
 
 

  
Abstract—Emissions of particulate matter into the atmosphere 

are essential to characterize, in terms of properties such as 
particle size, morphology, and composition, to better understand 
impacts on public health and the climate. However, there is no 
currently available technology capable of measuring individual 
particles with such high detail over the extensive domains 
associated with events such as wildfires or volcanic eruptions. To 
solve this problem, we present an autonomous measurement 
system involving an unmanned aerial vehicle (UAV) coupled with 
a digital inline holographic microscope for in situ particle 
diagnostics. The flight control uses computer vision to localize 
and then trace the movements of particle-laden flows while 
sampling particles to determine their properties as they are 
transported away from their source. We demonstrate this system 
applied to measuring particulate matter in smoke plumes and 
discuss broader implications for this type of system in similar 
applications. 

I. INTRODUCTION 
Numerous natural and anthropogenic processes, such as 

wildfires, volcanic eruptions, or pollution from smokestacks at 
power plants, result in the emission of harmful aerosols and 
particulate matter (PM) into the atmosphere. These emissions, 
and their subsequent dispersion, are associated with significant 
concerns for public health through air quality impacts [1], [2] 
as PM2.5 and PM10 particles can lodge deep into the lungs, as 
well as climate feedbacks through effects on radiative forcing 
[3], [4]. Modeling the dispersion of such particles and 
understanding the details of their impact on health and the 
environment requires knowledge of particle characteristics 
such as size, morphology, and composition [5]–[7]. However, 
conventional particle diagnostics based on light scattering are 
insufficient to resolve such details [8]–[10].  Moreover, the 
small size of the aerosolized particles, coupled with the vast 
scale of motions associated with transporting atmospheric 
winds, imposes a challenge for measurement.  

The challenge presented is to sample particles with high 
enough detail to be able to characterize individual particle 
properties while measuring across a large spatial domain. 
Remote sensing, such as with lidar, can measure across large 
domains but at the expense of particle-level detail [7]. There 
is, therefore, a need for in situ measurement approaches that 
can be paired with intelligent robotic platforms to efficiently 
and optimally sample aerosol data over large domains and with 
high resolution. Current measurement technologies are not 
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capable of meeting these demands [8]–[12], and it is, therefore, 
the aim of the present work to implement an intelligent UAV-
based particle measurement system to accomplish these 
objectives. 

A. Related work 
In the case of wildfires, there have been significant 

collaborative research efforts in recent years with prescribed 
burn experiments (e.g., FASMEE, FIREX-AQ). These have 
generated valuable data concerning emissions and fire 
dynamics using a wide array of sensors, such as lidar, airborne 
gas sensors, satellite imaging, radiosondes, etc. [13]. Despite 
the level of control that is afforded by conducting prescribed 
burns (as opposed to measurements during natural wildfires), 
it is still not possible to characterize the size and shape of 
particulate matter on an individual particle basis across the 
broad spatial domain covered by the emissions, particularly at 
lower altitudes below which aircraft cannot sample. Remote 
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Figure 1.  Autonomous UAV operation workflow for enabling vision-
based navigation and holographic imaging for in situ particle 
diagnostics. 
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sensing with lidar can measure across domains on the order of 
1 km, but coarse resolution misses spatial heterogeneities as 
the plume evolves.  

Traditional PM sensors (e.g., Plantower PMS5003) can 
measure in situ but typically must make assumptions about 
individual particle morphology (e.g., spherical shape) [8], 
[14]. Specifically, such light-scattering sensors do not directly 
image the particle of interest. Rather, they must indirectly 
calculate particle size based on a priori knowledge about the 
particle morphology. This approach presents a problem for 
highly heterogeneous particles, such as those produced in 
biomass burning. Other measurement approaches that may be 
able to provide greater detail by imaging directly, such as 
traditional microscopes, are too bulky and not amenable to 
being moved across a large measurement region. 
Alternatively, particles may be sampled in the field and then 
brought back to the lab [10], but this is also limited by the 
number of sampling locations and devices available, in 
addition to the drawback of not being able to measure in situ.  

