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Determination of the asymptotic limits of adaptive photon
counting measurements for coherent-state optical phase
estimation
M. A. Rodríguez-García 1, M. T. DiMario2,3, P. Barberis-Blostein1 and F. E. Becerra 2✉

Physical realizations of the canonical phase measurement for the optical phase are unknown. Single-shot phase estimation,
which aims to determine the phase of an optical field in a single shot, is critical in quantum information processing and
metrology. Here we present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-
Gaussian, photon counting, measurements with coherent displacements that maximize information gain as the measurement
progresses, which have higher sensitivities over the best known adaptive Gaussian strategies. To gain understanding about their
fundamental characteristics and demonstrate their superior performance, we develop a comprehensive statistical analysis based
on Bayesian optimal design of experiments, which provides a natural description of these non-Gaussian strategies. This
mathematical framework, together with numerical analysis and Monte Carlo methods, allows us to determine the asymptotic
limits in sensitivity of strategies based on photon counting designed to maximize information gain, which up to now had been a
challenging problem. Moreover, we show that these non-Gaussian phase estimation strategies have the same functional form as
the canonical phase measurement in the asymptotic limit differing only by a scaling factor, thus providing the highest sensitivity
among physically-realizable measurements for single-shot phase estimation of coherent states known to date. This work shines
light into the potential of optimized non-Gaussian measurements based on photon counting for optical quantum metrology and
phase estimation.
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INTRODUCTION
Optical phase estimation is ubiquitous in many fundamental and
practical problems ranging from quantum state preparation1–3,
sensing4, communications5–14, and information processing15. In a
photonic metrology problem16–19, an optical probe interacts with
a physical system to interrogate its properties. This interaction
maps parameters of the system to the state of the optical probe,
where an optimal readout can be performed15,17–19. When the
physical property of the system is mapped onto the phase of the
optical probe, the optimal quantum measurement is the canonical
phase measurement20, which consists of projections onto phase
eigenstates21. However, while theoretically the canonical phase
measurement exists, the physical realization of projections onto
phase eigenstates are not physically known22. Thus in practical
estimation problems in quantum metrology one seeks to
determine the limits in precision of physically realizable measure-
ments, and the degree with which they approach to the
fundamental quantum limit in sensitivity17,23–27.
Physically realizable measurements of the optical phase have

been widely investigated20,21,28 for diverse metrological problems
with quantum and classical fields29–33 including sensing small
deviations from a known phase29–34 and estimation with
repeated sampling35,36 and measurements30,37–41. Beyond these
specific estimation problems, measurements of the phase of a
single optical mode in a single-shot are central for quantum state
preparation and detection42,43, waveform estimation and sen-
sing44–47, and quantum information processing48–50. The standard

measurement for optical phase estimation is the heterodyne
measurement21, which samples both quadratures of the electro-
magnetic field simultaneously from which the phase can be
estimated. However, the achievable sensitivity of the heterodyne
measurement21 is far below the ultimate measurement sensitivity
allowed by physics, given by the canonical phase measure-
ment21,51. Adaptive measurement techniques based on homo-
dyne detection, a Gaussian measurement, can be used to align
the phase quadrature of the optical field with the measurement
setting where the homodyne measurement provides maximum
sensitivity32. Adaptive homodyne has been theoretically shown to
surpass the heterodyne limit and get closer to the canonical
phase measurement for optical phase estimation of coherent
states20,21, providing the most sensitive Gaussian measurement of
the optical phase so far21.
In a complementary measurement paradigm, quantum mea-

surements of coherent states based on photon counting,
displacement operations, and feedback2,6,8–14,52 have enabled
state discrimination below the Gaussian sensitivity limits and
approaching the Helstrom bound5. Recently, some of the authors
proposed and demonstrated a non-Gaussian measurement
strategy for single-shot phase estimation of coherent states, able
to surpass the heterodyne limit and approach the sensitivity limit
of a canonical phase measurement in the presence of loss and
noise of real systems2. These measurement strategies are based
on realizing coherent displacements of the input field and
monitoring the output field with photon number resolving
detection. The information from the detection outcomes is then
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used to implement real-time feedback of displacement opera-
tions optimized to maximize the measurement sensitivity of the
phase of the input state. This estimation strategy is the most
sensitive single-shot non-Gaussian measurement of a completely
unknown phase encoded in optical coherent states so far2. In this
strategy the optimization of the displacement operation is
realized by maximizing either the information gain in subsequent
adaptive steps of the measurement or the sharpness of the
posterior phase distribution. While these cost functions are
functionally different, both perform similarly and get close to
the ultimate sensitivity allowed by physics, the Crámer-Rao lower
bound (CRLB), in the limit of many photons and many
adaptive measurements. While the work in ref. 2 demonstrated
the potential of non-Gaussian measurements for single-shot
phase estimation, the superiority over adaptive homodyne
detection was not proven. A deeper understanding of the
properties of convergence and ultimate limits of the estimators
produced by non-Gaussian measurements is still missing. This is
an open problem due to the complexity associated with the
analysis of these adaptive non-Gaussian strategies.
In this article we investigate a family of adaptive non-Gaussian

strategies based on photon counting for single-shot optical phase
estimation, and assess their performance compared to Gaussian
measurements and the canonical phase measurement. To analyze
these non-Gaussian strategies, we use the mathematical framework
of Bayesian optimal design of experiments, which provides a
natural description of non-Gaussian adaptive strategies, allowing us
to investigate their fundamental characteristics and determine the
limits in sensitivity, which up to now has been a challenging
problem. Our work provides a comprehensive statistical analysis of
adaptive non-Gaussian measurements for parameter estimation,
and the requirements to approach optimal bounds in the
asymptotic limit. We show that strategies based on photon
counting and feedback for single-shot phase estimation of coherent
states provide superior sensitivity over the best known adaptive
Gaussian strategies, having the same functional form as the
canonical phase measurement in the asymptotic limit, differing
only by a scaling factor. This work provides a deep insight into the
potential of optimized non-Gaussian measurements for quantum
communication, metrology, sensing, and information processing.

