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Dielectric laser accelerators (DLAs) are fundamentally based on the interaction of
photons with free electrons, where energy and momentum conservation are satisfied
by mediation of a nanostructure. In this scheme, the photonic nanostructure induces
near-fields which transfer energy from the photon to the electron, similar to the
inverse-Smith–Purcell effect described in metallic gratings. This, in turn, may provide
ground-breaking applications, as it is a technology promising to miniaturize particle
accelerators down to the chip scale. This fundamental interaction can also be used
to study and demonstrate quantum photon-electron phenomena. The spontaneous and
stimulated Smith–Purcell effect and the photon-induced near-field electron-microscopy
(PINEM) effect have evolved to be a fruitful ground for observing quantum effects. In
particular, the energy spectrum of the free electron has been shown to have discrete
energy peaks, spaced with the interacting photon energy. This energy spectrum is corre-
lated to the photon statistics and number of photon exchanges that took place during the
interaction. We give an overview of DLA and PINEM physics with a focus on electron
phase-space manipulation. © 2022 Optica Publishing Group
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1. INTRODUCTION

Dielectric laser accelerators (DLAs) are a highly promising technology that could be
used to miniaturize particle accelerators down to the chip-scale. The usage of dielectric
structures allows the application of at least an order of magnitude larger optical electric
fields onto the photonic nanostructures as compared with the traditional, metallic,
radio frequency (RF) acceleration cavities. Further, modern rugged and power-efficient
ultrafast lasers are poised to induce these high fields, and have additional advantages
over RF technology, including high repetition rates, femtosecond temporal period,
and minimal jitter, because the electron emission and subsequent manipulation can
be governed by the same laser. Recently, an on-chip electron accelerating structure
completely integrated with laser grating couplers was demonstrated [1]. The structure,
a product of the inverse design approach in nanophotonics [2], is the first major
demonstration using guided- rather than free-space laser illumination.

In 2018, a record 1.8 GeV/m peak acceleration gradient was demonstrated in a DLA
structure [3]. At 850 MeV/m average gradient, this is more than 30 times larger than
the gradients used today in conventional RF accelerating cavities. However, until
recently, DLA structures have been limited in acceleration length, for a fundamentally
critical reason: even the best accelerator requires collimation forces. This is because
Earnshaw’s theorem forbids constant focusing forces in all three spatial directions
from being exerted at the same time [4], and as a consequence of the Lorentz force,
when accelerating particles, these would also diverge (defocus) spatially, only to
eventually crash into the physical boundaries of the structure [5]. To circumvent
this effect, the laser-induced acceleration forces can be periodically modulated to
achieve collimation and acceleration simultaneously, as discussed in Section 3.1.
Such manipulations can be nicely illustrated in phase space using classical mechanics,
which is at the core of accelerator physics theory. Only recently, the complex phase-
space manipulation of electrons with the help of optical fields was experimentally
demonstrated using specially designed alternating-phase focusing (APF) nanophotonic
structures [6]. There, a sub-relativistic electron beam was actively confined in a channel
just 225 nm wide but roughly 80 µm long: on-chip, demonstrating the potential to
extend DLAs into millimeter-length structures, and beyond.

When considering DLAs for extended on-chip accelerators, the concept of controlled
phase-space manipulation is indispensable. As explained in detail in Section 3, the elec-
tron pulse’s phase space can then be shaped by (1) designing the photonic nanostructure
or (2) engineering the incident laser pulse.
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In the case of structure design, attosecond micro-pulses, or bunch trains, were gen-
erated simply by adding a drift space following an accelerating stage [7,8]. In these
examples, expanded on in Sections 3.2–3.4, the shortest electron bunch length of 270
as was experimentally shown.

When using two lasers to drive the DLA structure, the relative phase between them
can be tuned to switch between inducing primarily energy modulation (acceleration)
and additionally skewing the beam transversely (deflection) [9]. In a more rigorous
formulation, different modes of operation were classified in phase space for this case
[10], as is derived in Section 2. This kind of phase-space control is envisaged not only
to compress electron pulses but also to introduce more complex manipulations [11].
Furthermore, the laser pulse itself can also be engineered to manipulate the electron
beam in phase space, as described in Section 3.5, using both (linear) DLA schemes as
well as ponderomotive schemes (quadratic in the field).

In the future, these tiny accelerators are projected to serve as compact radiation
sources and localized medical irradiation devices, among other applications [12–14].
In particular, we consider here the prospects of using DLA for teraelectronvolt-scale
colliders [15] in Section 1.3. We point the interested reader to previously extensive
review papers on DLAs in Refs. [13,14].

Section 4 is devoted to a comprehensive tutorial and review of recent research in
the quantum nature of DLAs. A revolution in light and free electron experiments
originated from the work of Zewail and Thomas [16], who combined the outstanding
electron beam quality of a transmission electron microscope (TEM), its dedicated
high-resolution energy spectrometer, and ultrashort laser pulses. Exciting a sample
with laser pulses, this kind of laser pump–electron probe experimental scheme enabled
the unprecedented ability to observe ultrashort processes in matter with sub-nanometer
resolution [17]. It was only natural to extend control of the experimental system and
create on-demand ultrashort electron pulses by exciting the electron emitter with an
ultraviolet ultrashort pulse. This, in effect, is identical to the DLA scheme: using lasers
to manipulate a free electron wave packet, and its energy spectrum, in particular.

From the viewpoint of quantum science, this, in turn, promoted the emergence of
photon-induced near-field electron microscopy (PINEM) in 2009 [18], which is essen-
tially the demonstration of quantized energy transitions of an electron wave packet
by absorption and emission of photons. The relevant theory and its relation to DLA
is elaborated on in Section 4.1. Although seminal experiments were mostly done in
TEMs [19–24], PINEM physics was recently also demonstrated in a scanning elec-
tron microscope (SEM) [25], which is expected to begin a new trend of research into
cascaded photon–electron multi-site interaction. Tens, hundreds, and even thousands
of independent interaction sites would be the basis for manipulation of free-electron
quantum bits and quantum computing [26], for example, which is derived in Section
4.2. The idea of using the energy spectrum of free electrons as quantum information
(bits) carriers is intriguing, because quantum bits are traditionally considered in bulk
materials or gases, where the energy levels of bound electrons are practically limited.
Conversely, free electrons have practically unlimited equally spaced discrete energy
levels, as was recently observed in a quantum DLA experiment with several thousand
discrete energy peaks [27], which are accessible in ultrashort time scales.

1.1. Nanostructure-Mediated Electron–Photon Interaction
SEMs and TEMs are popular instruments for electron–photon experiments in academic
institution. In the context of this review, these machines are adapted to have optical
viewports with access to the electron emitter, usually a sharp metallic tip, see Fig. 1.
An ultrafast laser system is then configured to emit two phase-locked short pulses: an
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Figure 1
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General schematic of the experimental setup for exploring nanostructure-mediated
electron–photon interaction. An ultraviolet pulse excites an electron pulse that, fol-
lowing free space propagation, interacts with the evanescent fields generated by a
second IR pulse and the nanostructure. The spectrum of the electron pulse can then
be analyzed using an electron spectrometer.

ultraviolet pulse (purple), which excites the electron emitter and generates an electron
pulse, and an infrared (IR) pulse (red), which is timed to intercept the electron pulse
as it traverses in or very close to a nanostructure (see the inset), such that the generated
nearfields can mediate the energy exchange between the electrons and photons. In
the inset of Fig. 1, three nanostructures are shown, from left to right: a metallic
needle tip, which has often been used in PINEM experiments (Sections 4.1 and 4.2),
a simple grating as usually described for Smith–Purcell (SP; see Section 4.3), and a
dual-pillar design for a DLA (Sections 2 and 3). The initial electron wave packet prior
to interaction (green Gaussian shape, top) is then modulated (green peaks, bottom),
and measured with an electron spectrometer downstream.

In the configuration shown in Fig. 1, the ultraviolet pulse would have its polariza-
tion aligned with the axis of the electron tip emitter, such that the electrical field
can efficiently emit electrons from the emitter and toward the first electrostatic
acceleration stage inside the electron microscope column. The benefits of using a com-
mercial column are in its industry standard, optimized electron-optical components:
lenses, stigmators, deflectors, and in advanced machines also aberration correctors
and monochromators, all very stable and easy to operate. For more details on ultrafast
electron microscopes, the reader may resort to Refs. [28,29].

At the nanostructure and to impart energy onto the electrons along the propagation
direction, the IR laser polarization is set along the electron propagation direction (“z”
in Fig. 1), such that the component of the electrical field is parallel. For an efficient
interaction, phase-matched structures are preferred. In a simple periodic structure,
significant (over ∼5%) energy gain is not expected, unlike in tapered structures [30].
Still, acceleration can be measured: the design of a periodic subwavelength grating
structure would have a period that, upon spectral decomposition, matches the phase
velocity of its first order with the velocity of the electron. In recent years, most of
the effort toward demonstrating electron acceleration has been made by using the
dual-pillar accelerator structures, which are covered in the next section.

1.2. Silicon Dual-Pillar Accelerator Ddevices
Dual-pillar structures are pairs of pillars, arranged in a generally periodic colonnade
where the electron beam passes through its center, as shown in Fig. 2. They were
first proposed by Palmer [31] for laser-driven accelerators in the 1980’s. They have a
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Figure 2
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Three popular options of driving a dual-pillar acceleration structure. Blue, dual-pillar
colonnade. Green, distributed Bragg mirror. (a) Dual-sided illumination, (b) single-
sided driving, and (c) top illumination. Electron and laser propagation direction as
well as laser polarization are indicated in each image.

number of advantages for building tunable accelerator structures because they can be
driven by multiple lasers both in-plane [32] and out-of-plane [33], to tailor the optical
mode inside the device and to account for fabrication imperfections. This enables a
single device to operate as an accelerating, focusing, or bunching stage, or be used
for beam steering and streaking [8,9,34]. In particular, Fig. 2(a) depicts the classical
dual-sided illumination configuration, with the dual-pillar colonnade colored in blue.
The electron pulse is directed through the colonnade and between the pairs of pillars.
The laser polarization and hence the direction of the electric field component is along
the “z” longitudinal direction (parallel double-sided black arrows) [32]. This setup has
the advantage of potentially perfect symmetry, both of the lasers and geometry, and
the ability to dynamically control the electron’s phase space, as shown in Section 2.1.
Practically, the spatiotemporal alignment and calibration of the system is challenging.
Figure 2(b) includes a distributed Bragg mirror (green plates),which imitates dual-
sided illumination. This geometry ameliorates the difficulty in the dual-sided laser
illumination setup, where only one laser is required to drive the structure [35]. However,
including the mirror as part of the subwavelength nanostructure means long designs
are more sensitive to fabrication errors. Figure 2(c) shows a dual-pillar structure
illuminated from the top. Although experimentally this structure has shown a slightly
lower acceleration gradient than the other two, the great advantage of it is in the ease
of the experimental procedure, and, it allows multiple colonnades to be driven equally
and concurrently [33].

Silicon is an attractive material for fabricating dual-pillar structures because of the
relative ease of device fabrication, its reasonable laser damage threshold, and electrical
and thermal conductivity. In addition, due to the high refractive index of silicon at IR
wavelengths, dual-pillar devices can work effectively from electron velocities ranging
from β<0.25 all the way to relativistic energies in a single architecture [36].

For many of the early demonstration experiments, in-plane illumination with lasers
from each side was used as shown in Fig. 2(a). By using dual-pillar gratings with
a relatively high reflectivity, the optical mode from each side could be tailored for
tunability. Similarly, if a dual-pillar design was intended for single sided drive, the
drive side and opposite side of the device could be tailored appropriately for a specific
mode profile [32,37]. A typical device designed for subrelativistic electrons at 96 keV
or β = 0.54 may have a pillar width of 825 nm in the z (grating periodic) direction, a
thickness of 600 nm in the y direction, a periodicity of 1060 nm, an electron channel
gap of 400 nm, and a height of 2.8 µm for a drive wavelength of 1960 nm. These
devices can produce hyperbolic cosine accelerator modes, hyperbolic sine deflection
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modes, and skew modes with correlated acceleration and deflection, as described in
Section 2.1, depending on the relative phase of the drive laser from each side.

Dual-pillar silicon devices have been demonstrated at wavelengths ranging from the
near-infrared (NIR) at 870 nm [32] to the mid-IR at 1980 nm [9]. Longer-wavelength
drive lasers allow the dual-pillar device to scale accordingly, resulting in larger struc-
tures that are easier to inject into and have larger acceleration buckets. Owing to
the indirect bandgap of silicon, NIR wavelengths only experience a small amount of
absorption in the dual-pillar structures and hence do not see a large laser damage
threshold reduction compared to longer wavelengths. Most recent experiments have
been carried out at Tm:fiber compatible wavelengths of 1940–1980 nm, which enables
device channels nearly twice the size of NIR wavelengths, and enables better fabrica-
tion accuracy as well. Moving forward, telecom wavelengths in the 1550 nm band offer
a number of advantages, especially as devices become more integrated with on-chip
waveguide power delivery. It is advantageous to use laser wavelengths below 2050
nm to facilitate laser alignment in free-space via one- or two-photon absorption in
silicon-based microscopes. At laser repetition rates of 100 kHz and up, there is a loose
correlation between having thicker pillars and a higher laser damage threshold in the
2 µm range. Typical silicon dual-pillar devices damage at laser fluences of 10 mJ/cm2,
which corresponds to incident laser fields of 600 MeV/m for 220 fs pulses. At 96keV
beam energy, a silicon dual-pillar device with a channel width of λ0/5, λ0 being the
laser’s central wavelength, will be able to provide maximum channel center gradients
of up to 180 MeV/m with 220 fs drive pulses. This maximum gradient increases with
the electron energy and with smaller channel widths.

Various experiments were performed to increase the robustness of dual-pillar devices
through the use of hydrogen annealing to improve surface roughness and the use
of additional surface coatings of Silicon Nitride and other materials to improve the
device performance at its laser damage threshold [38]. These treatments were able to
yield small but consistent improvements in device performance. Additional photonic
elements such as Bragg reflectors can also be incorporated into dual-pillar devices for
specific purposes, such as symmetrizing the device fields from one-sided drive laser
[37]. In addition, dual pillars can be arrayed into parallel accelerator channels [39] for
charge scaling.

1.3. On-Chip Integration and Prospects of a Teraelectronvolt-Range Energy Collider
A future DLA-based linear collider, schematically illustrated in Fig. 3, will require the
development of high-gradient accelerator structures as well as suitable diagnostics and
beam manipulation techniques, including compatible small-footprint deflectors, focus-
ing elements, and beam position monitors. Key developments in these areas have been
made within the last 5 years, including the demonstration of high average gradients
(300–850 MeV/m), axial fields up to 1.8 GV/m, speed-of-light synchronous acceler-
ation in laser-driven dielectric microstructures [3,40,41], non-relativistic acceleration
with gradients up to 350 MV/m [32,42], and development of preliminary design con-
cepts for compatible photonic components and power distribution networks [30,43].
The power distribution scheme is then envisioned as a fiber-to-chip coupler that brings
a pulse from an external fiber laser onto the integrated chip, distributes it between
multiple structures via on-chip waveguide power splitters, and then recombines the
spent laser pulse and extracts it from the chip via a mirror-image fiber output coupler
[44], after which the power is either dumped, or for optimal efficiency, recycled [45].
For long structures, multiple fiber-to-chip couplers will be required. Maintaining phase
synchronicity of the laser pulse and the accelerated electrons between many separately
fed structures could be accomplished by fabricating the requisite phase delays into the
lengths of the waveguide feeds and employing the use of active feedback systems.
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Figure 3

Conceptual schematic of a 30 TeV DLA e+e– collider driven by a phase-locked network
of energy-efficient solid-state fiber lasers at 20 MHz repetition rate. Laser power is
distributed by photonic waveguides to a sequence of dielectric accelerating, focusing,
and steering elements co-fabricated on 6-inch wafers which are aligned and stabilized
using mechanical and thermal active feedback systems. England et al., “Considerations
for a TeV collider based on dielectric laser accelerators,” J. Instrum. 17, P05012
(2022), doi:10.1088/1748-0221/17/05/P05012 [15]. © IOP Publishing Ltd and Sissa
Medialab. Reproduced with permission. All rights reserved.

A major challenge of DLA is scaling up the interaction length between the driving
laser and the electron beam, which is limited by both the beam dynamics and the
laser delivery system. A promising solution is to use integrated optics platforms, built
with precise nanofabrication, to provide controlled laser power delivery to the DLA;
this would further eliminate many free-space optical components, which are bulky,
expensive, and sensitive to alignment. The laser control mechanisms may additionally
be implemented on-chip, which will add to the compactness and robustness of the
device and allow for precise implementation of laser-driven focusing schemes.

A system for laser coupling to DLA was recently proposed in Ref. [43], in which the
laser beam is first coupled into a single dielectric waveguide on the chip and then
split several times to spread over the accelerator structure. Here, waveguide bends are
designed to implement an on-chip pulse-front tilt (PFT), which delays the incident
laser energy to arrive at the accelerator structure at the same time as the moving
electron beam [46–48]. Although this work provides a way to achieving interaction
lengths on the 100 µm to 1 mm scale, the power splitting approach has the disadvantage
of concentrating the optical power at a single-input facet. For longer length structures,
requiring more splits, the input facet becomes a bottleneck for damage and nonlinear
effects, and future versions of DLA using integrated optical power delivery systems
would ideally have “one-to-many” coupling mechanisms where a single laser beam is
directly coupled into several waveguides, eliminating this bottleneck. One approach
to this kind of coupling uses a large array of grating couplers on the surface of the
chip, each supplying power to an individual waveguide [49], as shown in Fig. 4(b).
Theoretical studies of grating couplers, combined with inverse design optimization
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Figure 4

(a) DLA power distribution network concept proposed in Ref. [43] using dielectric
waveguides to split and delay a single input pulse to the accelerator structure. Figure 1
reprinted with permission from Hughes et al., Phys. Rev. Appl. 9, 054017 (2018), Ref.
[43]. Copyright 2018 by the American Physical Society. (b) Schematic of a proposed
waveguide-fed DLA designed for long interaction length (not to scale). Figure 1
reprinted with permission from Hughes et al., Phys. Rev. Appl. 11, 64014 (2019), Ref.
[49]. Copyright 2019 by the American Physical Society.

have shown that coupling efficiencies close to 100% may be possible [50]. With areas
of several square micrometers having been demonstrated for grating couplers, several
thousand may fit on a square millimeter area, which may easily be aligned with a
free-space laser source.

To increase the robustness of the DLA coupling, an integrated mesh of Mach-Zehnder
interferometers (MZIs) could be fabricated onto the chip. These MZIs have been
experimentally demonstrated and act as tunable beam splitters that may share power
between waveguides as controlled by integrated optical phase shifters [51]. Initial
simulations suggest that for a 250 fs pulse, up to 10 MZIs can be accommodated,
which would roughly correspond to being able to share power between 10 adjacent
waveguides and should be sufficient for the purposes of DLA. Phase control may
be accomplished by thermal or electro-optic phase shifters integrated into the final
waveguide sections. Either the electron beam signal or the light scattered out-of-plane
may be used as a diagnostic tool for sequentially optimizing the phase shifters. These
phase shifters may also be used to implement laser-driven focusing schemes, such as
ponderomotive focusing [52] or APF [53], which have shown significant promise for
DLA in recent simulation studies [5,54]. Thus, integrated optical phase control gives
a path forward for combined acceleration and focusing of the electron beam.

The group delay necessary for matching the arrival of each pulse to the moving
electron bunch can be implemented by designing the fixed waveguide geometry, such
as the bends described in Ref. [43], in combination with subwavelength gratings [55]
embedded in the waveguides. With bend radii as low as 50 µm, it is possible to
get close to 100% transmission through the bends [43]. Additional stages may be
necessary for compensating dispersion encountered in the waveguides. This will be
especially important for longer structures. Previous simulations [43] have shown that
these effects will occur at around 1 cm waveguide lengths when using weakly-guided
silicon nitride waveguides. An attractive option is to engineer this dispersion to avoid
damage and nonlinearities, by sending in an initially chirped and broadened pulse,
providing recompression closer to the accelerator.

