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Abstract—Emissions of particulate matter into the atmosphere
are essential to characterize, in terms of properties such as
particle size, morphology, and composition, to better understand
impacts on public health and the climate. However, there is no
currently available technology capable of measuring individual
particles with such high detail over the extensive domains
associated with events such as wildfires or volcanic eruptions. To
solve this problem, we present an autonomous measurement
system involving an unmanned aerial vehicle (UAV) coupled with
a digital inline holographic microscope for in situ particle
diagnostics. The flight control uses computer vision to localize
and then trace the movements of particle-laden flows while
sampling particles to determine their properties as they are
transported away from their source. We demonstrate this system
applied to measuring particulate matter in smoke plumes and
discuss broader implications for this type of system in similar
applications.

I. INTRODUCTION

Numerous natural and anthropogenic processes, such as
wildfires, volcanic eruptions, or pollution from smokestacks at
power plants, result in the emission of harmful aerosols and
particulate matter (PM) into the atmosphere. These emissions,
and their subsequent dispersion, are associated with significant
concerns for public health through air quality impacts [1], [2]
as PM2.5 and PM10 particles can lodge deep into the lungs, as
well as climate feedbacks through effects on radiative forcing
[3], [4]. Modeling the dispersion of such particles and
understanding the details of their impact on health and the
environment requires knowledge of particle characteristics
such as size, morphology, and composition [5]-[7]. However,
conventional particle diagnostics based on light scattering are
insufficient to resolve such details [8]-[10]. Moreover, the
small size of the aerosolized particles, coupled with the vast
scale of motions associated with transporting atmospheric
winds, imposes a challenge for measurement.

The challenge presented is to sample particles with high
enough detail to be able to characterize individual particle
properties while measuring across a large spatial domain.
Remote sensing, such as with lidar, can measure across large
domains but at the expense of particle-level detail [7]. There
is, therefore, a need for in situ measurement approaches that
can be paired with intelligent robotic platforms to efficiently
and optimally sample aerosol data over large domains and with
high resolution. Current measurement technologies are not
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Figure 1. Autonomous UAV operation workflow for enabling vision-
based navigation and holographic imaging for in situ particle
diagnostics.

capable of meeting these demands [8]-[12], and it is, therefore,
the aim of the present work to implement an intelligent UAV-
based particle measurement system to accomplish these
objectives.

A. Related work

In the case of wildfires, there have been significant
collaborative research efforts in recent years with prescribed
burn experiments (e.g., FASMEE, FIREX-AQ). These have
generated valuable data concerning emissions and fire
dynamics using a wide array of sensors, such as lidar, airborne
gas sensors, satellite imaging, radiosondes, etc. [13]. Despite
the level of control that is afforded by conducting prescribed
burns (as opposed to measurements during natural wildfires),
it is still not possible to characterize the size and shape of
particulate matter on an individual particle basis across the
broad spatial domain covered by the emissions, particularly at
lower altitudes below which aircraft cannot sample. Remote
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Figure 2. UAV hardware including all on-board sensor, with a top-

down view shown in (b).

sensing with lidar can measure across domains on the order of
1 km, but coarse resolution misses spatial heterogeneities as
the plume evolves.

Traditional PM sensors (e.g., Plantower PMS5003) can
measure in situ but typically must make assumptions about
individual particle morphology (e.g., spherical shape) [8],
[14]. Specifically, such light-scattering sensors do not directly
image the particle of interest. Rather, they must indirectly
calculate particle size based on a priori knowledge about the
particle morphology. This approach presents a problem for
highly heterogeneous particles, such as those produced in
biomass burning. Other measurement approaches that may be
able to provide greater detail by imaging directly, such as
traditional microscopes, are too bulky and not amenable to
being moved across a large measurement region.
Alternatively, particles may be sampled in the field and then
brought back to the lab [10], but this is also limited by the
number of sampling locations and devices available, in
addition to the drawback of not being able to measure in situ.