Digital inline holography (DIH) offers a promising 
alternative as a microscopic measurement technique for 
particle diagnostics for wildfires and other similar cases [15]. 
This imaging approach involves illuminating particles of 
interest (e.g., soot, dust, droplets) with a coherent light source, 
such as a laser. The light scattered off the particles 
constructively and destructively interferes with the coherent 
light source and results in light and dark fringe patterns to 
appear when captured by the camera sensor. These 
interference patterns can embed information concerning 
particle shape, size, and even composition. The in-focus 
particle image can be digitally “reconstructed” across a large 
depth of field compared to conventional techniques such as 
brightfield microscopy, making the optical arrangement more 
robust. 

DIH has been implemented in aerial applications to 
measure droplets, dust, or pollen [11], [12], but usually with 
optical systems too bulky to be effectively integrated with an 
autonomous aerial vehicle (UAV). [12] demonstrated the use 
of DIH with a UAV, but in their system, the DIH particle 
sensor was large enough that it had to be carried far below the 
UAV on a tether. The sensor was also very heavy (~3 kg), such 
that it needed a large hexacopter UAV to carry the payload. 
Such implementations lack mobility and autonomy and thus 
are inherently limited in their ability to optimally sample 
particle properties as they disperse in the atmosphere over 
large distances. 

Lensless imaging has been used to develop lightweight, 
compact DIH sensors [16], [17].  In such systems, the imaging 

resolution is limited primarily by the camera pixel size. 
Partially coherent light sources (e.g., an LED) can also be used 
instead of a laser, which results in better image quality with 
reduced speckle noise that otherwise appears in holograms due 
to the high coherence of laser light. The use of an LED requires 
only for the light to be passed through a pinhole, which, if the 
sample-to-sensor distance is small compared to the sensor-to-
pinhole distance, can be relatively large (e.g., 100 µm). A large 
pinhole is particularly advantageous as it does not require 
careful alignment, a point that is important when considering 
applications in robotics with sensor vibration.  

Lensless imaging with DIH has seen limited application in 
robotics. A notable recent work is by [18] who paired a laser-
illuminated lensless DIH sensor with an aquapod for 
monitoring microparticles (e.g., algae cells, plastics, etc.) in 
water. However, their robot did not actively search for 
particles, and the data obtained by the robot’s sensors, 
including the DIH sensor, was not used for feedback control. 
Beyond the fact that it was not designed for aerial applications, 
such a system lacks autonomy and, therefore, the ability to 
intelligently and optimally sample particle information as they 
spread and disperse. 

II. AUTONOMOUS UAV 

A. System overview 
To achieve the aims of measuring atmospheric aerosol 

particulate matter with great detail and over a large domain, an 
autonomous UAV system was developed with the workflow 
depicted in Fig. 1. The measurement system is capable of 
searching for and then moving along with a particle-laden flow 
(e.g., a smoke plume) using autonomous vision-based 
navigation to enable optimal particle sampling. The target flow 
is first localized with object detection, wherein the output 
bounding box size and center can be used to guide the UAV 
toward the target. This is achieved by also integrating 
information available concerning the UAV attitude and pose 
of the camera gimbal. Once the UAV has completed its 
approach to the target, the flow direction and magnitude are 
determined using optical flow and background segmentation. 
Thus, with the flow localized and its trajectory determined, the 
UAV can immerse itself in the plume and move along with the 
particles, sampling and analyzing their properties in situ using 
digital inline holography. As such, the UAV can intelligently 
navigate itself to move along with the particles of interest such 
that changes in particle properties can be measured during the 
atmospheric dispersion process. In this manner, it is possible 
to capture individual microscopic particle details, of the order 
10-6 m, across the range of the UAV flight capabilities, of the 
order 103 m.  

