomial experiments, since these have a common
hypothesis space (the success probability). (Note that these are both non-comparative con-
firmation measures, so 8" is a dummy variable for each.) To see this in the latter case, note
that by Bayes’ theorem,®

P(z=12]6) P(B|Z=2)P(-0) P(B]Z= z)(1- P(8B))
P(Z=2z|-8) P(-8|Z=2z)P(B) (1-P(B|Z= z))P(B)

By contrast, classical statistical methods (whether Fisherian or Neyman-Pearsonian) will
not, insofar as they rely on data whose values depend on the probability distribution of
possible—not just actual—data, and clearly the two sequential experiments’ possible out-
comes are not the same. Explicitly, if data w; are recorded, they will calculate for any
hypothesis 6 the p-value Pg(W; 2 w;), the probability of measuring data at least as extreme
(i.e., unlikely) as the data actually measured. The data are evidence against that hypothesis to
the extent that this probability is low, i.e., the data actually measured were extreme or
unlikely.

For concreteness, suppose that we are interested in testing whether white- and red-eyed
flies are equally represented (6 = 1/2), and that N = 12 for the first experiment while R = 3
for the second—i.e., w; = w, = 9.1° Then the p-values for the two sequential experiments
come out as

12 W1 12—W1
Pyp(Wi2 9)= X 12 1 1-1 ~ 0.07, (8)
wi=o wh 2 2
- _ wo+3-1 1™ 1
1/2(W2 2 9) = - 1- — = 0.03. (9)
W2=9 w2 2 2

Therefore a test of significance at level a = 0.05 of the hypothesis that 6 = 1/2 would lead
to rejection with the second experiment but not with the first. In terms of non-comparative
confirmation, one would have c(w; = 9,8 = 1/2,8') < 0 yet c¢(w, = 9,86 = 1/2,08) > 0
(taking zero as the neutral element dividing confirmation from disconfirmation). Even if one
were taking the p-value as a measure of disconfirmation (a la Fisher), there would still be a
difference between the two.

2.3 (Dis)Confirmational (Un)Reliability

When it comes to the satisfaction of the SRP, one way of understanding why there is a
difference between, on the one hand, Bayesian analyses using (for example) the log-ratio
(equation 6) or log-likelihood (equation 7) confirmation measures, and, on the other, clas-
sical analyses using p-values, is that the latter are, but the former are not, sensitive to
the (dis)confirmational (un)reliability of an experiment. Some experiments, by their own

__°This calculation shows that one should not be misled into thinking that | depends only on the likelihood
P(Z|8) and not the prior P(6), despite its name.

10The example is an amalgam of those by Savage (1962, pp. 17-18) and Mayo and Kruse (2001, pp. 387-
388).



lights, have a high probability of (dis)confirming a certain hypothesis, at least to some de-
gree, when that hypothesis is false (resp. true) and some alternative hypothesis is actually
true (resp. false). Such an experiment may be said to be (dis)confirmationally unreliable
for that hypothesis against that alternative to the degree that this probability is high, and
(dis)confirmationally reliable to the degree that it is low. (When referring to all of these
notions at once hereafter, | will often refer to them simply as “reliability.”)

Formally, let Z again be a random variable representing the outcome of an experiment,
8,0 @ © be parameters (hypothesis) determining the probabilities for its potential out-
comes, and c(Z, 8, 8') be an incremental confirmation measure whose values (or “degrees” of
confirmation) are partially ordered and include a unique designated “neutral” value qo. The
ordering represents increasing confirmation and qo denotes the degree that is neither
confirmation nor disconfirmation. Note that this is compatible with both quantitative and
qualitative confirmation measures; c(Z, 8, 8') could, for instance, take on numerical values or
simply three basic ordered qualitative values (e.g., “confirm,” “neither confirm nor discon-
firm,” and “disconfirm”). Further, assume hereafter that, if the set of stopping parameters ®
is nonempty, then the stopping parameter ¢ is known.'* Hence, | will drop reference to ¢ from
the notation to reduce clutter. Then, according to c, the g-confirmational unreliability of Z for
8 over 8" against T = 0 is'?

CU.(2,0,0,q,T) = P<(c(Z,6,0) > q). (10)

This is just the probability of experiment Z confirming 6 over 8 more than degree q with
confirmation measure ¢ when in fact T = 0 is the case.!> Similarly, according to ¢, the g-
disconfirmational unreliability of Z for 0 is

DUC(ZI er e’l q) = Pe(c(zl er el) S q) (11)

This is just the probability of experiment Z confirming 8 over 8" no more than degree g with
confirmation measure ¢ when in fact 6 is the case. Finally, one may define confirmational
and disconfirmational reliability, respectively, as

CR.(Z,6,0,q,t) = 1- CU.Z,06,0,q,T), (12)
DRC(Z) el e’l q) = 1_ DUC(ZI el el:q)- (13)

So far, | have assumed that the confirmation of hypotheses applies to so-called “point hy-
potheses,” single parameter values 6 [ ©, each of which determines completely a probability
distribution for the experimental outcomes of experiments for them. But one can generalize
the definition of (dis)confirmational (un)reliability, equations 10-13, to apply also to so-called
“disjunctive” or “composite hypotheses” H B @, which in this context are (non-singleton)

—Htistypicatimanmexperimentatdesigm to specify the stopping parameter completely, or else control it
enough that the likelihood function for the experiment is well approximated by one so specified.

121f one uses the likelihood ratio as a comparative confirmation measure, then confirmational unreliability
(equation 10) is essentially the same as what Royall (2000) call the “probability of misleading evidence.”
(The only difference is that Royall uses a non-strict inequality.)

130ne could of course extend the definition of CU. to the cases in which T = 8, but in this case the confir-
mational unreliability is just equal to the disconfirmational reliability (equation 13), i.e., CUc(Z,q, 8,8, 8) =
DR¢(Z,q,8,0).



sets of parameter values. Disjunctive hypotheses do not in general uniquely determine a
probability distribution for experimental outcomes; rather, each of their elements, which are
point hypothesis, determines one such distribution. Analogously, a confirmation measure
will in general assign a (non-singleton) set of confirmation values to a disjunctive hypothe-sis,
given an experimental outcome for them.

If one assumes that the partial order of confirmation values has the greatest-lower-bound
property, i.e., that the infimum of a set of values always exists, then one can assign to a
disjunctive hypothesis the infimum of the confirmation values:

c(Z,H,H) = inf  ¢(z,0,8) (14)
(6,0")EH xH ’

for disjoint H, H' B ©. Since one can interpret a disjunctive hypothesis, naturally, as the
disjunction of its constituent point hypotheses, it is natural to suppose that it is confirmed no
more than its least confirmed constituent. That is what equation 14 formalizes. Then the
maximal g-(dis)confirmational unreliability is just

mCUc(Z,H,H',q, T) = supP:(c(Z,H,H) > q), (15)

et

mDU((Z,H,H',q) = supPg(c(Z,H,H') < q), (16)

6@H
and the minimal g-(dis)confirmational reliability is defined just as with equations 12-13:

mCRc(Z,H,H,q,T) = 1- mCU(Z,H,H,q,T), (17)
mDRc(Z,H,H',q) = 1- mDU.(Z,H,H,q). (18)
The sense in which these are “maximal/minimal” is that they represent the worst cases with
respect to the different hypotheses under consideration. If one also has a probability mea-
sure on the point hypotheses and the disjunctive hypotheses are measurable with respect
to it, then one also define the expected g-(dis)confirmational (un)reliability by replacing the
suprema in equations 15-16 with expectations with respect to this measure. Regardless of
which version one chooses, if the disjunctive hypotheses considered are just singletons, then
the generalized version g-(dis)confirmational (un)reliability becomes effectively equivalent to
the versions applicable just to point hypotheses, equations 10-13. These generalizations and
the additional properties required of the partial order are not required for the sequel, so | will
retain reference only to the point-hypothesis versions of (dis)confirmational (un)reliability
there. But one could adopt these generalizations for the sequel at the cost of their concomi-
tant additional assumptions.