RESULTS
Holevo variance of non-Gaussian estimation strategies
The non-Gaussian phase estimation strategies investigated here
are based on photon counting, displacement operations, and
feedback, and are optimized by maximizing a specific cost
function. These strategies maximize either the estimation
precision (by minimizing the Holevo variance51), or the informa-
tion gain about the unknown parameter based on entropy
measures, including mutual information, the Kullback-Lieber
divergence, and the conditional entropy53,54. We note that these
cost functions produce non-identifiable likelihood functions that
do not allow to correctly estimate a cyclic parameter, such as the
phase55. To address this problem, these non-Gaussian strategies
use the Fisher information to optimize the displacement
operations, which are the dynamical control variable in the
strategy, to guarantee that these cost functions provide identifi-
able likelihood functions, and to enable optical phase estimation
with near-optimal performance.
In the problem of single-shot phase estimation with coherent

states, an electromagnetic field in a coherent state ρ0 ¼ αj i αh j
interacts with a physical system and experiences a unitary
transformation eiϕn̂, where n̂ is the number operator. The phase
ϕ induced in the coherent state carries information about the
system, which can be extracted by a measurement of the output
state ρðϕÞ ¼ eiϕn̂ρ0e

�iϕn̂ ¼ eiϕα
�� �

e�iϕα
� �� .

Measurements onto ρ(ϕ), together with an estimator bϕ on the
measurement outcomes, provide an estimate of ϕ, and a
measurement strategy aims to obtain the best estimation of the
physical parameter. The efficiency of such a strategy is character-
ized by the estimator variance as a function of the number of
photons in the coherent state. The most efficient strategy provides
a variance with the highest convergence rate towards zero as the
number of photons increase.
The standard measurement paradigm for phase estimation of

Gaussian states is the heterodyne measurement (a Gaussian
measurement), with an estimator variance of Var½bϕHet� ¼ 1=2jαj2.
Within the paradigm of Gaussian measurements, adaptive
homodyne strategies optimized to minimize the Holevo variance
have achieved the best performance among Gaussian measure-
ments for single-shot phase estimation of coherent states20. The
best adaptive Gaussian measurement reported to date, termed
the Adaptive Mark-II (MKII), achieves a Holevo variance in the limit
of large number of photons of:

Var bϕMKII

h i
� 1

4jαj2 þ
1

8jαj3 : (1)

While this optimized Gaussian strategy surpasses the hetero-
dyne limit, it has an error of order 1/∣α∣3 above the Cramér-Rao
Lower Bound (1/4∣α∣2), and does not reach the performance of the
canonical phase measurement21:

Var bϕCPM

h i
� 1

4jαj2 þ
5

32jαj4 : (2)

In this work, we numerically show that non-Gaussian strategies
for single-shot phase estimation based on photon counting,
optimized displacement operations, and real-time feedback achieve
an estimator variance smaller than Gaussian strategies with an
asymptotic scaling in the limit of high mean photon numbers of:

VarH bϕh i � 0:250 ± 0:001

jαj2 þ 0:520 ± 0:010

jαj4 : (3)

Figure 1a summarizes the main result comparing the three
asymptotic variances for the canonical phase measurement (solid
blue), MKII (solid red), and non-Gaussian strategies (solid green and
points). Figure 1b, shows the excess Holevo variance compared to
the canonical phase measurement (Var½�� � Var½bϕCPM�) for Hetero-
dyne (purple), MKII (red), and non-Gaussian strategies (green).
These non-Gaussian strategies implement a series of adaptive

steps with displacement operations optimized to maximize
information gain, while ensuring efficient phase estimators in
the asymptotic limit. These strategies surpass the best known
Gaussian strategy in Eq. (1), and have the same functional form as
the canonical phase measurement in the asymptotic limit,
differing only by a scaling factor, thus providing the highest
sensitivity among physically-realizable measurements for single-
shot phase estimation of coherent states known to date.
Achieving this performance with non-Gaussian estimation

strategies, however, requires a deep understanding of the
measurement process. To gain this understanding, we use the
mathematical framework of Bayesian optimal experimental
design, which provides a natural description of adaptive non-
Gaussian measurements. This allows us to optimize these
strategies for single-shot phase estimation with a Holevo
variance given by Eq. (3).

Bayesian optimal design of experiments
Phase estimation of coherent states based on photon counting
with adaptive coherent displacement operations can be defined in
the context of Bayesian optimal design of experiments. Optimal
design of experiments allows for improving statistical inferences
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about quantities of interest by appropriately selecting the values
of control variables known as designs54,56,57. In this framework, it is
assumed that the experimental data y (the measurement out-
comes) can be modeled as an element of the set

PΦ ¼ pðyjd;ϕÞ; d 2 D ϕ 2 Φf g; (4)

where d is a parameter called design chosen from some set D
called design space, ϕ ∈ Φ is an unknown parameter to be
estimated, and the data y comes from a sample space Y � R. In
this paradigm, the experimenter has full control over the
designs d and the ability to adjust them prior to making a
measurement. This allows for optimizing such measurement
for estimating the unknown parameter ϕ. Bayesian optimal
design of experiments goes beyond standard methods for
parameter estimation based on Bayesian statistical infer-
ence58–62, by providing the suitable mathematical framework
to ensure optimal designs to find efficient estimators for a
general parameter space63–66.
In the Bayesian approach of optimal design54,56, the initial lack

of knowledge about ϕ is modeled as a prior probability
distribution p(ϕ). The measurement aims to reduce the
uncertainty of ϕ as much as possible by the use of Bayes’
theorem over the prior distribution. In an estimation problem,
the optimal choice for the designs d 2 Dmaximize the expected
value of a cost function U(d, ϕ, y) with respect to the possible
outcomes of y and ϕ:

dopt ¼ argmax
d2D

E Uðd;ϕ; yÞ½ �
¼ argmax

d2D
R
Y
R
ΦUðd;ϕ; yÞpðϕjd; yÞdϕpðyjdÞdy

¼ argmax
d2D

R
Y
R
ΦUðd;ϕ; yÞp ϕ; yjdð Þdϕdy:

(5)

