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ABSTRACT: Flexi-MOFs are typically limited to low-connected (< 9) frameworks. Here we report a platform-wide approach 

capable of creating a family of high-connected materials (collectively called CPM-220) that integrate exceptional framework 

flexibility with high rigidity. We show that the multi-module nature of the pore-space-partitioned pacs (partitioned acs net) 

platform allows us to introduce flexibility as well as to simultaneously impose high rigidity in a tunable module-specific fashion. 

The inter-modular synergy has remarkable macro-morphological and sub-nanometer structural impacts. A prominent manifestation 

at both length scales is the retention of X-ray-quality single crystallinity despite huge hexagonal c-axial contraction ( 30%) and 

harsh sample treatment such as degassing and sorption cycles. CPM-220 sets multiple precedents and benchmarks on the pacs 

platform in both structural and sorption properties. They possess exceptionally high benzene/cyclohexane selectivity, unusual C3H6 

and C3H8 isotherms, and promising separation performance for small gas molecules such as C2H2/CO2. 

Storage and separation of gas or vapor molecules benefit 

from enhanced host-guest interactions resulting from small 

and ultrasmall pore size that is commensurate with size of 

adsorbate molecules.1-9 However, pore control in small-pore 

regime is constrained by limited availability of building blocks, 

in part because small molecular building units offer less room 

and sites for chemical editing. Recently, pore space partition 

(PSP) which uses a complementary ligand to segment pore 

space was introduced.10-11 A representative example of PSP is 

the pacs prototype (pacs = partitioned acs), a multi-modular 

system formulated as [(M1)x(M2)3-x(O/OH)(L1)3(L2)].12-25 In 

pacs, the acs-type (MIL-88/MOF-235) framework formed by 

metal trimers and ditopic L1 ligand is partitioned by pore-

partitioning L2 ligand into small pockets. 

While PSP is suited for engineering both large- and small-

pore structures by using L1 and L2 ligands of various 

dimensions, it has unique advantages for designing small-pore 

architecture. To push down the boundary of pore-size, we 

recently applied the integrative BIS-PSP strategy to the MOF 

synthesis.22-23 This strategy is the combined use of PSP with 

the bioisosteric (BIS) concept (i.e., mimicking aromatic entity 

with aliphatic one), which has led to the synthesis of pacs 

materials from rigid and 3D sp3-C-based bcp ligand. Among 

reported pacs materials, bcp is the shortest L1 ligand,22 and 

notably it has only 3 atoms between COO- groups (based on 

the path shown in red, Scheme 1), compared to 4 in bdc,13 

cdc,22 and bco,23 6 in 2,6-ndc,13 and 8 in bpdc.13   

 

Scheme 1. The evolution as well as paradigm shift for L1 ligand 

design on pacs platform. (A→B) rigid sp2-to-sp3 BIS strategy 

with concurrent control of path length and core structure; (A→C) 

sp2-to-sp3 flexi-BIS strategy. (A, B, C) in this work, the 

conformational change (ring flipping) enables an extra level of 

pore control with an effect greater than that produced by ring 

shortening to bcp. bcp = bicyclo[1.1.1]pentane-1,3-dicarboxylate, 

bdc = benzene-1,4-dicarboxylate, cdc = cubane-1,4-dicarboxylate, 

bco = bicyclo[2.2.2]octane-1,4-dicarboxylate, 2,6-ndc = 

naphthalene-2,6-dicarboxylate, bpdc = biphenyl-4,4'-

dicarboxylate.



 

 

Figure 1. Illustration of tri-modules of the first flexi-rigid pacs system. tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine), tppy = 2,4,6-tris(4-

pyridyl)pyridine, tpbz = 1,3,5-tri(4-pyridyl)benzene.  

Given the limited availability of small building blocks, 

especially the rigid type, we envision an alternative path 

forward by extending the BIS-PSP strategy to flexible 

aliphatic L1 ligand types for the first time on the pacs platform. 

This strategy (flexi-BIS-PSP) would permit the creation of a 

multi-modular 9-connected pacs platform (flexi-pacs) that 

integrates flexi-L1 ligands with rigid L2 ligands. Note that 

lattice-flexible MOFs are generally low-connected (< 9).26-36 

We show here that the PSP concept offers a platform-wide and 

modular-based approach to create flexibility in high-connected 

frameworks in which flexibility and rigidity are subject to 

individual modular control. Moreover, the inter-modular 

synergy on the pacs platform can enable the use of more L1 

ligand types, leading to a much larger isoreticular family.37-40 

Since its inception, PSP has been known and used for its 

ability to rigidify the framework. For example, the PSP 

strategy, which converts 6-connecetd acs net into 9-connected 

pacs net, easily freezes swelling effect in MIL-88. Here, with 

flexi-BIS-PSP, the return of framework flexibility through L1 

ligand and its interplay with rigidifying effect of PSP 

represents a unique phenomenon and paradigm shift. The 

multi-module nature of the pacs platform makes it possible to 

bestow framework flexibility with one module while at the 

same time to add framework rigidity with another module. 