Whether one considers disjunctive and point hypotheses or only point hypotheses, (dis)confirmational
(un)reliability is well-defined for Bayesian and classical confirmation measures,'* which are
nevertheless differently sensitive to them. If a Bayesian confirmation measure for an hypoth-
esis O (perhaps over another, 8',) depends only on the prior and posterior probabilities for 0
(and perhaps 8'), then its confirmational reliability certainly depends on more in general—
note the dependence on t in equation 12. One might describe this dependence as being on
the “modal” or alethic possibilities that form part of the backdrop to an experiment. In any

1%For the former, one sets, for any random variable A, Pg(A) = P(A]9).



case, even insofar as a Bayesian confirmation measure does depend on this modal structure, it
is not at all clear that, all else being equal, differences in the reliability of two experimental
outcomes would necessarily make a difference to the Bayesian confirmation of an hypothesis
under test.?®

In classical statistics, by contrast, the confirmation measure is often a function of the p-
value of a statistic of the experimental outcomes under some hypothesis. In Fisherian testing,
for example, the extent to which a p-value approaches zero is the extent to which it provides
disconfirmation of the tested hypothesis. In Neyman-Pearson testing of an hypothesis, this p-
value is mapped to two confirmation values, “accept” and “reject,” depending on whether the
p-value rises above or below a fixed value, called the size, significance level, or type | error
probability of the test, which is also the experiment’s disconfirmational unreliability for that
hypothesis (taking q to be “reject”). The power of the test for the hypothesis against a
certain alternative is then the experiment’s confirmational reliability against that alternative,
and the type Il error probability is its confirmational unreliability. In Mayo’s “severe
testing” account of classical statistics, the severity of a test is an additional criterion for an
experiment to confirm an hypothesis (Mayo, 1996, pp. 179-181).

In the next section, | reconstruct and make precise arguments against the SRP based on
the conviction that reliability should somehow matter for confirmation. Before continuing to
those arguments, | first must clarify the scope of the disagreement about reliability. All
parties to the debate about the SRP seem to agree that confirmational reliability is important
for and a relevant factor in the design of experiments.'® Regardless of how experimentalists
intend to interpret their results, they try to minimize their sequential experiments’ costs—
whether pecuniary, temporal, material, ethical, or otherwise—which depend in general on
the stopping rule. Rather, the debate concerns whether stopping rules have any epistemic
import, i.e., some bearing on how the results of experiments with them provide evidence that
guides us toward truth. Those who accept the SRP would answer negatively, and inversely
for those who reject it.

3 The Stopping Rule Principle Versus Reliability

3.1 Foregone Conclusions

Confirmation measures that satisfy the SRP in general can equate the confirmations for an
hypothesis (perhaps over another) provided by two experiments with vastly different reliabil-
ities.” This has been observed in the context of the debate around the SRP at least as early
as 1959, when Peter Armitage remarked that, under the right circumstances, a researcher
adhering to the SRP could justifiably continue a sequential experiment until reaching a fore-

151t would be interesting and worthwhile to determine more precisely how reliability and any particular
Bayesian confirmation measure are interdependent, but that question is beyond the scope of the present
work.

165ee, for example, the brief statements by Edwards et al. (1963, p. 239) and Berger and Wolpert (1988, p.
78), as well as a fuller statement by Backe (1999, p. $358) and decision-theoretic justifications by Sprenger
(2009, pp. 644, 648) and Steele (2013, §3).

17To avoid needless repetition, | will henceforth leave tacit parentheticals re-afirming that confirmation
can be comparative or non-comparative, unless confusion might arise.

10



gone conclusion, an inevitable confirmation to degree q of an hypothesis essentially regardless of
its truth (Savage, 1962, p. 72).18 This is clearly a case of maximal g-confirmational unre-
liability. The basic idea is that the researcher adopts the following stopping rule: continue
taking new data until the resultant total would confirm a predetermined hypothesis more
than degree gq. Is such a stopping rule proper? Although the details are subtle, this is in-
deed possible in the framework of Bayesian statistics using the log-likelihood confirmation
measure (equation 7) only if the Bayesian agent is allowed to adopt certain merely finitely
additive (i.e., not also countably additive) probability distributions as priors for parameter
values. But even without such special priors, much the same conclusions can arise—cf. the
discussion of section 3.2. As Mayo (1996, p. 356) observes, advocates of the SRP in print
such as Savage (1962) and Berger and Wolpert (1988, p. 83) are “plainly uncomfortable”
with this conclusion; they suggest to readers to trust their intuitions in simpler cases in
which the SRP (and the LP) should clearly hold. | agree with Mayo and Mayo and Kruse
(2001, p. 400) that it is dubious to hold such examples as exotic (especially, again, in light of
the discussion of section 3.2).

One way of drawing out the conflict more precisely is to observe that cases such as this
show that the SRP can be incompatible with the following property of a confirmation
measure ¢, given contextually chosen positive and negative confirmation levels q., g-:

No Foregone Conclusions (NFC): There is no experiment with identifiable outcomes Z,
parameters O, parameter values 8,8 B O, and confirmation values q, = qo and q_ < qo
such that either CU.(Z,8,0,9.,Tt)= 10orDU.(Z,8,0',q-) = 1.

An experiment with identifiable outcomes Z and parameters 6 B © is one for which the map
8 = Pg(Z) is injective. In other words, NFC excludes from consideration experiments for
which the parameter value and the outcome probability distribution make no difference to
each other. With these excluded, a confirmation measure satisfying NFC never allows one to
draw foregone conclusions—almost surely misleading evidence for or against an hypothesis.

Backe (1999) suggests in response that Bayesians avoid using such stopping rules before
committing to run an experiment, but this prescriptive rule does not help when one is
faced with how to analyze an experiment already completed that may have violated the
rule—certainly assuming the experimenter was entirely rational in this way would be naive.
More productively, however, Kadane et al. (1996), following Savage (1962, pp. 72-3) himself,
Kerridge (1963), and Cornfield (1970) show that foregone conclusions are avoided if one uses
countably additive priors. One can adapt their conclusions to the present context as follows:
if such a Bayesian adopts the countably additive prior P (8), the non-comparative log-ratio
confirmation measure r (equation 6), and attempts to continue observing new data until
r(z,80,8) > q= 1, then

P(|Z] > ==) < €79,
P(|Z] > o=|-60) < (e7% = P(80))/(1 - P(B0)) < e™°.

—*The example had already been known in the context of debates around the proper analysis of data from

experiments with “optional” (i.e., probabilistic) stopping rules in classical statistics (Savage, 1962, p. 18).(In
retrospect, the division between deterministic and non-deterministic stopping rules is not in general
invariant with respect to a redescription of the experiment, but this won’t matter for present purposes.)
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In a word, the stopping rule is not proper, so the probability of stopping with misleading
confirmation is bounded above, decreasing exponentially in the degree of confirmation. An
experiment with such a stopping rule thus has, for increasing degrees of foregone confirma-
tion, significantly decreasing chances of ever reaching completion.