A standard approach in optimal design of experiments
considers choosing dopt at the beginning of the experiment an
then sample data from p(y∣dopt, ϕ) for all subsequent trials.
An alternative approach considers dynamically updating dopt on
each trial, as more data is collected. The advantage of this
approach is that adaptive estimation strategies are never less
efficient than the non-adaptive ones67.
The implementation of Bayesian optimal design of experiments

requires a cost function, such as the Kullback-Lieber divergence

between the prior and posterior distributions68:

Uðd; yÞ ¼ DKL pðϕjd; yÞjjpðϕÞ½ �
¼ R

Φpðϕjd; yÞ log pðϕjd;yÞ
pðϕÞ

h i
dϕ:

(6)

The Kullback-Lieber divergence provides a distance between
probability distribution p(ϕ∣d, y) and p(ϕ)53. If p(ϕ∣d, y) is equal to
p(ϕ) then U(d, y)= 0 and there is not any gain of information
about ϕ by measuring with design d and outcome y.
Another cost function considered in optimal design is the

conditional entropy between the plausible values of ϕ and y

UðdÞ ¼ �HðϕjYÞ
¼ �P

y2Y
pðyÞRΦpðϕjd; yÞ log pðϕjd; yÞ½ �dϕ; (7)

which is a measure of how much information is needed to
describe the outcomes of the random variable ϕ given that the
value of another random variable Y is known53. However, we note
that cost functions Eq. (6) and Eq. (7) can be related to the mutual
information53:

UðdÞ ¼ IðϕjYÞ ¼ Ey DKL pðϕjd; yÞjjpðϕÞ½ �½ �
¼ HðpðϕÞÞ � HðϕjYÞ: (8)

As a result, designs d maximizing any of these cost functions in
Eq. (6), Eq. (7), or Eq. (8) are equivalent54,56,69. Moreover, in the
asymptotic limit, maximizing these cost functions is equivalent to
minimizing the determinant of the covariance matrix (D-optimality
design criteria), that is, in the asymptotic limit, optimizing these
cost functions is equivalent to optimizing any member within the
family of D-optimal designs54,68.
Our goal is to apply the theory of Bayesian optimal design of

experiments to the problem of phase estimation of coherent
states with photon counting and adaptive coherent displace-
ment operations. The adaptive non-Gaussian estimation strat-
egy consists of several parts: i) in the first adaptive step, it uses
an specific cost function and the prior information to choose
the design; ii) then, it performs a measurement; iii) based on
the measurement outcome, it uses Bayes’ theorem to update
the probability distribution; iv) and lastly, it uses a recursive
approach, where this posterior probability distribution becomes
the prior of the subsequent measurement step i). The estimation

| |

×

−

−

−

−

| |

−

Fig. 1 Asymptotic variances for different phase measurements. a Holevo variance in the limit of large mean photon number (MPN) ∣α∣2 for
the canonical phase measurement in Eq. (2), the most sensitive Gaussian measurement know to date (MK II)21 in Eq. (1), and the non-Gaussian
strategies in Eq. (3). The points show numerically calculated values for the non-Gaussian strategies in a region where the analytical
expression is not valid. Error bars represent a 1-σ standard deviation. b Excess phase variance (Var[ ⋅ ] - Var½bϕCPM�) for Heterodyne, MKII, and
non-Gaussian strategies.
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of ϕ at each adaptive step is obtained from the maximum
posterior estimator (MAP) of the posterior probability distribu-
tion. This approach requires that the MAP converges to the
true value of the parameter when the number of measurements
increases.
In the adaptive mathematical framework of optimal experi-

mental design, Paninski67 proved that under a set of regular
modelling conditions and in the case when ϕ 2 R, cost
functions based on mutual information can allow for designs
that lead to asymptotically consistent and efficient MAP
estimators with variance

σ2
INFO ¼ argmax

C2co Fðϕ;dÞð Þ
Cj j

 !�1

: (9)

Here co Fðϕ;dÞð Þ denotes the convex closure of the set of
Fisher information functions F(ϕ; d). In other words, the estima-
tions produced by bϕ converge to ϕ (consistency), and the
distribution of bϕ tends to a normal distribution with mean ϕ and
variance given by Eq. (9) when the number of adaptive steps
tends to infinity (efficiency).
Formally, the regularity conditions introduced in67 can be stated

as follows:

1. The parameter space Φ is a compact metric space.
2. The log likelihood, log pðyjϕ;dÞð Þ is uniformly Lipschitz in ϕ

with respect to some dominating measure on Y.
3. The likelihood function is identifiable for ϕ, that is, the

likelihood function has a unique global maximum.
4. The prior distribution, assigns a positive probability to any

neighborhood of the real value of ϕ.
5. The Fisher information functions F(ϕ; d) are well defined for

any ϕ∈Φ and d 2 D.
6. The maximum of the convex closure of the set of Fisher

information functions Fðϕ;dÞjd 2 D; ϕ 2 Φf g must be
positive-definite, i.e., maxC2co Fðϕ;dÞð Þ Cj j> 0.

We note that in the case of estimation of a scalar parameter,
the maximization of mutual information is equivalent to the
minimization of the mean square error (MSE)67:

MSEðbϕÞ ¼ E bϕ� ϕ
� �2� �

¼ Var bϕ� �
þ E bϕh i� ϕ
� �2

:

(10)

This shows that the MSE is a trade-off between the estimator’s
variance and its bias. As a result, since the phase is a scalar quantity,
in the asymptotic limit both the mutual information Eq. (8) and the
mean square error Eq. (10) are appropriate cost functions to find
optimal estimation strategies. Even more, for unbiased estimators
(such as the MAP estimator on the asymptotic limit), the MSE
corresponds to the estimator variance, then the maximization of
mutual information is equivalent to the minimization of estimator
variance. In practice, however, an estimation strategy would use a
cost function that can be calculated efficiently and with a high rate
of convergence.

