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Abstract
A particle tracking velocimetry apparatus is presented that is capable of measuring three-dimensional particle trajectories 
across large volumes, of the order of several meters, during natural snowfall events. Field experiments, aimed at understand-
ing snow settling kinematics in atmospheric flows, were conducted during the 2021/2022 winter season using this apparatus, 
from which we show preliminary results. An overview of the methodology, wherein we use a UAV-based calibration method, 
is provided, and analysis is conducted of a select dataset to demonstrate the capabilities of the system for studying inertial 
particle dynamics in atmospheric flows. A modular camera array is used, designed specifically for handling the challenges 
of field deployment during snowfall. This imaging system is calibrated using synchronized imaging of a UAV-carried target 
to enable measurements centered 10 m above the ground within approximately a 4 m × 4 m × 6 m volume. Using the meas-
ured Lagrangian particle tracks, we present data concerning 3D trajectory curvature and acceleration statistics, as well as 
clustering behavior using Voronoï analysis. The limitations, as well as potential future developments, of such a system are 
discussed in the context of applications with other inertial particles.

1  Introduction

A wide variety of geophysical processes involve atmospheric 
transport of inertial particles, such as wind-blown sand and 
dust, sea sprays, and snowfall, wherein the details of particle 
kinematics can have long-ranging implications for society 
in terms of the environment, climate, and weather. Aeolian 
transport of sand drives major changes in landscape, not only 
on Earth but also on other planets (Lapotre et al. 2016), and 
the related suspension of mineral dust aerosols in the atmos-
phere, and their subsequent settling, may greatly influence 
global climate (Kok et al. 2018). For example, sea sprays, 

which can broadly also be characterized in the same man-
ner as inertial particles in atmospheric turbulence, play an 
important role in the momentum and thermal fluxes at the 
air–sea interface and thus must be modeled appropriately for 
the forecasting of tropical cyclones (Emanuel 2018). Snow 
particles, which are the primary focus of the study herein, 
are particularly complex inertial particles due to their intri-
cate morphologies, causing different tumbling behaviors and 
turbulence interactions that modulate their fall speed and 
thereby the resultant ground accumulation heterogeneity 
(Garrett and Yuter 2014; Wang and Huang 2017; Vionnet 
et al. 2017; Zeugin et al. 2020; Li et al. 2021b). Coherent 
structures affect their settling characteristics (Aksamit and 
Pomeroy 2018) and saltation dynamics and near-surface 
winds also affect transport (Aksamit and Pomeroy 2016). 
For such reasons, it is critical to better understand the kin-
ematics of atmospheric inertial particles and their interaction 
with the surrounding flow.

Such atmospheric flow, however, is naturally character-
ized by a broad range of turbulence scales, where Reyn-
olds numbers are typically on the order of 106 . The largest 
motions that drive bulk transport can be captured by remote 
sensing techniques, such as time-of-flight light detection and 
ranging (LiDAR) from satellites (Huang et al. 2015), for 
tracking aerosol movements, or Doppler LiDAR (Lundquist 
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et  al. 2017) for wind measurements in the atmospheric 
boundary layer (ABL). However, resolution of the small-
scale motions that govern the dynamics of individual parti-
cles, and thus influence important parameters for modeling 
such as fall speed, requires alternative approaches, such as 
imaging, for particle-level tracking.

Imaging systems for particle tracking and velocimetry 
are commonplace in the laboratory setting, implemented 
in both 2D and 3D, the latter typically with multi-camera 
arrays [for an overview, see Discetti and Coletti (2018)]. 
The 3D approach is more challenging due to the need for 
precise calibration of the camera system to be able to trian-
gulate or otherwise reconstruct particle positions accurately, 
but also due to the difficulty of subsequently linking these 
particles across time steps to form long Lagrangian trajec-
tories that are needed to study inertial particle kinematics. 
Great advancements have been made in both respects, such 
as with iterative particle reconstruction (IPR; Wieneke 2012) 
and predictive tracking (e.g., Shake-the-Box; Schanz et al. 
2016a; Novara et al. 2019), both of which aid in enabling 
long Lagrangian trajectories to be obtained from dense par-
ticle images. Hou et al. (2021) introduced a novel method for 
large-scale PTV (demonstrated within a 4 m × 1.5 m × 1.5 m 
measurement volume) using a single camera based on glare 
points created by illuminating cm-scale bubbles seeded into 
the flow as tracers. Apart from this recent addition, tradi-
tional methods have generally been limited to measurement 
domains of ∼1 m (Schanz et al. 2016b; Terra et al. 2019), 
due to combined challenges of tracer seeding, illumination, 
and calibration. For such reasons, imaging-based particle 
tracking has seen very limited implementation in the field.

That being said, notable examples of particle imaging-
based flow measurement in the field have been conducted. 
These include particle image velocimetry (PIV) or parti-
cle tracking velocimetry (PTV) in the atmospheric surface 
layer (ASL) for both wind energy research (Hong et al. 2014; 
Abraham and Hong 2020; Wei et al. 2021) and boundary-
layer turbulence studies (Hommema and Adrian 2003; Mor-
ris et al. 2007; Toloui et al. 2014; Rosi et al. 2014; Heisel 
et al. 2018), PTV for snow settling in the ASL (Nemes et al. 
2017; Li et al. 2021a, b), as well as water surface velocime-
try (Perks et al. 2020). In the case of the ASL, both artificial 
tracers (smoke, fog) and natural tracers (snow) have been 
used, while in the latter case for water surface velocimetry 
the patterns of surface reflections from the water itself may 
be used, or else artificial tracers introduced. However, except 
for Rosi et al. (2014) and Wei et al. (2021), all the cited 
approaches are two-dimensional, either in a light sheet or 
on a surface.