3.2 Unreliability

As important and interesting as the results reviewed at the end of section 3.1 are, | agree
with Mayo and Kruse (2001, p. 393) that

the most important consequence of the Armitage example is not so much the
extreme cases ...but rather the fact that ignoring stopping rules can lead to a
high probability of error, and that this high error probability is not reflected in
the interpretation of data

when that interpretation—how data confirm hypotheses—is bound by the SRP. In a word, it
is not maximal unreliability which is the issue per se, but suficiently high unreliability— or
equivalently, suficiently low reliability. This suggests instead to demand of a putative
confirmation measure c(Z, 6, 8') some property that instantiates the following schema:

e-Adequate (q+, g-)-Reliability for E (€Aq.RE): For any experiment in E with out-
comes Z potentially informative for parameters 6,0, T O, CR.(Z,6,08',qs,T) 2
€(0,8') and DR.(Z,8,08',q-) = €(8,9).

(Suggested pronunciation: “epsilon-acre.”) The sense in which €Aq:RE is a schema, unlike
NFC, is that, syntactically, it is an open sentence with variables €, q., q-, and E. All else
being equal for a given E, choices of € : © x © = [0, 1] that are larger over its arguments,
higher values of q-, and lower values of q. correspond to stronger strictures of reliability on
a confirmation measure.

Not all instances of eAq.RE plausibly hold. Letting E be the class of all experiments,
€(0,8') = 1, and g, and g- be arbitrarily high and low confirmation values, respectively,
would yield an implausible instance of eAq:RE that requires all experiments, almost surely,
to maximally confirm an hypothesis if it were true, and maximally disconfirm an hypothesis if
it were false. But | do claim that when E is finite, there will be everywhere positive €(8,8'), q.
> qo, and q- < qo for which eAq:RE should hold.’® Which values these will plausibly be will
depend on the confirmation measure under consideration—not all measures take on values in
the same partially ordered space—and the experiments E. Although | do not have a recipe to
provide for this, | can indicate a few difference-makers. Experiments with more potential data
might admit of stronger strictures on an instance of eAq.RE that they should satisfy. For
confirmation measures related to properties of classical tests, such as size and power, these
properties may correlate with stronger strictures similarly. As the power of test varies with 0,
relative to a given 0 (say, taken as the “null” hypothesis), so might £(0, 8') vary. The values
of €(8,8), q., and q_ for a given E may also depend on any probability

—Lrestrict-my-—claimtofinite Esinceit-seems possible to have an infinite collection of experiments, each

element a for which a confirmation measure satisfies eAq:RE with £4(8,0) > 0, but such that for some
0,6, infqeqa(B,0) = 0.
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assignments to the parameters investigated, as is often the case for Bayesian confirmation
measures. One might allow for £(0, 8') to vary, for a given 6, as the prior for 6 varies. Since
more might be at stake in some experiments than others, how the confirmation of hypotheses
might influence action or policy, broadly interpreted, can also play a role. Stronger versions of
€Aq:RE make precise different ways in which this decision-making procedure should be
“open-minded” to how the evidence may indicate hypotheses of interest.

€Aq:RE constrains the “absolute” reliability of confirmation measures, but one might
consider instead relative reliability. As Mayo (2004, p. 105) has suggested, one can instead
identify the problem with the SRP as the fact that it “entails the irrelevance of the proce-
dures generating [the data] that do not alter likelihoods even though they can dramatically
alter error probabilities.” Given an experimental outcome Z = z, its likelihood is simply
Lz-,(08) = Pg(Z = z), a function of the parameter (hypothesis) of interest with the data con-
sidered fixed. Likelihoods are said to be equivalent when they are proportional—i.e., L;-,(06)
and Lz'-, (B8) are equivalent when there exists some k > 0 such that L;-,(6) = kLz-,(0)
for all 8. If the likelihoods from two different experiments are equivalent, they generally arise
from observed data that are highly relevantly similar, if not identical. Finally, “error proba-
bilities” in Mayo’s sense are (dis)confirmational unreliabilities, with functions of the p-value
of a certain statistic taken as the confirmation measure.?® So, Mayo’s alternative complaint
about the SRP, more precisely put, is that it doesn’t allow for equivalent likelihoods from
different experiments with nevertheless different reliabilities to engender different degrees of
confirmation for a given hypothesis.

In the present context, however, experiments with different stopping processes sg, and
Se,p May have different parameters for those processes—¢ B ® but ¢ B ®" with ® = ®'—so
that the experiments’ associated likelihoods do not have the same domain. Consequently,
Mayo’s alternative complaint must be modified to apply to these cases. Her reference to the
“procedures generating the data” gives a hint. Given an experimental outcome Z = z, definea
data-generating partial likelihood as L& Z=Z(6) = go(Z = z), where gg is a data-generating
mechanism for the experiment. Say that two data-generating partial likelihoods L ¢, (8) and
L®._,(8) are equivalent when there exists some k > 0 such that L%, _,(8) = kL%._ .(8) for
all 8. Then Mayo’s revised alternative complain about the SRP is that it doesn’t allow for
equivalent data-generating partial likelihoods from different experiments with nevertheless
different reliabilities to engender different degrees of confirmation for a given hypothesis.

In the interest of arguments against the SRP that do not appeal directly to confirmation
thresholds, one can abstract away from them to arrive at the following property schema,
instances of which one might demand of a putative confirmation measure c(Z, 9, 8').

e-Similar Uniform Reliability for Likelihood-Equivalence of E (¢SURLEE): For any
pair of experiments in E with potential outcomes Z and Z' for the same param-
eter (hypothesis) space © and any 8,8 B O, if the outcomes Z = z and Z' = z
are data-generating partial likelihood equivalent and c¢(Z = z,0,8) = c(Z =
z,0,0) = q,then |DR.(Z,0,08,q)-DR(Z,6,0,q)| < €(6,8')and |CR.(Z,8,08',q,T)-
CR.(Z,6,0,q,T)| < €(8,0') for all Tt @ O.

—20Here-the-confirmation-shoutd-be-taken-to be qualitative, rather than quantitative (Mayo, 1996, p. 179n3):

confirmation is “passing” a highly severe test.
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(Suggested pronunciation: “epsilon-surly.”) eSURLEE states that at least for experiments
whose outcomes are relevantly highly similar, those experiments confirm a hypothesis equally
only if they are not too differently (dis)confirmationally reliable. In other words, at least for
data-generating partial likelihood equivalent experiments, suficiently large differences in
reliability make a difference to confirmation. All else being equal for a given set of
experiments E, smaller values of € : @ x @ = [0, 1] on any of its arguments correspond to
stronger strictures of comparative reliability on a confirmation measure. Unlike €Aq:RE,
there is no dependence on confirmation values q., q- for eSURLEE, since it assumes the
“difference-making” power of reliability on confirmation doesn’t depend on the degree or
quality of confirmation.?! This is the sense in which it concerns “uniform” reliability. But
like with eAq+RE, | claim that when E is finite, there will be some €(8,8’) everywhere less
than 1 for which eSURLEE is a plausible property to demand of a confirmation measure.
Also like with e Aq:RE, the same contextual considerations apply in deciding what values of €
would be plausible to demand.

Neither eAq:RE nor eSURLEE, as schema, conflict logically with SRP—mere schema
(open sentences) are not the sorts of things that can so conflict. Moreover, it is not the case
that every instance of these schema conflicts with the SRP. (Let € = 0 for eAq:RE ande = 1
for eSURLEE.) The compatibility of particular instances of the schema depends on the class
E of sequential experiments and the values of € and (for eAg.RE) g+ and g-.