This measurement framework has been implemented on a 
Holybro S500 V2 quadcopter frame, as depicted in Fig. 2. The 
UAV is capable of carrying ~1 kg payload (after excluding the 
frame, motors and propellers, battery, flight controller, and 
GPS) for 15 minutes of flight with a 5200 mAh Lithium 
polymer battery. The payload of the current system is 
approximately 800 g, which includes the onboard GPU data 
processor, machine vision camera, gimbal mount, DIH sensor, 
and associated electronic components for delivering power. 
The GPU data processor used herein is an NVIDIA Jetson 
Xavier NX developer kit (hereafter referred to simply as the 
NVIDIA Jetson), which provides 384 NVIDIA CUDA Cores, 

Figure 2. UAV hardware including all on-board sensor, with a top-
down view shown in (b). 



 
 

48 Tensor Cores, 6 Carmel ARM CPUs, and two NVIDIA 
Deep Learning Accelerators (NVDLA) engines. A GoPro 
Hero 7 Silver provides UAV vision and is mounted on a 3-axis 
Storm32 gimbal. The details of the DIH sensor are provided in 
Section III.  

Flight is controlled using a Holybro Pixhawk 4 running 
ArduPilot and can receive commands both through a paired 
2.4 GHz FrSky RC controller, 915 MHz telemetry radio via 
MAVLink, or directly over USB from the NVIDIA Jetson. 
The RC controller enables manual UAV control for simple 
movements in loitering mode, and the telemetry radio enables 
flight monitoring over Mission Planner flight planning 
software, run on a laptop on the ground. However, the primary 
advantage of this system, and hence its choice over an off-the-
shelf UAV (e.g., from DJI), is the access provided by the 
Ardupilot software platform on the flight controller to be 
guided by in-house code run on the NVIDIA Jetson.  

This feedback control for flying the UAV in guided mode 
is implemented with robot operating system (ROS) using the 
Python API. A series of nodes are concurrently run on the 
NVIDIA Jetson to enable vision-based navigation and flow 
diagnostics. MAVROS provides a MAVLink-enabled ROS 
node to access flight controller topics (e.g., setpoint velocity, 
GPS time, UAV attitude, etc.). ROS nodes that are run can 
subscribe or publish to flight controller topics as well as 
additional topics related to computer vision tasks. Thus, in 
addition to the MAVROS node, there are dedicated nodes for 
camera capture, object detection, optical flow, and general 
feedback control.  

B. Computer vision 
The ROS node for UAV vision runs a continuous loop that 

streams 640 × 480 pixels2 resolution RGB images at 30 fps 
over a wireless network connection between the GoPro and the 
NVIDIA Jetson via gopro-py-api [19]. Subscribing to GPS 
data via MAVROS, images are timestamped and geolocated, 
and the raw data is published to a ROS topic.  

The object detection and optical flow nodes are depicted in 
Fig. 3. The detection node, marked with the dotted lines, 
subscribes to the most recently published image topic and uses 
a convolutional neural network with the “You only look once” 
(YOLO) architecture [20] in PyTorch (specifically, 
YOLOv5s) to localize a particle-laden flow, if present, from a 
single still image. In the current implementation, a smoke 
plume is used as the example case of a particle-laden flow. For 

this purpose, the object detection model was trained using 
synthetic and real-world smoke plume images.  