For the case of snow settling, such 2D studies have pro-
vided valuable insights into the enhancement of settling 
velocities due to turbulence (Nemes et al. 2017), cluster-
ing behavior influencing settling (Li et  al. 2021a), and 

preferential sampling of sweeping motions from vortices (Li 
et al. 2021b). Planar PTV has also been used to character-
ize near-surface snow transport interactions with turbulence 
and coherent structures (Aksamit and Pomeroy 2016, 2018). 
Nevertheless, three-dimensional measurements of snow par-
ticle motions are necessary in order to fully resolve parti-
cle kinematics. In particular, both trajectory curvature and 
particle clustering may be biased on resolving only in 2D, 
and therefore, 3D measurements of snow particle transport 
are needed.

Adaptation of three-dimensional particle tracking to the 
field is even rarer, compared to cases mentioned for 2D 
measurement, due to limitations from calibration proce-
dures, particle seeding, and illumination. Rosi et al. (2014) 
studied ASL turbulence within the first few meters of the 
surface, using bubbles as tracer particles, imaged with a 
multi-camera system. Due to artificial seeding constraints 
over the 4 m × 2 m × 2 m volume, bubble concentrations 
were relatively low, with 0.5 m spacing. Another notewor-
thy implementation of 3D PTV in the field is given by Wei 
et al. (2021), who used a multi-camera system to measure 
the time-averaged flow structure and vorticity in the wake of 
a full-scale vertical axis wind turbine. They achieved meas-
urements in a larger volume (10 m × 7 m × 7 m), though like 
Rosi et al. (2014) with a low particle concentration, as they 
had to use artificial snow as tracers introduced upstream. 
Multiple runs had to be performed and datapoints spatially 
binned over the ensemble to obtain a single time-averaged 
flow field, as the entire domain could not be sampled simul-
taneously. Thus, turbulent fluctuations could not be captured.

Other related work focused on obtaining Lagrangian tra-
jectories in large-scale measurements has been conducted 
in the field of bio-locomotion [e.g., Theriault et al. (2014); 
Muller et al. (2020)], tracking the motions of birds and of 
fish. These studies generally involve sparse objects, as usu-
ally only a few points of interest within the field of view 
are to be tracked, but have involved innovative calibration 
approaches to enable tracking in large volumes. The study 
herein builds upon these calibration approaches, as will be 
discussed in Sect. 2.2.

The aim of the present work was to track complex 3D 
motions of snow particles as they settle in atmospheric tur-
bulence and in particular to obtain a sufficiently high number 
of Lagrangian trajectories to enable the estimate of accel-
eration, curvature, and high-order statistics. Here, we seek 
to overcome challenges inherent to the snow settling case, 
measuring 10 m above the ground in a large volume while 
also dealing with high concentrations of particles in camera 
images. In the following, we describe our methodology for 
achieving these aims through the development of a field-
scale 3D imaging system (Sects. 2.1–2.3), including pre-
liminary validation experiments (Sect. 2.4), after which we 
show results from a field deployment in April 2022 (Sect. 3) 
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to demonstrate the capabilities of this system in terms of 
the new data and analysis afforded by such measurements 
(Sect. 4). This work is conducted as part of the Grand-scale 
Atmospheric Imaging Apparatus project, hereafter referred 
to as GAIA.

2 � Methods

2.1 � System description

The principal components of the field-scale 3D imaging sys-
tem developed under the GAIA project, hereafter referred 
to as GAIA-PTV, and the associated workflow, are depicted 
in Fig. 1. In the following, we provide a brief overview 
followed by a more detailed description. Firstly, GAIA-
PTV involves a modular, multi-camera imaging array that, 
once calibrated, enables the desired 3D particle triangula-
tion and tracking. To obtain the calibration of the camera 
array, an unmanned aerial vehicle (UAV), equipped with 
its own lighting, is flown within the measurement volume 
while being imaged by all cameras. Images collected dur-
ing the calibration procedure as well as the particle images 
taken during the experiment are then processed as will be 
described in Sects. 2.2 and 2.3.

This system was designed with a few key criteria in 
mind. Due to the difficult working conditions in the field 
during snowfall, GAIA-PTV needed to be easy to use and 
capable of rapid deployment. Furthermore, it was desirable 
for deployment configurations to be flexible and enable 
large distances between cameras. Such flexibility is needed 
in the field when snow concentration, and thus image den-
sity, is outside our control, and instead, we may desire to 
adjust the particle image density in each camera by chang-
ing the camera separation distances. Lastly, we needed to 
measure snow settling dynamics in a volume of at least 

several meters in each dimension, centered high enough 
above the ground to avoid surface effects on the flow.