But conflict is easy to come by for particular choices. Consider again the case of the
experiments about the proportion of eye-colors in a fruit fly population in section 2.2, and for
simplicity suppose that the only two proportions of white-eyed flies under consideration are
B; = 0.5 and 6, = 0.6. Furthermore, suppose that E consists only of an experimentZ which
stops either when [(Z = z,0,,0) > 0—i.e., 8, is confirmed according to the log-likelihood
confirmation measure (equation 7)—or seven flies have been sampled. One can then
calculate that CR((Z, 6,,6',0,0,) = 0.273 and DR((Z, 6,,0',0,8,) = 0.855.22 So, if one sets q.
= 0 and €(8,08') = 1/2, say, then the log-likelihood confirmation measure | will not satisfy
€Aq.RE because its confirmational reliability is too low. In other words, the chances of
confirming 6, when it is false (and instead 8; is true) are much better than even odds.

To see the conflict with eSURLEE, let E include as well another experiment Z' ob-
serving flies from the population, but which stops when just one fly has been caught. It
follows immediately that CR\(Z',8,,8',0,06:) = 0.5 and DR,(Z’,98,,8',0,08:1) = 0.6. So, sup-
posing now that in the first experiment, Z, only one fly was actually caught, one can cal-
culate that |CR((Z,8,,6',0,08:) - CR((Z,6,,6,0,6:)| = 0.227 and |DR((Z,6,,6,0,6:) -
DR((Z',0,,0,0,01)] = 0.255. Since the antecedent conditions of eSURLEE are satisfied for
the two experiments—again, | satisfies the SRP—1 does not satisfy eSURLEE even for €
with appreciable values, such as €(8,8') = 1/4. So, in this example, experiments which are
supposed to be confirmationally equivalent according to the SRP can differ in reliability by
over 0.25.

The conflict needn’t always be the same for both eAq:RE and eSURLEE. Consider a
third experiment Z"' that is exactly like Z' but which stops only when seven flies have been

21Here one might make an exception for qo, for that neutral case might intuitively accommodate a variety of
experiments with various reliabilities. |1 do not see how anything that follows in this essay depends on taking
a stand on this issue, however.

22Here | have adapted the calculations of Steele (2013, p. 957) to the present terminology.
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caught. Then one can calculate that CR(Z",6,,6,0,8,) = 0.5 and DR((Z",98,,0,0,0,) =
0.710. So, supposing now that in the first experiment, Z, seven flies were also actually
caught, and that the number of red- and white-eyed flies in the two experiments was the
same, one can calculate that |CR(Z,0,,0,0,0:)-CR(Z",0,,6',0,01)| = 0.227, which is the
same as when comparing Z with Z', but |DR((Z,8,,0,0,6:)-DR|(Z",6,,6,0,8:)| = 0.145.
Keeping the samee= 1/2 and g, = gq- = 0 for eAq.RE as in the previous comparison would
entail that if E = {Z',Z"'}, eAq:RE does not hold of I. But doing the same with e = 1/4 for
€SURLEE does allow for it to hold (once we have verified that the analogous calculations
hold with 8, and 6, permuted).

Similar conclusions for both eAq:RE and eSURLEE follow from using the log-ratio confir-
mation measure r (equation 6). In a word, both eAq.:RE and eSURLEE seem to have some
satisfiable instances for confirmation measures that satisfy the SRP, but not all plausible
instances are satisfiable.

What about confirmation measures that do not satisfy the SRP? If one takes one’s
confirmation measure c to be the p-value ps of a statistic s measuring the discrepancy of the
data from what is expected under 6, then:

~

DRy, (Z,6,8,09-) = 1- g-, where q- would be the size of a test of 8 based on s—the
probability of the test rejecting 8 when it is true.

" CR,.(Z,0,08',0+,t) = POW,(6, T, q+), the power of a test of significance, based on s,
of B at T with size q.—the probability of the test rejecting 8 when in fact t is true.

Good practice for such tests often suggests a size of 0.05 for a test of 8 and a power of 0.80
against the most relevant t = 8. In these cases, high values of confirmational reliability for 6
and of disconfirmational reliability for 6 against t follow. Thus for such 6 and t, there will be
plausible instances of eAq.RE that will be satisfied, such as in the above case of testing for
the possibility of two proportions of eye-colors in the fruit flies. As for eSURLEE, if its
antecedent is satisfied for two experiments using ps as their confirmation measure, then the
two experiments must have identical (dis)confirmational reliabilities. Thus eSURLEE will
be satisfied.

3.3 The Reason for the Conflict

Although | have not proved that a general conflict between the SRP, on the one hand, and
any instantiation of eAq.RE or eSURLEE, on the other, is inevitable for an arbitrary con-
firmation measure, the examples from section 3.2 show that for some seemingly reasonable
€(0,98'), q+, and g there will indeed be conflict for some commonly used Bayesian confir-
mation measures.?3 (Since for some €(8,8'), q., and q_ these are not reasonable properties to
demand of a confirmation measure, the absence of a general conflict for all values is no
deficiency.) The reason for this is similar in both cases, although the differences are also
worth highlighting. In all cases, one advantage of using eAq:RE or eSURLEE is that these

__23See also examples 20 and 21 in Berger and Wolpert (1988, pp. 7576, 80-81) for further instances in

which similar conclusions apply.
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properties are formulated using concepts that appear to be common to all accounts of con-
firmation of probabilistic theories; they do not presuppose concepts particular to classical
statistics.

What is therefore the framework-neutral source of the conflict between the SRP and
€Agq:RE? Any confirmation measure which satisfies the latter must have, for any experiment,
suficiently low probabilities of confirming a hypothesis (beyond some specified degree) when it
is false and disconfirming it (at least to some specified degree) when it is true. On the one
hand, an arbitrarily selected confirmation measure, even if it does not satisfy the SRP, may
not have this property. For example, a confirmation measure based on the p-value of a
statistic will not in general satisfy the SRP, but it may also not be confirmationally reliable,
either: both advocates (e.g., Mayo (1996, Ch. 11)) and critics (e.g., Howson and Urbach
(2006, Ch. 5)) of classical testing acknowledge that achieving a high p-value on a test of an
hypothesis is not generally good grounds for confirmation (much less acceptance) of that
hypothesis. On the other hand, it is not clear whether an arbitrarily selected confirmation
measure that does satisfy the SRP will not satisfy eAq+RE for reasonable £(8,0), q., andq_.
But two experiments that differ only by a stopping rule will in general differ in their
reliabilities (CR. and DR.) for reasonable choices of confirmation measure c. Because a
confirmation measure satisfying the SRP will entail that two such experiments with otherwise
identical outcomes will be evidentially equivalent, it leaves open the possibility that one
experiment falls below the reliability threshold. Consequently, while satisfying the SRP
makes it more dificult for a confirmation measure to satisfy eAq:RE for reasonable values of
g, 0+, and g-, the source of the conflict for the Bayesian confirmation measures | and r
comes more directly from the fact that the reliability of an experiment does not seem to make
a difference (or enough of one) for that experiment’s ability to confirm or disconfirm.

When it comes to the conflict between the SRP and eSURLEE, the source is more direct.
As | just mentioned, two experiments that differ only by a stopping rule will in general differ
in their reliabilities (CR. and DR.) for reasonable choices of confirmation measure c. As
long one can find some such pair of experiments whose reliabilities differ to a suficient degree
for some data-generating partial likelihood equivalent outcomes, eSURLEE will be violated.
Such outcomes are data that are very relevantly similar to one another, so in such cases
eSURLEE demands that suficiently large differences in reliability make some difference to
confirmation. The SRP, on the other hand, denies this can ever be the case.

3.4 The Justification for Requiring Reliability Criteria for Con-
firmation Measures

There is a significant literature on axiomatic constraints on confirmation measures and
Bayesian versions especially (Crupi, 2016). Yet while reliability as a notion pertaining to
individual measuring instruments has been applied in Bayesian epistemology and confirma-
tion theory (Bovens and Hartmann, 2002, 2003), (dis)confirmational reliability has not, or at
least not in these terms. (I discuss the connection with the literature on truth-convergence
briefly below.) There is nevertheless a simple intuition behind requiring a criterion of this
sort: confirmation of a hypothesis H requires “a test that is highly capable of probing the
ways in which H can err” (Mayo, 1996, p. 9). This includes the ability to disconfirm H when
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it is false, but also confirm H when it is true.