As a foundation for the training dataset, we used a subset 
of the Smoke100k [21] synthetic images, which the authors 
therein generated using Blender to combine smoke patterns of 
various sizes and opacity overlaid on common background 
scenes. We further supplemented these with natural smoke 
images collected from prior experiments with the UAV. From 
Smoke100k, a total of 8000 images were taken, with an equal 
mix of the “low,” “medium,” and “high concentration smoke” 
image sets. These were combined with 656 images from 
experiments, augmented with grayscale, hue, blur, and noise 
to provide 1968 total images from experiments. To improve 
the detection of darker smoke plumes, which were less 
common in the original dataset, both the synthetic and real-
world experiment images were augmented by inverting 25% 
of the dataset. Approximately 15% of the final images did not 
contain a smoke plume to mitigate false positives. Training 
was performed using Google Colab for 50 epochs with a batch 
size of 32 to yield an mAP (Mean Average Precision) score of 
99% with an IoU (intersection over union) threshold of 0.5. 
This PyTorch model was then converted to TensorRT on the 
NVIDIA Jetson for real-time detection at approximately 20-25 
fps. The model’s performance was found to be sufficient for 
the planned experiments involving real-world flight testing 
with smoke plumes created using smoke grenades, as detailed 
later. An example of this is shown in the first inset image of 
Fig. 3b.  

Detection of a particle-laden flow in the image outputs a 
bounding box, the details of which are published as a ROS 
topic that the optical flow node subscribes to, along with the 
original image. Each time a new bounding box is published, 
the optical flow node waits for the next image topic, from 
which it computes the pixelwise movements in the entire 
frame. An example of this is shown in Fig 3c. Optical flow is 
computed via the Recurrent All-pairs Field Transforms 
(RAFT; [22]) algorithm, also implemented in PyTorch. We 
use a pre-trained model provided by the authors, which was 
fine-tuned on the Sintel dataset [23] and found to perform 
accurately enough for the smoke plume application. The 
model has an end-to-end speed of approximately one fps after 
post-processing. 

The goal of performing optical flow is to determine the 
movement of the particle-laden flow and not of the 
background. Furthermore, it is desirable to determine the 
motion of the particle-laden flow independently of the 

Figure 3. Computer vision workflow for autonomous navigation of the UAV. (b) shows an example of object detection for smoke plume, and 
(c—e) show optical flow process, including segmentation. 



 
 

apparent motion induced by the UAV or camera gimbal. We 
use k-means clustering to segment the optical flow results to 
accomplish both tasks. The bounding box information helps to 
disambiguate the foreground (i.e., particle-laden flow) from 
the background. The following approach was taken to 
compensate for the UAV or camera gimbal motion. First, the 
segmented particle-laden flow pixels were masked out (Fig. 
3d), and the hole that was left was filled using a Navier-Stokes-
based inpainting (i.e., interpolation) scheme in OpenCV that 
enforces a smoothness constraint. To minimize computational 
cost, the flow array was downscaled and then upscaled 4x 
before and after inpainting, respectively. The inpainted values 
were then subtracted from the originally computed flow values 
in a pixel-wise fashion to obtain a pixel-wise segmented 
motion for the particle-laden flow in a quasi-global 
framework, as depicted in Fig. 3e. Since this flow analysis was 
to be used to determine a setpoint velocity for the UAV, the 
segmented flow was averaged to obtain a single 2D output 
vector. 

C. Feedback control 
With these key components in place, a specific feedback 

control loop was designed for the case of a smoke plume flow 
scenario (Fig. 4). In such a scenario, the UAV will search for 
smoke and initially approach it from the side. The approach is 
controlled by minimizing the bounding box offset from the 
image center and maximizing the bounding box size, using 
both linear velocity and yaw control on the UAV, as well as 
gimbal pitch and yaw setpoints. Feedback control is 
implemented in these cases using proportional feedback, 
which was found to be sufficient for successful execution in 
this application.  

The altitude is kept constant during the approach phase. As 
depicted in Fig. 4, if smoke is detected in the image, and the 
gimbal is pitched level (i.e., visibility is straight ahead), the 
UAV will continue to move directly towards the target. This 
continues until, as the UAV begins to pass over the top of the 
target, the gimbal will pitch downward in order to keep the 
target centered in its view. If the UAV is too low in altitude, 
however, and the bounding box achieves a size greater than 
80% of either image dimension while the gimbal is still pitched 
level, the flight controller is told to raise its altitude by several 
meters and continue. This procedure loops until the UAV is at 
a high enough altitude to be able to approach the target from 
directly above. Once the gimbal is pitched downward beyond 
a threshold, the UAV is determined to be above the target and 
in an optimal position to perform flow diagnostics. 