To meet these demands, GAIA-PTV implements a 
modular approach. We use a dedicated single-board com-
puter (SBC) for each camera and wireless communication 
over a local network, using a COMFAST Outdoor WIFI 
Antenna. This local network can also be used for wireless 
camera synchronization for frame rates < 100 Hz. Thus, 
each camera is a stand-alone unit that can be moved and 
set up easily. The only cables between cameras are for 
synchronization > 100 Hz, wherein GPIO connectors from 
separate cameras would be wired together, setting one 
camera as “primary” to output a trigger signal when expo-
sure begins causing the remaining “secondary” cameras to 
simultaneously begin capture. Having dedicated SBC’s is 
also a cost-saving approach, removing the need for a more 
expensive central processing computer capable of handling 
the bandwidth from the multiple cameras, and thus enables 
easy future upgrades of the system with more than four 
cameras. This was achieved using NVIDIA Jetson Nano 
SBC’s, each equipped with a wireless antenna for com-
munication and a solid-state drive (SSD) for rapid data 
storage such that images do not need to be buffered on the 
camera and can be continuously recorded at a sufficiently 
high frame rate (e.g., 200 Hz). NVIDIA’s Jetson platform 
provides a full Linux operating system with enough I/O 
for all auxiliary devices, needing only a 5 V, 10 W power 
supply easily provided from a battery pack.

The cameras used are FLIR Black Fly S U3-27S5C 
color units with the Sony IMX429 sensor, pixels meas-
uring 4.5 � m, capable of 95 fps continuous recording at 
2.8 MP (1464 × 1936 pix.), or up to 200 fps at 0.7 MP, 
using decimation. Each camera is paired with a 16 mm 
Fujinon lens, with 3.45 � m pixel pitch and an aspherical 
lens design minimizing radial distortions.

camera
DAQ

spotlight

curved
mirror

UAV

illumination

particle imagescamera pose calibration

particle
trajectories

triangulation and tracking

UAV LED images

Fig. 1   Schematic illustrating overview of GAIA-PTV workflow
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As stated above, an additional requirement for the system 
was that it be able to image snow particles in a measure-
ment region high above the ground, approximately 10 m. 
This particular choice of height was motivated by the goal 
of avoiding the flow effects of local surface “roughness” 
elements (e.g., bushes, small topographic changes) on 
snow settling, ensuring a more uniform light background 
for the four-camera images, avoiding contamination from 
re-suspended snow particles, and lastly, to match previous 
experiments involving 2D tracking that were designed under 
similar considerations (Nemes et al. 2017; Li et al. 2021a, 
b). This design criterion introduced two challenges for the 
system. First, our lighting system to illuminate the snow 
particles needed to be strong enough for those distances, 
and second, the camera calibration would need to be done 
far above the ground.

The sampling volume to be imaged measures typically 
around 4 m × 4 m × 6 m (x, y, z). Therefore, to illuminate 
the snowflakes throughout this large of a volume centered 
at a height of 10 m, a 5 kW spotlight is used, similar to that 
used by Hong et al. (2014) and Toloui et al. (2014). The 
beam is expanded at 18 degree divergence half angle such 
that it spread to a 4 m wide region in the measurement vol-
ume, after reflecting off of a 45-degree polished aluminum 
mirror. The conical illumination region is then able to be 
further modified by adjusting the curvature of the mirror 
such that the volume is elongated in the desired direction 
(e.g., downstream).

2.2 � Calibration

The camera calibration cannot follow traditional approaches 
taken in the laboratory and instead is implemented using 
a UAV equipped with two rigidly connected lights that 
is flown throughout the measurement domain. While 
being imaged by the camera array, the UAV samples the 
entire measurement volume from edge to edge. The basis 
of this approach, which follows the method by Theriault 
et al. (2014), is to move an “object” of known dimensions 
through the measurement volume while identifying image 
coordinates of the object keypoints in each camera. Here, 
our object consists of two LEDs, one green and one red, 
held at a fixed separation of 34.5 cm by a carbon fiber tube, 
with the object “keypoints” being the LEDs themselves. This 
apparatus is attached to the UAV, which needs to be flown 
carefully throughout the measurement domain.

Snow tracking deployments, including those described 
in Sect. 3, are conducted at night, with artificial illumina-
tion. In such a case, the extent of the measurement volume 
in the horizontal plane, and the UAV within it, is visually 
apparent to the flight operator. Therefore, the UAV flight 
plan can be implemented manually, keeping within this 

x–y domain while monitoring the UAV altitude to stay 
within the desired region. A Holybro S500 V2 quadcopter 
UAV, with 480 mm wheelbase, is used for this purpose, 
with a Pixhawk flight controller operating on the open-
source ArduPilot platform wherein the Mission Planner 
software can be used for monitoring the UAV.

However, it should be noted that GAIA-PTV was also 
designed with the future goal in mind to be capable of 
other types of 3D PTV measurements in daylight as well, 
where no artificial lighting would be used, in which case a 
precise, automated flight plan may need to be charted with 
GPS coordinates. Mission Planner enables many features 
for flight planning that are useful in this regard, including 
tools for automated scanning of regions at various alti-
tudes, as well as the ability to inject real-time kinematic 
positioning (RTK) corrections to the GPS. The UAV is 
therefore equipped with an RTK-capable Ublox M8P 
GPS unit that, upon integration with NTRIPP data stream 
provided from a local Minnesota Department of Trans-
portation (MNDOT) base station, is capable of providing  
≈cm-scale accuracy to the UAV positioning. Regular GPS 
units are typically only ≈1 m accurate, at best.

The UAV flight for calibration typically lasts about 
5 min, while the cameras capture images at 30 fps in 
order to obtain several thousand positions at which the 
UAV LEDs are seen by all cameras. All images are pro-
cessed using Python with in-house code to find all poten-
tial green and red LED candidates. A color filter is used 
in image processing, selecting the green and red bands in 
the RGB images separately, and an intensity threshold is 
applied. Poor candidates are further filtered using a tem-
poral smoothness constraint to the LED positions in the 
2D images.