The coupling from waveguide to several DLA periods may be accomplished with
an inverse taper on the waveguide. Alternatively, the DLA structures may be etched
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directly into the waveguide, such as in a buried grating [56]. This method is currently
being tested experimentally. It was shown in Ref. [43] that a moderate amount of
resonance may be beneficial for enhancing the electric fields in the accelerator gap
and avoiding the damage and nonlinear constraints in the waveguides. Thus, a quality
factor of about 10 may be useful to design into the DLA structures either by inverse
design using the adjoint method [57] or by defining dielectric mirrors surrounding the
DLA structures. The entire structure may either be driven symmetrically on each side
or a dielectric mirror may be used to reflect the incoming light from one side of the
device, as discussed in Section 1.2.

As the acceleration process of DLA is optical field driven, the optical phase must be
well controlled. Poor synchronization would result in either a decrease of efficiency,
electron energy spreading, or defocusing. Frequency comb technologies can detect
and control both the phase and repetition rate of the delivered pulses. Because the
electrons in a DLA will be optically compressed to form microbunches less than one
optical cycle in duration and separated by a single laser wavelength, this requires
sub-cycle stabilization of the absolute frequency and relative phase of each pulse.

1.4. Recent Experimental DLA Literature: a Comparison
In 1987, Mizuno et al. [58] used a 496 µm sub-millimeter wave laser to demonstrate the
inverse SP effect on a metallic grating, by measuring a 5 eV increase in the full width
at half maximum (FWHM) of a 80 keV electron beam. However, only in 2013, with
the first experimental demonstrations of acceleration using dielectric structures, did
the practical potential of using grating accelerators become apparent. Table 1 includes
DLA experiments published in peer-reviewed journals, performed since then. When
looking at the entries on this table, it is important to note that we quote the average
gradient over the interaction length. As the relative phase between the electrons and
the laser can vary over this distance, this can be significantly smaller than the peak
accelerating gradient (defined as the maximum energy gain over a period of the
structure). For example, in the UCLA experiments [3], 850 MV/m was the gradient
observed over 21 µm effective interaction length as limited by the non-linear phase
chirp induced by Kerr effects, but the peak accelerating gradients in the structure
were larger than 1.8 GeV/m. It is worthwhile to point out for the sake of comparison
here that in the literature of most accelerating schemes (RF, plasma-based, inverse
free-electron laser (IFEL), and others), the peak accelerating gradient is typically
quoted.

Since the seminal 2013 publications, four record average acceleration gradients have
been measured: In the subrelativistic, SEM energies (up to 30 keV) regime, Kozák et
al. [59] used a short single-side grating (only three periods) and an ultrafast few-cycle
laser pulse of 20 fs to reach an average acceleration gradient of 170 MeV/m using a 30.7
keV electron beam. The combination of a short number of periods avoided dephasing,
whereas the few-cycle laser pulse allowed for a much higher damage threshold. In
the subrelativistic, TEM-energies (up to 300 keV), Leedle et al. [32] used a dual-
pillar structure and reached an average acceleration gradient of 376 MeV/m using a
96.3 keV electron beam. The dual-pillar structure has the advantage of enabling a
symmetric field profile in the channel at no cost to the fabrication process, assuming
it is driven symmetrically from both sides. In the mildly relativistic regime, Cesar et
al. [3] used a double-grating structure and measured an average acceleration gradient
of 850 MeV/m, as mentioned previously. Although double-gratings are challenging to
mechanically align one to the other and require compensation to the nonlinear optical
effects of the lasers propagating through the bulk, this work boasts the largest gradients
measured so far to the best of the authors’ knowledge. Lastly, in the relativistic regime,
Peralta et al. [40] measured an average acceleration gradient of 310 MeV/m using a
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60 MeV beam. This experiment paved the way to dielectric laser acceleration in the
relativistic regime, surpassing the RF-based cavities’ highest average gradients of by
6-10 times.

We note that, in a recent publication [6], the authors state that “To our knowledge,
the longest DLA structure hitherto used for subrelativistic electrons was 13.2 µm
long.” This rather narrow claim is inaccurate at best. It is our hope that the following
information in Table 1 is a more complete list of existing experimental literature.

2. CLASSICAL THEORY OF DLA

The formulation of DLA interactions begins with the electromagnetic fields in the
nanophotonic structure. The fields can be calculated by assuming an incident plane
wave impinging on a thin phase-only sub-wavelength diffraction grating, which is
periodic along the electron propagation axis. They can then be expanded in a Fourier
series, where the first coefficient or spatial harmonic is designed to predominantly
contribute to the electron’s energy modulation. As the interaction relies on evanescent
fields, and as such is only meaningful in a transverse aperture smaller than the decay
of these fields, the aperture is usually designed to be about one-tenth of the incident
wavelength. For a 2 µm laser, this amounts to roughly 200 nm, and consequently
any transverse, off-axis deviation in position or velocity, and hence contribution of
transverse forces to the energy gain of the particles can be neglected.

Although it may be intuitively reasonable to begin analyzing the force on a charged
point-particle propagating in the channel with the Lorentz force, utilizing instead the
rich toolset of accelerator physics theory, the usual treatment starts with the energy
gained by the particle over Λ, the length of one unit cell [70], as shown in Fig. 2(a).
It is also convenient to convert time to position by assuming a reference particle
propagating with constant velocity βc in the lab frame, such that its position along z is
z = βct, with β the velocity normalized to the speed of light c. Then, the energy gain
of any particle that is a distance s behind the reference particle is mainly affected by
the z-component of the electric field:

∆W(x, y; s) = q Re
⎧⎪⎪⎨⎪⎪⎩

Λ/2∫
−Λ/2

Ez(x, y, z)eiω(z+s)/βcdz
⎫⎪⎪⎬⎪⎪⎭ , (1)

where Ez(x, y, z) is the complex amplitude of the electric field, separating the harmonic
carrier dependence eiωt of frequencyω at time t = (z + s)/βc. Owing to the periodicity
of the grating Λ along z, we can express the field in a Fourier series,

Ez(x, y, z) =
∞∑︂

m=−∞
e m(x, y)e−im2πz/Λ, (2)

where the series field coefficients are found to be,

e m(x, y) =
1
Λ

Λ/2∫
−Λ/2

Ez(x, y, z)eim2πz/Λdz. (3)

We can now calculate the energy gain in terms of the spatial harmonics by inserting
Eq. (2) into Eq. (1) and rearranging:

∆W(x, y; s) = q Re
⎧⎪⎪⎨⎪⎪⎩eiωs/βc

∞∑︂
m=−∞

e m(x, y)
Λ/2∫

−Λ/2

e−iz
(︂
ω
βc−

2πm
Λ

)︂
dz
⎫⎪⎪⎬⎪⎪⎭ . (4)
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Relating the frequency to wavelength, ω = 2πc/λ, we find that the oscillatory integral
is non-zero only when the synchronicity condition, which resembles the Widerøe
condition in accelerator physics, is satisfied:

Λ = mβλ. (5)

The energy gain per particle in one structure period due to spatial harmonic m is then
given by

∆W(x, y; s) =
∞∑︂

m=−∞
qΛ|e m(x, y)| cos

(︃
2π
βλ

s + φm(x, y)
)︃

, (6)

in which we have expressed the field coefficients in phasor form, e m = |e m |e
+iϕm . It is

interesting to note that the spatial harmonic m would be equal to the number of buckets
per grating period, or areas of stable dynamics in phase space, which can be used for
acceleration [70].

As stated previously, we most usually aim to use the first spatial harmonic, where all
others are generally negligible in comparison. In such a case, we arrive at the final
approximation using m = 1,

∆W(x, y; s) ≈ qΛ|e 1 | cos
(︃
2π
βλ

s + φ1

)︃
. (7)

We remind the reader that the particle discussed so far was defined to be at a distance
s behind the (arbitrary) reference particle. We now designate this particle as the
synchronous particle, its phase the argument of the cosine, φs = 2πs/βλ + φ1, which
can be chosen arbitrarily in each period by engineering the structure (φ1). From this
definition, and considering the phase interval [0, 2π], the maximum energy gain and
loss would occur at φs = 0 and φs = π, respectively, whereas no energy is gained at
φs = π/2 and φs = 3π/2. The latter, in particular, provides two stable buckets suitable
for transport of particles [5,6].

Knowing the energy gain, we can now proceed to determine the momentum differential
∆ps along the longitudinal direction, or the particle trajectory s. This assumes that in
one structure period Λ, the velocity change of the particle is small and the rigid beam
approximation, meaning that the particle does not change its trajectory, is made. Then,
we can use the Panofsky–Wenzel theorem to relate the longitudinal momentum to the
transverse one [71], which would give us the prerequisites to describe the particle
dynamics.

The Panofsky–Wenzel theorem was published in 1953 in the context of wake-fields
in accelerators. However, it is quite general, and assumes only the rigid beam
approximation and that the impulse of the particle in question is of key interest,
with constant velocity. The theorem states that when considering the Lorentz force
F⃗ = q(E⃗ + cβ⃗ × B⃗) and the associated impulse along a rigid path

∆p⃗(x, y; s) =
∞∫

−∞

dt F⃗(x, y, s = −z + βct; t), (8)

the curl of this impulse is zero, assuming the magnetic field decays to zero at the
boundaries. When considering periodic conditions, then in one such DLA period, the
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magnetic field is equal at the boundaries, and we can also conclude that

−→
∇′ × ∆p⃗(x, y; s) =

T/2∫
−T/2

dt [∇⃗ × F⃗(x, y,−z + βct; t)]

= −q
T/2∫

−T/2

dt
d
dt

B⃗(x, y,−z + βct; t)

= −qB⃗(x, y,−z + βct; t)|T/2
−T/2 = 0. (9)

In the latter, ∇⃗ ≡ (∂x, ∂y, ∂z), and following the transformation z = −s + βct,
−→
∇′ ≡

(∂x, ∂y,−∂s), and T is the time the electron requires to traverse a unit cell of period Λ.
A proof can be shown to use a couple of vector identities and the Maxwell equations
[72,73]. In one period of our structure, we call ∆p⃗ the kick such that when taking its
cross product ŝ × (

−→
∇′ × ∆p⃗(x, y; s)) = 0, we find a relation between the longitudinal and

transverse kicks, namely that ∇⃗xy∆ps = −∂∆p⃗xy/∂s. From the fundamental definition
of work, we can write ∆W = βc ∆ps and assuming the synchronicity condition is
satisfied (Eq. (5)), we can use Eq. (4) and conclude that,

∆p⃗xy(x, y; s) = − ∫ ∇⃗xy∆psds =
qΛ
ω

∞∑︂
m=−∞

Im{eiωs/βc ∇⃗xye m(x, y)}. (10)

With this result, we now have the full information on both transverse and longitudinal
momenta, and energy change, imparted onto the particle using a laser field modulated
by a periodic nanostructure. One can use these to devise a quasi-analytic particle
tracking and beam dynamics code, which can be utilized to optimize DLA structures
[54,70].

2.1. Dual-Pillar Optical Modes
In this section, we follow the derivation from Ref. [10]; for consistency, the constants
in Table 2 and definitions are kept.

Figure 5 shows a typical operating mode for a dual-pillar device driven by two normally
incident lasers in the y–z device plane. Following Ref. [10], we consider the case of a
device that is invariant in the x-dimension, and thus only analyze the 2D case described
by a transverse magnetic mode Hx and transverse electric mode Ex. Three-dimensional
effects are ignored for the current discussion, but are important for practical accelerator
structures, especially as the accelerator length increases. We examine the case of the

Table 2. Constants and Their Definitions for This Section

q Electron charge
ω Laser angular frequency
k0 Laser wave vector in vacuum
λ Laser wavelength
Λ Grating periodicity
β Normalized electron speed v/c
kz Bloch wave vector associated with grating phase advance per period
kn nth Fourier wave vector of periodic field in grating
Γn Grating fields transverse wave vector
ϵn Complex field strength of nth Fourier harmonic
rn Complex geometry factor related to transmissivity of grating in nth harmonic
αn Phase of nth harmonic relative to electron
θ Relative phase of counter-propagating drive lasers



Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 877

Figure 5

Electron bunch traveling along z through a dual-grating DLA structure. The grating
has periodicity Λ in the propagation direction and is assumed to be invariant in x. Two
lasers of equal amplitude with relative phase θ are normally incident on the grating
structure, with wave vectors ±k0ŷ. A reference particle enters the structure traveling
with speed βc at some injection phase α relative to the laser field and experiences a
force given by Eq. (22). Figure 1 reprinted with permission from Black et al., Phys.
Rev. Accel. Beams 23, 114001 (2020), Ref. [10]. Copyright 2020 by the American
Physical Society.

transverse magnetic mode for an accelerator device with time harmonic fields at
angular frequency ω:

H(r, t) = H(r)e−iωt. (11)

The transverse magnetic mode must satisfy the wave equation with periodic boundary
conditions according to the Floquet–Bloch theorem because the DLA device has
periodicity Λ in the z direction,

∇ ×

(︃
1
ϵ(r)

∇ × H
)︃
= µ0ω

2H, (12)

H(r) = Hp(r)eikzz, Hp(r + Λẑ) = Hp(r), (13)

where the periodic mode Hp(r) can then be expanded into a Fourier series with
kn = 2πn/Λ

Hp(r) =
∞∑︂

n=−∞
hn(x, y)eiknz. (14)

Ignoring the x dependence of the magnetic field yields the transverse magnetic mode
of the DLA device:

Hx =
∑︂

n
H(n)

x =

∞∑︂
n=−∞

hn(y)ei(kn+kz)z. (15)

Next, we set kz = 0 for normal laser incidence onto the structure. We can describe
the transverse dependence of the nth harmonic of the fields in the accelerator channel
by the transverse complex wave vector Γn, resulting in a hyperbolic cosine and sine
component of the device fields. Assuming a rigid beam and the paraxial approximation,
the Lorentz force on the electron beam propagating as z ≈ βct + z0, z0 related to the
injection phase, in the device can be described by

F = ℜ{[E(r) + βcẑ × B(r)]e−iωt}, (16)

F = ℜ{F̃}. (17)
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Averaging the Lorentz force the electron experiences over a propagation distance L
results in

F̄n = qϵnei k0z0
β

⎡⎢⎢⎢⎢⎣
0

ξn(a−
n cosh(Γny) + a+n sinh(Γny))

i(a+n cosh(Γny) + a−
n sinh(Γny))

⎤⎥⎥⎥⎥⎦ ×
1
L

L
2∫

− L
2

ei
(︂
kn−

k0
β

)︂
zdz (18)

with
a±

n=(1 ∓ rn)
eiθ ± 1

2
, (19)

ξn = (kn − k0β)/Γn, (20)

k2
n − Γ

2
n = k2

0. (21)

The geometry factor rn in Eqs. (14) and (15) describes the transmissivity of the specific
periodic nanophotonic architecture and any Fabry–Pérot effects into a single complex
amplitude and phase. Here rn classifies the possible DLA modes between hyperbolic
cosine, hyperbolic sine, skew modes, or elliptical modes with relative phase θ between
the incident plane wave from each side.

In these terms, the synchronicity condition (Eq. (5)) may also be written as β = k0/kn,
and for a particle propagating at z = βct + z0 that satisfies it, the particle is “stationary”
with respect to the synchronized wave. We then can define the “electron injection
phase” αn = k0z0/β + ϕϵn for ϵn = |ϵn |eiφϵn and rewrite the average Lorentz force as
follows:

F̄n = q|ϵn |eiαn

⎡⎢⎢⎢⎢⎣
0

1
γ
(a−

n cosh(Γny) + a+n sinh(Γny))
i(a+n cosh(Γny) + a−

n sinh(Γny))

⎤⎥⎥⎥⎥⎦ . (22)

Finally, the momentum kick over a single DLA period due to the nth harmonic on a
rigid, phase-matched beam can be computed as

∆p⃗n ≈

Λ∫
0

dz
βc

ℜ
{︁
F̄n

}︁
=
Λ

βc
ℜ

{︁
F̄n

}︁
(23)

or
∆pn,⊥ = ℜ

{︃
q|ϵn |Λ
γβc

eiαn(a−
n cosh(Γny) + a+n sinh(Γny))

}︃
(24)

∆pn,∥ = ℜ

{︃
q|ϵn |Λ
βc

ieiαn(a+n cosh(Γny) + a−
n sinh(Γny))

}︃
. (25)

This defines the phase-space mode in the dual-pillar device, which can be cosh, sinh,
skewed, or elliptical in nature classified by rn, as illustrated in Fig. 6 and exemplified
in experimental form in Fig. 7.

3. PHASE-SPACE CONTROL OF DLA

A systematic study of accelerator physics is based on Hamiltonian mechanics, where
the concept of phase space is principal to predict, describe, and optimize the electron
interaction with the accelerator device. Also in DLA, this approach was embraced
and is the basis of different methods to control and manipulate the electron beam,
and is in fact essential to successfully accelerate electrons to high energy with ever
more complex schemes. Some required building blocks to achieve this are discussed:
in Section 3.1 we explain how to transport electron beams through the nanophotonic
structures; in Section 3.2 we describe how to transform an electron pulse into a train of
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Figure 6

Plot of the phase space (∆p⊥, ∆p∥) for the three classes of modes. The (normalized)
momentum kicks plotted here are for the n = 1 component of the momentum kicks
for an on-axis particle (y = 0). γ is set to 1 for convenience. As α varies from 0 to
2π, it traces out ellipses in (∆p⊥, ∆p∥) space. Values of rn corresponding to the three
mode classes are then chosen, and θ is varied from 0 to 2π for each mode. Linear
skew modes are represented by the rotated line (solid black) with r1 = 0.1. The upright
ellipse (dashed blue) has r1 = e2i. The general ellipse (dashed red) has r1 = 0.7ei. The
principal cosh and sinh modes occur when θ = 0 or π, respectively. All other θ values
produce skew modes. Figure 2 reprinted with permission from Black et al., Phys. Rev.
Accel. Beams 23, 114001 (2020), Ref. [10]. Copyright 2020 by the American Physical
Society.

attosecond bunches; Section 3.3 augments on the latter and describes a more complex
structure able to provide an attosecond and down toward zeptosecond bunch train
with much lower energy spread; a theoretical proposal on the compression of a large
fraction of an electron pulse is discussed in Section 3.4; finally, the soft-tuning of
phase-space dynamics, using laser pulse modulation, is elaborated on in Section 3.5.

3.1. Beam Transport Using APF
So far, we have treated electron beams in periodic (but finite-length) dual-pillar struc-
tures with the natural goal of high acceleration gradients. However, we have also
learned from the Lorentz force and the Panofsky–Wenzel theorem that when acceler-
ating the beam (longitudinal force), deflection (a transverse force) is inevitable. These
deflections are related to the strong optical fields, usually between 1 and 10 GV/m,
and as such cannot be compensated for by conventional electron-optical elements,
such as solenoids, quadrupoles, einzel lenses, and similar devices. It is clear that to
accelerate over long distances, a scheme must be devised to confine the beam inside
the nanostructure, otherwise, sooner rather than later, all electrons would be lost by
impact onto the structure.

In fact, the most plausible solution is to involve the laser itself, by modulating the laser
pulse, for example, using ponderomotive schemes as proposed by Naranjo et al. [52]
and discussed in Section 3.5. Alternatively, one could modulate the nanostructure,
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Figure 7

(a) Symmetric cosh mode produced with dual drive. (b) Linear skew mode produced
with dual drive. (c) General elliptical mode produced with single-side drive. Adapted
from Ref. [10].

Figure 8

10 μm

Example of an APF electron beam transport structure. The pillar colonnade is separated
into periodic sections, or macro-cells, which alternate between the effective focusing
and defocusing forces applied by the nanostructure to electrons traveling inside. The
five gaps separating the macro-cells are easily discernible. When optimized, this
ensures maximal transmission of electrons to long distances. In this example, a Bragg
mirror is situated behind the pillar colonnade so that single-sided illumination suffices,
and the whole structure is placed on a pedestal (mesa) to provide clearance for both
the electron and laser beams.

for example, using the APF scheme [5,74]. In the latter, when implemented using the
dual-pillar design, a section of several longitudinally adjacent dual pillars is defined as
a “macro-cell” and these macro-cells are quasi-periodically separated by a gap so as to
superimpose two quasi-periodicities: the dual-pillar periodicity (tapered throughout
the structure to accommodate the increasing electron velocity); and the APF macro-
cell periodicity (also tapered). The gaps between each macro-cell and the next (see
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Figure 9

Fz

φ−φs

Fx
(x<0)

φs=3π/2

φs=π/2

Longitudinal (Fz) and transverse (Fx) forces acting on an a particle of phase φ relative
to the (locally) synchronous phase φs, in an APF transport structure, for a particle
slightly off the electron optical axis toward negative x (meaning that the particle is
even driven further away from the axis in the left part of the figure, and toward the
axis in the right part of the figure, as indicated). Two stable points, where no energy is
gained (see Section 2), exist at π/2 and 3π/2, where the forces act in a complementary
fashion, either focusing-debunching or defocusing-bunching the electrons around each
point. In the experimental structure of Fig. 8 and by virtue of the gaps, at every half
of an APF period, the synchronous phase if flipped and the actions are reversed to
provide stable transport along the structure.