Digital inline holography (DIH) offers a promising
alternative as a microscopic measurement technique for
particle diagnostics for wildfires and other similar cases [15].
This imaging approach involves illuminating particles of
interest (e.g., soot, dust, droplets) with a coherent light source,
such as a laser. The light scattered off the particles
constructively and destructively interferes with the coherent
light source and results in light and dark fringe patterns to
appear when captured by the camera sensor. These
interference patterns can embed information concerning
particle shape, size, and even composition. The in-focus
particle image can be digitally “reconstructed” across a large
depth of field compared to conventional techniques such as
brightfield microscopy, making the optical arrangement more
robust.

DIH has been implemented in aerial applications to
measure droplets, dust, or pollen [11], [12], but usually with
optical systems too bulky to be effectively integrated with an
autonomous aerial vehicle (UAV). [12] demonstrated the use
of DIH with a UAV, but in their system, the DIH particle
sensor was large enough that it had to be carried far below the
UAV on a tether. The sensor was also very heavy (~3 kg), such
that it needed a large hexacopter UAV to carry the payload.
Such implementations lack mobility and autonomy and thus
are inherently limited in their ability to optimally sample
particle properties as they disperse in the atmosphere over
large distances.

Lensless imaging has been used to develop lightweight,
compact DIH sensors [16], [17]. In such systems, the imaging

resolution is limited primarily by the camera pixel size.
Partially coherent light sources (e.g., an LED) can also be used
instead of a laser, which results in better image quality with
reduced speckle noise that otherwise appears in holograms due
to the high coherence of laser light. The use of an LED requires
only for the light to be passed through a pinhole, which, if the
sample-to-sensor distance is small compared to the sensor-to-
pinhole distance, can be relatively large (e.g., 100 um). A large
pinhole is particularly advantageous as it does not require
careful alignment, a point that is important when considering
applications in robotics with sensor vibration.

Lensless imaging with DIH has seen limited application in
robotics. A notable recent work is by [18] who paired a laser-
illuminated lensless DIH sensor with an aquapod for
monitoring microparticles (e.g., algae cells, plastics, etc.) in
water. However, their robot did not actively search for
particles, and the data obtained by the robot’s sensors,
including the DIH sensor, was not used for feedback control.
Beyond the fact that it was not designed for aerial applications,
such a system lacks autonomy and, therefore, the ability to
intelligently and optimally sample particle information as they
spread and disperse.

II. Autonomous UAV

A. System overview

To achieve the aims of measuring atmospheric aerosol
particulate matter with great detail and over a large domain, an
autonomous UAV system was developed with the workflow
depicted in Fig. 1. The measurement system is capable of
searching for and then moving along with a particle-laden flow
(e.g., a smoke plume) using autonomous vision-based
navigation to enable optimal particle sampling. The target flow
is first localized with object detection, wherein the output
bounding box size and center can be used to guide the UAV
toward the target. This is achieved by also integrating
information available concerning the UAV attitude and pose
of the camera gimbal. Once the UAV has completed its
approach to the target, the flow direction and magnitude are
determined using optical flow and background segmentation.
Thus, with the flow localized and its trajectory determined, the
UAYV can immerse itself in the plume and move along with the
particles, sampling and analyzing their properties in situ using
digital inline holography. As such, the UAV can intelligently
navigate itself to move along with the particles of interest such
that changes in particle properties can be measured during the
atmospheric dispersion process. In this manner, it is possible
to capture individual microscopic particle details, of the order
10" m, across the range of the UAV flight capabilities, of the
order 10° m.

This measurement framework has been implemented on a
Holybro S500 V2 quadcopter frame, as depicted in Fig. 2. The
UAV is capable of carrying ~1 kg payload (after excluding the
frame, motors and propellers, battery, flight controller, and
GPS) for 15 minutes of flight with a 5200 mAh Lithium
polymer battery. The payload of the current system is
approximately 800 g, which includes the onboard GPU data
processor, machine vision camera, gimbal mount, DIH sensor,
and associated electronic components for delivering power.
The GPU data processor used herein is an NVIDIA Jetson
Xavier NX developer kit (hereafter referred to simply as the
NVIDIA Jetson), which provides 384 NVIDIA CUDA Cores,
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Figure 3. Computer vision workflow for autonomous navigation of the UAV. (b) shows an example of object detection for smoke plume, and

(c—e) show optical flow process, including segmentation.