To obtain a calibration mapping from the image to the 
object space, the eight-point algorithm is used (Hartley 
and Zisserman 2003) to initially estimate camera pose 
(i.e., position and orientation), based on a pinhole model. 
This estimate is then refined using sparse bundle adjust-
ment (SBA) (Lourakis and Argyros 2009), implemented in 
“easyWand” by Theriault et al. (2014). The uncertainty of 
the calibration results that are obtained following the SBA 
is assessed using two different metrics: reconstructed LED 
separation in 3D space, varying for each frame captured; 
and reprojection error, given as the r.m.s. distance between 
original and reprojected keypoints. If the mean reprojec-
tion error are too large, i.e., > 0.5 pixels, data points with 
the largest reprojection errors are iteratively removed and 
the calibration re-calculated. Otherwise, more calibration 
points could be collected with further flights in order to 
reduce error. Such calibration flights are typically con-
ducted both before and after particle image datasets are 
collected.
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2.3 � Particle tracking

After collecting particle images and obtaining a camera 
calibration, Lagrangian trajectories are extracted using pre-
dictive 3D PTV following the implementation by Tan et al. 
(2020) with OpenLPT. This open-source implementation of 
3D PTV is based on the Shake-the-Box (StB) algorithm by 
Schanz et al. (2016a), with additional improvements made 
for ghost particle rejection. StB has been shown to be a 
robust predictive tracking approach that iteratively solves 
the problems of triangulation and matching/linking across 
frames simultaneously, leveraging the expected particle 
position information to handle dense particle images (e.g., 
0.1 ppp). In OpenLPT, initializing trajectories with which 
to predict subsequent particle positions requires at least four 
time steps, following the approach of Schanz et al. (2016a) 
who found this to be an adequate number based on experi-
ence. Other initialization time step counts may be feasible, 
but it is generally desirable to require fewer initialization 
frames. After initialization, at each frame a combination of 
active, inactive, and exited tracks is determined. The active 
tracks are a combination of short trajectories that have not 
yet reached the needed initialization length and long tracks 
that have been successfully predicted. Once an active track is 
lost, it is added to the inactive tracks list, and if the particle 
departs the specified measurement domain, it is added to the 
list of exited tracks.

Once trajectories of particles are obtained, their paths 
must be smoothed before computing higher-order quantities 
such as acceleration and curvature. A Gaussian filter kernel 
is convolved with the particle position vector in each com-
ponent, with an optimal kernel size determined following the 
approach of Nemes et al. (2017). If the kernel is too small, 
acceleration data are contaminated by high-frequency noise, 
whereas if it is excessively large, fine-scale motions may be 
overly attenuated. In the results presented in Sect. 4, this 
filter length was 0.26 s, or ∼ 3�� , where �� is the Kolmogo-
rov timescale, which is similar to that used in prior studies 
(Nemes et al. 2017; Li et al. 2021a).

2.4 � Method validation and demonstration

Prior to the deployment of GAIA-PTV in the snow, two 
experiments were undertaken to validate the approach. First, 
the UAV-based calibration method was tested at scale to 
determine whether this methodology could provide suffi-
ciently accurate camera pose estimation. Figure 2 shows a 
spatial map of the path taken by the UAV, where markers 
denote the reconstructed positions of the UAV lights colored 
by their deviation from the true distance between the lights, 
D. For this case, the UAV’s flight was automated to scan 
throughout a volume measuring approximately 4 m × 4 m × 
4 m using the equipped RTK GPS unit. It can be seen that 

reconstructed errors are largest near the edges of the calibra-
tion volume, where they are at most ≈1 cm, and much less 
throughout the core of the volume. A separate scale is added 
where D is normalized with the measured distance between 
lights of 34.5 cm, where relative errors are below 3%.

A further experiment was performed under controlled 
conditions to test the tracking capabilities provided by the 
calibration when input to the OpenLPT software. For this 
experiment, standard hole-punch confetti paper particles 
(6 mm diameter) were dropped manually in still-air con-
ditions in a large warehouse environment. Though it was 
not feasible to densely fill an entire measurement with such 
particles, they mimicked many of the conditions expected to 
be encountered in the field while also enabling some ground-
truthing of their fall speed. In particular, the disk-shaped 
confetti were expected to exhibit more complex trajecto-
ries with tumbling motions similar to that can be exhibited 
by snowflakes, such as those with dendrite morphologies. 
Cameras were positioned in a fan array at 11 m radial dis-
tance from the center of the measurement volume in order 
to reproduce a similar scale to be measured over in the field. 
The calibration here was not performed with a UAV, as the 
experiment was indoors, and instead the LEDs and carbon 
fiber rod were held by hand and moved through the meas-
urement volume manually. A sample confetti image (after 
enhancement) and resultant trajectories are shown in Fig. 3, 
where it can be seen that long trajectories are able to be cap-
tured. Furthermore, it was estimated that approximately 93% 
of confetti particles could be tracked, based on the identified 
particles in each image (after filtering out double-counted 
particles whose centroids were within 1 pixel of each other) 
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and the sum of the durations of all particle tracks (in number 
of frames), which gave an estimate of the average particles 
tracked per frame.