Phase estimation in coherent states. Optimal phase estimation
of coherent states of light aims to obtain the best estimate, from
the outcomes of a physical measurement, of an unknown phase
ϕ ∈ [0, 2π) encoded in a coherent state ρðϕÞ ¼ jeiϕαihe�iϕαj. The
most general description of a physical measurement is given
by a POVM, a positive operator-valued measure. A measurement
M with a discrete set of outcomes m jm 2 S � Zf g, can be
represented as a POVM M ¼ MðmÞ jm 2 Sf g, where the opera-
tors M(m) are positive bounded M(m) > 0 and resolve the
identity ∑mM(m)= I, ∀m ∈ S70. By the Born rule, the probability

for m conditioned to ϕ is

Tr MðmÞρðϕÞ½ � ¼ p mjϕð Þ: (11)

According to information theory, if an estimator bϕ of ϕ is
constructed using a sample from a POVM M, the limit in the
accuracy of bϕ is given by the Crámer-Rao Bound71,72

Varϕ bϕh i � 1
FMðϕÞ : (12)

Here FM(ϕ) is the Fisher information of M about ϕ, which
quantifies how much information about ϕ is carried in a sample
from M:

FMðϕÞ ¼ Eϕ
∂

∂ϕ
log p mjϕð Þð Þ½ �

	 
2
" #

: (13)

Since the Fisher information in Eq. (13) depends on the POVM
M, the maximization of the Fisher information over all POVMs
provides the lowest possible Cramér-Rao bound. This maximum
Fisher information over all POVMs is known as the quantum Fisher
information FQ (QFI), and the lowest possible bound in the
accuracy of bϕ is known as the quantum Cramér-Rao bound
(QCRB)5,72,73. In the case of phase estimation of coherent states
FQ= 4∣α∣2, and the QCRB is:

Varϕ bϕh i � 1

4jαj2 : (14)

In the limit of large photon number ∣α∣ ≫ 1, the QCRB is
saturated by the canonical phase measurement (the optimal
phase measurement), which is described by the POVM51:

MðbϕÞ ¼ 1
2π

X1
n;m¼0

nj i mh jei n�mð Þbϕ; (15)

where nj i is an eigenstate of the number operator n̂. The operator
MðbϕÞ is an element of the canonical phase measurement whose
outcome is a number bϕ 2 0; 2π½ Þ, which can be used as an
estimation for ϕ.
The optimality of the canonical phase measurement indicates

that its Holevo variance

VCPM ¼ e�α2
X1
n¼0

α2nþ1

n!
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
�����

�����
2

� 1; (16)

is the fundamental bound of estimation precision20,51. Although
there are proposals that attempt to implement this POVM, they
have not been able to reach the fundamental bound Eq. (16), or
Eq. (2). For instance, in74 it was possible to obtain the canonical
measurement distribution as the marginal of a joint measurement
in phase space producing a worse performance in the context of
phase estimation. Moreover, the canonical phase measurement
was implemented for the case of one-photon wave packet using
quantum feedback22. However, for the case of higher dimensional
states, such as coherent states, this problem remains open.
While there is not a satisfactory known method to implement

the canonical phase measurement, Gaussian strategies serve as a
standard of physically realizable measurement techniques for
phase estimation of coherent states. The natural benchmark in the
Gaussian strategies is the heterodyne detection, whose variance is
lower bounded by Var½bϕHet� ¼ 1=2jαj221. Several adaptive Gaussian
schemes have been shown to exceed the lower bound for
heterodyne detection. The most efficient Gaussian measurement
reported to date, termed the Adaptive Mark-II (MKII) strategy20, has
a variance in the limit of ∣α∣ ≫ 1 given by Eq. (1). Nonetheless,
these adaptive Gaussian strategies cannot reach the performance
for the canonical phase measurement in Eq. (2)21.

M.A. Rodríguez-García et al.

4

npj Quantum Information (2022) 94 Published in partnership with The University of New South Wales



The proposed non-Gaussian strategies for single-shot phase
estimation of coherent states are based on optimized adaptive
measurements with photon number resolving detection. These non-
Gaussian strategies are able to outperform the best known Gaussian
strategies and closely follow the performance of the canonical phase
measurement in the limit of large photon number.

Adaptive non-Gaussian phase estimation
The proposed non-Gaussian adaptive estimation strategies based
on adaptive photon counting2 aim to estimate the phase
ϕ∈Φ= [0, 2π) of a coherent state ρðϕÞ ¼ eiϕα

�� �
e�iϕα
� �� with mean

photon number E n̂½ � ¼ jαj2 using a finite number of adaptive
measurement steps, and based on the prior information p(ϕ) about
ϕ. In every adaptive step l= 1, 2,⋯ , L, the input coherent state with
energy ∣α∣2/L interferes with a local oscillator field, which imple-
ments a displacement operation D̂ βð Þ αj i ¼ αþ βj i; β 2 C; with
phase and amplitude chosen by some rule, in general depending
on previous measurement outcomes. This is followed by a photon
number detection measurement with a given photon number
resolution (PNR) m of the detectors6, m 2 N. In practice, since the
energy in each adaptive step is ∣α∣2/L, the strategy will only require
moderate PNR resolution (m < 10) as L increases.
In the first adaptive measurement l= 12, the strategy makes a

random guess hypothesis β0 2 C about the optimal β, and applies
the POVM

D̂ðβ0Þ nj i nh jD̂yðβ0Þ
n om�1

n¼0
∪

I� Pm�1

n¼0
D̂ðβ0Þ nj i nh jD̂yðβ0Þ

� 
 (17)

over the state eiϕα=
ffiffiffi
L

p�� �
. In the POVM in Eq. (17), the sum over

Fock states nj i nh j models the photon detection on the displaced
state with a detector with PNR(m)6. The corresponding Wigner
function describing a photon-number resolving detector shows
non-Gaussian features with negative values. For this reason, these
adaptive estimation techniques are called “non-Gaussian”, despite
that the estimator produced is asymptotically normal (this result
will be proved in the remainder of this section).
Given the detection outcome n1 in l= 1, the posterior

probability distribution becomes

p ϕjn1; β0ð Þ / Lðϕjn1; β0ÞpðϕÞ; (18)

where L ϕjn1; β0ð Þ is the likelihood function given by

L ϕjn1; β0ð Þ ¼ p n1jϕ; β0ð Þ
¼ Tr D̂ðβ0Þ n1j i n1h jD̂yðβ0ÞρðϕÞ

h i
:

(19)

The phase estimate ϕ1 in this adaptive step corresponds to the
MAP estimator bϕMAP, ϕ1 ¼ bϕMAPðn1Þ, with the posterior probability
distribution in Eq. (18). Using the posterior phase distribution in
Eq. (18) as the prior for the next adaptive step l= 2, the strategy
optimizes a cost function U(β) to obtain the next value of β denoted
as β1, and implements the POVM in Eq. (17) with β1. The Bayesian
updating procedure is repeated at each step l ≥ 2. After l adaptive
measurements the posterior probability distribution becomes

pðϕjn; βÞ ¼ pðϕjnl ; ¼ ; n1; βl�1; ¼ ; β0Þ

/ Ql
i¼1

pðnijϕ; βi�1ÞpðϕÞ:
(20)

Here ni is the observed photon detection at step i. Using the
MAP on this phase distribution, we obtain the lth estimation bϕl .
The procedure is repeated until the last measurement step L.
This parameter estimation strategy is a particular case of

Bayesian optimal design of experiments, where the parameters
β 2 C are the designs, and which are optimized to estimate a

phase ϕ∈ [0, 2π). Since the optimal value for β in each adaptive
step depends on all previous detection results, the cost function to
be optimized is a function of the posterior distribution in Eq. (20).
A suitable choice of cost function, such as the mutual information
or the estimator variance, can provide a sequence of estimationsbϕn that approaches the true value of ϕ2.
In the case of estimation of cyclic parameters, such as phase

estimation, the posterior distribution in Eq. (20) is 2π periodic, and
the moments of bϕ cannot be calculated as in the linear case51. In
such situations, the first moment of the cyclic random variable X is
defined as E eiX½ �, and the dispersion of an estimator bϕ is calculated
using the Holevo Variance51:

VarH bϕh i ¼ 1

E eibϕh i��� ���2 � 1; (21)

which is the analogous to the mean square error. The minimiza-
tion of the uncertainty about ϕ (positive square root of Eq. (21)),

requires maximization of Sðβ;mÞ ¼ jE½eibϕ�j, known as the sharp-
ness of the distribution. Then, the suitable cost function for the
adaptive protocol is the average sharpness:

Sðβ;mÞ ¼
Xm
n¼0

pðnÞ
Z

Φ

eiϕp ϕjn; βð Þdϕ
����

����: (22)

Identifiability of likelihood. To guarantee a consistent asymptotic
estimator the optimized estimation strategies require to satisfy the
regularity conditions 1-6 described in section “Bayesian optimal
design of experiments”. For phase estimation, the regularity
conditions 1 and 2 are satisfied given that ϕ is an interior point of
Φ= [0, 2π). Moreover, given that the probability

pðnjϕ; βÞ ¼ Tr αeiϕffiffi
L

p
��� E

αeiϕffiffi
L

p
D ���D̂ðβÞ nj i nh jD̂yðβÞ

h i

¼
exp � αeiϕffiffi

L
p �β

��� ���2	 

αeiϕffiffi

L
p �β

��� ���2n
n! ; α 2 Rþ; β 2 C

(23)

is well defined and two times differentiable, the conditions 4, 5,
and 6 are directly satisfied. However, the condition 3 is not
satisfied in general. If one chooses β as the value that maximizes
the mutual information (8) or the average sharpness (22), the
resulting likelihood function can have in general two maxima, that
is, a non-identifiable likelihood function30. In that case it is not
possible to guarantee the existence of a consistent estimator.
To address the challenge of working with non-identifiable

likelihood functions, we use designs with a fixed relation between
the phase of β and the amplitude ∣β∣, given by β= f(θ)eiθ, with
θ∈ [0, 2π) and f(θ) a real function. These experimental designs
result in a cost function U that is a function of θ.
To see how this method solves the problem of non-

identifiability, we observe that the probability p(n∣ϕ; β) in
Eq. (23) is Poisson distributed,

pðnjϕ; β ¼ jβjeiθÞ ¼ e�λ � λn
n!

; (24)

with λ ¼ jαj2=Lþ jβj2 � 2jαjjβj cos ϕ� θð Þ= ffiffiffi
L

p
. Then, for L adap-

tive steps with results n= (n1,…, nL), the likelihood function is the
product of L probability functions of the form of Eq. (24):

Lðn;ϕÞ ¼
YL
i¼1

pðnijϕ; βi ¼ jβjeiθi Þ ¼
YL
i¼1

e�λi � λnii
ni!

: (25)

Here, each θi depends on the cost function and previous POVM
outcomes. The choice of the experimental designs with ∣β∣= f(θ)
can force the adaptive strategy to change θi in each step. In this
case, the likelihood function in Eq. (25) becomes identifiable
because the product of probability functions with different θi
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produces a likelihood with a global maximum. To see this, note
that if θi= θ is fixed, even if the parameter ∣β∣ is different in each
adaptive step of the protocol, the likelihood function from a
sequence of independent random variables with probability
function given by Eq. (24) has two maxima over Φ. One of the
maxima will always be around ϕ and the other will depend on
the value of θ. On the other hand, if the strategy allows θ to
change at each adaptive step, the second maximum is
suppressed, since the functions whose product constitutes the
likelihood Eq. (25) will each have a second maxima at different
positions θi ≠ θj (i ≠ j). As a result, with the experimental designs
β ¼ f ðθÞ expðiθÞ, the likelihood functions satisfy all the regularity
conditions described in section “Bayesian optimal design of
experiments”.