48 Tensor Cores, 6 Carmel ARM CPUs, and two NVIDIA
Deep Learning Accelerators (NVDLA) engines. A GoPro
Hero 7 Silver provides UAV vision and is mounted on a 3-axis
Storm32 gimbal. The details of the DIH sensor are provided in
Section III.

Flight is controlled using a Holybro Pixhawk 4 running
ArduPilot and can receive commands both through a paired
2.4 GHz FrSky RC controller, 915 MHz telemetry radio via
MAVLIink, or directly over USB from the NVIDIA Jetson.
The RC controller enables manual UAV control for simple
movements in loitering mode, and the telemetry radio enables
flight monitoring over Mission Planner flight planning
software, run on a laptop on the ground. However, the primary
advantage of this system, and hence its choice over an off-the-
shelf UAV (e.g., from DJI), is the access provided by the
Ardupilot software platform on the flight controller to be
guided by in-house code run on the NVIDIA Jetson.

This feedback control for flying the UAV in guided mode
is implemented with robot operating system (ROS) using the
Python API. A series of nodes are concurrently run on the
NVIDIA Jetson to enable vision-based navigation and flow
diagnostics. MAVROS provides a MAVLink-enabled ROS
node to access flight controller topics (e.g., setpoint velocity,
GPS time, UAV attitude, etc.). ROS nodes that are run can
subscribe or publish to flight controller topics as well as
additional topics related to computer vision tasks. Thus, in
addition to the MAVROS node, there are dedicated nodes for
camera capture, object detection, optical flow, and general
feedback control.

B.  Computer vision

The ROS node for UAV vision runs a continuous loop that
streams 640 x 480 pixels? resolution RGB images at 30 fps
over a wireless network connection between the GoPro and the
NVIDIA Jetson via gopro-py-api [19]. Subscribing to GPS
data via MAVROS, images are timestamped and geolocated,
and the raw data is published to a ROS topic.

The object detection and optical flow nodes are depicted in
Fig. 3. The detection node, marked with the dotted lines,
subscribes to the most recently published image topic and uses
a convolutional neural network with the “You only look once”
(YOLO) architecture [20] in PyTorch (specifically,
YOLOVS5s) to localize a particle-laden flow, if present, from a
single still image. In the current implementation, a smoke
plume is used as the example case of a particle-laden flow. For

this purpose, the object detection model was trained using
synthetic and real-world smoke plume images.

As a foundation for the training dataset, we used a subset
of the Smokel00k [21] synthetic images, which the authors
therein generated using Blender to combine smoke patterns of
various sizes and opacity overlaid on common background
scenes. We further supplemented these with natural smoke
images collected from prior experiments with the UAV. From
Smoke100k, a total of 8000 images were taken, with an equal
mix of the “low,” “medium,” and “high concentration smoke”
image sets. These were combined with 656 images from
experiments, augmented with grayscale, hue, blur, and noise
to provide 1968 total images from experiments. To improve
the detection of darker smoke plumes, which were less
common in the original dataset, both the synthetic and real-
world experiment images were augmented by inverting 25%
of the dataset. Approximately 15% of the final images did not
contain a smoke plume to mitigate false positives. Training
was performed using Google Colab for 50 epochs with a batch
size of 32 to yield an mAP (Mean Average Precision) score of
99% with an IoU (intersection over union) threshold of 0.5.
This PyTorch model was then converted to TensorRT on the
NVIDIA Jetson for real-time detection at approximately 20-25
fps. The model’s performance was found to be sufficient for
the planned experiments involving real-world flight testing
with smoke plumes created using smoke grenades, as detailed
later. An example of this is shown in the first inset image of
Fig. 3b.

Detection of a particle-laden flow in the image outputs a
bounding box, the details of which are published as a ROS
topic that the optical flow node subscribes to, along with the
original image. Each time a new bounding box is published,
the optical flow node waits for the next image topic, from
which it computes the pixelwise movements in the entire
frame. An example of this is shown in Fig 3c. Optical flow is
computed via the Recurrent All-pairs Field Transforms
(RAFT; [22]) algorithm, also implemented in PyTorch. We
use a pre-trained model provided by the authors, which was
fine-tuned on the Sintel dataset [23] and found to perform
accurately enough for the smoke plume application. The
model has an end-to-end speed of approximately one fps after
post-processing.