Fig. 8) are designed to apply a phase shift to the effective near-field forces acting on the
propagating electron pulse, such that the transverse defocusing forces become focus-
ing, and vice versa. The link between transverse and longitudinal momentum changes
described in the introduction to Section 2 is also relevant here: when transverse focus-
ing forces are acting on the particles, longitudinal defocusing (debunching) forces
lengthen the electron bunch. The inverse analog is also true: transverse defocusing
forces are coupled with longitudinal focusing (bunching) forces. Owing to the period-
icity of the electric field of the narrowband laser (treated as a sine wave), this behavior
happens concurrently and in a complementary fashion around two points (or “syn-
chronous phases”) in one APF period: if a continuous stream of electrons is injected
into an APF structure, such that in one laser cycle all phases are sampled, around one
such synchronous phase the electrons would be focusing transversely and debunching
longitudinally, whereas electrons near the complementary synchronous phase would
defocus transversely and bunch longitudinally (see Fig. 9). Denoting the synchronous
phase as φs, the effect of the gap between macro-cells manifests as the switching of the
effective forces that an electron of some phase φ experiences; denoting the transverse
force as Fx and the longitudinal force as Fz, we can write an expression for these forces
[6]:

Fx =
qc
βγ

Cc
1
γ

sinh(kxx) sin(φ −φs),

Fz =
qc
βγ

Cc cosh(kxx) cos(φ −φs), (26)

where Cc is a constant dependent on the structure design and laser and kx is the laser
wave number of the DLA structure.

Prior to the rather complex, full integration of APF with an accelerating structure, a
milestone demonstration of electron transport on chip, using APF but without acceler-
ation, was measured in experiment [6,68]. In this case, the two stable points are at the
nodes of the longitudinal force Fz in Fig. 9, and as such provide two complementary



882 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

regions, or buckets, for transport: in each region, electrons orbit these points in when
described in phase space. Although the average electron energy remains unchanged,
the prolonged APF action does result in slight bunching of the electron pulse, which
is advantageous as discussed in Section 3.2.

In experiment, the behavior of the electrons inside the nanostructure cannot be probed,
simply owing to the structure dimensions and inability to access the electrons while
they are transported within. However, the transmitted current through the structure
can be measured with different field excitations, by tuning the laser power. Without
laser irradiation, the natural divergence of the electron beam implies some amount of
current will be lost, depending on the structure length. This “laser off” measurement is
normalized to unity. The current is measured relative to this laser-off current, defining
the contrast. Then, increasing the laser peak field, we expect the contrast to increase
because the optical fields can confine the electrons inside the structure. After a certain
optimal peak field, where maximum transmission is achieved, the contrast would
begin dropping because the optical forces become overly strong and deflect some of
the electrons to impact with the pillars. Eventually, if the peak field is set to be too
strong, electrons will be actively lost. Owing to the damage threshold of the silicon
structures used in that experiment [6], the full behavior could not be measured with
the optimized structure (Fig. 10(a)). Therefore, a second “over-focusing” structure
was fabricated and measured (Fig. 10(c)). There, the structure did not provide optimal
transmission (contrast less than 1.4), but the remainder of the expected transmission
curve is readily measurable.

It is important to point out that due to the finiteness of the APF structure, this effect
of increased transmission and then a drop due to too-strong optical forces can also
occur simply due to variable focusing of the electron beam: when increasing the laser
power, electrons focus similar to the action of a lens, and following an aperture (which
the long structure effectively creates), a similar transmission curve may be measured.
However, in such a case, a definite signature in the energy spectrum would be visible,
as discussed thoroughly in Ref. [68]: although in the APF structure the average energy
remains constant and the energy distribution remains small, in a structure where
the APF effect is not acting ideally, higher-energy electrons would survive and the
measured energy width can increase by a large amount.

In the previous discussion, we treated the vertical (out-of-plane) direction as invariant.
Indeed, as DLA structures become longer, the variability of the laser field in this
direction becomes important, because the electrons still diverge in this direction and
begin to experience different field strengths. One proposed solution would be to use a
complex silicon-on-insulator dual-pillar structure, which could provide confinement
in the vertical direction, so an extension of the APF principle to three dimensions
[75]. Based on this idea, a scalable design has also been proposed theoretically [76].
Alternatively, confinement is also sought after using a top-illumination scheme [33],
which may simplify the route to 3D confinement by keeping the same fabrication
recipes that are followed today.

3.2. Ballistic Bunching Down Toward Zeptosecond Bunches
Bunching, i.e., the process of longitudinal compression of electrons, is an impor-
tant technique for running an efficient accelerator, because only a certain portion of
phase space can be accelerated. Furthermore, it can boost the signal-to-noise ratios
and improve the temporal resolution in experiments and enable new experiments in
ultrafast diffraction [77–79] and ultrafast electron microscopy [29,80–82]. The tem-
poral resolution of laser-triggered electron sources is usually limited by the temporal
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Figure 10

Normalized current or contrast through APF nanophotonic structures as function
of the peak optical field. Red points, experimental data; blue curve, particle tracking
simulation results. (a) Current increases from 1 (laser off) with increasing field strength
up to a maximum value of 2.67± 0.05. (b) Time delay scan between electron and laser
pulses of the spectrally resolved current at 669 MV m−1 ± 70 MV m−1. Clearly, the
largest current is observed for maximum temporal overlap (zero time delay). (c) As in
(a) but now for the over-focusing structure. Over-focusing sets in for fields larger than
300 MV m−1. The current drops to below 1 for fields larger than 550 MV m−1. (d)
Same as in (b) for the over-focusing structure at 732 MV m−1 ± 76 MV m−1. Now, the
largest electron loss happens at maximum overlap. Adapted from Ref. [6].

duration of the electron-releasing laser pulses and subsequent dispersive broadening
of the electron pulses. Typical electron pulse durations at the sample have been in
the range of 30 fs to 1 ps in experiments not working with actively bunched electron
beams [28,29,77–83].

Different schemes can decrease the electron pulse duration via bunching. Here we
discuss ballistic bunching [7,8]. As opposed to, for example, adiabatic bunching, that
can happen in a suitably designed accelerator structure when the electrons settle into
a bucket, ballistic bunching uses the dispersion of the electrons, either from speed
differences in subrelativistic electrons or path length differences in a magnetic chicane
for relativistic electrons, to achieve the longitudinal density modulation. Here we only
examine the subrelativistic case in detail, and follow Ref. [7].

Figure 11 shows an experiment that has demonstrated ballistic microbunching with
DLAs. An energy modulation ∆E is imprinted on the electrons in a sinusoidal
fashion, due to the nature of the driving field, in a dual-pillar DLA structure.
As electron sources typically deliver electron pulses of several tens to hundreds
of femtoseconds, which is equivalent to at least a few optical cycles of the driv-
ing laser field, the bunching happens for each optical cycle individually, hence the
term microbunching. The overall bunch of electrons is microbunched, however, the
interaction is the same, and therefore we primarily discuss one individual bunching
event.
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Figure 11
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(a) Sketch of the experimental setup with modulator and an experiment. (b) Sketch of
the evolution of the electron pulse duration. A relatively broad electron pulse is energy
modulated in the first DLA structure. (c) Sketch of the phase-space evolution during
the electron drift. The vertical axis denotes the energy of the electrons plotted over
one cycle. Following a drift section, the faster, higher-energy electrons catch up with
the slower electrons, forming the micro-bunched pulse train. Adapted from Ref. [7].

As depicted in Fig. 12, the initial sinusoidal energy modulation leads to a shearing
motion in phase space during the drift in vacuum that follows the initial modulation.
This happens, as mentioned previously, due to the different velocities of the electrons
with different energies. The shearing reaches a point, where the highest longitudinal
electron density is reached (Fig. 12(c)). We call this point the longitudinal focus.
Any experimental interaction relying on very short electron pulses has to be placed
precisely at this position because the shearing in phase space continues after the focal
point, resulting in an increase of pulse duration.

This is visualized in Fig. 12 where simulations show the electron density profile in
front (Figs. 12(a) and 12(b)), close to (Fig. 12(c)), and behind the longitudinal focal
point (Figs. 12(d)–12(f)). The same effect can be seen in Fig. 13, where by increasing
the optical power supplied to the modulator structure, the focal length is decreased,
analogous to an optical lens where the radius of curvature is increased.

To design and optimize a DLA bunching stage, various parameters must be considered,
and for the best-case scenario the system has to be simulated with methods such as
finite difference time domain FDTD to calculate the electromagnetic field distribution
inside the DLA structure and particle-tracking software to account for the electron
motion through those fields. However, a simplified calculation in phase space can
give quite a few insights into a ballistic buncher. For simplicity we assume that
the interaction is linear, without higher-order effects, so only one spatial mode of
the driving field contributes to the energy modulation of the electrons, and that the
electrons are not dephasing. This guarantees that the energy modulation is purely
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Figure 12
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Electron density and phase space at the analyzer structure. Underbunching is visible
in the first two rows (a) and (b), where the temporal focus is not yet reached. Shortest
micropulses are shown in (c). Various degrees of over-bunching are displayed in the
last three rows (d)–(f). The second column shows the phase-space distribution of the
microbunches: the vertical axes represent the electrons’ energy. When the maximum
and minimum of the modulation coincide in time, the temporal focus is reached. After
that, the characteristic over-bunching shape is formed, when the high-energy electrons
have passed the slow electrons. Adapted from Ref. [7].

sinusoidal. The resulting energy spread

∆E = −qe1λgNsin
(︃
2π
T

t
)︃

, (27)
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Figure 13
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results, with a minimum of 125 as. Adapted from Ref. [7].

dependent on the injection time t, is then only dependent on e1, the peak electric field
of the accelerating mode, λg the structure period, the number of periods N, and the
temporal period of the sinusoidal modulation T (see Ref. [7] and the supplementary
material thereof). As here we describe ballistic bunching in the subrelativistic regime,
it is advantageous to rewrite the equation in terms of β, the speed of the particles
normalized to the speed of light, with ∆β(t) = ∆E(t)/mc2βγ3. To further simplify, we
only consider the linear region around t= 0, resulting in

∆β(t) = −qe1
2π
T

t
λgN

mc2βγ3 . (28)

As a first characteristic milestone, we calculate the longitudinal focal length L0. To do
so we first need the time it takes the electrons to reach the temporal focus. By utilizing
the distance of each electron to the temporal focus, ∆s(t) = t/Tλg, we arrive at

τ =
∆s

∆βc
=

λgβγ
3

2π
qe1λgNc

mc2 . (29)

Finally, multiplying this time by the electron velocity yields the longitudinal focal
length

L0 = βcτ =
λg

2π
β2γ3mc2

∆E
, (30)

with ∆E = e1λgN the width of the energy modulation.

From this, we can see that the position of the temporal focus is only dependent
on the initial electron velocity encoded in β and γ and the induced energy spread.
Higher energy spread means the temporal focus is reached earlier, because the velocity
differences are larger. Conversely, the temporal focal length increases for higher initial
particle velocities, because the relative velocity differences diminish.

The duration of the bunched electrons is now simply the difference in arrival time at
the temporal focus between the slowest and the fastest electron. The arrival time can
simply be stated as τ = L0

ve
. Therefore, the time difference is

∆τ =
L0

vmin
−

L0

vmax
= L0

δv
v2 = L0

δβc
β2c2 =

L0

cβ3γ3
δE
mc2 , (31)
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Figure 14
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(a) Histogram of a 7 as bunch. (b) Corresponding phase space with initial energy
spread of 0.5 eV. (c) Bunch histogram for an initial energy spread of 50 eV leading
to a bunch duration of 100 as. This exaggerated energy spread was chosen to more
easily visualize the dependence of the final bunchlength on the initial energy spread.
(d) Corresponding phase space shows the increased energy spread, which contributes
significantly to the increased microbunch duration after the phase-space rotation.
Adapted from Ref. [7].

where δβ = δE/mc2βγ3 is the velocity spread due to the initial energy distribution.
Substituting L0 into this equation, we finally arrive at

∆τ
T
=

1
2π

δE
∆E

, (32)

where T is the laser period, ∆τ is the FWHM of the microbunch, δE is the FWHM of
the initial energy spread, and ∆E is the peak value of the energy modulation.

We see that the bunch length decreases for increasing energy modulation and decreas-
ing period of the driving field. This is similar to an optical lens, where a more strongly
diffracting lens, i.e., a lens with a lower focal length or higher index of refraction,
focuses more tightly. We also deduce form this result that an initial energy spread
is detrimental for the bunch length. To visualize this phenomenon, we plot the phase
space and resulting longitudinal electron density for two different initial energy spreads
and otherwise identical conditions in Fig. 14.

The final phase-space area of the bunch is ∆E∆τ, which is equal to the initial phase-
space area δET divided by 2π. This means that the fraction of electrons that end up in
the bunch is 1/2π = 16%, which is the fraction of electrons that are linearly modulated
by the sinusoidal fields. A full in-depth discussion of two recent DLA microbunching
experiments can be found in Refs. [7,8].

3.3. Phase Manipulation for Low-Energy-Spread Microbunching
APF, as discussed previously in Section 3.1, can also be used when performing
microbunching experiments. This essentially allows sections of the DLA device to
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Figure 15

 

SEM image of the low-energy spread microbuncher, showing the drive laser configu-
ration. In contrast to the case of ballistic bunching discussed in Section 3.2, here the
APF section in stage 1 (denoted b–f) reduces the overall energy modulation. Figure
XX reprinted with permission from Niedermayer et al., Phys. Rev. Appl. 15, L021002
(2021) Ref. [67]. Copyright 2021 by the American Physical Society.

function as a modulator for microbunching, and a demodulator, which reduces the
energy spread of the beam while preserving the microbunch characteristics and trans-
versely focusing the electron beam. Such a modulation–demodulation scheme forms
the critical component of a DLA injector, allowing for a net shift of the beam energy
in a subsequent accelerator stage.

Multi-stage modulation–demodulation and net acceleration was demonstrated in Ref.
[67] using the device shown in Fig. 15. This experiment injected a 57 keV electron
beam into the hybrid two stage structure, illuminated by four drive laser beams similar
to Ref. [8]. In this case, however, the first stage consists of a modulation segment
(Figs. 15(a) and 15(b)), transport segment (Figs. 15(b)–15(f)), and demodulation
section (Figs. 15(f) and 15(g)). This scheme reduces the net energy spread coming out
of stage 1 from approximately 1 keV to 240 eV for a 35 µm bunching drift distance
to the second stage. The reduced energy spread improves the subsequent DLA stage
performance significantly, because the dispersive action on the electron microbunches
is smaller, and so they will propagate much farther before elongating, which in turn
makes it more suitable as a DLA injector stage.

Figure 16 shows the experimental results of the low energy spread microbuching
experiment; as can be seen, by controlling the injection phase into the 28 µm long
second stage, the overall beam energy can be shifted much more uniformly than in the
case of a simple buncher and accelerator [8]. The net energy gain in this experiment was
1.5 ± 0.1 keV with a FWHM energy spread of 0.88 keV for an average gradient of 56
MeV/m in the second stage. Note that the acceleration gradients in the microbunching
experiments are lower than in acceleration focused experiments, because the FWHM
laser pulse length was increased to 605 fs from 220 fs for more uniform laser fields over
the entire 730 fs electron pulse length (note also that the laser electric field FWHM is√

2 longer than the intensity FWHM).

3.4. Pulse Compression with Optical Beat Note
In addition to being able to microbunch electrons, optical waveforms in laser accelera-
tors can also be used for manipulation or compression on the picosecond timescale as
an alternative to using terahertz or RF radiation. RF compressors are difficult to syn-
chronize on the few femtosecond time scale, and generating terahertz waves typically
has very low efficiency and can be difficult to integrate into existing electron micro-
scopes. Using an all optical technique with readily available IR wavelengths could
make the few-femtosecond time scale much more accessible for electron diffraction
and other experiments.
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Figure 16
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Top: Spectral data as recorded on a microchannel plate detector for accelerating and
decelerating phases, as well as laser off conditions. Bottom: Integrated spectrum
showing a maximum energy gain of 1.5 ± 0.1 keV with a FWHM energy spread of
0.88 keV. Figure 3 reprinted with permission from Niedermayer et al., Phys. Rev. Appl.
15, L021002 (2021), Ref. [67]. Copyright 2021 by the American Physical Society.

Figure 17

Energy modulation of the optical beat note node. Drift trajectories of the orange
circled phases are indicated by the arrows. Pulse compression of the picosecond
bunch envelope occurs after a free space drift length. Adapted from Ref. [11].

Following Ref. [11], consider the case of using two optical pulses of different central
frequencies ω1 and ω2, ω1>ω2, where the energy modulation for phase-matched
electrons becomes ∆E(τ) = E1A1(τ)cos(ω1τ − ϕ1) + E2A2(τ)cos(ω2τ − ϕ2). If we set
the Gaussian pulse envelope A1(τ) = A2(τ) = A(τ) and set the phase difference ϕ1 −

ϕ2 = π, the energy modulation can be simplified to

∆E(τ) = 2EA(τ)sin
(︂ω1 − ω2

2
τ
)︂

cos
(︂ω1 + ω2

2
τ
)︂

, (33)

with a fast oscillating component and a slow oscillating component that leads to
compression near τ = 0.This is illustrated in Fig. 17. After modulation, those electron
phases circled in orange migrate toward the field node as it drifts to a second stage,
just like in other bunching schemes. After the proper drift distance, the (faster) phase
lagging microbunches have caught up with the (slower) phase leading microbunches,
leading to a bunched electron beam. All other phases wash out.
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Figure 18

Electron density distribution before (yellow) and after the compression with only
fundamental frequencies (blue) or the first four harmonics (red). Here ∆τ is the time
difference between an electron and the electron pulse center passing an observation
point. For normalization, the time integrated densities are kept the same. The inset
shows an enlarged view of the peak. Figure 3 reprinted with permission from Zhao et
al., Phys. Rev. Lett. 127, 164802 (2021), Ref. [11]. Copyright 2021 by the American
Physical Society.

Figure 18 shows an example simulated macrobunching experiment starting with a 1 ps
57 keV electron bunch modulated with E = 400 eV using 20 ps pulses at frequency-
corresponding wavelengths λ1 = 2240 nm and λ2 = 2245 nm. After a 45 mm drift
length, velocity bunching yields a 3 fs bunch containing about 3% of the electrons.
Adding additional driving harmonics can improve the macrobunching performance
of this type of scheme. Using four harmonics in the optical beat note waveform can
increase the bunched fraction from 3% to 21% [11]. Note that it is possible to achieve
similar results with other means of forming a node in an optical drive waveform. The
main disadvantage of this scheme is that it does not bunch the entire electron bunch,
but it does capture a larger fraction of electrons and provides shorter bunches than
single cycle mid-IR deflection schemes [84].

3.5. Soft Tuning of Phase-Space Dynamics
One of the main challenges in DLA is the relatively small size of the stable region in
phase space which strongly limits the amount of electron current/charge which can be
accelerated with this technology.

In the transverse direction, shrinking the accelerator dimensions implies that the
aperture to be cleared by the electrons is significantly smaller than in conventional
RF accelerators. Strong focusing forces must be applied to keep the particles confined
in micrometer-size gaps. The issue can be somewhat mitigated by considering slab-
symmetric structures, where the clearance in one of the transverse dimensions can be
kept much larger than the laser wavelength. Slab geometry allows for the use of flat
beams (having emittance ratio in the two planes much different than one). Flat beams
fit well the requirements of some DLA applications (i.e., linear colliders) [85]. At
the same time, many applications require round beams, and some structures cannot
be fabricated with very large aspect ratios. As discussed in Section 3.1, conventional
magnetic field-based systems are typically insufficient to provide the required focusing
strengths and a great deal of research has gone into figuring out how to take advantage
of the laser fields not just for acceleration, but also for controlling the transverse beam
dynamics [5,6].