Bayesian optimal design of |β|. Any viable estimation strategy
should aim to achieve the QCRB (14). Therefore, natural choice for
∣β∣ is the one that maximizes the Fisher information. For a discrete
random variable, the Fisher information is given by72,75:

FðϕÞ ¼
X1
n¼0

pðnjϕÞ ∂

∂ϕ
log pðnjϕÞð Þ

	 
2

: (26)

The Fisher information for a particular design β= ∣β∣eiθ for
Poisson distributions Eq. (24) results in

Fðϕ; βÞ ¼ 4 αj j2 βsin2ðϕ� θÞ�� ��2
αj j2 þ L βj j2 � 2jαjjβj cosðϕ� θÞ ffiffiffi

L
p : (27)

Optimizing over ∣β∣, the Fisher information becomes:

Fðϕ; βoptÞ ¼ 4 αj j2=L; (28)

where

βopt ¼
jαjffiffiffi

L
p

cosðϕ� θÞ (29)

is the value of ∣β∣ that maximizes the Fisher information.
Unfortunately, since βopt depends on ϕ, its implementation is
not practical, because it would be required to already know a
priori the very same parameter that one wants to estimate.

To address this problem, the optimal Bayesian design βopt can be
estimated as:

bβopt ¼ jαjffiffiffi
L

p
cosðbϕ� θÞ

; (30)

where bϕ is the MAP estimator. As a result, the non-Gaussian
estimation strategy has now only one design, the phase θ. With
β ¼ bβopt, the Fisher information becomes:

FðΔ;bβoptÞ ¼ 4 sin2ðΔÞα2
Lðcos2 δþ Δð Þ � 2 cosðΔÞ cos δþ Δð Þ þ 1Þ ; (31)

where δ ¼ bϕ� ϕ and Δ= ϕ− θ.
Note that FðΔ;bβoptÞ becomes a random variable with outcomes

depending on bϕ through bβopt. Moreover, for a random initial design
θ1 and a cost function given by the expected sharpness or the
mutual information with bβopt in Eq. (30), the likelihood function in
Eq. (25) becomes identifiable. As a result, the non-Gaussian strategy
then leads to consistent and efficient MAP estimators67.

Asymptotic behavior. In general δ ¼ bϕ� ϕ≠0, and the Fisher
information has a strong dependence on θ. For example, if θ→ ϕ

then FðΔ ¼ 0;bβoptÞ ! 0, and negligible information is gained
when the system is measured. Therefore, the optimal value of θ
should result in the value of Δ that maximizes the expected value
of FðΔ;bβoptÞ. By observing that the expected value E[δ2n+1]= 0,
with n 2 N, we see that the optimal value of Δ is π/2. As a result,
an efficient adaptive strategy would make ΔL= ϕ− θL tend to π/2
as L increases. However, in the limit of Δ→ π/2 and δ→ 0, jbβoptj !
1 (see Eq. (30)), and we expect that when the strategy is
implemented Δ < π/2. These findings are consistent with our
numerical simulations of the non-Gaussian adaptive strategy,
where we observe that for L≫ 1, Δ→ π/2− ϵ, with ϵ a small
positive real number, and ∣β∣ stays finite around a value that the
PNR detector in the strategy can resolve. Note that β̂opt, which
maximizes the Fisher information given θ, does not necessarily
maximize the cost function U(β) for β 2 C. However restricting β
to the set that maximizes the Fisher information makes the phase

Fig. 2 Asymptotic limit for the estimator of Holevo variance and optimal design. a Holevo variance for ∣α∣2= 1 and PNR m= 1, 3, 6 as a
function of adaptive steps L. Note that the non-Gaussian strategy surpasses the MKII strategy (red dashed line at y= 0.767) with L > 100, L > 30
and L > 20 for PNR(1), PNR(3) and PNR(6), respectively. The lines are obtained fitting the exponential model Eq. (34). Estimates for these
strategies result in (A, B, C, RSE)= (0.11 ± 0.02, 0.059 ± 0.014, 0.7145 ± 0.0030, 0.0005) for PNR(6), (A, B, C, RSE)= (0.22 ± 0.04, 0.082 ± 0.0157,
0.719 ± 0.0040, 0.0007) for PNR(3), (A, B, C, RSE)= (0.41 ± 0.05, B= 0.117 ± 0.013, 0.7517 ± 0.0027, 0.0005) for PNR(1). The shaded regions
represent 1-σ standard deviation. b Optimal design as a function of L. As L increases the optimal design tends to π/2. Numerical data are
obtained with 10000 Monte Carlo sequences. Error bars represent a 1-σ standard deviation.
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of β change in each step forcing the likelihood to be identifiable.
Moreover, when ϕ̂ ! ϕ, β̂opt tends to the value that maximizes U2.
Given that the Fisher Information is additive, for any L

measurements made using the optimal design, βopt in Eq. (29),
the total Fisher information for this design corresponds to the
quantum Fisher information 4∣α∣2. However, since βopt is not
known, it is not possible to choose a design β for which its Fisher
information equals the quantum Fisher information. This is already
implied by the fact that the canonical phase measurement does
not saturate the Cramér-Rao bound. To show this, we observe that
for and estimator very close to the true value δ ¼ bϕ� ϕ � 1 for L
adaptive measurements, the Fisher information (Eq. (31)) is

Fðϕ;bβoptÞ � 4 αj j2ð1� δ2Þ: (32)

On the other hand, the best possible estimator of δ in each step
satisfies E δ2

� � � 1=4jαj2, so that

Fðϕ;bβoptÞt4 αj j2 � 1; (33)

independently of L. We conclude that the adaptive non-Gaussian
strategies do not saturate the Cramér-Rao bound for finite ∣α∣.
Nevertheless, these adaptive estimation schemes outperform the
most sensitive Gaussian strategy known to date, and show a
similar asymptotic scaling as the canonical phase measurement.