Looking closer at individual trajectories, as in Fig. 4a, 
it can be seen that the fine-scale motions of the confetti 

disks can be resolved, with an oscillation in the trajec-
tory as the disk tumbles end-over-end. The average fall 
speed of individual confetti particles was also measured in 
independent experiments and compared with the distribu-
tion of particle fall speed measured with PTV, which show 
close agreement (Fig. 4b).
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Fig. 4   a Sample confetti trajectory; b probability density function of mean fall speeds for individual particles, with dashed vertical line indicat-
ing separately measured average fall speed
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3 � Experiment

3.1 � Field site

A series of experiments measuring natural snowfall were 
undertaken during the winter season of 2021/2022. All 
measurements were performed at the University of Min-
nesota Outreach, Research and Education (UMore) Park, 
in Rosemount, Minnesota, near the EOLOS wind energy 
research station. The region surrounding the deployment 
location of the GAIA-PTV system is depicted in Fig. 5 and 
consists of relatively flat farmland, apart from the mete-
orological (met) tower nearby. The met tower is equipped 
with SAT3 Campbell Scientific Sonic anemometers at ele-
vations of 10, 30, 80, and 129 m above ground, sampling at 
20 Hz, and cup-and-vane anemometers at elevations of 7, 
27, 52, 77, 102, and 126 m above ground. Further details 
concerning the met tower, located approximately 50 ms 
from the GAIA-PTV system, are provided in Toloui et al. 
(2014) and Heisel et al. (2018).

The data analyzed herein were collected on April 
17, 2022, between the hours of 20:39 and 23:00 CST. 
Although multiple datasets were collected during this 
period, here we present an exemplary subset of data from 
20:59 to 21:00. Wind conditions and air temperature dur-
ing this period are shown in Fig. 6a–c, where speeds of 
approximately 1.7  m/s were steady within ±  0.3  m/s, 
measured from the 10 m sonic anemometer.

In order to characterize the properties of the snow 
particles that precipitated during the deployment period, 
independent measurements were conducted using a digital 
inline holography system similar to that used by Nemes 
et al. (2017), and described in more detail by Li et al. 
(2022). Given that snow particles can exhibit diverse 

physical characteristics (Garrett et al. 2015; Grazioli et al. 
2022), it is important to measure them during each experi-
ment. The holographic measurement apparatus used herein 
was located within approximately 10 ms of the camera 
system, mounted on a tripod, and captured data between 
20:13 and 21:58 CST. The morphological characteristics 
of the particles are described in Fig. 6d, e, where particles 
typically measured less than 5 mm in diameter. Morpho-
logical types observed were mostly single or aggregated 
dendrite particles. It may be noted that the p.d.f. differs 
here from those shown by Nemes et al. (2017) and Li et al. 
(2021a), wherein a distinct peak in the distribution could 
be identified, whereas here the p.d.f. increases toward 
zero. This is due to a combination of effects: the variabil-
ity of snow particle shape and size observed during the 
deployment, and the increased accuracy in particle iden-
tification thanks to an improved algorithm able to identify 
snow particles over a larger range of sizes using machine 
learning (Li et al. 2022).

The field site and equipment used are depicted in 
Fig. 5a, in which can be seen the layout of the spotlight 
illumination, met tower, camera system, UAV, and an 
example of raw particle images obtained. The layout is 
also schematically illustrated in the inset of Fig. 1. Cam-
eras were mounted on tripods in a “fan” array spanning 
90 degrees of a circular arc, 5.5 m in radius. All were 
tilted upward to be oriented at 58 degrees from horizontal, 
resulting in the varying magnification across the field of 
view in Fig. 7b. This resulted in a measurement volume of 
approximately 4 m × 4 m × 6 m in x, y, and z, the stream-
wise, spanwise, and wall-normal directions, respectively. 
Note that the linear size of the field of view is of the same 
order of magnitude of the integral scale of the flow at that 
distance from the ground, ≃ kvz ≃ 4 m, based on the von 
Karman constant kv and the mixing length assumption in 

(a)

met tower system

EOLOS 
turbine

field site

N

wind

(b)

250 m

Fig. 5   Satellite images of field site for experiments in Rosemount, Minnesota, indicating positions of the system deployment in April 2022 and 
of the meteorological tower, as well as the mean wind direction from the deployment
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turbulent boundary layers. Cameras recorded at 200 fps in 
decimated mode with 732 × 968 pixels, providing spatial 
resolution of ≈6.3 mm per pixel at the center of the FOV. 
For a given dataset, 10,000 frames were recorded in each 
camera, providing 50 s duration sequences.

3.2 � Calibration

A measurement volume of approximately 4 m × 4 m× 6 m 
was calibrated (after the particle image datasets were col-
lected) as depicted in the inset of Fig. 1, where red and green 

(a)

(b)

(c)

(d)

(e)

Fig. 6   a–c Meteorological tower data from the 10 m sonic anemometer, showing a wind speed, b wind direction, and c temperature. d Snow par-
ticle equivalent diameters, and e snow particle roundness from the deployment period

Fig. 7   a Photograph of the 
field site indicating relevant 
equipment and b sample snow 
particle image

(a)

spotlight

meteorological tower

UAV

cameras

(b)

20cm
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markers indicate the reconstructed trajectory of the UAV as 
it flew through the measurement region. Cameras recorded 
the UAV lights at 30 fps during this sequence and resulted 
in 4063 frames in which both lights could be seen by all four 
cameras and successfully identified. This resulted in mean 
reprojection errors of 0.275 pixels across the four cameras, 
or approximately 1.73 mm in the center of the measurement 
domain. This showed an improvement upon the validation 
experiment, likely due to the longer calibration sequence 
capturing a greater number of calibration points. Please note 
that 1.73 mm is of the same order as ds , mean snow particle 
diameter, and < 1% of Id , mean inter-particle distance (see 
Sect. 4.3).