In the longitudinal dimension, it is important to note that in a DLA structure essentially
only particles of a given energy can interact with the electromagnetic field. In fact,
prolonged interaction can only occur when the resonant or synchronicity condition
(Eq. (5)) is met, that is, when the particle longitudinal velocity is equal to the phase
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Figure 19

(a) Lumerical simulation comparison of the electric field profile of the illuminating
laser and the field in the channel demonstrating faithful reproduction (green and
purple curves). (b) PFT illumination scheme. (c) Principle of PFT-enabled phase-space
control.

velocity of the wave in the channel enabling phase-synchronous energy-exchange
between the laser and the charged particle. The relevant parameter setting the resonant
energy bandwidth of the accelerator (i.e., the maximum energy deviation from the
resonant condition for which there can still be significant DLA interaction), is the
normalized wave amplitude α = eE0/mcω [4]. The relative energy acceptance (i.e.,
energy bandwidth over resonant energy) is proportional to the square root of this
quantity, which is typically very small (10−5) for DLA, especially compared with
α ≈ 1 in conventional RF accelerators. Consequently, one has to carefully design
DLA structures to include focusing properties while at the same time be resonant with
(and efficiently accelerate) the target energy electron beam. Relatively sophisticated
structure engineering has been proposed to ensure that the field seen by the electrons
(phase and amplitude) optimizes the DLA acceleration process.

Notably, due to the low Q-factor of the dielectric structures used for DLA, the fields
in the electron beam channel are actually a faithful reproduction of the illuminating
laser pulses (see Fig. 19(a)), so that controlling phase and amplitude of the drive laser
actually offers an interesting alternative to soften the tight tolerance requirements on
structure fabrication and enable tuning of the accelerator characteristics without the
need to modify/refabricate the actual dielectric structure [86]. Thanks to the progress
in laser pulse manipulation and the development of technologies such as liquid crystal
masks and digital micromirror arrays, this tuning can occur online, on demand, and at
very high repetition rates (up to kilohertz), by simply modifying the mask applied to
the driving laser. We therefore term it soft-tuning, to contrast with the hardware-based
tuning of the accelerator which does require structure modification. The importance of
this is not to be underestimated and can be easily gauged by looking at the continuous
developments in low-level RF control systems which are routinely used in conventional
accelerator technology to manipulate quickly and nearly arbitrarily the characteristics
of the output beams (energy, current, size, etc.) [87].

3.5a. PFT Illumination
Although it is likely that in the future phase and amplitude control of the drive pulses
will be implemented using on-chip laser manipulation [1,43,88], the first exploratory
research can be carried out using free space coupling. In fact, PFT illumination in
combination with modern techniques for spatial control of the phase and amplitude of
a laser pulse allow for nearly arbitrary shaping of the field experienced by the electrons
in a DLA.

PFT is a standard laser manipulation technique which is used to increase the interaction
length in side-illuminated DLA geometries [28,46,89]. Effectively tilting the pulse
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front of the drive laser ensures that as the electrons travel into the structure they always
see an active region of the accelerator. Experimental demonstration of the concept
enabled the achievement of 300 keV record high energy gain in DLA extending the
interaction region to ∼700 µm. For relativistic beams, the PFT angle is nearly exactly
45° (see Fig. 19(b)), which can be easily obtained using a grating and imaging optics
with a proper magnification [90]. For non-relativistic beams, changing velocity in the
accelerator, the PFT geometry is more complicated as the angle has to vary along
the interaction giving rise to the requirement for a PFT banana shape still to be
demonstrated in practice.

PFT illumination can be easily coupled with standard methods for spatial light manip-
ulation such as digital micromirror devices or liquid crystal masks [91]. These can be
used to apply arbitrary phase/amplitude masks to the transverse profile of the laser
which the PFT converts into temporal modulation seen by the electrons. As masks can
be changed essentially online, such a system will allow to test and tune the DLA phase
spaces using a variety of beam dynamics control methods, including APF, pondero-
motive focusing or anything else in between. With a full control over the amplitude
and phase seen by the particles, the question becomes how to best optimize the drive
pulse.

We had discussed in Section 3.1 the principle of APF and its implementation by insert-
ing small drifts at proper locations along the DLA structure. In the soft-tuning scheme
using the PFT– spatial light modulator combination, there is a limit in implementing
APF due to how sharp each transition can be made, ultimately set by the pixel size
on the spatial light modulator and resolution of the imaging system that transports the
laser to the DLA structure. Depending on the optical magnification between the mask
and the accelerator (typically below 2 in order to satisfy the PFT angle requirements),
and considering a pixel pitch of 5 µm for the spatial light modulator, even for a nearly
perfect imaging system, we can estimate 10 µm as the typical length over which the
phase can be controlled. This will likely be too large for non-relativistic electron beam
manipulation, but might allow testing of this concept on relativistic beamlines [70].

An alternative scheme has been proposed by Naranjo et al. [52] and borrows from
the concept of second-order focusing in conventional RF structures [92]. If a super-
periodicity δk is added to the accelerating wave (the original plan proposed to hard-wire
this into the structure, but the PFT–LCM (liquid crystal modulator) combination can
be used to modulate the drive laser phase), using Floquet’s theorem the field can be
decomposed into spatial harmonics. Owing to the different phase velocities of these
harmonics, only one of these can be resonant (i.e., maintain a nearly constant phase)
with the electrons, whereas all the others will wash out over the beam as it propagates
in the DLA. The alternation of focusing and defocusing phases has a net focusing
effect which can be used to counteract the resonant defocusing force and maintain the
beam confined in the accelerating channel.

To simplify the discussion one can imagine the electrons to be moving in the field of
two waves, one with velocity βr, phase synchronous with the beam (which provides
stable longitudinal acceleration, but with a net defocusing effect), and the other at a
slower velocity β1 ≅ βr − δk/k where k is the wavenumber of the DLA structure. At
first order, the equations of motion for the electron deviation from the resonant energy
δγ and for its normalized transverse velocity y′ can be written as [52,93]

∂δγ

∂z
= −

E0

mc2 sin φ −
E1

mc2 sin(φ + δkz)

∂y′

∂z
=

E0

mc2
ky
γ3β2 cos φ −

E1

mc2
ky
γβ

(1 − ββ1) cos(φ + δkz). (34)
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Analyzing the solutions of the equation for transverse motion into a slowly varying
secular component and a fast oscillation, we can rewrite it for the slow drift motion
[94]:

∂y′

∂z
=

E0

mc2
ky
γ3β2 cos φ −

[︃
E1 cos φ

mc2
k
γβ

(1 − ββ1)

]︃2 y
2δk

2 (35)

and noting that the coefficient of the second term is negative for all phases, retrieve the
ponderomotive focusing effect [95]. The main drawback of the ponderomotive focus-
ing scheme (compared with the APF scheme discussed previously) is the significant
need for power in the non-resonant harmonic E1 to compensate the strong resonant
defocusing, so that the laser is not efficiently used to accelerate the particles (i.e., E0
is relatively small). An interesting advantage is due to the energy scaling of the pon-
deromotive focusing term (i.e. 1/γ2), which eventually, for ultrahigh electron energies,
dominates over the resonant defocusing term (1/γ3). This also results in a matched
beta function proportional to the beam energy, perfectly compensating the adiabatic
geometric emittance decrease to provide a constant spot size along the accelerator.

In addition, looking at the first line in Eq. (34), one can note that the non-resonant spa-
tial harmonics also contribute to the longitudinal phase-space evolution, but because
they do not maintain a constant phase relationship with the electrons they will simply
induce small-amplitude quivering in the beam’s longitudinal velocity, hopefully small
enough not to perturb the stability of the trapped region in the longitudinal phase
space. To ensure that the acceleration dynamics is not strongly affected by the other
spatial harmonics, one can use the Chirikov criterion [96], which states that in order to
avoid chaotic motion, the maximum height of the stable bucket in the un-normalized
longitudinal phase space δγ

γ
=
√︁

4β3γα needs to be smaller than the separation of the
other spatial harmonics’ accelerating buckets γ2β2δk/k. Thus, a compromise must be
found between the requirements of transverse stability (toward small δk/k) and those of
longitudinal stability (large δk/k). An example of the application of the ponderomotive
phase focusing principle is shown in Fig. 20. Here, the amplitude of the resonant and
non-resonant harmonics are optimized to transverse confine an electron beam which
is accelerated from 3.5 to 5 MeV in a 2-cm-long DLA structure.

3.5b. Trading Energy Gain Versus Transverse Acceptance
Another possibility opened by the use of a 2D liquid crystal mask is amplitude
modulation. Essentially, this is achieved by adding a tunable cylindrical lens in the
non-PFT axis (i.e., the axis orthogonal to the PFT manipulation), which can be used
to control the drive laser intensity along the direction of propagation of the electrons
in the DLA. Amplitude modulation is particularly useful to achieve strong bunching,
for example using a high-intensity region followed by a drift section. In combination
with phase modulation, it could also be exploited to fine tune the characteristics of
the output phase spaces, for example, allowing to trade energy gain and transverse
acceptance by simply adjusting the phase mask.

In the example shown in Fig. 21, a short bunching section is followed by a strongly
tapered DLA section where the resonant energy is increased from an input level of 6
MeV to a final output energy of nearly 20 MeV in just 2 cm. The phase modulation is
used to provide some transverse focusing, but the fraction of trapped particles remains
below 1%. As the technology has advanced to the level that 2D mask tuning can happen
online, it is envisioned that artificial intelligence-based numerical optimization might
be utilized to fine-tune all the accelerator parameters.

In conclusion, soft-tuning for DLAs is a very attractive technique to control the output
phase spaces of the beam from DLAs. In particular, until the time on-chip amplitude
and phase control will be available at the level required for high gradient acceleration,
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Figure 20

Simulation of the planned ponderomotive focusing and acceleration for 3.5 MeV
injection energy at the UCLA Pegasus Laboratory. In this example, most of the laser
power (peak field 2 GV/m) is in the non-resonant harmonic Eponderomotive and the
accelerating gradient (Egradient) is less than 150 MV/m. The super-periodicity (2π/δk=

300 µm) is added using a sinusoidal modulation (amplitude 0.18 rads) to the drive
laser phase (bottom left). The initial section with small modulation is used to bunch
the beam and optimize the fraction of particles trapped. Longitudinal and transverse
phase spaces at the end of 2 cm interaction are shown (top row). Adapted from Ref.
[97].

a PFT-based approach will allow to explore the various options and study the beam
dynamics in detail.

4. QUANTUM NATURE OF DLA

In this section, we investigate the quantum aspects in the process of free-electron
acceleration and modulation that arise due to the quantum wave nature of the electron.
For many years, electron acceleration was fully described by treating the electrons
classically, as point charges, despite it being well-known that an electron is not, in
fact, a point charge but a wave packet of finite size. Intriguing phenomena can be
observed when modulating the electron wave packet by interaction with nanostruc-
tures, with or without light. Accordingly, in Section 4.1 we discuss when is this the
wave packet description important in DLA experiments and the relation of DLA to
PINEM, along with experimental evidence of quantum features in these regimes.
Then, in Section 4.2 we discuss applications of these quantum phenomena, such as the
encoding of information onto free electron qubits, and the different quantum effects
that are involved. Finally, while the absorption of light that drives electron accelera-
tion in DLA is described as the inverse SP effect, Section 4.3 is dedicated to the SP
effect: spontaneous and stimulated emission of light, and the role of the electron wave
function in periodic structures.
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Figure 21

Simulation using SHARD [98] of mixed modality where amplitude shaping is used
to bunch the beam at the beginning of a high gradient acceleration section. The
ponderomotive and resonant harmonic have about the same power, and 14 MeV over
2 cm can be obtained in this scheme. The number of particles trapped transversely is
relatively small (< 1% trapped fraction).

4.1. The Quantum Electron Wave Packet in a DLA
Our goal for here is to identify the conditions under which a quantum picture can do
better to describe the DLA process. These conditions have to do with the time scale
of the electron wave packet and the cycle of the laser field.

4.1a. Time Scales in DLA Experiments
Using pulsed electron beams as the source for the dielectric laser acceleration process,
it is easy to experiment in the regime of a single electron per pulse. Surprisingly, even
the spectrum of a single electron can be stretched by such an interaction, namely part of
the electron is accelerated and part of it is decelerated, simultaneously. To understand
this phenomenon and accurately describe the interaction of a single electron with
the near-fields in a DLA structure, it is required to consider the underlying wave
nature of the electron, or in other words, we must consider the quantum description
of the electron as it is reflected in its wave function. Moreover, the measurement
of electron pulses with a high-resolution electron spectrometer unveils the quantum
nature of the interaction: the resulted electron spectrum consists of multiple peaks,
which correspond in a quantum picture to the exchange of even thousands of photons
with a single electron. Such observations were first demonstrated only recently in Ref.
[27], showing that the DLA interaction can be described with the same theory as
PINEM.

The PINEM approach first emerged as an experimental technique in 2009 [18] in a
study of the interaction of free-electron wave packets with optically excited nanotubes.
It exploits a modified version of a TEM, which was upgraded to have two optical ports
through which femtosecond pulses are coupled into the TEM, in what is now known
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Figure 22

a b

c

Experimental setup used for PINEM experiments. (a) Schematic of the ultrafast trans-
mission electron microscope (UTEM) used to conduct pump-probe experiments in
the PINEM technique. (b) Illustration of the wealth of possible investigated samples,
from biology to material engineering and physics. (c) Example of a recorded electron
energy spectrum after its interaction with the sample’s near-field, showing quantized
features that can be explained only by accounting for the electron wave nature. Panels
(a) and (b) are reprinted by permission from Nature: Wang et al., Nature 582, 50–54
(2020) [22], Copyright 2020 Nature. Panel (c) is Fig. 4 reprinted with permission
from Adiv et al., Phys. Rev. X 11, 041042 (2021), Ref. [27]. Copyright 2021 by the
American Physical Society.

as ultrafast TEM (UTEM). In the UTEM, an electron pulse is optically excited by
an ultraviolet laser pulse and interacts with an optical excitation that is driven by a
second laser pulse, in a pump-probe experiment, impinging on the studied sample
(e.g., nanowires, membranes, and DLA); see Fig. 22. In 2010, following the first
experimental demonstration of PINEM, two papers came out presenting its underlying
theory, by accounting for the electron wave function using the Schrödinger equation
[99,100].

To probe the regime where PINEM effects can be seen in pump-probe type experiments
(with DLA among them), we must consider the time scales in such experiments and
how they affect the results. There are four important time scales: (1) the total electron
pulse duration (τe

tot), which is composed of the coherent and incoherent durations; (2)
the coherent electron pulse duration (τe

coh), which is closely related to the coherence
duration of the excitation pulse responsible for the photo-emission; (3) the cycle of
the laser pulse (τl

cyc), which is equal to λ/c, where λ is the central wavelength of the
pulse and c is the speed of light; and (4) the laser pulse duration (τl

p). The relations
between these four time scales directly influence the characteristics of the electron
energy spectrum after the interaction and also determine whether the quantum nature
of the interaction can be seen (see also Fig. 23).

If the coherent electron pulse duration is much longer than the laser cycle, i.e., τe
coh ≫

τl
cyc, then the electron wave function extends over several cycles of the laser field
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Figure 23
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Relevant time scales in the interaction of free electrons with near-fields and their impli-
cations on the observed spectrum. (a) τe

tot>τ
l
p, (b) τe

tot ≈ τl
p, (c) τe

tot<τ
l
p. Four time scales

(three regimes of detected spectra) should be considered for predicting the resulting
electron energy spectrum. The necessary condition to observe PINEM phenomena
and probe the interaction’s quantized nature is to have the electron coherence duration
τe

coh much longer than the laser cycle duration τl
cyc. The characteristic shape of the

electron spectrum after the interaction is strongly dependent on the relation between
the total electron pulse duration and the laser pulse duration, as can be seen by the
three panels. In panels (a) and (b) the discrete peaks in the spectrum are not observed
due to insufficient detection resolution, but the condition of τe

coh ≫ τl
cyc is satisfied and

thus (unmeasurable) discrete peaks exist. See the text for more details. ZLP, zero-loss
peak. Top panels in (a) and (b) adapted from [27] and top panel in (c) adapted from
[40].

and can be simultaneously accelerated and decelerated in what appears as having
individual photons exchanged with the electron. Therefore, τe

coh ≫ τl
cyc is a necessary

condition for the PINEM interaction to occur. However, it is still not enough for it
to be observed in an experiment as the measurement device, for example an electron
spectrometer, needs to be sensitive enough to detect energy change as small as the
single-photon energy quanta.

The relation between the two remaining time scales, the total electron pulse duration
τe

tot and the laser pulse duration τl
p, determines the achievable temporal overlap between

the two, and directly influences the shape of the resulting electron spectrum. If τe
tot>τ

l
p,

then only part of the electron wave function interacts with the near-field, and different
parts of the same electron experience varying interaction strengths. The result would
be a significant peak at the initial energy of the electron coming from the fact that
most of the electron did not interact with the near-field and, hence, did not change
its energy (Fig. 23(a)). If τe

tot ≈ τl
p than most of the electron wave function interacts

with the field and the nominal, central energy peak would be suppressed (Fig. 23(b)).
Lastly, if τe

tot<τ
l
p, then the entire electron wave function can interact with a comparable

accelerator field amplitude, which give raise to a spectrum that is characterized by a
double-humped shape at the edges (Fig. 23(c)).
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To put the discussion in a wider context, let us consider the above time scales for
electron interactions with RF and microwave fields: For such cases, τe

tot ≪ τl
cyc, and

thus the entire electron is contained in a fraction of a single cycle of the field, and can
be considered as a point particle. This is why the classical picture is sufficient for most
purposes in traditional accelerator physics, and why in laser–electron interactions it
was necessary to extend the electron description into the quantum regime.

4.1b. PINEM
Prior to the introduction of PINEM as was discussed in the previous section, few stud-
ies dealt with the quantum description of free electron interaction with electromagnetic
fields [101]. A quantum theory of non-relativistic electron interaction with an elec-
tromagnetic wave in an infinite planar surface was introduced in 1971, discussing a
stimulated exchange of integer quanta of the wave energy between the electron and
the electromagnetic field [102]. In 1977, multiphoton emission and absorption by
electrons scattered from an optically excited gas of argon atoms was observed [103].
Other theoretical studies use the correspondence principle to explore the similarities
and differences between the classical and quantum descriptions of free electron radia-
tion in the context of inverse Bremsstrahlung radiation [104] and free-electron lasers
(FELs) [105,106]. Those studies can be considered as preliminary, unique cases of
what is conceived today as PINEM interaction.

Since the emergence of PINEM into the electron microscopy field [18,99,100], several
PINEM experiments were carried out, revealing the power of free electrons as probes
for different optical phenomena. Using the UTEM platform and the PINEM technique,
researchers were able to capture both the spatial distribution of standing plasmon waves
on nanowires and their quantized nature in the energy exchange with free electrons
[107]. PINEM was also used to demonstrate the “quantum walk” of free electrons in
momentum space as they interact with the near-field of a metallic tip [19].

PINEM experiments made continuous advances and entered different areas of free-
electron science, allowing the reconstruction and manipulation of the electron wave
function. Among them: quantum state tomography of free electrons [108], generation
of free electron attosecond pulses [79], attosecond coherent manipulation of the free
electron wave function [20], and the creation of electron vortex beams [109]. PINEM
physics was also recently demonstrated for the first time in a SEM [25].

In 2020, PINEM experiments were conducted for the first time in the scope of cavity
quantum electrodynamics, exploring the interaction of free electrons with a photonic
cavity mode. Wang et al. looked into the spatial distribution of light in a photonic
crystal, deduced the photonic mode lifetime and reconstructed the cavity band structure
[22]. Kfir et al. observed the interaction of free electrons with whispering gallery
modes generated in sphere-shaped micro-resonators, and measured the photonic mode
lifetime [23].

All of the above-mentioned experiments show great agreement with the conventional
theory of PINEM, as it first proposed in 2010 [99,100]. This theory is suitable for
interactions that are localized in space (up to a few micrometers) and, hence, relatively
short in time (few femtoseconds). However, this is not the case for DLA interactions
with typical length scales of dozens of micrometers. The first PINEM experiment to
sustain resonant, phase-matched long interaction of free electrons and near-fields was
presented in 2020 by Dahan et al. [21]: they maintained a resonant phase-matching
between the wave function of a free-electron pulse and an evanescent optical mode
over hundreds of micrometers. This phase-matching was shown to be the quantum
analog of the classical electron-light phase-matching used in DLAs, or synchronicity
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condition in accelerator physics. To theoretically describe their results, an extended
PINEM theory was developed to capture the effects associated with interaction of an
extended length and prolonged duration. This theory then successfully described the
first DLA–PINEM experiment [27].