Performance of non-Gaussian adaptive strategies
We numerically investigate the performance of the estimator
produced by non-Gaussian adaptive strategies for phase estima-
tion for different numbers of adaptive steps L, photon number
resolution PNR(m), and average photon number ∣α∣2. To assess the
performance of these strategies, we compare our results with the
best-known Gaussian measurement for phase estimation, termed
Mark II (MKII) strategy21, and with the canonical phase measure-
ment. As discussed in section “Bayesian optimal design of
experiments”, the performance of non-Gaussian adaptive strate-
gies using cost functions including the Kullback-Lieber divergence
Eq. (6), conditional entropy Eq. (7), mutual information Eq. (8), and
expected sharpness Eq. (22) are equivalent in the asymptotic limit.
In our numerical simulations, however, we use the expected
sharpness in Eq. (22) as the cost function for the optimization of
the strategy, because it substantially reduces the number of
operations for this optimization and the computational overhead.
In our numerical analysis, we use Monte Carlo simulations and

generate sufficient numerical data samples to reduce statistical
uncertainties. Figure 2a shows the Holevo variance for the non-
Gaussian adaptive strategy, as a function of the number of adaptive
steps L for ∣α∣2= 1, for different PNR: m= 1, 3, 6. We observe that
the adaptive non-Gaussian scheme with PNR(1) and L≥100 (green
dots with error bars) outperforms the most sensitive Gaussian
strategy known to date, the MKII, (red dashed line). Moreover,
strategies with PNR(3) (yellow dots with error bars) and PNR(6) (light
blue dots with error bars) outperform the MKII strategy with only
L ≈ 30 and L ≈ 20, respectively, achieving a smaller Holevo variance
with fewer adaptive measurements compared to PNR(1). We have
observed similar behavior for non-Gaussian strategies optimizing
different cost functions, such as the mutual information.
To investigate the asymptotic behavior of the adaptive non-

Gaussian strategy, we assume an exponential dependence for the
Holevo variance with L (solid lines in Fig. 2a):

yðL; αÞ ¼ Ae�B�L þ C: (34)

The exponential model is a few parameter model that allows us
to quantify asymptotic trends when the datasets have rapidly
decaying tails. This is a widely used model for studying the
asymptotic scaling of estimators as a function of resources in
diverse metrological problems64,76,77.

We fit the numerical data from Monte Carlo simulations to
Eq. (34) to estimate the constants A, B, and C. Our results show
that the asymptotic constant C= 0.751 ± 0.002 for PNR(1),
C= 0.719 ± 0.004 for PNR(3), and C= 0.714 ± 0.003 for PNR(6). We
observe that these values are smaller than the asymptote of the
MKII Gaussian strategy, but larger than the one for the canonical
phase measurement (0.673, blue dashed line). We note that while C
for PNR(3) is larger than for PNR(6), they are statistically equal due
to their uncertainties. This prevents us from drawing any
conclusions for larger values of m.
Figure 2b shows the design Δ ¼ bϕ� θ, the phase of the

displacement field, as a function of L. We observe that for non-
Gaussian adaptive strategies with increasing PNR, Δ tends to π/2
for large L (L= 200). This observation is consistent with the
theoretical framework of optimal design of experiments (see
section Bayesian optimal design of ∣β∣), which states that
Δoptimal= π/2 for L→∞. Moreover, as PNR increases, the
strategies show a faster convergence to the asymptotic value of
the Holevo variance, which translates in a smaller error in the
estimation (see Fig. 2a.) These observations further support our
theoretical model of non-Gaussian strategies for phase estimation.
We investigate the asymptotic performance of the estimator

variance produced by the non-Gaussian strategy for large ∣α∣2.
Figure 3 shows the Holevo variance for the non-Gaussian adaptive
strategy as a function of ∣α∣2 for different L normalized to the QCRB.
We observe that for large ∣α∣2 (with L= 100), the adaptive non-
Gaussian strategy tends to the CRLB.
To build a model for the performance of this strategy for large

∣α∣2, we propose three candidate models for the Holevo variance
for L≫ 1:

by1 ¼ A1

αj j2 þ
A2

αj j3 þ
A3

αj j4 ; (35a)

by2 ¼ A1

αj j2 þ
A2

αj j3 ; (35b)

by3 ¼ A1

αj j2 þ
A3

αj j4 ; (35c)

Fig. 3 Estimator variance produced by the non-Gaussian strategy.
Holevo variance of adaptive Non-Gaussian strategies as a function of
∣α∣2, normalized to QCRB, for different adaptive measurement steps
(solid lines), together with the canonical phase measurement (blue
dashed line). For L= 100 the Holevo variance differs from the QCRB
by 3% exemplifying the tendency to the ultimate precision limit in
the regime of large number of photons in the asymptotic limit.
Simulations consist of 10000 Monte Carlo simulation sequences with
PNR m= 3.
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to describe our numerical observations in Fig. 3 based on the
Monte Carlo simulations. The model that best describes our
observations allows us to determine, with a certain degree of
confidence, the performance of non-Gaussian adaptive strategies,
and compare them with the best Gaussian strategy, Eq. (1), and
the canonical phase measurement, Eq. (2).
We discriminate among plausible candidate models using the

technique of backward elimination78. We start with the candidateby1, Eq. (35a), and test the deletion of each variable Ai using the
p-value of a hypothesis testing procedure (H0: Ai= 0, HA: Ai ≠ 0).
Given that p > 0.1 for A2 and p < 0.001 for A1 and A3, we conclude,
with confidence larger than 99%, that the model reflecting the
behavior of the data presented in Fig. 3 is by3, Eq. (35c).
To find A1 and A3 in the limit L→∞ in model by3, we fit the

Holevo variance as a function of ∣α∣2 for ∣α∣2 > 5 to the model by3
for different values of L. Given a number of adaptive steps L, each
fitting provides a set of coefficients A1;A3f g. Hence, to obtain the
trend of each coefficient A1 and A2 as L increases, we fit them to
an exponential model of the form Ai ¼ Di exp �EiLð Þ þ Fi . Figure
4 shows the coefficients A1 and A3 as a function of L. Adjusting
this exponential model and observing that in the limit L≫ 1
Ai→ Fi, we obtain A1= 0.250 ± 0.001 and A3= 0.52 ± 0.01. There-
fore, we conclude with a 99% confidence level that the Holevo
variance for the adaptive non-Gaussian strategy in the limit
L→∞ for large ∣α∣ is:

VarH bϕh i � 0:250 ± 0:001

αj j2 þ 0:520 ± 0:010

jαj4 : (36)