Now, in the context of the above quotation, Mayo is concerned with distinguishing her
own “severe testing” account of scientific learning with what she calls the “evidential-
relation” view, according to which the relevant properties to be examined are between the
data and hypotheses. For severe testing, by contrast, these accrue (at least in part) to the
methods used (Mayo, 1996, p. 72). But the constraint of reliability can be applied without
complete rejection of the form of an evidential relationship.?* Indeed, very general consid-
erations from reliabilist epistemology buttress the motivation that the best evidence for or
against a hypothesis—that is, incremental confirmation or disconfirmation of it—ought to
come from a reliable source or method (Goldman and Beddor, 2016).

How this motivates eAq:RE or eSURLEE depends on how one makes precise these broad,
informal insights. One way is to make suficient reliability a precondition for a certain
degree of confirmation. That is what €eAq:RE implements. On this strong condition, no
confirmation can be had without that confirmation also being reliable: the chances of it
leading one astray (either for a false hypothesis or against a true one) must be suficiently low.
Another way is merely to require that reliability must make some difference to confirmation.
At least for data sets that are data-generating partial likelihood equivalent—about as similar
as they can get, according to the models of the experiments from which they were produced— if
the experiments that produced them have suficiently different reliabilities, then that fact
should make some difference to the evidential bearing those data sets have on the hypotheses
for which the experiments were conducted.

Often reliability in epistemology is understood as reliability in the long-run: a method is
reliable if it eventually leads one to the truth. In this context, various convergence theorems
for Bayesian confirmation can be invoked: e.g., that if hypotheses can be identified (i.e.,
distinguished) eventually from the data, then eventually data confirm all true hypotheses
and disconfirm all false ones almost surely (Huber, nd, §7). These theorems come with the
inevitable interpretive objection that they show very little about real data and evidence, for in
the long run we’re all dead.?®> How are we supposed to understand the reliability of methods
when data, and our ability to collect it, are finite? Should not reliability, at least as it applies to
the short-term, come in degrees? This is precisely where confirmational reliability criteria can
play a role. If the evidence that a finite body of data provides for an hypothesis depends both
on the data collected and, to some degree or other, the confirmational reliability of the
experiment to produce such data, one has a surer justification for using that data to support
hypotheses.

Finally, a further cost to rejecting confirmational reliability criteria is that many scientists
have endorsed some form of it, especially in the context of replication. | shall for concreteness
focus on the evidence for this in psychology, and because replication has been of greatest
concern in that field as of late. Simmons et al. (2011, p. 1359) report various degrees
of “flexibility” that researchers might employ—sometimes known as “questionable research

“*Mayo (1996, Ch. 10.4) seems to acknowledge this in her discussion of Bayesian methods that also assess
reliability.

25| interpret the illuminating and important literature (mostly in mathematical statistics) on rates of
convergence to the truth—both in the finite-dimensional (Le Cam, 1973, 1986) and infinite-dimensional
cases (Ghosal et al., 2000; Shen and Wasserman, 2001)—to be offering a kind of palliative for this, extending
these long-run guarantees to the medium-term.
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practices” (QRPs)—to “to falsely find evidence that an effect exists [rather] than to correctly
find evidence that it does not,” supporting their contentions with simulation studies. Two
features of these studies are of note here. First, the worrisome feature of evidential reports on
which they focus is a higher-than-nominally-reported false positive rate, which is a particular
form of disconfirmational unreliability. So, researchers in psychology generally take reliability
seriously when it comes to the quality of the evidence. Second, one of the degrees of flexibility is
using a stopping rule of the following form: collect a certain number of observations, then if a
particular (null) hypothesis is not suficiently disconfirmed, collect a certain number more and
report the disconfirmation level.?® They report that this increased the false-positive rate—
the estimated probability of suficiently strong erroneous disconfirmation—by about 50%
over the reported value derived from an experimental protocol using a fixed stopping rule.
The point is that if one uses a confirmation measure that satisfies the SRP, then one is unable
to adjust the (dis)confirmation a data set entails for an hypothesis by its reliability.

Although Simmons et al. (2011) employ simulations to demonstrate this, there is also
evidence that it is a real concern amongst practicing psychologists. Indeed, John et al.
(2012) measured the prevalence of QRPs and attitudes towards them among psychologists.
Perhaps surprisingly, they are somewhat common (depending on the type of QRP), and
researchers were much more likely to think them defensible in their own scientific practices
than in those of others. One of these QRPs was “Stopping collecting data earlier than
planned because one found the result that one had been looking for”—i.e., the desired level
of (dis)confirmation of a particular hypothesis. For confirmation measures that satisfy the
SRP this should entail no problem, but this is apparently not so because psychologists take
reliability to be important. Yu et al. (2014) continued this line of research by showing that
various heuristics that scientists use to decide when to stop collecting data can affect not
only the false positive rate but also the false negative rate and estimated effect size—i.e., the
confirmational unreliability for a range of hypotheses.?’” This is so even whether one uses
classical confirmation measures (based on p-values) or Bayesian ones.?®

28|n more detail: for one two-valued independent variable, collect 20 normally distributed observations per
value; if suficient disconfirmation does not occur, collect 10 more observations per value (Simmons et al.,
2011, p. 1361).

27Bjas in estimated effect sizes plays a role in confirmational unreliability because that latter concept
relates two hypotheses by the probability of confirming one if the other is true. It also plays a role in
the statistical theory of estimation, which is beyond the scope of the current argument, although issues
concerning the SRP can well be extended to it. One can then have debates about the demerits of bias
analogous to those about reliability that | describe in sections 4 and 5. See, e.g., Savage (1962, p. 18), Berger
and Wolpert (1988, pp. 80-82), and Howson and Urbach (2006, pp. 164-166) for arguments dismissive of the
importance of bias.

28|n particular, they examine the use of Bayes Factors, the comparative confirmation analog of | (equation 7).
See also Sanborn and Hills (2014), who use simulation studies for a different variant, so-called Bayesian
hypothesis testing. They emphasize that while there is no inconsistency in using Bayesian methods, those
methods do not take into account something important for confidence in the conclusions of the research of
psychological science. (See also Rouder (2014) and Sanborn et al. (2014) for a dialog on this topic.)
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4 Deflating Reliability?

Because of the novel way I’ve made precise, in sections 3.2 and 3.3 how the conflict between
demanding the SRP hold of a confirmation measure, on the one hand, and properties like
€Aq:RE or eSURLEE, on the other, there have not been direct responses to it in the litera-
ture. But there have been responses to the more informal version of the foregone conclusion
argument | outlined in section 3.1, which requires confirmation to be sensitive in some way
to reliability. Some of these are broad enough to apply, potentially, to my own more formal
version. One more formal but under-discussed response is that there is something subtly
inconsistent about requiring a confirmation measure to be sensitive to reliability properties.
| will discuss and critique that response in section 5. But first, | will discuss two responses
that instead attempt to deflate the importance of reliability directly or indirectly, so as to
mitigate the conflict with the SRP.