The purpose of the PINEM theory is to describe the interaction of a free-electron
wave function with a classical electromagnetic field. Hence, its starting point is the
time-dependent Schrödinger equation, which takes the form[︄

(P̂ + qeA)
2

2me
− qeV

]︄
ψ = iℏ

∂ψ

∂t
, (36)

where P̂ = −iℏ∇ is the momentum operator, qe and me are the electron’s charge and
mass, respectively, A and V are the electromagnetic field vector and scalar potentials,
respectively, and ψ = ψ(r, t) is the electron wave function which depends on the spatial
position, r, and time, t.

PINEM has the following assumptions: (1) electron paraxiality neglecting transverse
dynamics of the wave function (i.e., the electron trajectory is constrained to a linear
axis which we denote by z); (2) negligible recoil by photon emission (i.e., the electron
momentum is much larger than that of the interacting photon); and (3) no pondero-
motive corrections (i.e., the field amplitude is small enough so that forces quadratic in
the field are smaller than the linear field effects). Under these assumptions, Eq. (36)
for an electron with a momentum of ℏk0ẑ reads[︃

U0 − ℏve

(︃
i
∂

∂z
+ k0

)︃
− i

qeve

ω
(Ẽze−iωt − Ẽ∗

z e
iωt)

]︃
ψ = iℏ

∂ψ

∂t
, (37)

where ve is the electron velocity and U0 is the initial electron energy. The electric
field’s projection along z in complex representation is written as Ez(r, t) = Ẽz(r, t)e−iωt,
whereas ω is the laser’s angular frequency and Ẽz is the complex field phasor. For
completeness, the physical field is equal to 2ℜ[Ez(r, t)]. Here we assume that e−iωt is
the time harmonic of the field, and any other time component within Ẽz(r, t) is much
slower than that.

At this point, we split the electron wave function using the slowly varying envelope
approximation into a product, ψ(r, t) = exp

[︂
i
(︂
k0z − U0

ℏ t
)︂]︂
ϕ(r, t), where the first term

is a fast-oscillating carrier containing the electron’s initial energy and momentum,
and the second term describes slower dynamics, seen as the wave function’s envelope,
which evolves during the interaction. Plugging this expression into Eq. (37) reduces it
to

ve
∂ϕ

∂z
+
∂ϕ

∂t
= −

qeve

ℏω
(Ẽze−iωt − Ẽ∗

z e
iωt)ϕ, (38)

which is solved by

ϕ(r, t) = ϕ0(x, y, T)e−2iℑ[g(r,t)e−iωT ]. (39)

In Eq. (39), ϕ0 represents the coherent electron wave function before the interaction
with the field, and T = t − z/ve is the time variable in the electron’s frame of reference.
The function g(r, t) is known as the PINEM interaction coupling strength, and it
quantifies the overall coupling efficiency between the electron and the electric field. It
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is also a dimensionless complex parameter that is given by

g(r, t) =
qe

ℏω

z∫
−∞

Ẽz

(︃
x, y, z′; T +

z′

ve

)︃
e−iω z′

ve dz′

=
qeeiωT

ℏω

z∫
−∞

Ez

(︃
x, y, z′; T +

z′

ve

)︃
dz′, (40)

where we exploit the relation Ez(r, t) = Ẽz(r, t)e−iωt in the derivation of Eq. (40).

In the conventional PINEM theory, because the interaction has a limited extent, the
field phasor is approximated to be constant in time in the definition of the PINEM
coupling strength [99,100]. In contrast, when the interaction maintained over dozens of
micrometers, then both the spatial and temporal overlap between the electromagnetic
field and the electron wave function should be considered, hence the time-dependence
of the electromagnetic field was kept in Eq. (40).

At this point we note that the integration is carried out until the observation point in
the z axis. In practice, the electrons are being measured far from the interaction region,
and hence we can take the upper integration limit to z → ∞, where g drops its explicit
dependence on z. In addition, we see that the transverse (x and y) dependence of g comes
solely from the distribution of Ez. Another important remark is that by multiplying g
with the fundamental photon energy of the incident laser (ℏω), and dividing it with the
interaction length, it becomes equivalent to the acceleration gradient that is commonly
discussed when describing the results of a typical DLA experiment, as discussed in
Section 4.1.3.

To complete the derivation to a point that is beneficial to describe experimental
results, we must calculate the electron energy probability density after the interac-
tion. In general, g can depend on T in a complicated form. To avoid that, we write
the Fourier transform of the electron wave function with respect to T as follows:
ϕ(x, y, T) =

∫ ∞

−∞
f (x, y, u)exp(iuT/ℏ)du, where u is the energy variable and f (x, y, u)

is a coherent probability density for the electron to be at a certain energy state u.
Therefore, the expression P(U ≤ u ≤ U + ∆U) = |f (x, y, u)|2∆U gives the probability
P that the electron energy is within the interval u ∈ [U, U + ∆U].

Now, we can apply the Jacobi–Anger expansion, exp(iq sin φ) =
∑︁∞

ℓ=−∞ Jℓ(q)exp(iℓφ),
where Jℓ is the Bessel function of order ℓ, to write Eq. (39) as

ϕ(x, y, T) = ϕ0(x, y, T)
∞∑︂

ℓ=−∞

fℓ(x, y, T)eiℓωT

fℓ(x, y, T) = Jℓ(2|g(x, y, T)|)eiℓ arg[−g(x,y,T)]. (41)

Equation (41) represents the most general electron wave function modulation that is
triggered by the interaction with a classical electric field under the PINEM framework.
To derive the electron energy spectrum after the interaction is, however, a delicate step.
We note that the coefficients of the coherent energy amplitudes fℓ depend on the time
coordinate T, hence they no longer represent the formal (independent of T) Fourier
coefficients of the electron wave function. Nevertheless, the difference in time scales
makes this description accurate for experiments in the UTEM and other platforms for
DLAs, because the components fℓ(x, y, T) in Eq. (41) are slow-varying with respect to
the time harmonic eiℓωT .
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The coherent energy probability density ρcoh of the electron can now be written as

ρcoh(x, y, u, ∆t) =
∞∑︂

ℓ=−∞

Pcoh
ℓ (x, y, ∆t)δ(u − ℓℏω),

Pcoh
ℓ (x, y, ∆t) = J2

ℓ (2|g(x, y, ∆t)|). (42)

In the above equation, ∆t is the relative time delay between the electron and the
incident laser pulse.

To complete the derivation and apply it to a realistic scenario, we must consider the
incoherent contributions to the interaction. These contributions are the initial electron
(incoherent) energy width (also known as the zero-loss peak (ZLP)), and the transverse
distribution (in x and y) of the electron pulse. Both can be easily measured in the UTEM
during the experiment and from that we can construct their function form which we
denote by ρ0. Then the overall electron probability density is given by convolving the
incoherent part with the result of Eq. (42) with respect to space and time:

ρ(x, y, u, ∆t) = ∫ ∫ dudt ρ0(x, y, u, t)ρcoh(x, y, u − u, ∆t − t). (43)

Equation (43) is the most general expression for the electron probability density
in space, time, and energy in a typical PINEM experiment within the UTEM. In
experiment, conducting an electron energy loss spectroscopy (EELS) measurement,
we measure the quantity ρ(u, ∆t0) = ∫ ∫ ρ(x, y, u, ∆t0)dxdy which is the electron energy
probability density for a given electron-laser delay ∆t0.

It is worth noting that Eqs. (42) and (43) contain a set of delta functions that samples
the spectrum in multiples of the fundamental photon energy, i.e., uℓ = ℓℏω. This is
the origin of observing the quantum nature of the interaction in PINEM experiment,
as each delta function corresponds to the exchange (either emission or absorption) of
a photon with a single electron. The full PINEM formula for the electron probability
density that is shown in Eq. (43) captures a realistic scenario where around each delta
function component there is a broadening due to incoherent contributions. Further, in
order to reveal the individual exchange of photons with a single electron, and probe
the quantum nature of the observed interaction, it is also needed to use highly coherent
electrons (with low energy uncertainty) and a sensitive enough detector (see Ref. [27]
for more details).

4.1c. The Quantum-Classical Correspondence in DLA
The above derivation for the extended PINEM theory, and in particular Eq. (43),
captures well the experimental results of certain DLA interactions, specifically those
in which the electron dispersion is negligible throughout the interaction with the
field, and electron–electron interactions are neglected (so self-bunching effects are
negligible). Its main advantage is that it reveals the quantum nature of the interaction,
which is absent from the classical model so far used to describe DLA experiments.
Furthermore, it can be used even for scenarios where the incoherent broadening
smeared the quantum feature in the electron spectrum. In this section, we compare the
classical formula for the electron spectrum to that of PINEM.

In the classical case, the electron is considered as a point particle subjected to the
Lorentz force. Hence, neglecting relativistic effects, its velocity changes via

me
dv
dt
= qeℜ[2Ẽz(z)e−iω0t ], (44)

where the z axis is parallel to the electron trajectory and we assume no deflections.
Here Ẽz(z) is the electric field phasor’s z component, ω is the laser central frequency,
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and v is the electron velocity. To find how the electron velocity changes with time, we
integrate Eq. (44) with respect to time to get

me∆v = qe ∫ ℜ[2Ẽz(z)e−iω0t ]dt. (45)

In most DLA experiments, it is reasonable to assume that the electron energy does
not change much with respect to its initial energy, i.e., v = ve + ∆v and ∆v ≪ ve.
In that case, the time step is approximately given by t ≈ (z − z0)/ve, where z0 is the
starting point of the electron–DLA interaction. By changing variables, the change in
the electron’s kinetic energy is

∆Ek = qe ∫ ℜ
[︂
2Ẽz(z)e−i ω0

ve (z−z0)
]︂

dz. (46)

To show the correspondence of this classical derivation and PINEM, we define the
quantity Wg

∆
= qe ∫ Ẽz(z)exp(−iω0z/ve)dz and note that Wg = gℏω0, where g is the cou-

pling strength of the conventional PINEM theory which is the time independent version
of Eq. (40). With this definition we rewrite Eq. (46) as ∆Ek = ℜ

[︂
Wgexp

(︂
iωve

z0

)︂]︂
.

We assume that the electron starts its interaction with the electromagnetic field in an
arbitrary point in space, and this point is uniformly distributed over one optical cycle
of the laser field, i.e., fint.s.p.(z0)

∆
= Uniform

(︂
0, 2πve

ω0

)︂
. Then, the probability density of

the electron energy change for the classical case then reads

Pclassical(∆Ek) =
fint.s.p.(z0)|︁|︁|︁ d∆Ek

dz0(∆Ek)

|︁|︁|︁ = 1

2π |Wg |

√︃
1 −

(︂
∆Ek

2 |Wg |

)︂2
. (47)

To compare this result with the PINEM theory, we introduce a dimensionless contin-
uous parameter ℓ that quantifies the electron energy change by ∆Ek = ℓℏω0, and write
Eq. (47) as

Pclassical(ℓ) =
fint.s.p.(z0)|︁|︁|︁ d∆Ek

dz0(∆Ek)

|︁|︁|︁ = 1

2π |g|ℏω0

√︃
1 −

(︂
ℓ

2 |g |

)︂2
. (48)

This is the classical analog to the coherent probability that derived in Eq. (42).

In the PINEM framework, the coupling strength g appears as the argument of a
series of Bessel functions which gives the electron spectrum its oscillatory profile.
Furthermore, for the quantum case, the dimensionless parameter ℓ counts the number
of photons that the electron exchanges with the field. Thus, for the quantum case ℓ is
an integer, while for the classical case ℓ is a continuous variable.

4.1d. Measuring Quantum Features in DLA Experiments
The theoretical discussion in Section 4.1.3 was demonstrated recently in a DLA
experiment conducted within a UTEM. This experiment uncovered the multi-peak
shape of the electron spectrum after its interaction with a DLA near-field, and boasts
excellent agreement between the extended PINEM theory and the experimental results
(even for a case where the quantum features are not apparent, see Fig. 24).

The full electron bandwidth after the DLA interaction is shown in Fig. 25. There, owing
to the incoherent broadening of the electron and the lower spectrometer resolution
needed to capture a wider energy range, the quantization of the electron spectrum is
indistinguishable. Yet, the extended PINEM theory is useful even for a case where the
quantum features are not apparent.
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Figure 24

ba

First DLA experiment in a UTEM. (a) Scheme of the experimental setup: a DLA
formed by a single-sided grating is placed inside the UTEM and is pumped by a
950 nm femtosecond pulse in perpendicular incidence. A femtosecond electron pulse
is than graze the DLA across its total length of 89 µm experienced acceleration
and deceleration due to the interaction with the DLA near field. (b) Electron energy
spectrum after DLA interaction. In (a) and (b) the oscillatory nature of the electron
spectrum unravels when all the conditions to observe a PINEM-type interaction are
fulfilled. The multi-peak shape corresponds to individual photons being emitted or
absorbed by a single electron wave function. The PINEM theory (Eq. (43)) shows
great agreement with the data, whereas the classical approach (Eq. (48)) can only
follow the spectrum’s envelope trend. Figure 1 (part (a)) reprinted with permission
from Adiv et al., Phys. Rev. X 11, 041042 (2021), Ref. [27]. Copyright 2021 by the
American Physical Society. Part (b) reprinted from [27] under a Creative Commons
license.

Interestingly, the interaction with the DLA caused the single electron wave function
to split into several thousand distinct peaks of different energy in a coherent manner.
In the energy domain, it means that the single electron occupies thousands of energy
levels, simultaneously, and in the time domain it constitutes a comb of sub-attosecond
pulses. This effect can be explained with the extended PINEM description (Eq. (43),
which reproduce the observed spectrum with great agreement, however, the classical
description (Eq. (48) can only follow the trend of the spectrum envelope. The quantum
description of the electron provides additional degrees of freedom to the acceleration
process, which is still yet to be explored.

Importantly, the above result shows that the electron–DLA interaction maintains
quantum coherence for timescales of hundred laser cycles. This happens despite the
presence of different interaction mechanisms that may lead to loss of coherency (e.g.,
bremsstrahlung, bulk excitations, and phonons). In addition, for strong interactions,
the physics of quantum walk is modified by a gradual broadening of the electron
energy levels due to the coherent uncertainty of the driving laser. This leads to an open
question regarding whether quantum coherence is preserved also for strong interac-
tions. Although the above result does not solve this issue, it shows that the quantum
coherence remains even for the exchange of thousands of photons.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 25

The electron wave function after the DLA interaction within the UTEM has a 4 keV
bandwidth. The quantum features of the spectrum are hidden due to coarser resolution
of the spectrometer, but the extended PINEM theory, when considering the incoherent
broadening of the electron and the energy resolution, still gives a great predication of
the measured data. Figure 3 reprinted with permission from Adiv et al., Phys. Rev. X
11, 041042 (2021) Ref. [27]. Copyright 2021 by the American Physical Society.

Contemporary DLA schemes contain a pre-bunching stage for the electron beam [7,8].
Squeezing the electrons into attosecond bunches is highly valuable, because it can lead
to net acceleration (or deceleration) and it opens the door to time-resolved atomic-
scale dynamics [108,110,111]. In the quantum regime, bunching can also happen for
a single electron pulse. As described previously, the single-electron wave function
is altered by the DLA interaction where parts of it are accelerated while others are
decelerated. This means that by letting the single-electron wave function propagate in
free space there is a special distance at which the higher energetic parts of it catch
up with the lower energetic components, resulting in a single free electron bunching.
The quantum uncertainty plays a crucial role here as it applies a lower bound on the
achievable duration of the electron bunch, which was studied theoretically in Ref.
[112].

The developments in DLA research can be harnessed to serve as platforms for explor-
ing other quantum phenomena in electron–light interactions. For instance, DLA was
proved to sustain an efficient quasi-phase-matching interaction between the electron
wave function and a light wave. This suggests that optimized structures may be able
to mediate interactions between a single electron and a single photon [66]. Such
an achievement would require the quantization of the electromagnetic field as well
[113,114], and will open a way to conduct quantum optical experiments. In this
regard, it has been shown recently how to use advanced DLA designs to imprint pho-
ton statistics on a free electron and deduce the photon state by measuring the electrons
[115,116].

4.2. Reading Coherent Information from a Quantum System
This section focuses on a recently proposed application that utilizes the quantum wave
nature of the electrons in the DLA. The DLA serves to modulate the electron wave
function, and this modulated electron can then be used to read and write quantum
information in other quantum systems. The idea to use shaped electrons to control
quantum state of matter was proposed first using a semiclassical model by Gover and
Yariv [117], receiving the name “free-electron bound-electron resonant interaction”
(FEBERI). The idea is that the temporal shape of the free electron’s wave function
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Figure 26
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Schematic of the interaction between a free electron and an atom. The electron has
coordinates x = 0, y = 0 and moves along the z axis with speed v so that z = vt. The
atom is taken as stationary and situated at the origin (r⊥, 0, 0). Adapted from [120].

can alter its coherent interaction with quantum two-level systems and induce Rabi
oscillations, enabling control over the quantum state using free electrons. In that
sense, the electron interaction is similar to how classical light can be used for coherent
control [118]. Later, the idea was explored and a full quantum theory of the interaction
was presented [119–121]. In addition, free electrons were proposed to measure the
quantum state of qubits, measure decoherence times and to generate qubit-qubit and
photon-photon entanglement [119,120,122]. These advances reveal the potential of
free-electrons as novel and promising tools for manipulating quantum information,
combining the high coherence of lasers and the high spatial and temporal resolution
provided by free electrons.

We can model the electron–qubit interaction by the Hamiltonian [120]

H = −iℏv∂z +
ℏω0

2
σz +

e
4πε0

·
(d⊥ · r⊥ + d∥z)σ+ + (d∗

⊥·r⊥ + d∗
∥
z)σ−

(r2
⊥ + z2)

3/2 (49)

where the first two terms describe the Hamiltonians of the electron and the qubit. The
average velocity of the electron wave packet is v. The qubit has an energy separation of
ℏω0;σ±, σz are Pauli matrices. The third term in Eq. (49) describes the interaction with
the transition dipole moment d = g|er|e, with components d ∥ = ẑdz and d⊥ = x̂dx + ŷdy.
The distance between the center of the electron wave packet and the center of the qubit
(the impact parameter) is r⊥ (Fig. 26); the vacuum permittivity is ε0. The two main
approximations behind Eq. (49) are: (1) the paraxial approximation for the electron; it
is valid because the energy of the electron is much larger than that of the excitation; (2)
external decoherence channels by other material excitations such as Bremsstrahlung
radiation [123] and characteristic x ray [124] occur at probabilities much smaller than
unity. The latter condition can be made less strict by post-selecting electrons that lost
energy ±ℏω0, because some other transitions might also destroy the purity regardless
of post-selection, depending on the specifics of the sample. Thus, the reduced density
matrix of the electron and the qubit (for the excitation of interest) will be the same as
if the external channels are not considered at all.

Assuming weak interaction, the electron–qubit scattering matrix can be found from
the Magnus expansion [125] as

S = e−i(gσ+b+g∗b+σ−) = cos |g| − i · sin |g|(eiφgσ+b + e−iφgσ−b+). (50)

Here, the operators b and b+ are momentum translation operators for the electron,
defined as b = eiω0z/v [126] (for sufficiently fast electrons, they equivalently describe
energy translation). The PINEM interaction coupling strength, g = |g|eiφg , can be
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approximated in the weak interaction limit as [120]

g =
edxω0K1

(︂
ω0r⊥
γv

)︂
2πε0γℏv2 + i

edzω0K0

(︂
ω0r⊥
γv

)︂
2πε0γ2ℏv2 , (51)

where K0(x) and K1(x) are the modified Bessel functions of the second kind and
γ = 1/

√︁
1 − v2/c2 is the Lorentz factor. A more detailed derivation including higher-

order corrections to g and the complete form of the scattering matrix can be found at
[120].

After the scattering matrix has been established, the calculation of the scattering
of any modulated electron from a qubit in any general state can be calculated. The
quantum nature of the interaction can now be utilized to perform several tasks, such
as controlling the state of the qubit [117], measuring coherence times and the full
quantum state of the qubit [120], and even inducing entanglement between separated
non-interacting qubits [119]. The ability to perform these tasks arises from the ability
to use shaped electron wave functions. The latter was initially quite surprising, as it
was debated whether the coherent shape of the free electron’s wave function affects the
interaction [117,121,127,128]. However, this turned out to be the case only when the
quantum coherence vanishes, for example as happens in thermodynamical equilibrium.
When the system maintains coherence (meaning, non-zero off diagonal elements in
the system’s density matrix exist) different components of the free electron’s wave
function can interfere during the interaction, and this interference can lead to enhanced
interaction. When exploited correctly, it can reveal desired information about the
quantum system.