4 � Results

4.1 � Particle trajectories

Having obtained this camera calibration, snow particle 
images could be processed using 3D PTV. In the following, 
the coordinate system is defined such that x is the streamwise 
direction, y is spanwise, and z is vertical.

The distribution of snow particle trajectory durations, 
obtained from 250,619 particles tracked over 10,000 frames, 
is shown in Fig. 8a. Due to the challenge in tracking particle 
motions in 3D, durations are skewed toward lower values, 
and taper off at the long end by approximately 400 frames, 
or 2 s. This does not include particle trajectories shorter 
than 5 frames, which are not considered valid trajectories 
for studying particle kinematics as they have not passed the 

initialization phase and developed sufficient duration, follow 
the approach of Tan et al. (2020) and Schanz et al. (2016a). 
Approximately 1800 “long” particle trajectories ( > 4 
frames) and 7000 “short” trajectories are obtained at each 
frame. These longer trajectories are continuously tracked 
until they either exit the domain or become “inactive” (i.e., 
lost). The number of snow particles present in the measure-
ment volume, on average, is ≈11,000, based on the number 
of particles identified in all four camera frames. Thus, the 
measurement yield of reconstructed particle positions, out 
of all particles physically in the measurement domain, is 
estimated as 80% while the yield of long trajectories is be 
approximated as 20%. This lower estimate compared to the 
confetti validation experiment is most likely due to imper-
fect view overlap from different cameras at the edges of the 
FOV and poorer image quality from the upper region of the 
measurement volume. This latter effect is shown in Fig. 8b 
where the distribution of long trajectories is projected onto 
the x–z plane. Though trajectories are found throughout the 
volume, the highest concentration are lower in the measure-
ment domain, where image quality is also better in terms of 
illumination and magnification.

A sample set of snow particle trajectories, from approxi-
mately 1 s of recording, is shown in Fig. 9 from two different 
vantage points. Note that the coordinate system for the x and 
y axes has been rotated such that the x-axis is aligned with 
the mean streamwise direction of particle trajectories. As 
shown in Fig. 9a, when viewed from a vantage point nearly 
perpendicular to the x-axis, particle trajectories appear rel-
atively linear, elongated in the streamwise direction. This 
type of view is similar to what would be captured using a 

(a) (b)

Fig. 8   a Probability density function of snow particle trajectory length, given by the number of frames each “long” particle trajectory has been 
tracked. b Distribution of long trajectory positions, projected onto the x–z plane
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2D imaging method. Closer inspection of Fig. 9b, with the 
vantage point closer to being parallel with the x-axis, reveals 
more complex kinematics of the particles, with subtle oscil-
lations in their curvature. This is emphasized through the 
colormap applied to the trajectories. Here, the lateral accel-
eration component, ay , is chosen as it particularly empha-
sizes the three-dimensionality of the particle motion that 
cannot be captured with planar or 2D imaging methods. The 
particles along these trajectories accelerate back and forth, 
suggesting non-negligible interactions with the turbulent 
flow and the different scales of vortical motions (Li et al. 
2021b). Furthermore, this behavior is not observable for all 
neighboring particles. Some, such as in the inset of Fig. 9b, 
are observed to translate relatively linearly along the primary 
flow direction as they settle, as indicated by the relatively 
uniform and low magnitude ay coloring, while others display 
relatively strong changes in ay . This could be speculated 
to be the result of differences in the size and morphology 
of the snow particles, affecting their inertial properties and 
their ability to follow different scales of the flow, despite 
different particles sampling similar regions in the flow. Note 
that the mean inter-particle distance is ≈ 0.18 m, or ≈ 2�

T
 , 

where �T is the Taylor microscale. Estimated by the nearby 
sonic anemometer, �T provides reasonable estimates of the 
thickness of the shear layers and the size of the vortex cores 
(Heisel et al. 2021), implying that nearby snow particles may 
still sample different flow topologies.

4.2 � Acceleration and curvature

The statistics of the particle kinematics, explored quali-
tatively in the previous section, are presented in Fig. 10 

plotting p.d.f.s of settling velocity, acceleration components, 
and curvature. Settling velocity displays an approximately 
normal distribution, weakly skewed toward lower fall speeds. 
For now, we do not attempt to correlate the settling velocities 
with particle size, because this relationship is exceedingly 
complex and will require additional datasets. Particle drag 
and density are function of the snow morphological type 
(e.g., dendrites, plates, graupels), and the projected drag area 
may vary depending on the particle orientation and falling 
style. Moreover, turbulence can contribute to enhance the 
settling velocity, when critical Stokes number is approached 
and particles preferentially sample certain regions of the 
flow (Li et al. 2021b). Further experiments across a broad 
range of meteorological conditions beyond what is presented 
herein will hopefully enable such relations to be drawn on a 
statistical basis, taking into account these effects.

In terms of acceleration, the spanwise component, ay , is 
generally of similar magnitude to ax and az , though their 
distribution tails differ, and as such these spanwise motions 
are important to capture. All three components display wider 
tails compared to a normal distribution, where az in particu-
lar is skewed toward negative accelerations. The streamwise 
component, ax , on the other hand, is more strongly skewed 
with positive accelerations.