Additionally, the inter-modular synergy helps prevent a well-

known pitfall in flexi-MOFs (i.e., the formation of closed 

phases). 

Here, we report a family of pacs-MOFs (CPM-220) based 

on trans-1,4-cyclohexanedicarboxylate (chdc, L1).41-45 The 

conformational flexibility from L1 ligand and the rigidity from 

L2 ligand (the PSP effect) lead to exceptional flexibility in the 

hexagonal c direction and yet high rigidity in basal directions 

(a/b). Remarkably, CPM-220 retains its single crystallinity 

(single-crystal to single-crystal transformation) throughout 

solvent exchange, degassing, and gas sorption cycles despite a 

huge percentage change in the c axis length and cell volume ( 

30%). CPM-220 has unusual sorption properties for C3H6 and 

C3H8, excellent benzene/cyclohexane selectivity, and 

promising properties for separating small gas molecules (e.g., 

C2H2/CO2). 

Due to its multi-module nature and superior ability to 

accommodate different trimer- and L2-types, CPM-220 can be 

made in many compositions by varying trimer or L2 modules. 

Here we report six compositions from four trimer types and 

three L2 types (Figure 1, Table S3). For each composition, 

the as-synthesized form with the longest c axis is denoted 

phase 1, and the degassed form with the shortest c axis is 

denoted phase 2. Both single-crystal X-ray diffraction 

(SCXRD) and powder X-ray diffraction (PXRD) show that 

phase 1 undergoes a gradual change to phase 2 under ambient 

conditions. Table S4A summarizes unit cell parameters and 

c/a ratios. 

For CoIn-chdc-tpt, from phase 1 to phase 2, the a/b axis is 

almost unchanged (16.95 to 17.08 Å), but the c axis is 

shortened by 4.76 Å (or 31.32%) from 15.20 to 10.44 Å. 

Correspondingly, the cell volume is reduced by 30.19% from 

3779 to 2638 Å3. The similar change occurs for CoV-chdc-tpt. 

The c axis of 10.44 Å and the c/a ratio of 0.61 are both the 

smallest values so far on the pacs platform (Figure 2) and are 

significantly lower than 12.1 Å and 0.71 in bcp pacs.22 The 

cell parameters and c/a ratios are closely watched values on 

the pacs platform because they have direct correlation with 

pore dimensions and sorption properties. 



 

 

Figure 2. Comparing cell parameters, structures, and PXRD patterns between phase 1 (A) and phase 2 (B) of chdc-tpt pacs. The near-

constancy of a/b-axis and shortening of the c-axis correlate with the rigidifying effect of tpt and the flexibility of chdc. 

The near-constancy of the a/b axis and the large change in 

the c axis impact PXRD peaks in dramatically different ways 

depending on the peak indices. PXRD shows that the (010) 

peak (l = 0) has little shift (only 0.10 for CoIn) while the (011) 

peak (l ≠ 0) undergoes large shift (2.12 for CoIn) from phase 

1 to phase 2 (Figure S12A). Such phenomenon is unusual. 

Few porous materials are capable of retaining X-ray-quality 

single crystallinity after degassing and such large axial change 

(Table S10).26-32, 46-65 Clearly, the simultaneous control of 

flexibility with L1 and rigidity with L2 plays an important role 

in maintaining single-crystallinity and porosity. 



 

 

Figure 3. C3H6 and C3H8 isotherms of CoV-chdc-tpt at 298 K (A) and 273 K (B). C2H2/CO2 IAST (50/50) selectivities of CoV-chdc pacs 

at 298 K (C). C2H2 and CO2 isotherms of CoV-chdc-tpt (D), CoV-chdc-tppy (E), and CoV-chdc-tpbz (F) at 298K. 

The large change in c axis can be understood from structural 

features. First, since trimers follow the ABAB stacking 

sequence, c-axis length is affected by two L1 ligands so that 

the length change in L1 is magnified in c axial change. 

Literature shows that the distances between two COO- groups 

(based on C in COO-) of chdc are about 5.85 and 4.89 Å in the 

e,e and a,a forms, respectively (Figure S2).66-67 Our single 

crystal analysis shows that CPM-220 phase 1 is close to the e,e 

form (Figure S5), while phase 2 has the a,a form (Figure S10). 

Secondly, compared to other L1 ligands, the a,a form is 

exceptional because it is the first pacs example in which two 

COO- planes are not coplanar, but have an offset of 3.18 Å in 

CoV-chdc-tpt phase 2. Such non-coplanarity is another reason 

for the short c axis. The greater the offset, the shorter the c 

axis (Figure S20). Note that this offset is different from other 

situations such as 2,6-ndc where two COO- are not colinear, 

but are still coplanar (Scheme 1). The offset concept is more 

general than the e,e and a,a forms which are two extreme cases 

corresponding to start and end points of the phase transition 

between phase 1 and phase 2. 