As an example, consider a qubit with energy separation ℏω0 described by a general
density matrix ρ, and a free electron in the initial state |ψe⟩. We can calculate the
expectation value in the change of the free electron’s energy after the interaction and
get

⟨∆E⟩ = ℏω0sin2 |g|(ρee − ρgg) − 2ℏω0 cos |g| sin |g|Im{ρgeeiφgψe |b|ψe}, (52)

where ρ is the qubit’s density matrix defined as ρij = ⟨i |ψ⟩⟨ψ | j⟩ for a pure state.
The parameter se ≡ ⟨ψe |b|ψe⟩ will be called from now on the bunching coefficient of
the electron. This parameter is expressed by the Fourier component of the electron’s
charge density, b = ∫ exp(iωz/v) |ψ(z)|2dz, and is analogs to the classical first bunching
coefficient in FELs [129,13]. At the typical limit where |g| ≪ 1, Eq. (52) can be
rewritten as

∆E
ℏω0

= |g|2(ρee − ρgg) − 2|g|Im{ρgeeiφgse}. (53)

The first term is the incoherent one, and so does not depend on the shape of the
initial free electron’s wave function. We can see that if the system is in the ground
state (ρgg = 1, ρie = 0), the electron experiences energy loss. If it is in the excited
state (ρee = 1, ρgi = 0), the electron experiences energy gain. When the system is in
superposition, its coherence, given by the second term, alters the final energy spectrum.
If coherence is ignored, both processes are summed up in a weighted average for the
final energy spectrum. If many qubits are present and there is no coherence between
them, the first term will give us the population statistics.

The second term contains the coherent information. We see that if the electron is
shaped in such a way that se ≠ 0, the off-diagonal elements can alter the average
change in the electron’s energy. This change is proportional to |g|, as opposed to
|g|2, which is the standard case for electrons that are not coherently modulated. This
enhancement was first predicted by Ref. [117] using a semiclassical analysis. If our
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Coherent control using coherently shaped free electrons. (a) Electron’s wave function
in energy. The electron is modulated such that the different energy components have
linear phase relation between them. The phase of the expectation value of the free-
electron energy displacement operator b indicates the phase relation between the
different free electron energy components. (b) When a series of such electrons interact
with a two-level system, the state starts to rotate around the Bloch sphere in an angle
dictated by the free-electron energy components’ phase relation. Each electron in
(a) relates to the adjacent rotation on the Bloch sphere in (b), where we assumed
that the coupling constant g is real. (c) Probability of the two-level system to be
excited as a function of number of electrons. It can be seen that when the comb is not
perfect (meaning |b|<1), the oscillations decay until the state of the two-level system
is completely mixed.

ability to control the free electron wave function were absolute, we could imagine
engineering an electron with any se we want (under the constraint |se | ≤ 1 resulting
from the unitarity of b), allowing us to extract the value of ρge, completely measuring
the qubit’s state and decoherence times [120].

To exemplify the importance of the electron’s bunching parameter even further, another
interesting question is to ask how the electron alters the qubit’s state. It was already
proposed that modulated electrons can be used to perform Rabi oscillations on the
qubit state [117], with each interaction rotating the qubit’s state around a vector on
the x–y plane in the Bloch sphere by angle 2|g|. However, the semi-classical analysis
misses the fact that during the interaction, the electron and qubit get entangled. Hence,
the electron carries some of the coherence of the qubit outside the system, effectively
decohering the qubit state and damping the Rabi oscillations. One way to measure this
is to look at the purity of the qubit after the interaction,

Tr[ρ2] = 1 +
1
2
(|se |

2
− 1)sin22|g|. (54)

We can see that when the bunching parameter approaches unity, se → 1, the post-
interaction qubit’s state stays pure, indicating that the electron and the qubit do not
get entangled. In Fig. 27, we exemplify how different free-electron wave functions
affect the qubit’s state and how the bunching parameter changes the resulting Rabi
oscillations. We see that in order to perform coherent control on the qubit’s state, we
need an electron with a bunching parameter approaching unity.
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Figure 28

(a)

(c)

(b)

(d)

Quantum description of qubit interactions. When a quantum probe such as (a) photons
or (c) monoenergetic electrons interact with a qubit, they entangle and exchange
quantum information. As a result, different qubit states get entangled into different
probe states, washing out the coherent information of the qubit. More complicated
probes, such as (b) coherent light and (d) shaped electrons, can potentially alter
the state of the qubit without entangling to it, enabling us to read and write the
quantum state of the qubit. To understand what quantum information is exchanged and
how the interaction can be exploited to read/write quantum states, a fully quantum
mechanical treatment is required. For photons, this description is based on the well-
known Jaynes–Cumming model and its extensions [109]. For electrons, the analogous
description has only been developed recently [119,120], and many of its aspects are
still being investigated.

It is already known that to perform quantum coherent tasks (such as control over qubit
states and to perform quantum measurements), a coherent light (i.e., Glauber state)
is needed [118,130]. This can be understood from the fact that coherent light is an
eigenstate of the photonic annihilation operator (a). This implies that the light does
not change significantly when single photons are emitted or absorbed, or in a more
mathematical way, up to a constant, |ψcoherent ≈ a|ψcoherent. In the context of coherent
control, the state of the material qubits is altered due to exchange of energy between
the light and the material’s excitation. If the light would change significantly when a
photon is absorbed by the qubit, the coherence of the qubit will be lost, as the excited
qubit state will be entangled to a very different light state than the ground qubit state
(Figs. 28(a) and 28(b)). An analogous thing happens with free electrons (Figs. 28(c)
and 28(d)), however, instead of photon creation and annihilation operators, the free
electron can alter its state by exchanging quanta’s of energy with the material and
translating up and down the energy ladder. The best analog for coherent light will be
an electron wave function which does not change significantly when such translation
is acted on it. Such an electron will be a coherent energy comb of the form:

|ψcomb =
∑︂

n
einφ |E0 − nℏω, b|ψcomb = eiφ |ψcomb. (55)

This kind of electron cannot be truly realized, but a good way to quantify how close
the electron is to be fully bunched is by the moments of the ladder operators (i.e., |bn |),
which will approach unity as we get close to the ideal case.

Mathematically, this point can be realized by acting with our qubit–electron or pho-
ton–electron scattering matrix on the comb-electron state. As |ψcomb⟩ is an eigenstate
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of b and b+ (with eigenvalues eiφe and e−iφe accordingly), it is also an eigenstate of the
scattering matrices, and so the electron–photon [113] and the electron–qubit scattering
matrices can be written alternatively as

Squbit = e−i |g |(ei(φg+φe)σ++e−i(φg+φe)σ−) = R(cos(φg+φe),sin(φg+φe),0)(2|g|),

Sphoton = e |gQ |(ei(φgQ+φe)a+−e−i(φgQ+φe)a) = D(|gQ |ei(φgQ+φe)). (56)

We see that when the electron is a comb, the scattering between the electron and qubit
translates into a rotation around the x–y plane in the Bloch sphere (R is the rotation
matrix) with an angle 2|g|, and the scattering between the electron and photons
translate into a displacement of the light state by |gQ | (D is the displacement operator
[118]). Therefore, the comb electron allows us to manipulate light states and qubits in
a coherent and controllable way, revealing why we expect to see Rabi oscillations on
the qubit and showing us that the radiation emitted by such electron is expected to be
coherent [131].

If the electron’s energy width is smaller than the qubit’s energy separation, se will
clearly be zero. This can be understood classically because the electron’s temporal
duration will be longer than the phase cycle of the quantum two level system, and
so all the coherent phase information will be washed out during the interaction. One
might suggest to change se using electron energy shaping with PINEM interactions
[18,19,99,110], however, this is irrelevant since the PINEM scattering matrix commute
with the energy ladder operators. To increase the value of se, a temporal shaping must
be performed on the electron, compressing it in time into sub-femtosecond duration.

One way to temporally shape the free electron’s wave function (see Fig. 29) is to
combine energy shaping (using methods such as PINEM) with free space propagation
(FSP), i.e., “drift” [26]. The dispersion relation of the electron’s energy will result
in different energy components accumulating phases at different rates, changing the
temporal shape of the free electron’s wave function. The simplest way to generate
such a “comb” electron is by using a single PINEM interaction with frequency ω0 and
some interaction strength g, and then letting the electron propagate freely for some
distance. It is shown that the value of |se | achieved using this technique is [119]

|se | =

|︁|︁|︁|︁J1

[︃
4|g| sin

(︃
2π

z
zT

)︃]︃ |︁|︁|︁|︁ , (57)

where z is the propagation distance, zT is the Talbot distance [132] and J1 is the first
Bessel function of the first kind. Consequently, the optimal value of |se | achieved by
this technique will be the maximal value achieved by J1, which is |se |optimal ≈ 0.58.
Optimal bunching coefficient using one interaction site has been already realized in
classical DLA experimentally [7,8]. Interestingly, in the classical case, the optimal
drift length in order to maximize the bunching coefficient is different for small values
of g (Fig. 30(d)).

It is important to note that the optimal bunching distance from a classical point of
view is related to, but different than, the resulting one from a quantum point of view,
as discussed and compared in the following.

The scheme presented previously (achieving |se |optimal ≈ 0.58) is still not sufficient for
useful, coherent control using free electrons. Stronger attosecond compression of the
free electron’s wave function is needed. Such attosecond compression of the electrons
has been first proposed using an optimized multi-harmonic modulating laser pulse
(before the FSP) [134]. More recent works [11,133] proposed a way to compress
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Figure 29
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Classical (top) versus quantum (bottom) description of the electron’s temporal shaping.
(a) Electrons are emitted from an electron gun via a photoemission process. Classically
the electrons are point particles distributed in space according to some charge distribu-
tion, which is typically much wider than optical wavelengths. Quantum mechanically,
each electron is smeared in space according to its wave function. (b) Energy mod-
ulation is performed on the electrons via PINEM-like processes. Classically, each
electron sees a different phase of the modulating laser, while quantum mechanically
each electron sees many periods of the laser and interferes with it. Classically, each
electron experiences a different Lorenz force and therefore gains (or loses) a different
amount of energy, while quantum mechanically each electron spreads in energy. The
resulting quantum energy distribution constitutes of discrete peaks, resulting from the
wave interference between the electron and the light. For this figure, g = 4 was chosen
for the interaction strength. (c) Electrons propagate and eventually get micro bunched
to bunches separated in time by one cycle of the modulating field. In the quantum
picture each electron gets bunched, resulting in a probability density with very narrow
features.

electrons by using two PINEM interactions separated by separate stages of FSP.
This scheme was further optimized with three points of interaction and an additional
stage of FSP to reach |se |optimal ≈ 0.99 (see Ref. [133]), thus generating approximated
electron combs. In another recent approach described in Section 3.4, Zhao et al.
[11] suggested to compress electrons using the beat-note of two optical frequencies.
Overall, more work is needed to resolve the quantum properties of such generated
electrons and quantify their |se |optimal. The resulting high temporal compression of the
free electron’s wave function translates into a large spread in the electron’s energy
spectra, which is expected to push |se | closer to 1.

Next, we focus on Ref. [133], which, so far, best exemplifies the ability to bunch
the quantum free electron’s wave function. This paper proposes the use of weak
preparation pulses before the main compression stage. The technique requires using
optimization to select the drift distances and the interaction parameter for each PINEM
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Figure 30
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Attosecond-scale compression of the electron using multiple interaction points with
a modulating laser. (a) The electron is shaped using multiple-stage DLA, where the
strength of the interactions and the distance between them is tuned to result in optimal
bunching. The resulting bunched electron is then fit to perform FEBERI interactions.
In this figure the interaction strength for the main compression is chosen to be g= 4,
and the preparation pulses are optimized accordingly to result in optimal bunching.
(b) Wigner distributions in the focus for single point of interaction (top) and three
points of interaction (bottom), showing a localization of electrons in phase space. (c)
Values of ⟨bn⟩ obtained at the optimal bunching distance. (d) Important distances for
electron shaping: zfocus is the distance in which the wave packet become maximally
narrow [112], and zbunching is the distance in which the bunching coefficient becomes
maximal; for small values of g this distance differs between the classical [13,129]
and the quantum [119] case. (e) Resulting probability distribution of the electron
in (e1) energy and (e2) time, at the optimal bunching distance after three points of
interactions. (b) and (c) Reprinted from [133] under a Creative Commons license.

interaction. Using sufficient preparation pulses, one might be able to push both |se |

and even higher moments of |bn | to be arbitrarily close to unity, enabling the vision of
using electrons to generate and measure quantum states of material’s excitations.

To exemplify the quality of the electrons generated by such a technique, we can look
at the radiation emitted by them. As shown previously, perfect combs interacting with
an empty cavity will generate coherent states of light with an average of |gQ |

2 photons,
where gQ is the interaction strength with the cavity [113]. When the combs are not
perfect, one can still calculate the resulting electron-light state. Then the light state
after tracing out the electron, so the state of light if the electron is not measured and
information regarding the electron’s state is “lost,” is generally a mixed state. This
state can be compared with the desired coherent state using measures such as the
fidelity between the states [135]. We assume a general electron state |ψe⟩ interacting
with an empty cavity |0⟩ with coupling constant gQ. We then trace out the electron and

https://creativecommons.org/licenses/by/4.0/
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Figure 31

Vision for an electron-based quantum simulator. The electron is used as the probe
to both read and write the state of individual qubits, enabling to control the state of
the simulator on spatial scales much smaller than these achievable using laser-based
probes.

stay with a partially mixed light state described by a density matrix σ. The fidelity
between the light state and the desired coherent state is then given by F(σ) = gQ |σ |gQ.
We define Fn as the fidelity of the resulting light state with gQ = 1 when the electron is
created using n PINEM interactions with the parameters taken from [136]. The results
are striking:

F0 ∼ 0.3, F1 ∼ 0.66, F2 ∼ 0.95, F3 ∼ 0.98. (58)

It is clear that already one preparation pulse (2 PINEM interactions, F2), generates a
good approximation of coherent light. Two-stage DLAs are already in use today [7,8]
and can be exploited to demonstrate such abilities.

Concluding this section, DLA contains all the building blocks to read and write the
quantum state of coherent systems. To do that, we combine the quantum theory for
the interaction between quantum systems and modulated electrons with the ability to
create attosecond compressed electron pulses. Such capabilities, especially if achieved
at deep subwavelength and potentially atomic resolutions, are attractive for creating
new types of quantum simulators (Fig. 31). The vision for this pursuit, as presented
in Ref. [120], is to develop quantum simulators in which shaped electrons enable the
depiction of the initial state of each element and allow to read the final (or intermediate)
states using femtosecond (and eventually attosecond [20–22,108,136]) time resolution.

4.3. SP and the Electron Wave Function in Periodic Structures
The onset of the quantum regime in spontaneous and stimulated electron–photon
interactions could be mainly attributed to three different phenomena: (1) quantum
decoherence and quantum interference of light emitted by single electron wave func-
tions [122–144]; (2) sensitivity of the electron wave function to the incident quantum
photon statistics [113,114,116,133,135,145]; and (3) quantum corrections to the emit-
ted spectrum associated with the recoil exerted on the free electron by the emission of
photon quanta [146–148]. To observe the first type of effect, the electron wave function
ought to have large spatial (transversal or longitudinal) coherence on the scale of the
optical wavelength. The second family of effects requires strong quantum coupling
between light and free electrons, while ensuring single-mode operation [116], thus
ensuring that the nanostructure effectively supports one spatial mode at the relevant
spectral regime. Lastly, the third effect, which has only recently been reported exper-
imentally [149], suggests using either slow electrons or periodic structures with very
small periodicities [147].

Periodic structures driven by free electrons in electron microscopes offer a fertile
ground for the observation and tests of quantum interactions, thanks to the versatility
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of the SP effect [150] for controlling the spectrum, emission directionality, and even
polarization [151–162], dictated by the structure periodicity. Quasi-phase-matching
further allows mode selectivity, which is found important for probing approximately
single-mode quantum effects [116]. In addition, periodic structures could be amended
with effective cavities that enhance the near field, based on inverse design [1,27,116],
which can increase the quantum coupling strength between light and free electrons.

In TEMs, the size of the electron’s transverse wave function could be increased far
beyond the scale of a single optical wavelength, while maintaining high spatial coher-
ence [163,164]. Further, ultrafast TEMs allow tens of millielectronvolts photoemitted
electron coherent energy spreads to be measured, determined by the laser linewidth
[165], whereas modern monochromators allow energy resolutions down to the single
millielectronvolt scale [166]. These properties allow for large longitudinal coherence
of the electron wave function, extending far beyond a single radiation wavelength.
Finally, EELS, frequently used in TEMs [167] and recently also realized in SEMs
for PINEM experiments [25], can be employed as a detection technique for resolving
spontaneous and stimulated quantum effects [168]. Stimulated interactions can be cas-
caded with spontaneous emission, wherein the electron wave function is pre-formed
by the incident laser light and then allowed to emit spontaneously, testing its effect on
the emitted light [137,143,147].

4.3a. Spontaneous Quantum Interactions
The interpretations of the wave function of quantum particles have been addressed by
many researchers over the history of quantum mechanics. When Schrödinger first tried
to make sense of the solutions to his equations for the hydrogen atom, he interpreted
the modulus squared of the wave function |ψ |2 as a classical charge density [169,170].
Owing to the inconsistencies arising from this conjecture when applied to bound
electron systems, this idea was quickly dismissed in favor of the probabilistic approach,
where |ψ |2 is interpreted instead as a probability density [170,171].

Surprisingly, for free electron systems the interpretation of |ψ |2 as a charge density does
not lead to such obvious inconsistencies, and was thus favored by many researchers as
it greatly simplifies the semiclassical models of free-electron radiation [158,172–176]
(Fig. 32(b)). Further, it is relatively accurate for the treatment of stimulated processes
[172] and many-electron superradiant emission [156,177,178]. The latter generally
holds except for cases in which free-electron entanglement is present [179], or for
spontaneous emission from electrons with a small energy uncertainty compared with
the photonic recoil, as in the quantum FEL regime [122,180–183].

Going beyond the semiclassical regime of spontaneous emission from a quantum free
electron necessitates a careful quantum treatment. For example, to examine the effect
of the wave function shape (longitudinal and/or transverse) on the emitted radiation,
a quantum electrodynamical derivation is usually utilized. Ritchie and Howie [141]
analyzed this scenario in EELS detection, showing no wave function dependence when
all electron momenta are collected. Friedman et al. [140] showed that, for electrons
spontaneously emitting light in periodic structures, no dependence of the emitted
power spectrum on the longitudinal wave function is to be expected.

More recent works investigated the breakdown of the semiclassical interpretation of
the free-electron wave function. Pan and Gover [137,138,176] analyzed the problem
of spontaneous (as well as stimulated) SP emission from pre-shaped electrons in both
the semiclassical and quantum regimes, resulting in different predictions regarding
the dependence on the wave function. Remez et al. [139] have shown that these
different predictions could be told apart experimentally by observing the transverse
far-field divergence of SP radiation, and observed results that are in favor of the
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Figure 32
a b

Quantum regime of spontaneous free-electron light emission in periodic structures. (a)
Testing spatial quantum decoherence of SP radiation from a transversely wide electron,
comparing the classical, semiclassical, and quantum approaches. The experimental
results (diverging far-field SP radiation irrespective of the wave function shape) are in
favor of the quantum approach. Figure 1 reprinted with permission from Remez et al.,
Phys. Rev. Lett. 123, 060401 (2019), Ref. [139] ©. 2019 American Physical Society.
(b) Quantum recoil corrections to SP radiation; shown on the right is the divergence
from the classical model for slow electrons. Figure 3 reprinted with permission from
Tsesses et al., Phys. Rev. A 95, 013832 (2017), Ref. [147]. Copyright 2017 by the
American Physical Society.

quantum probability distribution interpretation (Fig. 32(a)). Their results were also
consistent with the expectation of no wave function dependence (under the paraxial
approximation and assuming a transversely uniform grating). While no dependence
on the wave function is expected when observing the radiated power spectrum, recent
works by Karnieli et al. [143] and Kfir et al. [147] have shown that the spectral
coherence of the spontaneously emitted light does depend on the wave function.
Further, Wong et al. [184] have calculated further corrections beyond the paraxial
approximation and for non-uniform media, that allow wave function dependence and
interference effects. Di Giulio et al. [122,185] investigated the interface between the
spontaneous and stimulated regimes of free-electron radiation, showing the emergence
of wave-function-dependent interactions whenever an external field is involved.