At this point, the UAV velocity is set to zero (remaining in 
loitering mode), pitches the gimbal completely downward, and 
begins to analyze the smoke with optical flow. This “flow 
survey” period continues until sufficient samples of the 
particle-laden flow motion are collected to determine a 
meaningful average, as the smoke motion may fluctuate due to 
turbulence in the atmosphere. From this top-down view, the 
UAV begins a steady descent into the smoke plume towards a 
setpoint altitude such that the UAV, and the onboard DIH 
sensor, will be immersed in the smoke plume.  

During descent, the UAV’s lateral velocity is controlled 
with the bounding box information to ensure that it descends 
precisely into the center of the plume. If smoke is no longer 
visible in the image (e.g., due to UAV being too close to the 
smoke), the descent is maintained straight downward. Once 
immersed in the smoke at the setpoint altitude, the UAV 
begins to move laterally at the velocity determined by the 
optical flow survey previously conducted when above the 
smoke. The speed of motion is calibrated using the UAV 
altitude from the survey. As the UAV moves laterally within 
the smoke, PM in the plume are sampled using the DIH sensor, 
detailed in the following section. 

The code developed for this work can be accessed at 
https://github.com/nbristow12/gaia-drone-control.git. 

III. PARTICLE MEASUREMENT  
Particle diagnostics are performed using digital inline 

holography (DIH) integrated with a pumped impaction system 
for sampling particles (Fig. 5a and b). Holographic imaging 
relies on coherent light interfering with light that has scattered 
off particles of interest, generating interference fringe patterns 
such as those shown in Fig. 5c. These holograms can be 
digitally reconstructed through convolution with the Rayleigh-
Sommerfeld diffraction kernel to obtain in-focus images (Fig. 

Figure 4. Feedback control algorithm for approaching particle-laden 
flow, determining flow direction, and immersing UAV within particle-
laden flow for optimal particle sampling. 
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5d), with the advantage of a much larger possible depth of field 
than traditional imaging.  

A. Hardware design 
The system herein is specifically designed to obtain high-

quality holograms with high throughput, capable of dealing 
with UAV-induced vibrations while minimizing payload. The 
hardware components include a 3D printed PLA enclosure, 3 
W green LED and attached heatsink, a pinhole, a Raspberry Pi 
HQ camera, and a 150 L/min miniature air pump. The lensless 
Pi HQ camera features a Sony IMX477 sensor with a 1.55 µm 
pixel pitch and 4056 × 3040 pixel2 resolution.  

The system operates by the pump, connected to the 
enclosure from beneath, drawing outside air into the chamber 
from two inlets at the top. These inlets are extended to draw in 
air from above the rotors using semi-rigid rubber tubing. The 
rotors on the UAV generate lift by pulling air downward 
toward the sensor. This air is then channeled into the enclosure 
by a pump.  

Inside the enclosure, an impaction nozzle focuses the flow 
of air and directs it toward the camera sensor. A gap of only 1 
mm between the nozzle and the sensor allows the air to divert 
sharply, causing any suspended particles, such as smoke soot, 
to be deposited onto the sensor's surface. Particles are 
illuminated with an LED that is butt-mounted to an ~100 µm 
diameter pinhole, as shown in Fig. 5b. As described by [24], a 
large z1/z2 ratio, where z1 is the pinhole-to-sample distance and 
z2 is the sample-to-sensor distance, results in an effective 
increase in the coherence of the LED light. More specifically, 
each particle can be treated as scattering incoming light that 
has passed through a pinhole, a factor of z1/z2 smaller than the 
physical pinhole. Thus, for our pinhole (diameter D = 100 µm), 
and for z1 = 45 mm, z2 = 0.7 mm, we have sufficient spatial 
coherence to resolve d = D z1/z2 = 1.55 µm features, equal to 
the limiting pixel resolution. Furthermore, our use of a 
partially coherent light source also helps suppress coherence 
speckle noise, a common issue in laser-based holography 
caused by cross interference. The most significant advantage, 
however, is that the large size of the pinhole means that precise 
alignment between the LED and the pinhole is unnecessary. 