This equation is the main result of this work, also shown in
Eq. (3). We observe that the Holevo variance for the adaptive non-
Gaussian strategy has a similar dependance with ∣α∣ as the
canonical phase measurement, differing only in the scaling of the
correction term of order 1/∣α∣4, see Eq. (2). Moreover, we note that
the best Gaussian strategy known to date, the MKII adaptive
homodyne, has a correction term of order 1/∣α∣320, see Eq. (1).
Then, for large ∣α∣, the non-Gaussian estimation strategies show a
much better scaling in the Holevo variance than the best known
Gaussian strategy, and closely follows the canonical phase
measurement. Furthermore, these non-Gaussian phase estimation
strategies can be implemented with current technologies2, and
our work demonstrates their superior performance over all the

physically realizable strategies for single-shot phase estimation of
coherent states reported to date.
The optimized non-Gaussian adaptive strategies based on photon

counting analyzed in this work are not the only possible strategies
for single-shot phase estimation, and there could be other strategies
based on photon counting with better performances. In this work,
we studied estimation strategies using cost functions that are
consistent with D-optimal designs. However, there may be other
cost functions that could provide a further improvements to non-
Gaussian strategies. Moreover, we note that the relation in Eq. (30)
between the phase and the magnitude of the displacement field
was used to obtain identifiable likelihood functions and ensure
efficient estimators in the asymptotic limit. While we chose the
relation in Eq. (30) because it maximizes the Fisher information,
there is no mathematical proof that this choice is optimal, or that
other choices for this relation would not provide higher sensitivities.
Finally, in the presented adaptive non-Gaussian strategies for phase
estimation, the displacement operations were optimized in every
adaptive step at a time, i. e. using local optimizations in the adaptive
steps. We note, however, that local optimal strategies do not
necessarily ensure global optimality13. Strategies with global
optimizations, where all adaptive steps are optimized simulta-
neously, could probably lead to better performances. However, the
computational overhead required for performing global optimiza-
tions beyond L= 10 adaptive steps prevents us from being able to
investigate global optimized strategies. To overcome these limita-
tions, future investigations could make use of machine learning
methods, such as neural networks and reinforcement learning79, to
lower the complexity of these calculations.

DISCUSSION
Non-Gaussian measurement strategies for phase estimation
approaching the quantum limits in sensitivity, as set by the
canonical phase measurement, can become a tool for enhancing
the performance of diverse protocols in quantum sensing,
communications, and information processing. Optical phase estima-
tion approaching the quantum limit can be used to: prepare highly
squeezed atomic spin states based on measurement backaction42

for quantum sensing and metrology80; enhance phase contrast
imaging of biological samples with optical probes at the few photon
level to avoid photodamage and ensure the integrity of the sample;

Fig. 4 Coefficients of model by3 in Eq. (35c) for the Holevo Variance VarH½bϕ�, as a function of L. Note that in the limit of L→∞ the coefficient
A1 in panel a for the term 1/∣α∣2 tends to 0.25, and A3 in panel b of term 1/∣α∣4 tends to 0.52. Curves are fits to an exponential
model Ai ¼ Di expð�EiLÞ þ Fi with coefficients (D, E, F, RSE)= (0.065 ± 0.013, 0.060 ± 0.010, 0.250 ± 0.001, 1.87 × 10−7) for panel a, and
(D, E, F, RSE)= (0.095 ± 0.015, 0.279 ± 0.119, 0.522 ± 0.010, 1.82 × 10−5) for panel b. The shaded regions represent a 1-σ standard deviation.
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and enhance fidelities in quantum communications with phase
coherent states that require phase tracking close to the quantum
level between receiver and transmitter with few-photon pulses81,82,
while allowing for quantum receivers to decode information
encoded in coherent states below the quantum noise limit13,52,83.
As a direct application for quantum information processing,

non-Gaussian measurements based on photon counting and
displacement operators can be used for full reconstruction of
quantum states with on-off detectors84 and PNR detectors85 in a
multi-copy state setting by sampling phase space with non-
Gaussian projections. The theoretical methods to assess the
performance of adaptive non-Gaussian measures for phase
estimation described in this work could be used to study methods
for adaptive quantum tomography86,87 based on photon counting
for high dimensional quantum states, and investigate their
asymptotic advantages over adaptive homodyne tomography88.
From the practical point of view, our work provides insight into

the design of practical, highly efficient measurement strategies for
phase estimation based on photon counting. It shows that non-
Gaussian strategies optimizing any cost function within the family
of D-optimal designs are equally efficient, and demonstrates the
advantages of higher photon number resolution in the strategies
to reduce estimation errors. This understanding allows the
experimenter to chose cost functions that can be efficiently
calculated and optimized to achieve higher convergence rates,
while selecting a PNR given the desired/target error budget in the
estimation problem for specific applications. This knowledge will
be critical for the design and development of future sensors based
on photon counting for diverse applications in communication,
phase-contrast imaging, metrology, and information processing.
In conclusion, we investigate a family of non-Gaussian strategies

for single-shot phase estimation of optical coherent states. These
strategies are based on adaptive photon counting measurements
with a finite number of adaptive steps implementing coherent
displacement operations, optimized to maximize information gain
as the measurement progresses2. We develop a comprehensive
statistical analysis based on Bayesian optimal design of experi-
ments that provides a natural description of adaptive non-
Gaussian strategies. This theoretical framework gives a funda-
mental understanding on how to optimize these strategies to
enable efficient estimators with a high degree of convergence
towards the ultimate limit, the Cramér Rao lower bound.
We use numerical simulations to show that optimized adaptive

non-Gaussian strategies producing an asymptotically efficient
normal estimator achieve a much higher sensitivity than the best
Gaussian strategy known to date, which is based on adaptive
homodyne20. Moreover, we show that the Holevo variance of the
estimator for the adaptive non-Gaussian strategy has a similar
dependance as the canonical phase measurement in the
asymptotic limit of large photon numbers, differing only by a
scaling factor in the second-order correction term. Our work
complements the work in single-shot phase measurements for
single-photon wave packets in two dimensions22 using quantum
feedback with Gaussian measurements, and paves the way for the
realization of optimized feedback measurements approaching the
canonical phase measurement for higher dimensional states
based on non-Gaussian operations.
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variables.
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