4.1 Altered Priors

Much of the discussion of the SRP has been against the wider backdrop of debates about
different schools of statistical methodology. In particular, as | have alluded in section 2.2,
advocacy of the SRP has tended to correlate with espousal of Bayesianism, and denial with
adherence to classical statistics. In this context, Berger and Wolpert (1988) consider a two-
party scenario: an experimenter running an experiment similar to the binomial experiment
from section 2.2,%° and an observer who determines the evidential value of the data the
experimenter produces for a parameter 0:

A Bayesian conditionalist might not completely ignore a stopping rule ...if he
suspects it is being used because the experimenter thinks 6 might be zero. The
Bayesian might then assign some positive prior probability, A, to 8 being equal
to zero, in recognition of the experimenter’s possible knowledge. (Berger and
Wolpert, 1988, p. 81)

Practically, they note, this may have the consequence that foregone conclusions against 6 = 0
will be harder to achieve.

Mayo and Kruse (2001, §6.2) suggest that this is an odd response for an advocate of the
SRP, for it seems to concede the importance of reliability for confirmation measures, against
the SRP.3% That might be so, but it might instead just be a plain reminder of a circumstance
under which a Bayesian may not ignore learning a stopping rule—namely, when doing so
would cause them to update their priors. (By definition the “Bayesian conditionalist” up-
dates, and ought to update, her beliefs based on observed data.) Such an update might
force greater or less belief in a particular value of a parameter, such as 8 = 0, depending on
what the Bayesian learns, and believes about how what she learns weighs on the states of
the world.

29Their example is that of testing the mean of a normal distribution with known and fixed variance, but the
substantive point at issue here is the same because the stopping process for the experiment does not depend
on 6.

30See also Mayo (1996, p. 356n30) and Steele (2013, p. 955).
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However, this is just to acknowledge that the stopping rule may be informative for a
Bayesian. Recall from section 2.1 the definition of a stopping rule that is noninformative for a
parameter 0: its stopping process does not depend on 8, and any further parameters beyond 6
on which the stopping process depends are logically and probabilistically independent thereof.
Although the example of testing under discussion has a stopping process that does not depend
on 0,3! if the Bayesian (non-trivially) updates her priors for 8 upon learning the stopping rule,
then the stopping process depends on parameters that are not probabilistically independent
of 6. That means that the stopping rule is (indirectly) informative, and the SRP does not
apply. Hence such a response as that of Berger and Wolpert quoted above does nothing to
deflate the conflict of the SRP with reliability properties for confirmation measures.

4.2 Error Theory

Nevertheless, the framework that Berger and Wolpert (1988) consider, of an assessor of
the evidence facing data produced by a distinct experimenter, has been influential in other
attempts to deflate the importance of reliability criteria for confirmation. Steele (2013, p.
951), writing about a “persistent experimenter” who chooses the (so-called “optional”)
stopping rule that stops taking data when suficient confirmation of a particular hypothesis is
achieved, notes that

a stopping rule can be newsworthy in and of itself if the experimenter is distinct
from the inference-maker. In the persistent experimenter cases, it is the experi-
menter’s initial choice of the optional stopping rule that is informative, because it
reveals something of the experimenter’s motivations or attitudes; these revealed
attitudes have a bearing (in Bayesian terms) on the truth of the hypothesis under
comparison, before the experiment has even begun, in a manner that produces the
optional stopping intuition. (Steele, 2013, p. 951)

[...]

In fact, in all of these cases where the experimenter differs from the inference-
maker, and where the experimenter’s choice of test/stopping rule depends on
her prior probabilities/utilities, this choice may be informative for the inference-
maker. (Steele, 2013, p. 954)

This is precisely the interpretation of the proposal by Berger and Wolpert (1988) at which
| arrived by the end of section 4.1: a stopping rule can be (indirectly) informative for a pa-
rameter 8 when the possible stopping rules depend on other parameters not probabilistically
independent of 6.

If Steele left it at that, she would also be open to the same criticism, that this is a
nonresponse to the conflict between the SRP and reliability properties for confirmation
measures. But she attempts to go further by arguing that the only situations in which
learning the stopping rule of an experiment intuitively makes a difference to the evidential
value of that experiment is precisely those in which the stopping rule is informative. The

31gee also footnote 29.
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error of the opponent of the SRP is to extrapolate those intuitions to all cases.3?
To do so, Steele (2013, p. 952) proposes to examine a different example in which she
claims no such intuition arises. It has the following features:

" The experimenter and evaluator of the evidence are the same.

" One is testing two point hypotheses against one another in a sequential experiment
like that of section 2.2.

" One’s confirmation measure is a comparative version of |, the Bayes Factor.

" There is a fixed cost for an erroneous inference, i.e., confirming a false hypothesis or
disconfirming a true one, at the end of the experiment.

" The cost of an observation is positive but constant.
" Once should act to minimize expected costs.

It turns out then that the experimental design satisfying these criteria is one which does
not use a fixed stopping rule, but rather stops when one of the two hypotheses is suficiently
confirmed above the other. Steele then claims that no intuition concerning the relevance of
reliability criteria arises nor enters into the evaluation of the evidence from this experiment.

However, even setting aside the appeal to an intuition which the present author does not
share, there are at least three significant flaws with this argument. In the first place, it doesn’t
even have the right logical form to establish its conclusion. A single example is insuficient to
establish that intuitions about the relevance of reliability criteria for confirmation never arise
for sequential experiments without informative stopping rules. Perhaps the case is intended
as the basis for an (implausible) inductive argument to a universal generalization, but then
some motivation for why all cases are analogous to it is yet forthcoming. Any exception to
the generalization blocks the force of the argument.

The second flaw is that whether optional stopping is more or less reliable or pragmati-
cally costly than a fixed stopping rule for a proposed sequential experiment is not actually
relevant to the question at hand. That question is whether, given two experiments that
produced identical data, differences in the experiments’ stopping rules make a difference to
the evidence each experiment yields. The example is compatible with both afirming and
denying this difference-making. In particular, afirming that reliability makes a difference for
confirmation does not entail that an optional stopping rules sometimes is the better design for
an experiment, because by itself that afirmation makes no prescription about experi-mental
design at all. It makes only a claim about dependence, that however a sequential
experiment (dis)confirms an hypothesis depends not just on the values of the data collected,
but the reliability of that collection method.

325teele (2013) also considers two other “error theories” that she rejects: the first is that the intuition
for reliability concerns arises from a conflation with considerations of experimental design, as Backe (1999)
had urged. The second involves a conflation with experiments in which only a summary statistic of the
experimental outcomes is available. Steele (2013, pp. 949-950) rightly rejects these, in my view, as inaptly
responding to the issue at hand. However, as | discuss in the sequel, this is also my view of her preferred
error theory.
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These previous observations are related to the third flaw: despite Steele’s assertions
to the contrary, the example is not actually relevantly analogous to the example used in
the foregone conclusions argument. The most important reason for this is that there is no
chance of a foregone conclusion, or one nearly so: ceteris paribus, the stopping rule does
not make it likely, e.g., that one hypothesis will be confirmed even if it is false, at least
without making any explicit calculations. Relevantly analogous examples are ones in which
it is entirely obvious either that the (dis)confirmational unreliability of the confirmation
measure used in the experiment is unacceptably high (cf. eAq.RE), or that there are two
different possible stopping rules for the data produced which differ significantly in their
(dis)confirmational reliability (cf. eSURLEE). Since it is not obvious in this case, if the
calculations of the confirmational reliability of the proposed confirmation measure showed
that it violated eAq+RE or eSURLEE for reasonable €(8,8’), q., and q_, | would doubt that
no questions about their importance would ever be raised.

The origin of the last two flaws might be in Steele’s misconception of the circumstances
under which (indirectly) informative stopping rules can arise: “The argument here is that
the optional stopping intuition arises from our association of optional stopping tests with a
particular sort of shady experimenter” (Steele, 2013, p. 955).33 But it just ain’t so!