Figure 5. Sensor for particle diagnostics using digital inline 
holography. (a) shows the internal structure of the enclosure, with 
airflow direction indicated with yellow arrows, where air is pumped 
in from the top. (b) depicts the optics of the lensless holographic 
imaging (not to scale). (c–d) shows hologram examples obtained 
from the sensor in (a–b) before and after focusing the image with 
holographic reconstruction.  

Figure 7. (a) Map of experiment site at UMore Park in Rosemount, MN, with wind direction indicated with white arrow, red dot indicating 
smoke source, and white filled contour depicting scale of smoke plume. (b) Photo of an experiment with UAV in flight above a smoke plume 
from a grenade. 

Figure 6: Soot particles collected from smoke grenade residue 
imaged with a) traditional brightfield microscope with 0.75 µm/pix. 
resolution, and b) similar particles from the same residue captured 
and imaged by the DIH sensor. 



 
 

Therefore, the components are very lightweight (~100 g), and 
the optics are not affected by UAV vibrations.  

The design used herein increases particle throughput. 
There is no limitation of capturing particles due to camera 
shutter speed or exposure times. In fact, frame rates as low as 
desired are possible, and long exposure times can be used, 
which helps to compensate for the relatively low LED power 
(compared to a laser). Particles of size ranging between 3 µm 
and up to 50 µm could be detected by the sensor after 
impaction. The range of particle sizes captured by the impactor 
can be adjusted by varying the flow rate, and thus impaction 
speed, imposed by the pump. The imaging magnification can 
likewise be adjusted by varying the imaging objective to 
resolve particles ranging from 200 nm to a few millimeters in 
size.  

To illustrate the contrast between traditional imaging 
methods and the specific sensor discussed in this context, Fig. 
6 presents a comparison of particles imaged using a brightfield 
microscope and those captured by the DIH sensor. Imaging 
resolution for the brightfield microscope, at 0.75 µm/pixel, 
was kept as similar as possible to that of the DIH sensor that 
operates at a magnification ratio of 1.55 µm/pixel. As can be 
seen by the results, the DIH sensor yields the same level of 
detail in the particle images, without the need to manually 
focus a microscope objective, and instead uses digital 
reconstruction. 

B. Image processing 
Raw images are continuously captured during flight and 

georeferenced and timestamped to be synchronized with the 
machine vision camera. Processing of the holograms is 
currently performed offline but has the potential to be 
implemented using GPU acceleration for real-time analysis. 
Hologram reconstruction is performed after cropping images 
using a custom YOLOv5s model to provide bounding boxes 
around particle fringe patterns. Particle holograms are then 
brought into focus using the Rayleigh−Sommerfeld 
convolution implemented as: 
𝑢𝑝(𝑥, 𝑦, 𝑧)

= ℱ−1{ℱ(𝐼(𝑥, 𝑦)

× ℱ(
exp(𝑗𝑘𝑧)

𝑗𝜆𝑧
exp (j

𝑘

2𝑧
[(x2 + y2)])} 

(1) 

𝐸(𝑥, 𝑦, 𝑧) = 𝑢𝑝(𝑥, 𝑦, 𝑧) × conj[𝑢𝑝(𝑥, 𝑦, 𝑧)] (2) 
 
where 𝑢𝑝 is the complex optical field, 𝐼(𝑥, 𝑦) is the original 
hologram, 𝜆 is wavelength (532 nm in this case), 𝑘 is 
wavenumber, 𝑧 is the depth at which the image is 
reconstructed, and 𝐸(𝑥, 𝑦, 𝑧) is image reconstruction across 
various depths 𝑧. If the particle distance from the image sensor 
is unknown, 𝐸(𝑥, 𝑦, 𝑧) can be evaluated to find the best 
focusing depth for each particle. In the case herein, 𝑧 can be 
set to 720 µm to obtain in-focus images as the particles are all 
found at approximately the same distance from the sensor (i.e., 
on the coverglass). 