The goal of performing optical flow is to determine the
movement of the particle-laden flow and not of the
background. Furthermore, it is desirable to determine the
motion of the particle-laden flow independently of the
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Figure 4. Feedback control algorithm for approaching particle-laden
flow, determining flow direction, and immersing UAV within particle-
laden flow for optimal particle sampling.

apparent motion induced by the UAV or camera gimbal. We
use k-means clustering to segment the optical flow results to
accomplish both tasks. The bounding box information helps to
disambiguate the foreground (i.e., particle-laden flow) from
the background. The following approach was taken to
compensate for the UAV or camera gimbal motion. First, the
segmented particle-laden flow pixels were masked out (Fig.
3d), and the hole that was left was filled using a Navier-Stokes-
based inpainting (i.e., interpolation) scheme in OpenCV that
enforces a smoothness constraint. To minimize computational
cost, the flow array was downscaled and then upscaled 4x
before and after inpainting, respectively. The inpainted values
were then subtracted from the originally computed flow values
in a pixel-wise fashion to obtain a pixel-wise segmented
motion for the particle-laden flow in a quasi-global
framework, as depicted in Fig. 3e. Since this flow analysis was
to be used to determine a setpoint velocity for the UAV, the
segmented flow was averaged to obtain a single 2D output
vector.

C. Feedback control

With these key components in place, a specific feedback
control loop was designed for the case of a smoke plume flow
scenario (Fig. 4). In such a scenario, the UAV will search for
smoke and initially approach it from the side. The approach is
controlled by minimizing the bounding box offset from the
image center and maximizing the bounding box size, using
both linear velocity and yaw control on the UAV, as well as
gimbal pitch and yaw setpoints. Feedback control is
implemented in these cases using proportional feedback,
which was found to be sufficient for successful execution in
this application.

The altitude is kept constant during the approach phase. As
depicted in Fig. 4, if smoke is detected in the image, and the
gimbal is pitched level (i.e., visibility is straight ahead), the
UAYV will continue to move directly towards the target. This
continues until, as the UAV begins to pass over the top of the
target, the gimbal will pitch downward in order to keep the
target centered in its view. If the UAV is too low in altitude,
however, and the bounding box achieves a size greater than
80% of either image dimension while the gimbal is still pitched
level, the flight controller is told to raise its altitude by several
meters and continue. This procedure loops until the UAV is at
a high enough altitude to be able to approach the target from
directly above. Once the gimbal is pitched downward beyond
a threshold, the UAV is determined to be above the target and
in an optimal position to perform flow diagnostics.

At this point, the UAV velocity is set to zero (remaining in
loitering mode), pitches the gimbal completely downward, and
begins to analyze the smoke with optical flow. This “flow
survey” period continues until sufficient samples of the
particle-laden flow motion are collected to determine a
meaningful average, as the smoke motion may fluctuate due to
turbulence in the atmosphere. From this top-down view, the
UAY begins a steady descent into the smoke plume towards a
setpoint altitude such that the UAV, and the onboard DIH
sensor, will be immersed in the smoke plume.

During descent, the UAV’s lateral velocity is controlled
with the bounding box information to ensure that it descends
precisely into the center of the plume. If smoke is no longer
visible in the image (e.g., due to UAV being too close to the
smoke), the descent is maintained straight downward. Once
immersed in the smoke at the setpoint altitude, the UAV
begins to move laterally at the velocity determined by the
optical flow survey previously conducted when above the
smoke. The speed of motion is calibrated using the UAV
altitude from the survey. As the UAV moves laterally within
the smoke, PM in the plume are sampled using the DIH sensor,
detailed in the following section.

The code developed for this work can be accessed at
https://github.com/nbristow12/gaia-drone-control.git.