Finally, the quantum corrections associated with photonic recoil, first investigated by
Ginzburg for Cherenkov radiation [186], and famously dismissed as unimportant by
his PhD advisor Landau [146], can also be potentially observed using quantum spon-
taneous emission by free electrons in periodic structures, as investigated by Tsesses
et al. [147]. In their paper, Tsesses et al. [147] calculated quantum corrections to SP
radiation from electrons traversing a nanometric grating, and from electrons traversing
two-dimensional periodic gratings, and analyzed the regimes at which the corrections
could potentially be resolved (Fig. 32(b)). This effect was recently reported to have
been demonstrated experimentally for free-electron x ray emission from van der Waals
materials [149].
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4.3b. Stimulated Quantum Interactions
Much interest has been devoted to the study of the quantum nature of stimulated free-
electron–light interactions. In periodic structures, many authors focused on the inverse
SP effect [58], the quantum FEL [183,184,187] and, recently, the quantum DLA [27],
motivated by corrections to the stimulated emission and absorption processes owing
to the wave nature of the electron. Such examples are the studies by Pan and Gover
[137] and Talebi [172] (Fig. 33(a),(b)). Here onward, however, we primarily focus
on the fully quantum interactions of free electrons and quantum light, which can be
experimentally probed using periodic structures [116].

PINEM, as discussed in detail in Section 4.1.2, has seen dramatic advance. Recent
publications include achievements in both the coupling efficiency [21,188], diversity of
near-field structures [22,23], and the quantum coherence of the electron wave function
[19,20,108,189,190]. The classical PINEM regime is restricted to interactions between
quantized electrons with classical light, namely, a Glauber coherent state, which
renders the modeling of such processes compatible with a time-dependent Schrödinger
equation, where one plugs in the classical field as a time-varying potential term that
drives the interaction [134].

Very recently, a surge of fruitful research emerged in the regime of quantum PINEM
(QPINEM), wherein the quantum state of light becomes important for the correct
description of the PINEM interaction. Kfir [113] theoretically showed that whenever
a free electron interacts with a single-mode cavity, it gets entangled with the photons,
resulting in non-trivial correlations. Soon after, Di Giulio et al. [114,135] calculated
the EELS signal observed following a QPINEM interaction, showing its dependence
on the exact photon statistics hosted in the cavity. Gorlach et al. [145] then proposed
a scheme for quantum optical detection using this principle, showing that the entire
photonic quantum state can be extracted from a novel free-electron homodyne-type
interaction. Ben Hayun et al. [133] further proposed to use free electrons to generate
nontrivial quantum states of light using the QPINEM interaction.

To observe quantum photon statistics effects, one must significantly increase the value
of the dimensionless quantum coupling constant gQ, close to unity. This has been
recently achieved experimentally using a 2D plasmonic Cherenkov scheme [188],
agreeing well with the spontaneous QPINEM theory. A similar result was demon-
strated for spontaneous emission of single photons into an integrated optical cavity
[191]. Given a large enough gQ (even if it is still two orders of magnitude below
unity), one can create interactions with continuous-wave (CW) light, which has a
much smaller incident field amplitude than a femtosecond pulse. Such an interaction
enables probing light with non-trivial quantum statistics, i.e., states which differ from
a classical coherent Glauber state [192] of laser light.

Recent experiments used a DLA structure [116] and a high-Q micro-resonator [24] to
implement CW PINEM [193–196]. In this context, the use of periodic structures, and
in particular inverse-designed structures [1,27,116], can boost the quantum coupling.
Lastly, because the QPINEM effect requires mainly a single-mode operation [113],
restrictions are posed on the optical structure (waveguides or microcavities) to ensure
this. The use of highly selective quasi-phase-matching in periodic structures can
relatively easily ensure a single-mode operation in a stimulated process [116].

The first and currently only experimental demonstration of stimulated QPINEM was
reported by Dahan et al. [116] (Fig. 33(c)), using the inverse SP effect in a DLA,
stimulated by amplified CW light, continuously shifting its quantum photon statistics
from a Glauber coherent state to a thermal state. The 80 µm inverse-designed periodic



916 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

Figure 33

a

b

c

Quantum regime of stimulated free-electron light emission in periodic structures. (a)
Proposal for testing the effect of the wave function shape (modulated first by the
inverse-SP effect) on a successive spontaneous and stimulated SP radiation. Figure 1
reprinted with permission from Pan and Gover, Phys. Rev. A 99, 052107 (2019),
Ref. [137]. Copyright 2019 by the American Physical Society. (b) Semiclassical
Maxwell–Schrödinger simulations for the inverse SP effect. Reprinted from [172]
under a Creative Commons license. (c) Quantum PINEM experiment employing an
inverse-designed periodic structure. The incident CW light changes its photon statis-
tics from thermal to Poissonian, and the EELS signal shows a direct dependence on
the quantum photon statistics, as predicted by the QPINEM theory. From Dahan et al.,
Science 373, eabj7128 (2021) [116]. Reprinted with permission from AAAS.

https://creativecommons.org/licenses/by/4.0/
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structure allowed enough enhancement for low-intensity CW operation with quan-
tum light, as well as nearly single-mode operation thanks to quasi-phase-matching
selectivity. In their work, Dahan et al. [116] observed the continuous transition of
quantum to classical random walk of the free electron on the discrete energy ladder,
owing solely to the change in photon statistics, and in agreement with the stimulated
QPINEM prediction.

FUNDING

Israel Science Foundation (830/19); HORIZON EUROPE European Research Council
(AccelOnChip); Gordon and Betty Moore Foundation (4744).

DISCLOSURES

The authors declare that there are no conflicts of interest related to this article.

DATA AVAILABILITY

No data were generated or analyzed in the presented research.

REFERENCES

1. N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England,
L. Su, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer, and J. Vučković, “On-chip
integrated laser-driven particle accelerator,” Science 367, 79–83 (2020).

2. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez,
“Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).

3. D. Cesar, S. Custodio, J. Maxson, P. Musumeci, X. Shen, E. Threlkeld, R. J.
England, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. P. Wootton, and Z. Wu,
“High-field nonlinear optical response and phase control in a dielectric laser
accelerator,” Commun. Phys. 1, 46 (2018).

4. T. P. Wangler, RF Linear Accelerators (Wiley, 2008).
5. U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff,

“Alternating-phase focusing for dielectric-laser acceleration,” Phys. Rev. Lett.
121, 214801 (2018).

6. R. Shiloh, J. Illmer, T. Chlouba, P. Yousefi, N. Schönenberger, U. Niedermayer,
A. Mittelbach, and P. Hommelhoff, “Electron phase space control in photonic
chip-based particle acceleration,” Nature 597, 498–502 (2021).

7. N. Schönenberger, A. Mittelbach, P. Yousefi, J. McNeur, U. Niedermayer, and
P. Hommelhoff, “Generation and characterization of attosecond microbunched
electron pulse trains via dielectric laser acceleration,” Phys. Rev. Lett. 123,
264803 (2019).

8. D. S. Black, U. Niedermayer, Y. Miao, Z. Zhao, O. Solgaard, R. L. Byer, and K. J.
Leedle, “Net acceleration and direct measurement of attosecond electron pulses
in a silicon dielectric laser accelerator,” Phys. Rev. Lett. 123, 264802 (2019).

9. K. J. Leedle, D. S. Black, Y. Miao, K. E. Urbanek, A. Ceballos, H. Deng,
J. S. Harris, O. Solgaard, and R. L. Byer, “Phase-dependent dielectric laser
acceleration of 99 keV electrons with symmetrically driven silicon dual pillar
gratings,” 2018 Conf. Lasers Electro-Optics, CLEO 2018 - Proc. 43, 2181–2184
(2018).

10. D. S. Black, Z. Zhao, K. J. Leedle, Y. Miao, R. L. Byer, S. Fan, and O. Solgaard,
“Operating modes of dual-grating dielectric laser accelerators,” Phys. Rev. Accel.
Beams 23, 114001 (2020).

11. Z. Zhao, K. J. Leedle, D. S. Black, O. Solgaard, R. L. Byer, and S. Fan, “Electron
pulse compression with optical beat note,” Phys. Rev. Lett. 127, 164802 (2021).

https://doi.org/10.1126/science.aay5734
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1038/s42005-018-0047-y
https://doi.org/10.1103/PhysRevLett.121.214801
https://doi.org/10.1038/s41586-021-03812-9
https://doi.org/10.1103/PhysRevLett.123.264803
https://doi.org/10.1103/PhysRevLett.123.264802
https://doi.org/10.1103/PhysRevAccelBeams.23.114001
https://doi.org/10.1103/PhysRevAccelBeams.23.114001
https://doi.org/10.1103/PhysRevLett.127.164802


918 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

12. T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure laser-driven
undulator,” Phys. Rev. Spec. Top.–Accel. Beams 11, 030704 (2008).

13. R. J. England, R. J. Noble, and K. Bane, et al., “Dielectric laser accelerators,”
Rev. Mod. Phys. 86, 1337–1389 (2014).

14. K. P. Wootton, J. McNeur, and K. J. Leedle, “Dielectric laser accelerators:
designs, experiments, and applications,” Rev. Accel. Sci. Technol. 09, 105–126
(2016).

15. R. J. England, U. Niedermayer, L. Schächter, T. Hughes, P. Musumeci, R. K. Li,
and W. D. Kimura, “Considerations for a TeV collider based on dielectric laser
accelerators,” J. Instrum. 17, P05012 (2022).

16. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy (Imperial College
Press, 2009).

17. A. H. Zewail, “Four-dimensional electron microscopy,” Science 328, 187–193
(2010).

18. B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field
electron microscopy,” Nature 462, 902–906 (2009).

19. A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schäfer, and C. Ropers,
“Quantum coherent optical phase modulation in an ultrafast transmission electron
microscope,” Nature 521, 200–203 (2015).

20. G. M. Vanacore, I. Madan, G. Berruto, K. Wang, E. Pomarico, R. J. Lamb, D.
McGrouther, I. Kaminer, B. Barwick, F. Javier García de Abajo, and F. Carbone,
“Attosecond coherent control of free-electron wave functions using semi-infinite
light fields,” Nat. Commun. 9, 2694 (2018).

21. R. Dahan, S. Nehemia, M. Shentcis, O. Reinhardt, Y. Adiv, X. Shi, O. Be’er, M. H.
Lynch, Y. Kurman, K. Wang, and I. Kaminer, “Resonant phase-matching between
a light wave and a free-electron wavefunction,” Nat. Phys. 16, 1123–1131 (2020).

22. K. Wang, R. Dahan, M. Shentcis, Y. Kauffmann, A. Ben Hayun, O. Reinhardt,
S. Tsesses, I. Kaminer, A. Ben Hayun, O. Reinhardt, S. Tsesses, and I. Kaminer,
“Coherent interaction between free electrons and a photonic cavity,” Nature 582,
50–54 (2020).

23. O. Kfir, H. Lourenço-Martins, G. Storeck, M. Sivis, T. R. Harvey, T. J. Kip-
penberg, A. Feist, and C. Ropers, “Controlling free electrons with optical
whispering-gallery modes,” Nature 582, 46–49 (2020).

24. J.-W. Henke, A. S. Raja, A. Feist, G. Huang, G. Arend, Y. Yang, J. Kappert, R. N.
Wang, M. Möller, J. Pan, J. Liu, O. Kfir, C. Ropers, and T. J. Kippenberg, “Inte-
grated photonics enables continuous-beam electron phase modulation,” Nature
600, 653–658 (2021).

25. R. Shiloh, T. Chlouba, and P. Hommelhoff, “Quantum-coherent light-electron
interaction in a scanning electron microscope,” Phys. Rev. Lett. 128, 235301
(2022).

26. O. Reinhardt, C. Mechel, M. Lynch, and I. Kaminer, “Free-electron qubits,” Ann.
Phys. 533, 2000254 (2021).

27. Y. Adiv, K. Wang, R. Dahan, P. Broaddus, Y. Miao, D. Black, K. Leedle, R.
L. Byer, O. Solgaard, R. J. England, I. Kaminer, J. England, and I. Kaminer,
“Quantum nature of dielectric laser accelerators,” Phys. Rev. X 11, 041042
(2021).

28. M. Kozák, J. McNeur, N. Schönenberger, J. Illmer, A. Li, A. Tafel, P. Yousefi, T.
Eckstein, and P. Hommelhoff, “Ultrafast scanning electron microscope applied
for studying the interaction between free electrons and optical near-fields of
periodic nanostructures,” J. Appl. Phys. 124, 023104 (2018).

29. A. Feist, N. Bach, N. Rubiano da Silva, T. Danz, M. Möller, K. E. Priebe, T.
Dömrose, J. G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis,
S. Schäfer, and C. Ropers, “Ultrafast transmission electron microscopy using a

https://doi.org/10.1103/PhysRevSTAB.11.030704
https://doi.org/10.1103/RevModPhys.86.1337
https://doi.org/10.1142/S179362681630005X
https://doi.org/10.1088/1748-0221/17/05/P05012
https://doi.org/10.1126/science.1166135
https://doi.org/10.1038/nature08662
https://doi.org/10.1038/nature14463
https://doi.org/10.1038/s41467-018-05021-x
https://doi.org/10.1038/s41567-020-01042-w
https://doi.org/10.1038/s41586-020-2321-x
https://doi.org/10.1038/s41586-020-2320-y
https://doi.org/10.1038/s41586-021-04197-5
https://doi.org/10.1103/PhysRevLett.128.235301
https://doi.org/10.1002/andp.202000254
https://doi.org/10.1002/andp.202000254
https://doi.org/10.1103/PhysRevX.11.041042
https://doi.org/10.1063/1.5032093


Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 919

laser-driven field emitter: femtosecond resolution with a high coherence electron
beam,” Ultramicroscopy 176, 63–73 (2017).

30. J. McNeur, M. Kozák, N. Schönenberger, K. J. Leedle, H. Deng, A. Ceballos,
H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L.
Byer, and P. Hommelhoff, “Elements of a dielectric laser accelerator,” Optica 5,
687–690 (2018).

31. R. B. Palmer, “Laser-driven grating linac,” Part. Accel. 11, 81–90 (1980).
32. K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer, J. S.

Harris, R. Fabian Pease, R. L. Byer, and J. S. Harris, “Dielectric laser acceleration
of sub-100 keV electrons with silicon dual-pillar grating structures,” Opt. Lett.
40, 4344–4347 (2015).

33. R. Shiloh, T. Chlouba, P. Yousefi, and P. Hommelhoff, “Particle acceleration
using top-illuminated nanophotonic dielectric structures,” Opt. Express 29,
14403–14411 (2021).

34. D. S. Black, K. J. Leedle, Y. Miao, U. Niedermayer, R. L. Byer, and O. Solgaard,
“Laser-driven electron lensing in silicon microstructures,” Phys. Rev. Lett. 122,
104801 (2019).

35. P. Yousefi, J. McNeur, M. Kozák, U. Niedermayer, F. Gannott, O. Lohse, O.
Boine-Frankenheim, and P. Hommelhoff, “Silicon dual pillar structure with a dis-
tributed Bragg reflector for dielectric laser accelerators: design and fabrication,”
Nucl. Instrum. Methods Phys. Res., Sect. A 909, 221–223 (2018).

36. J. McNeur, M. Kozak, D. Ehberger, N. Schönenberger, A. Tafel, A. Li, and P.
Hommelhoff, “A miniaturized electron source based on dielectric laser acceler-
ator operation at higher spatial harmonics and a nanotip photoemitter,” J. Phys.
B: At., Mol. Opt. Phys. 49, 034006 (2016).

37. P. Yousefi, N. Schönenberger, J. Mcneur, M. Kozák, U. Niedermayer, and P.
Hommelhoff, “Dielectric laser electron acceleration in a dual pillar grating with
a distributed Bragg reflector,” Opt. Lett. 44, 1520 (2019).

38. Y. Miao, D. S. Black, K. J. Leedle, Z. Zhao, H. Deng, A. Ceballos, R. L. Byer,
J. S. Harris, and O. Solgaard, “Surface treatments of dielectric laser accelerators
for increased laser-induced damage threshold,” Opt. Lett. 45, 391 (2020).

39. Z. Zhao, D. S. Black, R. J. England, T. W. Hughes, Y. Miao, O. Solgaard, R.
L. Byer, S. Fan, R. Joel England, T. W. Hughes, Y. Miao, O. Solgaard, R. L.
Byer, and S. Fan, “Design of a multichannel photonic crystal dielectric laser
accelerator,” Photonics Res. 8, 1586 (2020).

40. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C.
McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B.
Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in
a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).

41. K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta,
K. Soong, R. L. Byer, and R. Joel England, “Demonstration of acceleration
of relativistic electrons at a dielectric microstructure using femtosecond laser
pulses,” Opt. Lett. 41, 2696–2699 (2016).

42. J. Breuer and P. Hommelhoff, “Laser-based acceleration of nonrelativistic
electrons at a dielectric structure,” Phys. Rev. Lett. 111, 134803 (2013).

43. T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D.
S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, S. Fan, R. J. England,
Y. J. Lee, and M. Qi, “On-chip laser-power delivery system for dielectric laser
accelerators,” Phys. Rev. Appl. 9, 054017 (2018).

44. E. Colby, “A laser-driven linear collider: sample machine parameters and con-
figuration,” in Proceedings of 2011 Particle Accelerator Conference, New York,
NY, USA (2011).

https://doi.org/10.1016/j.ultramic.2016.12.005
https://doi.org/10.1364/OPTICA.5.000687
https://doi.org/10.1364/OL.40.004344
https://doi.org/10.1364/OE.420235
https://doi.org/10.1103/PhysRevLett.122.104801
https://doi.org/10.1016/j.nima.2018.01.065
https://doi.org/10.1088/0953-4075/49/3/034006
https://doi.org/10.1088/0953-4075/49/3/034006
https://doi.org/10.1364/OL.44.001520
https://doi.org/10.1364/OL.379628
https://doi.org/10.1364/PRJ.394127
https://doi.org/10.1038/nature12664
https://doi.org/10.1364/OL.41.002696
https://doi.org/10.1103/PhysRevLett.111.134803
https://doi.org/10.1103/PhysRevApplied.9.054017


920 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

45. R. H. Siemann, “Energy efficiency of laser driven, structure based accelerators,”
Phys. Rev. Spec. Top.–Accel. Beams 7, 061303 (2004).

46. D. Cesar, J. Maxson, X. Shen, K. P. Wootton, S. Tan, R. J. England, and P.
Musumeci, “Enhanced energy gain in a dielectric laser accelerator using a tilted
pulse front laser,” Opt. Express 26, 29216 (2018).

47. T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle laser-driven
particle accelerator structure,” Phys. Rev. Spec. Top.–Accel. Beams 9, 111301
(2006).

48. Y. Wei, G. Xia, J. D. A. Smith, and C. P. Welsch, “Dual-gratings with a Bragg
reflector for dielectric laser-driven accelerators,” Phys. Plasmas 24, 073115
(2017).

49. T. W. Hughes, R. J. England, and S. Fan, “Reconfigurable photonic circuit for
controlled power delivery to laser-driven accelerators on a chip,” Phys. Rev. Appl.
11, 064014 (2019).

50. L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vučković,
“Fully-automated optimization of grating couplers,” Opt. Express 26, 4023–4034
(2018).

51. D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750
(2015).

52. B. Naranjo, A. Valloni, S. Putterman, and J. B. Rosenzweig, “Stable charged-
particle acceleration and focusing in a laser accelerator using spatial harmonics,”
Phys. Rev. Lett. 109, 164803 (2012).

53. D. A. Swenson, “Alternating phase focused linacs,” Part. Accel. 7, 61–67 (1976).
54. U. Niedermayer, A. Adelmann, and S. Bettoni, et al., “Challenges in simulating

beam dynamics of dielectric laser acceleration,” Int. J. Mod. Phys. A 34, 1942031
(2019).

55. J. Wang, Grating and Ring Based Devices on SOI Platform (McGill University,
2016).

56. C.-M. Chang and O. Solgaard, “Silicon buried gratings for dielectric laser electron
accelerators,” Appl. Phys. Lett. 104, 184102 (2014).

57. T. Hughes, G. Veronis, K. P. Wootton, R. J. England, and S. Fan, “Method for
computationally efficient design of dielectric laser accelerator structures,” Opt.
Express 25, 15414–15727 (2017).