The focused particle image is then segmented using k-
means. The segmented particle image can then be used to 
compute various particle properties such as area, equivalent 
diameter, eccentricity, and roundness. 

Another issue that must be overcome with the current DIH 
sensor is that particles accumulate on the sensor. To obtain 
clean images containing only new holograms at each time step, 

frame subtraction is used. At each pixel, the intensity from the 
previous image is removed, and then the grayscale value is 
adjusted. 

IV. EXPERIMENTS 
The measurement system was tested at the University of 

Minnesota Outreach, Research, and Education (UMore) Park, 
on an agricultural field, as shown in Fig. 7. Smoke plumes 
were created with a combination of a smoke generator and 
white smoke grenades, typically using 3 grenades together for 
each run, an example of which is shown in Fig. 7b. The smoke 

Figure 8. Particle diagnostics data from the UAV-based DIH sensor. 
(a) spatial map of particle concentration along the UAV sampling 
path, with the source of smoke emission show in red and the inset 
plots depicting reconstructed smoke particle holograms. (b) 
concentration as a function of distance from the source, with marker 
color indicating mean equivalent diameter from each measurement 
location. (c) probability density functions of eccentricity and 
roundness for all particles sampled. 



 
 

generator enables a large enough plume to be created, while 
the smoke grenades seed the plume with soot particles. This 
combination is needed as the smoke generator produces only 
droplets, and does not create particulate matter needed to test 
the DIH sensor. Each grenade is capable of providing 
approximately 5 minutes of smoke emission. This duration is 
sufficient to test the capability of the autonomous flight mode, 
as the plumes created could grow up to 50-75 m long, 
depending on the wind speed, and the UAV’s region of 
influence was observed to be confined within a few meters 
directly below the UAV. 

Examples of the particle diagnostics possible with the 
UAV-based measurement system are shown in Fig. 8. In the 
dataset shown here, the UAV was intentionally flown 
manually back and forth within the plume in order to provide 
a baseline of the DIH sensor capabilities during flight. A 3D 
map of the sampling data can be seen in Fig. 8a, where colors 
indicate particle concentration, and the inset images display 
examples of holograms captured. These results show the 
expected trend that particle concentration is highest nearest the 
source and reduces as the particle-laden flow disperses 
downwind. Furthermore, the results shown in the inset images 
of Fig. 8a exemplify the level of detail afforded by DIH 
measurements, which is not possible with other PM sensors. 
Fig. 8b plots the same data as a function of distance from the 
source, with colors indicating the equivalent particle diameter 
(calculated as the (4A/π)1/2, where A is the area of the 
segmented particle image). These results demonstrate the 
heterogeneity in particle size that can be captured. Lastly, Fig. 
8c shows the probability density functions of eccentricity and 
roundness for all particles captured.  

Additional experiments were then performed using 
autonomous UAV flight, an example dataset is shown in Fig. 
9. Three different trajectories indicate the autonomous flight 
paths determined by the UAV’s image diagnostics during 
repeated runs analyzing the same smoke plume. Data shown 
are from the phase of the UAV flight after the UAV has 
autonomously found the plume, after which it descends into 
the plume and samples particulate matter with the DIH sensor. 
A video illustrating one such run from the UAV viewpoint, as 
well as an alternative view from the side, is provided in the 
Supplemental Materials.   