III. PARTICLE MEASUREMENT

Particle diagnostics are performed using digital inline
holography (DIH) integrated with a pumped impaction system
for sampling particles (Fig. 5a and b). Holographic imaging
relies on coherent light interfering with light that has scattered
off particles of interest, generating interference fringe patterns
such as those shown in Fig. 5c. These holograms can be
digitally reconstructed through convolution with the Rayleigh-
Sommerfeld diffraction kernel to obtain in-focus images (Fig.
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Figure 5. Sensor for particle diagnostics using digital inline
holography. (a) shows the internal structure of the enclosure, with
airflow direction indicated with yellow arrows, where air is pumped
in from the top. (b) depicts the optics of the lensless holographic
imaging (not to scale). (c—d) shows hologram examples obtained
from the sensor in (a—b) before and after focusing the image with
holographic reconstruction.

5d), with the advantage of a much larger possible depth of field
than traditional imaging.

A. Hardware design

The system herein is specifically designed to obtain high-
quality holograms with high throughput, capable of dealing
with UAV-induced vibrations while minimizing payload. The
hardware components include a 3D printed PLA enclosure, 3
W green LED and attached heatsink, a pinhole, a Raspberry Pi
HQ camera, and a 150 L/min miniature air pump. The lensless
Pi HQ camera features a Sony IMX477 sensor with a 1.55 um
pixel pitch and 4056 x 3040 pixel? resolution.

\

wind

50 m

The system operates by the pump, connected to the
enclosure from beneath, drawing outside air into the chamber
from two inlets at the top. These inlets are extended to draw in
air from above the rotors using semi-rigid rubber tubing. The
rotors on the UAV generate lift by pulling air downward
toward the sensor. This air is then channeled into the enclosure
by a pump.

Inside the enclosure, an impaction nozzle focuses the flow
of air and directs it toward the camera sensor. A gap of only 1
mm between the nozzle and the sensor allows the air to divert
sharply, causing any suspended particles, such as smoke soot,
to be deposited onto the sensor's surface. Particles are
illuminated with an LED that is butt-mounted to an ~100 um
diameter pinhole, as shown in Fig. 5b. As described by [24], a
large z1/z> ratio, where z; is the pinhole-to-sample distance and
zp is the sample-to-sensor distance, results in an effective
increase in the coherence of the LED light. More specifically,
each particle can be treated as scattering incoming light that
has passed through a pinhole, a factor of zi/z; smaller than the
physical pinhole. Thus, for our pinhole (diameter D = 100 um),
and for z; = 45 mm, z; = 0.7 mm, we have sufficient spatial
coherence to resolve d = D z1/z, = 1.55 pm features, equal to
the limiting pixel resolution. Furthermore, our use of a
partially coherent light source also helps suppress coherence
speckle noise, a common issue in laser-based holography
caused by cross interference. The most significant advantage,
however, is that the large size of the pinhole means that precise
alignment between the LED and the pinhole is unnecessary.
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Figure 6: Soot particles collected from smoke grenade residue
imaged with a) traditional brightfield microscope with 0.75 um/pix.
resolution, and b) similar particles from the same residue captured
and imaged by the DIH sensor.

smoke plume

Figure 7. (a) Map of experiment site at UMore Park in Rosemount, MN, with wind direction indicated with white arrow, red dot indicating
smoke source, and white filled contour depicting scale of smoke plume. (b) Photo of an experiment with UAV in flight above a smoke plume

from a grenade.



Therefore, the components are very lightweight (~100 g), and
the optics are not affected by UAV vibrations.

The design used herein increases particle throughput.
There is no limitation of capturing particles due to camera
shutter speed or exposure times. In fact, frame rates as low as
desired are possible, and long exposure times can be used,
which helps to compensate for the relatively low LED power
(compared to a laser). Particles of size ranging between 3 um
and up to 50 pm could be detected by the sensor after
impaction. The range of particle sizes captured by the impactor
can be adjusted by varying the flow rate, and thus impaction
speed, imposed by the pump. The imaging magnification can
likewise be adjusted by varying the imaging objective to
resolve particles ranging from 200 nm to a few millimeters in
size.

To illustrate the contrast between traditional imaging
methods and the specific sensor discussed in this context, Fig.
6 presents a comparison of particles imaged using a brightfield
microscope and those captured by the DIH sensor. Imaging
resolution for the brightfield microscope, at 0.75 pm/pixel,
was kept as similar as possible to that of the DIH sensor that
operates at a magnification ratio of 1.55 pm/pixel. As can be
seen by the results, the DIH sensor yields the same level of
detail in the particle images, without the need to manually
focus a microscope objective, and instead uses digital
reconstruction.