Why, after all, should we think the experimenter is using [an optional stopping
rule] to deceive you? Why not regard his determination to demonstrate evidence
against the null hypothesis as a sign that the null is false? Perhaps he is using
[the optional stopping rule] only because he knows that [it is false] and he is
trying to convince you of the truth! (Mayo and Kruse, 2001, p. 398)

Such an experimenter, ever the hopeful idealist, does not intend to mislead, but his experi-
mental methods might still be unreliable. Indeed, in the discussion of their empirical results
regarding psychologists’ tendency to employ optional stopping rules, Yu et al. (2014, p. 279)
write that

One need not postulate that decisions to terminate sampling prematurely are an
act of deception, since responsible researchers can easily fall prey to the allure
of small sample results [in which small samples are believed to be representative
of a population.] ...[Also,] scientists may be intrinsically more motivated to
find effects than to indicate that effects do not exist. ... These tendencies may
predispose individuals to engage in optional stopping.

The intuitions that reliability matters to confirmation come not just from the extreme cases of
maximal unreliability and scientific fraud, but also from moderate cases of unreliability,
workaday earnest scientific motivations, and mundane cognitive heuristics.

5 The Decision-Theoretic Argument

The attempts, outlined in section 4, to accept the intuitiveness of reliability’s import for
evidence while deflating its substantive impact were not successful. But as | mentioned at

33See also Gandenberger (2015, p. 13), who calls them “disingenuous experimenters.”
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the beginning of that section, there is another response to the foregone conclusions argument
and rejections of the SRP more generally, due to Berger and Wolpert (1988, pp. 83-5), that
argues that rejection of the SRP is inconsistent with other properties acknowledged to be
important for reliable confirmation. In particular, this response observes that denying the
SRP leads in certain cases to following inadmissible decision rules.

Explaining this response requires introducing some further notions from decision theory.
Suppose that, faced with the conclusion of a given sequential experiment, one must decide
how to act. This could include deciding merely what to believe (with its concomitant if not
entirely foreseeable effects on future concrete action), but also how to report and interpret the
evidential value of the concluded experiment, or adopting a particular policy for action. In
any case, let A be the set of possible actions, Z the set of possible outcomes of the experiment,
and © (as before) the set of parameter values (i.e., states of the world) determining the
probabilities (or the probability densities) for these outcomes. A decision rule for (Z, A) is
then a plan for making an action depending on the outcome of the experiment. Formally, it
is represented by a function § : Z = A. Depending on the data, for example, one could
announce the (dis)confirmation of an hypothesis to a particular degree.

Actions, hence decision rules, do not in general affect the world indifferently. Each action
may entail a cost, or loss, as measured on some definite scale, which is assumed to be
represented by a positive real number. (Negative numbers then represent gains.) Moreover,
that loss may also depend on the state of the world. We may represent these dependencies by
a loss function, L : A x © = R. If one’s actions are governed by a decision rule §, and the
state of the world is 6, then observing outcome z would lead to a loss L(6(z), 8).

Because we are only assuming that the state of the world determines the probabilities (or
the probability densities) of various outcomes of the experiment, various outcomes could
potentially be observed even if the state of the world and the decision rule were fixed. Thus
different losses can potentially be incurred depending on how the data lead to different
actions according to 6. The risk R for a given decision rule § when the state of the world is 0 is
then defined as the expected loss,

R(B,8) = EgL(8(Z),0), (19)

where Eg is the expectation operator under the probability distribution for Z determined by
8.

With these notions in hand, Berger and Wolpert (1988, pp. 83—85) consider two experi-
ments Z; and Z, that differ only by their stopping rule—e.g., the two considered in section
2.2—and assume that some action will be taken after one or the other of them is complete.
That is, they assume that there has been selected respective decision rules §; and 6, for the
two experiments. They then make the following four assumptions about these experiments:34

Convexity of Actions (CA) The set of actions has the structure of a real vector space,
on which the loss function is strictly convex. l.e., for any a,a B A, a @ (0, 1), and 8
O, L{aa+ (1- a)a,B) < al(a,d) + (1 - a)L(a’, 8).3> (For instance, the action

%At least, what follows are the assumptions | have reconstructed from their exposition. Except for the
Weak Conditionality Principle, what follows are my own names for these assumptions.

35Berger and Wolpert (1988, p. 84) remark that “More general loss functions can be handled also” but it
is dificult to see how their proof strategy could be substantively generalized without this assumption.
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could be to report the best estimate 6 of 8 based on the evidence from the experiment,
with a loss function quadratic in the difference: L(6,6) = |6- 6]2.)

Weak Conditionality Principle (WCP) Consider the “mixed” experiment Z% = (J, Z,),
in which either ] = 1 orJ = 2 is observed, each with probability 0.5 and independent
of the true value of 8, after which Z; is performed. Then, given that one has committed
to use a confirmation measure c, c((j, z;),6,0) = c(z,0,0') for all 6,8 & ©.

Decision Inequivalence (DI) There exists some potential outcome z of either Z; and Z,
such that 61(z) = 6,(z2).

Decisions Supervene on Confirmation (DSC) Given that one has committed to use a
confirmation measure ¢, if the results z and z' from any of the experiments Zy, Z,, or
Z? are such that c(z,6,0) = c¢(z,8,0) for all 6,8 @ O, then for any decision rule §,
5(z) = 6(z).

| shall return to the interpretation of these conditions presently, but first | complete the
statement of their argument.

Let § now be any decision rule for Z? (satisfying in particular DSC). Berger and Wolpert
(1988, p. 84-85) consider the following distinct decision rule for Z2:

(

5°((1, 2%)) = 26((1,2)) + 38((2,2)) if 2" = .z, (20)
8((j, %)) otherwise.
This decision rule is exactly like §, except for when the data are equal to the value mentioned in
DI, for which the decision rules for the individual experiments Z; and Z, are different. In that
case, 87 averages over what those decision rules would entail. Berger and Wolpert then prove
that R(8, 6%) < R(6,68) for all 8 @ O. Thus, § is an inadmissible decision rule because it is
dominated by §7.36

How do Berger and Wolpert interpret this result so as to argue that some sort of stronger
reliability property in conflict with the SRP should not be required of a confirmation measure c?
| reconstruct their reasoning as follows. In the first place, DI and DSC imply by modus
tollens that ¢(Z, = 2,6,0) = c(Z, = z,0,8') for some 6,0 B O. This is just to deny that the
SRP holds in this case. By WCP, ¢(2? = (j,z),6,08') = c(Z; = 2,6,0') forj = 1,2 and all 6, 8’
0O, soby DSC, 6((j, z)) = 6;(z) forj = 1,2. That’s just to say that, at least in the case of data
z, 6 implements the decisions that 6; would if in factj = 1, and those that 6, would ifin factj =
2. These are the decision rules resulting from using a confirmation measure that does not obey
the SRP in this case, and indeed, by DI, 6((1,z)) = 6((2, z)). So, in this case, adopting a
confirmation measure that does not obey the SRP, as strong reliability properties would
sometimes require, leads to a kind of irrationality, which inadmissible decision rules
represent.

Another way of casting the conclusion of this argument is that because there is in some
cases a conflict between the SRP and instances of eAq.RE or eSURLEE, such instances must

—350ne decision-rule A is said-to dominate another, A’, just when R(8, A) < R(8, A") for all 8 B ©, and the
inequality is strict for at least one value of 6 @ ©. A decision rule is admissible if and only if it is not
dominated by another decision rule.
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conflict with the conjunction of the above premises and the demand to act only according to
admissible decision rules. Can some of these be separated as relatively innocuous background
assumptions? In other words, is there a clear source for the conflict with these strong
reliability properties?