Curvature is given as

where � is the curvature, R is the radius of curvature, v and 
a are the velocity and acceleration vectors, respectively, 
and double brackets indicate taking the L2-norm. The 

(1)� =
1

R
=

‖v × a‖
‖v‖3
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Fig. 9   Sample snow particle trajectories plotted at different viewing angles and magnification, colored by a vertical velocity, v
z
 , and b spanwise 

acceleration, a
y
 . The x-axis is the mean streamwise direction, and the coordinate system origin is at the center of the measurement volume
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distribution of R, plotted in Fig. 10c, is calculated in both 2D 
and 3D, where in the 2D case only the x and z components 
of v and a are used, simulating the components that would 
be resolved if a planar imaging system were used that was 
appropriately aligned parallel to the streamwise direction. 
Markedly different distributions are shown between these 
two, where the 2D case is skewed toward larger, weaker 
curvature, with peaks in their distributions of approximately 
8 m and 6 m for the 2D and 3D cases, respectively. This 
agrees with the observed behavior in the sample trajectories 
from Fig. 9c, which showed significant lateral components 
in acceleration and should be expected given the probabil-
ity density functions of acceleration components shown 
in Fig. 10b. During parts of trajectories where the particle 
may oscillate in the y-direction, a 2D tracking system would 
not register this out-of-plane motion and thus return higher 
radii of curvature for such tracks. Particle inertial properties 
are known to affect the curvature and acceleration distribu-
tion [see e.g., Bec et al. (2006)], as heavier-than-fluid par-
ticles cannot be trapped in vortical flows. Hence, it can be 
expected that the inertial particle curvature, when measured 
in a fixed reference frame as done here, should be larger 
than the expected size of vortex cores. However, it should be 
noted that more in-depth analysis of coherent fluid structures 
are beyond the scope of the work herein, and, indeed, even 
for neutrally buoyant particle trajectories would still require 
careful treatment using objective metrics from a Lagrangian 
framework (Haller et al. 2021).

4.3 � Clustering

Three-dimensional particle cloud reconstructions are par-
ticularly advantageous, as compared to 2D planar imaging, 
because they also enable direct quantification of particle 

concentration statistics and clustering behaviors without 
any 2D assumptions. This can be achieved using Voronoï 
diagrams, spatial tessellations of the particle cloud, wherein 
the volume of individual cells produced by the tessellation 
are inversely proportional to the local concentration. This 
method is preferable to other approaches, such as box-count-
ing, as it avoids biasing due to input parameter choices such 
as bin size, and is also robust to particle sub-sampling (up to 
50%) effects often unavoidable in experimental data (Mon-
chaux 2012). The shape and extent of a Voronoï cell are 
defined such that all points within the cell (except the edges) 
are closer to the single particle lying within the cell than 
they are to any neighboring particles outside the cell. Thus, 
each Voronoï cell is associated with a given particle, and the 
vertices and borderlines themselves are equidistant to the 
neighboring particles. An example of a single Voronoï cell is 
shown in Fig. 11a, showing the complex topology of the cell 
in 3D space, while the p.d.f. of Voronoï cell size is shown in 
Fig. 11b. Here, the length scales associated with the cell size 
for both the full 3D data and quasi-2D data are shown. The 
2D case is simulated for comparison by computing the 2D 
Voronoï tessellation on particles found within sub-volumes 
oriented in the x–z plane, with their y-dimension removed. 
Two different sub-volume thicknesses are compared, of 
0.3 m and 0.1 m, similar to that used in previous 2D pla-
nar snow tracking experiments (Nemes et al. 2017; Li et al. 
2021a, b). In all cases, 2D or 3D the data are taken from 
particles within ±1 m of the measurement domain center (in 
all directions) in order to avoid any unwanted effects near 
the boundaries. The length scale, L, for the 3D case is the 
cube-root of the cell volume, while for the 2D case L is the 
square-root of the cell area. The distributions of L peak at 
0.18 m for the 3D, indicative of true inter-particle spacing, 
Id , whereas the 2D cases are affected by the sub-volume 

(b)(a) (c)

Fig. 10   Probability density functions of a vertical settling velocity, b acceleration components, and c radii of curvature. In a, b, the dashed lines 
indicate Gaussian distributions for comparison)
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thickness. The thicker 2D sub-volume results in smaller L, 
due to the fact that more particles are projected onto the 
x–z plane, compared to the thin 2D sub-volume Monchaux 
(2012).

Normalizing the volumes (or areas for the 2D case) by 
their respective means, these data can be compared to ran-
domly distributed particles (Fig. 11c), which, following Fer-
enc and Néda (2007), can be described for the 2D and 3D 
cases, respectively, as

Deviations from these distributions indicate clustering 
of particles due to flow and particle inertia. In all compari-
sons between snow data and profiles of f

2D and f
3D , it can 

be seen that the snow particles display clustering behavior. 
Evidence of such clustering can be qualitatively observed in 
the raw images, as indicated in the inset of Fig. 7b, though 
it must be remembered that the image is a projection of all 
particles across the depth of the volume and therefore the 
scale from the images may not be indicative of true spac-
ing. Furthermore, the results of the distributions suggest that 
2D measurement of the same snow particles would have 
slightly underestimated the extent of this clustering behav-
ior. This is shown by the disparity between the distribution 
for the 3D experimental data and the profile for f

3D , which 
is greater than that of the 2D data. This is true for both the 
“thick” or “thin” 2D data, where it can also be noted that 

(2)f
2D(x) =

343

15

√
7

2�
x5∕2e−7x∕2

(3)f
3D(x) =

3125

24
x4e−5x

the normalization here largely removes the differences 
observed in Fig. 11b. Our results are largely consistent with 
the results shown by Monchaux (2012) concerning 2D/3D 
biases in Voronoï analysis, wherein differences between 2D 
and 3D treatments are minor though appreciable. It may be 
speculated, however, that the extent to which these differ-
ences between 2D or 3D treatments are manifested may be 
influenced by the particular type of flow (e.g., a turbulent 
boundary layer) and the statistically persistent 3D vortical 
structures it contains.