B. Image processing

Raw images are continuously captured during flight and
georeferenced and timestamped to be synchronized with the
machine vision camera. Processing of the holograms is
currently performed offline but has the potential to be
implemented using GPU acceleration for real-time analysis.
Hologram reconstruction is performed after cropping images
using a custom YOLOvVS5s model to provide bounding boxes
around particle fringe patterns. Particle holograms are then

brought into focus wusing the Rayleigh—Sommerfeld
convolution implemented as:
u,(x,y,2) (1
=FHFUCY)
exp(jkz k
xR e (167 + 1)
E(x,y,2z) = uy(x,y,2) X conj[u,(x,y,2)] (2)

where u,, is the complex optical field, I(x,y) is the original
hologram, A is wavelength (532 nm in this case), k is
wavenumber, z is the depth at which the image is
reconstructed, and E(x,y,z) is image reconstruction across
various depths z. If the particle distance from the image sensor
is unknown, E(x,y,z) can be evaluated to find the best
focusing depth for each particle. In the case herein, z can be
set to 720 um to obtain in-focus images as the particles are all
found at approximately the same distance from the sensor (i.e.,
on the coverglass).

The focused particle image is then segmented using k-
means. The segmented particle image can then be used to
compute various particle properties such as area, equivalent
diameter, eccentricity, and roundness.

Another issue that must be overcome with the current DIH
sensor is that particles accumulate on the sensor. To obtain
clean images containing only new holograms at each time step,
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Figure 8. Particle diagnostics data from the UAV-based DIH sensor.
(a) spatial map of particle concentration along the UAV sampling
path, with the source of smoke emission show in red and the inset
plots depicting reconstructed smoke particle holograms. (b)
concentration as a _function of distance from the source, with marker
color indicating mean equivalent diameter from each measurement
location. (c) probability density functions of eccentricity ana
roundness for all particles sampled.

frame subtraction is used. At each pixel, the intensity from the
previous image is removed, and then the grayscale value is
adjusted.

IV. EXPERIMENTS

The measurement system was tested at the University of
Minnesota Outreach, Research, and Education (UMore) Park,
on an agricultural field, as shown in Fig. 7. Smoke plumes
were created with a combination of a smoke generator and
white smoke grenades, typically using 3 grenades together for
each run, an example of which is shown in Fig. 7b. The smoke
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Figure 9: Particle diagnostics data from the UAV-based DIH sensor during autonomous flight, showing a spatial map of particle
concentration along the UAV sampling path, moving along heading determined by optical flow. Data are combined from three autonomous

sampling sequences for the same smoke plume.

generator enables a large enough plume to be created, while
the smoke grenades seed the plume with soot particles. This
combination is needed as the smoke generator produces only
droplets, and does not create particulate matter needed to test
the DIH sensor. Each grenade is capable of providing
approximately 5 minutes of smoke emission. This duration is
sufficient to test the capability of the autonomous flight mode,
as the plumes created could grow up to 50-75 m long,
depending on the wind speed, and the UAV’s region of
influence was observed to be confined within a few meters
directly below the UAV.

Examples of the particle diagnostics possible with the
UAV-based measurement system are shown in Fig. 8. In the
dataset shown here, the UAV was intentionally flown
manually back and forth within the plume in order to provide
a baseline of the DIH sensor capabilities during flight. A 3D
map of the sampling data can be seen in Fig. 8a, where colors
indicate particle concentration, and the inset images display
examples of holograms captured. These results show the
expected trend that particle concentration is highest nearest the
source and reduces as the particle-laden flow disperses
downwind. Furthermore, the results shown in the inset images
of Fig. 8a exemplify the level of detail afforded by DIH
measurements, which is not possible with other PM sensors.
Fig. 8b plots the same data as a function of distance from the
source, with colors indicating the equivalent particle diameter
(calculated as the (44/m)"?, where A4 is the area of the
segmented particle image). These results demonstrate the
heterogeneity in particle size that can be captured. Lastly, Fig.
8c shows the probability density functions of eccentricity and
roundness for all particles captured.