In the first place, the above argument uses the framework of standard decision theory
centered around maximizing expected utility, which entails that actions should follow ad-
missible decision rules. Although this framework has been criticized as a general framework
for rational decision-making (Steele and Stefansson, 2016, §5), it is dificult to hold as being
inapplicable in every decision problem. All that is needed for the argument is that there is
some decision problem involving sequential experiments of the sort described. This, there-
fore, does not seem to be the source of the conflict. | suggest that it can be taken as a
background assumption.

To an even greater extent, both CA and DSC are highly specialized assumptions that
apply only to a narrower class of decision problems. CA requires the set of actions and the
loss function to have very particular properties not found in general decision problems. DSC
mandates that the decision rule used is essentially a function of the confirmation measure
used. This is also somewhat unusual because the confirmation measure is for incremental
confirmation, and does not describe one’s total evidence for the state of the world, which
ought rather to be determinate of one’s decisions. Nevertheless, there are plausibly decision
problems in which they do apply, such as a situation in which there is no other evidence
for the value of 6 B © that obtains except for that produced by the experiment, and the
action to be taken is reporting an estimate 8 for 8, with (say) a loss function quadratic in the
difference between them. Thus, | suggest that these assumptions can also be taken as a part of
the background to the conflict.

By contrast, DI just formulates one way of assuming that the SRP does not hold in
some situation or other. It supposes that there is some common potential outcome of two
sequential experiments that would result in two different actions. As | showed above, against
the backdrop of DSC this entails that the confirmation provided to some 8 B © would be
different for the two experiments, despite the common outcome, and this is just a denial
that the SRP hold for that confirmation measure in this case. Since this is entailed by some
instances of eAq:RE and eSURLEE, this is one of the sources of the conflict.

The other source of the conflict must then be the remaining premise which | have yet to
discuss, namely WCP. Indeed, even outside the context of Berger and Wolpert’s argument,
one can already identify it as being in conflict with some reliability properties one could
require for a confirmation measure. To see this, one need only observe that the outcome of a
mixed experiment in general does not have the same (dis)confirmational reliability as its
“component” experiment performed. This is because the probability of a mixed experiment
achieving a certain (dis)confirmation of an hypothesis is going to be the average of that
probability for each of its two “components.” If these two probabilities are distinct, as will in
general be the case for experiments with different stopping rules, then this average will lie
strictly in between the two. To assume WCP is to assume already that differences in
(dis)confirmational reliability do not bear on confirmation, at least for experiments that
have a form like that of Z®.

In sum, one can understand Berger and Wolpert’s argument as proceeding in the context
of standard decision theory, concerning decision problems where the loss function is strictly

25



convex on the set of actions (CA) and where decisions supervene on incremental confirmation
(DSC). The argument then shows that, in this context, WCP is in conflict with DI, which is
implied by certain plausible instances of eAq.:RE and eSURLEE. Thus WCP is the source
of this conflict with these strong reliability properties. But on consideration of WCP, it
becomes clear it directly conflicts with these properties regardless of the decision-theoretic
context. This is not to the detriment of Berger and Wolpert’s argument, as these properties
are logically stronger than DI in this decision-theoretic context. But because my present
goal is to isolate the source of the conflict with those properties, it is notable that one can
extricate the conflict from the decision theoretic background, as WCP does not invoke any
decision-theoretic concepts.

Now, of course Berger and Wolpert urge one to reject DI in the face of their reductio
argument. But in light of the foregoing discussion, and the motivations for demanding
confirmational reliability properties like instances of eAq:RE or eSURLEE canvassed in
section 3.4, it is worthwhile to compare the intuition behind WCP. The underlying intuition
being tapped seems to be that the component experiment that was actually performed of the
mixed experiment is “really” just the same as performing that component without mixing.
The initial “mixing” process to choose which component experiment to perform should not
matter because it is independent of 8—it is, technically speaking, ancillary to 6. However,
(dis)confirmational reliability is a modal property of a confirmation measure applied to an
experiment; one must imagine repeated experiments in order to determine an experiment’s
reliability. In particular, one must be careful not to conflate imagining just the component
that was performed repeated with imagining the mixture experiment itself being repeated.
The two are not equivalent, and that should, according to reliability criteria, be reflected as a
difference in their ability to (dis)confirm hypotheses.

As a technical complement to this insight, one might observe that just because a statistic
is ancillary to 8 does not mean that it is necessarily independent of any suficient statistic for
B, one that “captures all the information about 8” (Berger and Casella, 2002, p. 272).3” That
a statistic is ancillary to 6 does not mean that it is not indirectly informative (Berger and
Casella, 2002, §2.4.2-2.4.3). The literature on ancillary statistics and their interpretation is
large—see, e.g., Ghosh et al. (2010) and references therein—so further examination of WCP
along these lines and its conflict with reliability criteria for confirmation must await another
occasion. The important point here is that one should not extrapolate the irrelevance of the
mixing mechanism for 0 to its irrelevance for estimators of 6.

6 Conclusions and Implications

Ultimately, when one makes the foregone conclusions argument more precise and nuanced
using eAq:RE and eSURLEE, it remains successful in exhibiting a conflict between SRP
and (dis)confirmational reliability criteria for confirmation. For reasonable £(6,0'), q., and
q-, conflict arises for simple sets of experiments E. Besides having the virtue that it can
be formulated without presupposing a classical statistical framework already inimical to the
SRP, it also avoids the rebuttal, discussed in section 3.1, that it attempts to establish a

37A statistic T of the data X from an experiment for a parameter 8 is said to be suficient for 8 when the
probability distribution of X conditioned on T (X) does not depend on 6.
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conclusion that is too strong to be true—that the SRP must conflict with the NFC property.
Moreover, as | described in section 4, attempts to deflate the importance of reliability, albeit
directed at the original foregone conclusions argument, are unsuccessful.

The final counterargument | considered, in section 5, attempts to use decision theory to
reveal a subtle inconsistency in rejecting the SRP, at least for specialized examples. That
attempt hinges on accepting WCP, which | showed is already in conflict with reliability
criteria for confirmation. Hence it is the source of the conflict, regardless of whether one
situates it in a decision-theoretic context. This bears on the much larger debate about the
LP, for Birnbaum (1962) famously proved that the conjunction of WCP with the Weak
Suficiency Principle is equivalent to the LP for any confirmation measure c:38

Weak Suficiency Principle (WSP) Given any experiment X for 6 B ©, a suficient
statistic®®* T of X for 6 and x4, X, two possible outcomes for X, if T(x1) = T(x2), then
c(x1,0,8') = c(x,,0,8) for all 8,8’ B O.

Likelihood Principle (LP) Given any two experiments X1 and X, for 8@ © and respec-tive
possible outcomes x; and x,, if X1 = x; and X, = x, are likelihood equivalent for all 6
O, then c(x1,8,0) = c(x2,0,0') for all 6,0 B O.

Thus, while a rejection of the SRP entail a rejection of the LP, by Birnbaum’s theorem it
raises the question of which of the WSP or WCP must be rejected. The arguments of section 5
show that at least the WCP must be rejected if one is to accept strong reliability properties for
confirmation.

Finally, as | discussed briefly at the ends of sections 3.4 and 4.2, stopping rules are alleged
to play an important role in assessing the replicability of scientific results, especially in
psychology. Following reporting methods that would be legitimized under the SRP has been
deemed a QRP by some (Simmons et al., 2011; John et al., 2012; Yu et al., 2014; Sanborn
and Hills, 2014); although there have been some defenses along Bayesian lines (Rouder,
2014), a fuller assessment of the evidential role of stopping and reliability in the context of
these debates would be fruitful. Old foundational debates on the nature of evidence and
confirmation may find new life in that wellspring.
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