5 � Conclusions and discussion

The GAIA-PTV system presented herein has been demon-
strated to provide unprecedented Lagrangian tracking of nat-
ural snow settling motions in 3D using a multiview imaging 
array. Snow particles are tracked within a volume measuring 
approximately 4 m × 4 m× 6 m. The system leverages the use 
of a UAV to enable calibration far from the surface, centered 
at an altitude of 10 m, providing the ability to capture long 
trajectories that are free from flow disturbances due to the 
ground. The apparatus is robust in the field, capable of being 
rapidly deployed under the harsh snowfall conditions, and 
is mobile and flexible for alternative camera arrangements 
as needed. The modular camera and data acquisition system 
also enables easy expansion of the system by adding more 
cameras, each of which stores data and is operated indepen-
dently, with the capability of wireless synchronization as 
well for lower frame rates suitable for larger fields of view.

The results presented herein provide a snapshot of the 
analyses that are enabled by GAIA-PTV, and demonstrate 
the utility of measuring particle kinematics in 3D over 2D. 

(a) (b) (c)

,thin

,thick

thick

thin

Fig. 11   a Example of a single Voronoï cell produced by the tessel-
lation, where the red dot indicates the snow particle, blue dots indi-
cate vertices, and green lines are the ridges of the cell; b probability 
density functions of cell length scales, L, comparing the 2D and 3D 

cases; c Probability density functions in log–log space of cell vol-
umes, compared against models from Ferenc and Néda (2007) for 
randomly distributed particles given by Eqs. 2 and 3
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Due to the long trajectories capable of being measured, 
further Lagrangian diagnostics are also possible that have 
not been explored herein, such as relative pairwise disper-
sion (e.g., Pumir et al. 2000; Gibert et al. 2010; Bragg et al. 
2016) or gravitational drift (Berk and Coletti 2021). Such 
analyses can contribute to fundamental investigations of par-
ticle–turbulence interactions and inertial particle dynamics 
(Brandt and Coletti 2022). With future experiments, sys-
tematic investigations of snow settling dynamics across a 
range of meteorological conditions are possible, in order to 
offer unique insights into particle kinematics and cluster-
ing. Furthermore, the GAIA-PTV system can be extended 
to measuring transport of other particles in atmospheric 
flows, such as droplet sprays and dispersed pollen (Sabban 
and van Hout 2011). The system was designed to be both 
robust in the field, as has been tested under the harsh winter 
conditions, and scalable depending on the needs of the flow 
phenomena of interest.

In future work, two key limitations of the current system 
could be improved upon. Firstly, as with most 3D PTV sys-
tems, the Lagrangian tracking capability is limited in part 
by the domain size and the fact that the domain is fixed. If 
the current system could be made mobile, such as by using 
UAV-mounted cameras instead of fixed tripod-mounted 
cameras on the ground, it would enable much longer track-
ing times to study particle dispersion, for example. In a 
similar vein as has been performed with translating labora-
tory imaging systems [e.g., the “flying PIV” by Zheng and 
Longmire (2013)], the system could follow along with the 
particles of interest, keeping them within the measurement 
domain. Such advances are challenging, however, primarily 
due to the problem of calibrating this type of system.

The use of a UAV for calibration imposes some con-
straints on the operating conditions feasible with this 
method. When mean wind speed at 10 m altitude (typi-
cally assessed prior to experiments using forecasts) exceeds 
24 km/hr (15 mph) UAV flight becomes hazardous, and thus, 
calibrating the camera array with the present approach is not 
possible. This can be overcome, however, with a larger, more 
powerful UAV than the one presently used.

Additionally, it is possible that under highly concen-
trated snow fall the particle image density for the cameras 
may become too high for the volume measured herein (4 m 
× 4 m× 6 m). In this case, the measurement volume must 
be reduced, by moving the cameras closer to the meas-
urement volume, to increase inter-particle spacing in the 
images. A modular camera approach, intentionally adopted 
by this system, makes such adjustments, which must be 
made in real time in the field, relatively straightforward. 
It should be noted that the size of snow particles that can 
be captured by the GAIA-PTV system is dependent on 
both the proximity of the cameras and their sensors. In 
more challenging conditions where particles scatter less 

light (e.g., due to having smaller effective diameters), the 
cameras can be adjusted to achieve a smaller field of view 
(i.e., moved into an arrangement in closer proximity to the 
measurement volume). Additionally, more sensitive mono-
chromic cameras with larger pixels may be used. Larger 
sensors with such pixels would thus also enable us to 
expand the field of view to larger measurement domains.

The need for artificial illumination as used herein con-
strains the measurement opportunities to the hours of 
darkness, when the particles of interest can be illuminated 
against the night sky. Advances in particle detection meth-
ods capable of dealing with natural daylight illumination 
could significantly increase use cases, as well as simplify 
the deployment requirements without the need for a high-
wattage light sources. The primary challenge is in over-
coming the low contrast available when imaging during 
daylight, but rapid developments in the field of computer 
vision and object detection may yield promising tools for 
improvements in this regard.
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