Additional experiments were then performed using
autonomous UAYV flight, an example dataset is shown in Fig.
9. Three different trajectories indicate the autonomous flight
paths determined by the UAV’s image diagnostics during
repeated runs analyzing the same smoke plume. Data shown
are from the phase of the UAV flight after the UAV has
autonomously found the plume, after which it descends into
the plume and samples particulate matter with the DIH sensor.
A video illustrating one such run from the UAV viewpoint, as
well as an alternative view from the side, is provided in the
Supplemental Materials.

Throughout the conducted experiments, although only a
limited subset is presented here, the UAV consistently
succeeded in detecting the smoke plume and accurately
determining the direction of the airflow through optical flow
analysis. Due to the relatively small size of the smoke plume
and rapid shifts in wind direction, fluctuations in the DIH
sampling can be observed, as the UAV samples from regions
of varying concentration within the smoke plume. It is
important to note that these challenges are expected to be less
pronounced when dealing with larger smoke plumes, as the
effects of small-scale turbulence are unlikely to entirely
disrupt the flow of smoke. In such cases, the smoke flow is
expected to exhibit a more stable behavior.

V. CONCLUSIONS

By combining holographic imaging with UAV technology
and machine learning-accelerated computer vision, we have
demonstrated an intelligent measurement apparatus that can
provide unique measurements not possible with any other
system. While the demonstrations shown herein have involved
smoke plumes, this is merely an example of the capabilities of
autonomous UAV-based digital inline holography (DIH). The
current system could also be easily modified to be applied to
additional interesting cases, such as particulate matter from
volcanic eruptions or dust clouds. Volcanic PM would be a
particularly unique demonstration as the dangerous conditions
surrounding a volcanic eruption necessitate the use of robots
for in situ measurement, which has been used for monitoring
gas emissions [25]. In the absence of UAV-based
measurement, immobile ground stations or satellite
measurements must be depended upon [26].

The ability of a DIH sensor to measure detailed particle
characteristics raises the interesting possibility of also
measuring microbes in smoke from natural wildfires. Recent
work by [10] has shown that wildfires contain a substantial
number of viable cells, compared to the ambient air, which
they determine largely through laboratory processing of
samples collected on a UAV. Using DIH, it is reasonable that
a system like ours could analyze cells in sifu, thus providing
more precise georeferenced data.

An additional aspect of the system worth discussing is the
potential influence of the UAV rotor wash on particle



diagnostics. The flow induced by the quadcopter itself is
capable of altering local flow conditions within a few meters,
increasing turbulent mixing of the particle-laden flow.
However, the scale of these motions induced by the UAV, of
the order 10°-10' m, is much smaller than the scale of the
particle-laden flow itself, which for phenomena such as
plumes from wildfires or volcanic eruptions is typically of the
order 10° m, multiple orders of magnitude greater. Thus, it is
unlikely for the UAV to notably influence the particle-laden
flow at these large scales over which the UAV is going to be
traversing and measuring trends. Instead, the downward
laminar flow above the UAV rotors, where the air intake for
the DIH sensor is located, is more likely to aid the sensor in
capturing more particles.

It should also be noted that the same sensor can be used for
particles other than the test case herein of smoke particulate
matter, such as liquid droplets. The primary limitation is for
larger sizes of particles, which may have too much inertia to
be drawn into the sensor by the pump. However, given that the
primary purpose of this measurement apparatus is for small
particles or droplets suspended in the air (e.g., acrosols), this
is not expected to be an important factor.

Although the present system is implemented as a single
UAV operating on its own, it is possible to implement
numerous UAVs with such sensors onboard in a swarm for
more detailed and intelligent measurement capabilities. For
example, upon determining the flow direction, a UAV swarm
could align itself along the streamwise direction of the flow
within the plume to instantaneously measure large-scale
spatial gradients in particle characteristics rather than
traversing across the entire flow. Furthermore, multiple UAVs
could cover a larger domain than a single one could on its own.

The testing conducted herein was limited to relatively
small smoke plumes and a single UAV. This system, and
extensions of it using a UAV swarm, will be implemented in
the future with large-scale prescribed burns to test the system's
capabilities at full scale and demonstrate its capabilities to end
users in the firefighting community who model and combat
wildfires.
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