Thermal stability of CPM-220 with different metals (Figure 

S11B) and different L2 ligands (Figure S11D) were studied 

by TGA and all samples remained stable up to about 400 °C. 

Different compositions of CPM-220 phase 2 were used for gas 

sorption studies. PXRD shows no difference in diffraction 

patterns before and after sorption, suggesting all samples were 

stable after repeated adsorption-desorption cycles (Figures 

S12, S15, S17, S18). The Brunauer–Emmett–Teller (BET) 

surface area was determined by N2 sorption at 77 K (Figure 

S24) and is 589 m2/g for CoIn-chdc-tpt. For CoV-chdc 

compositions, it is 617 (tpt), 541 (tppy), and 545 (tpbz) m2/g 

(Table S6). These numbers indicate highly porous nature of 

CPM-220 phase 2.  

The adsorption/desorption isotherms for different gases at 

298 K and 273 K show that CPM-220 exhibit normal gas 

sorption properties as well as unusual gate-opening effects 

depending on temperature and size of the probe molecule.9, 64, 

68-72 Overall, the trend is that lower temperature or larger gas 

molecules lead to lower pressure for gate opening. This can be 

understood by greater pore-filling and resulting greater steric 

interactions at lower temperature or with larger molecules.5, 73-

79 For CoV-chdc-tpt, the isotherms for CO2, C2H2, C2H4, and 

C2H6 show type I at both temperatures except for C2H6 at 273 

K which shows a steeper rise starting at about 0.9 bar (Figure 

S28). Unusual behaviors were observed for C3H6 and C3H8. 

While C3H6 shows a nearly type I isotherm at 298 K,64, 70, 80-82 

C3H8 shows a multi-step rise, as well as a hysteresis loop 

(Figure 3A).70, 83 Yet, at 273 K, both C3H6 and C3H8 exhibit a 

multi-step adsorption (Figure 3B) with C3H6 showing a larger 

hysteresis loop, because the gate-opening pressure for C3H6 is 

higher than that of C3H8. PXRD confirms that the phase 2 

structure is restored after the adsorption-desorption cycle 

(Figure S15A). The reproducibility of C3H6 and C3H8 

isotherms at both 298 K and 273 K were confirmed by 

multiple cycles of measurements on the same samples as well 

as with different batches of samples performed (Figure S29). 

The size and temperature dependent gate-opening behaviors 

by C3H6 and C3H8 have a large impact on the relative uptake 

for C3H6 and C3H8 for CoV-chdc-tpt. At 273 K and 1 bar, 

C3H6 and C3H8 uptakes are both high at 6.52 mmol/g and 6.08 

mmol/g, respectively, because both gases can open the pore. 

Yet, at 298 K and 1 bar, the uptake for C3H6 is suppressed (no 

gate opening for C3H6) while C3H8 can still open the pore, 

leading to quite different C3H6 and C3H8 uptakes of 2.65 

mmol/g and 5.68 mmol/g at 1 bar, respectively (Table S6). 

CPM-220 has good C2H2/CO2 selective adsorption property 

that can be tuned with L2 ligands. At 298 K and 1 bar, the 

C2H2 and CO2 uptake are 3.69 and 2.71 mmol/g for CoV-chdc-

tpt, 3.80 and 2.90 mmol/g for CoV-chdc-tppy, and 3.58 and 

2.45 mmol/g for CoV-chdc-tpbz (Figure 3D-F, Table S6). 

The isotherms of C2H2 and CO2 at 298 K were used to fit with 

the Dual-Site Langmuir-Freundlich (DSLF) model to calculate 



 

the ideal adsorbed solution theory (IAST, 50/50) selectivities 

for CoV-chdc-tpt (7.23), CoV-chdc-tppy (6.10), and CoV-

chdc-tpbz (9.39) (Figure 3C, Table S8). It is expected that the 

selectivity can be further improved by varying trimer 

compositions. 

The modular synthesis also allows us to tune CPM-220 

compositions to achieve excellent benzene/cyclohexane 

selective adsorption property. Both CoV-chdc-tppy and CoV-

chdc-tpbz adsorb negligible amount of cyclohexane, but 

adsorb a large amount of benzene (Figures S39-S56), which is 

close to the molecular sieve effect (Table S9).  

In conclusion, we have developed a series of multi-modular 

pacs materials (CPM-220) that have altered our understanding 

of the pacs platform as being a rigid type. The co-existence of 

flexibility and rigidity makes it possible to push down the pore 

size without losing porosity, and also results in unusual single-

crystal to single-crystal transformation despite huge unit cell 

change (about 30%) under harsh conditions. The pore 

optimization achieved with CPM-220 has led to unusual 

sorption behaviors towards C3H6 and C3H8, promising 

C2H2/CO2 separation performance, and highly selective 

benzene/cyclohexane separation property. 
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