Throughout the conducted experiments, although only a 
limited subset is presented here, the UAV consistently 
succeeded in detecting the smoke plume and accurately 
determining the direction of the airflow through optical flow 
analysis. Due to the relatively small size of the smoke plume 
and rapid shifts in wind direction, fluctuations in the DIH 
sampling can be observed, as the UAV samples from regions 
of varying concentration within the smoke plume. It is 
important to note that these challenges are expected to be less 
pronounced when dealing with larger smoke plumes, as the 
effects of small-scale turbulence are unlikely to entirely 
disrupt the flow of smoke. In such cases, the smoke flow is 
expected to exhibit a more stable behavior. 

V. CONCLUSIONS 
By combining holographic imaging with UAV technology 

and machine learning-accelerated computer vision, we have 
demonstrated an intelligent measurement apparatus that can 
provide unique measurements not possible with any other 
system. While the demonstrations shown herein have involved 
smoke plumes, this is merely an example of the capabilities of 
autonomous UAV-based digital inline holography (DIH). The 
current system could also be easily modified to be applied to 
additional interesting cases, such as particulate matter from 
volcanic eruptions or dust clouds. Volcanic PM would be a 
particularly unique demonstration as the dangerous conditions 
surrounding a volcanic eruption necessitate the use of robots 
for in situ measurement, which has been used for monitoring 
gas emissions [25]. In the absence of UAV-based 
measurement, immobile ground stations or satellite 
measurements must be depended upon [26].  

The ability of a DIH sensor to measure detailed particle 
characteristics raises the interesting possibility of also 
measuring microbes in smoke from natural wildfires. Recent 
work by [10] has shown that wildfires contain a substantial 
number of viable cells, compared to the ambient air, which 
they determine largely through laboratory processing of 
samples collected on a UAV. Using DIH, it is reasonable that 
a system like ours could analyze cells in situ, thus providing 
more precise georeferenced data.  

An additional aspect of the system worth discussing is the 
potential influence of the UAV rotor wash on particle 

Figure 9: Particle diagnostics data from the UAV-based DIH sensor during autonomous flight, showing a spatial map of particle 
concentration along the UAV sampling path, moving along heading determined by optical flow. Data are combined from three autonomous 
sampling sequences for the same smoke plume. 



 
 

diagnostics. The flow induced by the quadcopter itself is 
capable of altering local flow conditions within a few meters, 
increasing turbulent mixing of the particle-laden flow. 
However, the scale of these motions induced by the UAV, of 
the order 100-101 m, is much smaller than the scale of the 
particle-laden flow itself, which for phenomena such as 
plumes from wildfires or volcanic eruptions is typically of the 
order 103 m, multiple orders of magnitude greater. Thus, it is 
unlikely for the UAV to notably influence the particle-laden 
flow at these large scales over which the UAV is going to be 
traversing and measuring trends. Instead, the downward 
laminar flow above the UAV rotors, where the air intake for 
the DIH sensor is located, is more likely to aid the sensor in 
capturing more particles.  

It should also be noted that the same sensor can be used for 
particles other than the test case herein of smoke particulate 
matter, such as liquid droplets. The primary limitation is for 
larger sizes of particles, which may have too much inertia to 
be drawn into the sensor by the pump. However, given that the 
primary purpose of this measurement apparatus is for small 
particles or droplets suspended in the air (e.g., aerosols), this 
is not expected to be an important factor.  

Although the present system is implemented as a single 
UAV operating on its own, it is possible to implement 
numerous UAVs with such sensors onboard in a swarm for 
more detailed and intelligent measurement capabilities. For 
example, upon determining the flow direction, a UAV swarm 
could align itself along the streamwise direction of the flow 
within the plume to instantaneously measure large-scale 
spatial gradients in particle characteristics rather than 
traversing across the entire flow. Furthermore, multiple UAVs 
could cover a larger domain than a single one could on its own.  

The testing conducted herein was limited to relatively 
small smoke plumes and a single UAV. This system, and 
extensions of it using a UAV swarm, will be implemented in 
the future with large-scale prescribed burns to test the system's 
capabilities at full scale and demonstrate its capabilities to end 
users in the firefighting community who model and combat 
wildfires. 
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