58. K. Mizuno, J. Pae, T. Nozokido, and K. Furuya, “Experimental evidence of the
inverse Smith–Purcell effect,” Nature 328, 45–47 (1987).

59. M. Kozák, M. Förster, J. McNeur, N. Schönenberger, K. Leedle, H. Deng, J. S.
Harris, R. L. Byer, and P. Hommelhoff, “Dielectric laser acceleration of sub-
relativistic electrons by few-cycle laser pulses,” Nucl. Instrum. Methods Phys.
Res., Sect. A 865, 84–86 (2017).

60. J. Breuer, R. Graf, A. Apolonski, and P. Hommelhoff, “Dielectric laser accel-
eration of nonrelativistic electrons at a single fused silica grating structure:
Experimental part,” Phys. Rev. Spec. Top.–Accel. Beams 17, 021301 (2014).

61. K. J. Leedle, R. Fabian Pease, R. L. Byer, and J. S. Harris, “Laser acceleration
and deflection of 96.3 keV electrons with a silicon dielectric structure,” Optica
2, 158–161 (2015).

62. M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki,
M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L.
Byer, and P. Hommelhoff, “Acceleration of sub-relativistic electrons with an
evanescent optical wave at a planar interface,” Opt. Express 25, 19195–19204
(2017).

63. M. Kozák, J. McNeur, K. J. Leedle, H. Deng, N. Schönenberger, A. Ruehl, I. Hartl,
J. S. Harris, R. L. Byer, and P. Hommelhoff, “Optical gating and streaking of free
electrons with sub-optical cycle precision,” Nat. Commun. 8, 14342 (2017).

https://doi.org/10.1103/PhysRevSTAB.7.061303
https://doi.org/10.1364/OE.26.029216
https://doi.org/10.1103/PhysRevSTAB.9.111301
https://doi.org/10.1063/1.4993206
https://doi.org/10.1103/PhysRevApplied.11.064014
https://doi.org/10.1364/OE.26.004023
https://doi.org/10.1364/OPTICA.2.000747
https://doi.org/10.1103/PhysRevLett.109.164803
https://doi.org/10.1142/S0217751X19420314
https://doi.org/10.1063/1.4875957
https://doi.org/10.1364/OE.25.015414
https://doi.org/10.1364/OE.25.015414
https://doi.org/10.1038/328045a0
https://doi.org/10.1016/j.nima.2016.12.051
https://doi.org/10.1016/j.nima.2016.12.051
https://doi.org/10.1103/PhysRevSTAB.17.021301
https://doi.org/10.1364/OPTICA.2.000158
https://doi.org/10.1364/OE.25.019195
https://doi.org/10.1038/ncomms14342


Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 921

64. K. J. Leedle, D. S. Black, Y. Miao, K. E. Urbanek, A. Ceballos, H. Deng, J.
S. Harris, O. Solgaard, and R. L. Byer, “Phase-dependent laser acceleration of
electrons with symmetrically driven silicon dual pillar gratings,” Opt. Lett. 43,
2181–2184 (2018).

65. H. Deng, K. J. Leedle, Y. Miao, D. S. Black, K. E. Urbanek, J. McNeur, M. Kozák,
A. Ceballos, P. Hommelhoff, O. Solgaard, R. L. Byer, and J. S. Harris, “Gallium
oxide for high-power optical applications,” Adv. Opt. Mater. 8, 1901522 (2020).

66. Y. Adiv, K. Wang, R. Dahan, P. Broaddus, Y. Miao, D. Black, K. Leedle, O.
Solgaard, J. England, and I. Kaminer, “Observation of the quantum nature of
laser-driven particle acceleration,” Conference on Lasers and Electro-Optics
(2020).

67. U. Niedermayer, D. S. Black, K. J. Leedle, Y. Miao, R. L. Byer, and O. Solgaard,
“Low-energy-spread attosecond bunching and coherent electron acceleration in
dielectric nanostructures,” Phys. Rev. Appl. 15, L021002 (2021).

68. R. Shiloh, T. Chlouba, and P. Hommelhoff, “Experimental considerations in
electron beam transport on a nanophotonic chip using alternating phase focusing,”
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas.,
Phenom. 40, 010602 (2022).

69. T. Chlouba, R. Shiloh, P. Forsberg, M. Hamberg, M. Karlsson, M. Kozák, and
P. Hommelhoff, “Diamond-based dielectric laser acceleration,” Opt. Express 30,
505–510 (2022).

70. U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Beam dynamics anal-
ysis of dielectric laser acceleration using a fast 6D tracking scheme,” Phys. Rev.
Accel. Beams 20, 111302 (2017).

71. W. K. H. Panofsky and W. A. Wenzel, “Some considerations concerning the
transverse deflection of charged particles in radio-frequency fields,” Rev. Sci.
Instrum. 27, 967 (1956).

72. M. J. Browman, “Using the Panofsky–Wenzel theorem in the analysis of radio-
frequency deflectors,” in Proceedings of International Conference on Particle
Accelerators (IEEE, 1993), pp. 800–802.

73. A. W. Chao, Lecture Notes on Topics in Accelerator Physics (2002).
74. I. B. Fainberg, "Alternating Phase Focusing," in CERN Symposium On High-

Energy Accelerators And Pion Phyiscs (1956), pp. 91–100.
75. U. Niedermayer, T. Egenolf, and O. Boine-Frankenheim, “Three dimensional

alternating-phase focusing for dielectric-laser electron accelerators,” Phys. Rev.
Lett. 125, 164801 (2020).

76. U. Niedermayer, J. Lautenschläger, T. Egenolf, and O. Boine-Frankenheim,
“Design of a scalable integrated nanophotonic electron accelerator on a chip,”
Phys. Rev. Appl. 16, 024022 (2021).

77. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level
view of melting using femtosecond electron diffraction,” Science 302, 1382–1385
(2003).

78. P. Baum, D.-S. Yang, and A. H. Zewail, “4D Visualization of Transitional Struc-
tures in Phase Transformations by Electron Diffraction,” Science 318, 788–792
(2007).

79. Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron
pulse trains,” Nat. Phys. 14, 252–256 (2018).

80. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy Imaging in Space and
Time (Imperial College Press, 2010).

81. K. B. Schliep, P. Quarterman, J. P. Wang, and D. J. Flannigan, “Picosecond
Fresnel transmission electron microscopy,” Appl. Phys. Lett. 110, 222404 (2017).

82. G. Berruto, I. Madan, Y. Murooka, G. M. Vanacore, E. Pomarico, J. Rajeswari,
R. Lamb, P. Huang, A. J. Kruchkov, Y. Togawa, T. LaGrange, D. McGrouther, H.

https://doi.org/10.1364/OL.43.002181
https://doi.org/10.1002/adom.201901522
https://doi.org/10.1103/PhysRevApplied.15.L021002
https://doi.org/10.1116/6.0001598
https://doi.org/10.1116/6.0001598
https://doi.org/10.1364/OE.442752
https://doi.org/10.1103/PhysRevAccelBeams.20.111302
https://doi.org/10.1103/PhysRevAccelBeams.20.111302
https://doi.org/10.1063/1.1715427
https://doi.org/10.1063/1.1715427
https://doi.org/10.1103/PhysRevLett.125.164801
https://doi.org/10.1103/PhysRevLett.125.164801
https://doi.org/10.1103/PhysRevApplied.16.024022
https://doi.org/10.1126/science.1090052
https://doi.org/10.1126/science.1147724
https://doi.org/10.1038/s41567-017-0007-6
https://doi.org/10.1063/1.4984586


922 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

M. Rønnow, and F. Carbone, “Laser-induced skyrmion writing and erasing in an
ultrafast cryo-Lorentz transmission electron microscope,” Phys. Rev. Lett. 120,
117201 (2018).

83. S. Ackermann, A. Azima, and S. Bajt, et al., “Generation of coherent 19- and
38-nm radiation at a free-electron laser directly seeded at 38 nm,” Phys. Rev.
Lett. 111, 114801 (2013).

84. Y. Morimoto and P. Baum, “Single-cycle optical control of beam electrons,”
Phys. Rev. Lett. 125, 193202 (2020).

85. A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. J. England, and K. P. Wootton,
“Flat electron beam sources for DLA accelerators,” Nucl. Instrum. Methods Phys.
Res., Sect. A 865, 75–83 (2017).

86. S. Crisp, A. Ody, P. Musumeci, and R. J. England, “Resonant phase matching by
oblique illumination of a dielectric laser accelerator,” Phys. Rev. Accel. Beams
24, 121305 (2021).

87. L. R. Doolittle, H. Ma, and M. Champion, “Digital low-level RF control using
non-IQ sampling,” in Proceedings of LINAC 2006, Knoxville, Tennessee USA
(2006).

88. L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vučković, “Inverse design
and demonstration of a compact on-chip narrowband three-channel wavelength
demultiplexer,” ACS Photonics 5, 301–305 (2018).

89. Y. Wei, M. Ibison, G. Xia, J. D. A. Smith, and C. P. Welsch, “Dual-grating dielec-
tric accelerators driven by a pulse-front-tilted laser,” Appl. Opt. 56, 8201–8206
(2017).

90. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt.
Quantum Electron. 28, 1759–1763 (1996).

91. D. Cesar, J. Maxson, P. Musumeci, X. Shen, R. J. England, and K. P. Wootton,
“Optical design for increased interaction length in a high gradient dielectric laser
accelerator,” Nucl. Instrum. Methods Phys. Res., Sect. A 909, 252–256 (2018).

92. S. Reiche, J. B. Rosenzweig, S. Anderson, P. Frigola, M. Hogan, A. Murokh,
C. Pellegrini, L. Serafini, G. Travish, and A. Tremaine, “Experimental confir-
mation of transverse focusing and adiabatic damping in a standing wave linear
accelerator,” Phys. Rev. E 56, 3572–3577 (1997).

93. D. B. Cesar, “Probing ultrafast dynamics with relativistic electrons,” Ph.D
dissertation (University of CaliforniaLos Angeles, 2019).

94. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics (Elsevier Science,
2013).

95. A. Szczepkowicz, “Application of transfer matrix and transfer function analysis to
grating-type dielectric laser accelerators: ponderomotive focusing of electrons,”
Phys. Rev. Accel. Beams 20, 081302 (2017).

96. B. V. Chirikov, “Resonance processes in magnetic traps,” J. Nucl. Energy, Part
C 1, 253–260 (1960).

97. D. Cesar, P. Musumeci, and J. England, “All optical control of beam dynamics in
a dla,” in 2018 IEEE Advanced Accelerator Concepts Workshop (AAC) (2018),
pp. 1–5.

98. A. Ody, S. Crisp, P. Musumeci, D. Cesar, and R. J. England, “SHarD: A beam
dynamics simulation code for dielectric laser accelerators based on spatial har-
monic field expansion,” Nucl. Instrum. Methods Phys. Res., Sect. A 1013, 165635
(2021).

99. S. T. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron
microscopy (PINEM): theoretical and experimental,” New J. Phys. 12, 123028
(2010).

https://doi.org/10.1103/PhysRevLett.120.117201
https://doi.org/10.1103/PhysRevLett.111.114801
https://doi.org/10.1103/PhysRevLett.111.114801
https://doi.org/10.1103/PhysRevLett.125.193202
https://doi.org/10.1016/j.nima.2016.10.041
https://doi.org/10.1016/j.nima.2016.10.041
https://doi.org/10.1103/PhysRevAccelBeams.24.121305
https://doi.org/10.1021/acsphotonics.7b00987
https://doi.org/10.1364/AO.56.008201
https://doi.org/10.1007/BF00698541
https://doi.org/10.1007/BF00698541
https://doi.org/10.1016/j.nima.2018.01.012
https://doi.org/10.1103/PhysRevE.56.3572
https://doi.org/10.1103/PhysRevAccelBeams.20.081302
https://doi.org/10.1088/0368-3281/1/4/311
https://doi.org/10.1088/0368-3281/1/4/311
https://doi.org/10.1016/j.nima.2021.165635
https://doi.org/10.1088/1367-2630/12/12/123028


Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 923

100. F. J. G. de Abajo, A. Asenjo-Garcia, and M. Kociak, “Multiphoton absorption
and emission by interaction of swift electrons with evanescent light fields,” Nano
Lett. 10, 1859–1863 (2010).

101. F. H. M. Faisal, Theory of Multiphoton Processes (Springer Science+ Business
Media, 1987).

102. D. A. Varshalovich and M. I. D’yakonov, “Quantum theory of the modulation of
the electron beam at optical frequencies,” Sov. Phys. JETP 33, 51–57 (1971).

103. A. Weingartshofer, J. K. Holmes, G. Caudle, E. M. Clarke, and H. Krüger, “Direct
observation of multiphoton processes in laser-induced free-free transitions,”
Phys. Rev. Lett. 39, 269–270 (1977).

104. L. Friedland, “Correspondence principle in multiphoton inverse bremsstrahlung,”
J. Phys. B: At. Mol. Phys. 12, 409–418 (1979).

105. L. Friedland, “Correspondence principle in free-electron lasers,” Phys. Rev. A
29, 1310–1314 (1984).

106. A. Fruchtman and L. Friedland, “Simplified small signal gain calculations in free
electron lasers,” Int. J. Infrared Millimeter Waves 5, 683–690 (1984).

107. L. Piazza, T. T. A. Lummen, E. Quiñonez, Y. Murooka, B. W. Reed, B. Bar-
wick, and F. Carbone, “Simultaneous observation of the quantization and the
interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015).

108. K. E. Priebe, C. Rathje, S. V. Yalunin, T. Hohage, A. Feist, S. Schäfer, and C.
Ropers, “Attosecond electron pulse trains and quantum state reconstruction in
ultrafast transmission electron microscopy,” Nat. Photonics 11, 793–797 (2017).

109. G. M. Vanacore, G. Berruto, I. Madan, E. Pomarico, P. Biagioni, R. J. Lamb,
D. McGrouther, O. Reinhardt, I. Kaminer, B. Barwick, H. Larocque, V. Grillo,
E. Karimi, F. Javier García de Abajo, and F. Carbone, “Ultrafast generation and
control of an electron vortex beam via chiral plasmonic near fields,” Nat. Mater.
18, 573–579 (2019).

110. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007).
111. P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and

microscopy,” Proc. Natl. Acad. Sci. U. S. A. 104, 18409–18414 (2007).
112. P. Baum, “Quantum dynamics of attosecond electron pulse compression,” J.

Appl. Phys. 122, 223105 (2017).
113. O. Kfir, “Entanglements of electrons and cavity photons in the strong-coupling

regime,” Phys. Rev. Lett. 123, 103602 (2019).
114. V. Di Giulio, M. Kociak, and F. J. G. de Abajo, “Probing quantum optical

excitations with fast electrons,” Optica 6, 1524–1534 (2019).
115. A. Gorlach, A. Karnieli, R. Dahan, E. Cohen, A. Pe’er, and I. Kaminer, “Ultrafast

non-destructive measurement of the quantum state of light using free electrons,”
in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optica
Publishing Group, 2021), paper FF2I.4.

116. R. Dahan, A. Gorlach, U. Haeusler, A. Karnieli, O. Eyal, P. Yousefi, M. Segev,
A. Arie, G. Eisenstein, P. Hommelhoff, and I. Kaminer, “Imprinting the quantum
statistics of photons on free electrons,” Science 373, eabj7128 (2021).

117. A. Gover and A. Yariv, “Free-electron–bound-electron resonant interaction,”
Phys. Rev. Lett. 124, 064801 (2020).

118. M. O. Scully and M. S. Zubairy, Quantum Optics (1999).
119. Z. Zhao, X.-Q. Sun, and S. Fan, “Quantum entanglement and modulation

enhancement of free-electron–bound-electron interaction,” Phys. Rev. Lett. 126,
233402 (2021).

120. R. Ruimy, A. Gorlach, C. Mechel, N. Rivera, and I. Kaminer, “Toward atomic-
resolution quantum measurements with coherently shaped free electrons,” Phys.
Rev. Lett. 126, 233403 (2021).

https://doi.org/10.1021/nl100613s
https://doi.org/10.1021/nl100613s
https://doi.org/10.1070/PU1971v014n02ABEH004469
https://doi.org/10.1103/PhysRevLett.39.269
https://doi.org/10.1088/0022-3700/12/3/018
https://doi.org/10.1103/PhysRevA.29.1310
https://doi.org/10.1007/BF01009601
https://doi.org/10.1038/ncomms7407
https://doi.org/10.1038/s41566-017-0045-8
https://doi.org/10.1038/s41563-019-0336-1
https://doi.org/10.1038/nphys620
https://doi.org/10.1073/pnas.0709019104
https://doi.org/10.1063/1.5006864
https://doi.org/10.1063/1.5006864
https://doi.org/10.1103/PhysRevLett.123.103602
https://doi.org/10.1364/OPTICA.6.001524
https://doi.org/10.1126/science.abj7128
https://doi.org/10.1103/PhysRevLett.124.064801
https://doi.org/10.1103/PhysRevLett.126.233402
https://doi.org/10.1103/PhysRevLett.126.233403
https://doi.org/10.1103/PhysRevLett.126.233403


924 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

121. F. J. G. de Abajo and V. Di Giulio, “Optical excitations with electron beams:
challenges and opportunities,” ACS Photonics 8, 945–974 (2021).

122. G. Baranes, R. Ruimy, A. Gorlach, and I. Kaminer, “Free electrons can induce
quantum correlations between two separate photonic cavities,” in Conference
on Lasers and Electro-Optics, J. Kang, S. Tomasulo, I. Ilev, D. Müller, N. Lit-
chinitser, S. Polyakov, V. Podolskiy, J. Nunn, C. Dorrer, T. Fortier, Q. Gan, and
C. Saraceno, eds., OSA Technical Digest (Optical Society of America, 2021), p.
FTh1N.7.

123. M. E. Peskin, An Introduction to Quantum Field Theory (CRC Press, 2018).
124. D. B. Williams and C. B. Carter, “The transmission electron microscope,” in

Transmission Electron Microscopy (Springer, 1996), pp. 3–17.
125. W. Magnus, “On the exponential solution of differential equations for a linear

operator,” Commun. Pure and Appl. Maths. 7, 649–673 (1954).
126. N. Rivera and I. Kaminer, “Light–matter interactions with photonic quasiparti-

cles,” Nat. Rev. Phys. 2, 538–561 (2020).
127. F. J. G. De Abajo, “Comment on ‘Free-electron-bound-electron resonant

interaction’,” Phys. Rev. Lett. 126, 019501 (2021).
128. A. Gover and A. Yariv, “Gover and Yariv reply,” Phys. Rev. Lett. 126, 019502

(2021).
129. D. L. Webster, “Cathode-ray bunching,” J. Appl. Phys. 10, 501–508 (1939).
130. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev.

131, 2766–2788 (1963).
131. A. Ben Hayun, O. Reinhardt, J. Nemirovsky, A. Karnieli, N. Rivera, and I.

Kaminer, “Shaping quantum photonic states using free electrons,” Sci. Adv. 7,
eabe4270 (2021).

132. V. Di Giulio and F. J. G. de Abajo, “Free-electron shaping using quantum light,”
Optica 7, 1820 (2020).

133. S. V. Yalunin, A. Feist, and C. Ropers, “Tailored high-contrast attosecond electron
pulses for coherent excitation and scattering,” Phys. Rev. Res. 3, L032036 (2021).

134. O. Reinhardt and I. Kaminer, “Theory of shaping electron wavepackets with
light,” ACS Photonics 7, 2859–2870 (2020).

135. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41, 2315–2323
(1994).

136. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford
University Press on Demand, 2002).

137. Y. Pan and A. Gover, “Spontaneous and stimulated emissions of a preformed
quantum free-electron wave function,” Phys. Rev. A 99, 052107 (2019).

138. A. Gover and Y. Pan, “Dimension-dependent stimulated radiative interaction of
a single electron quantum wavepacket,” Phys. Lett. A 382, 1550–1555 (2018).

139. R. Remez, A. Karnieli, S. Trajtenberg-Mills, N. Shapira, I. Kaminer, Y. Lereah,
and A. Arie, “Observing the quantum wave nature of free electrons through
spontaneous emission,” Phys. Rev. Lett. 123, 060401 (2019).

140. A. Friedman, A. Gover, G. Kurizki, S. Ruschin, and A. Yariv, “Spontaneous and
stimulated emission from quasifree electrons,” Rev. Mod. Phys. 60, 471–535
(1988).

141. R. H. Ritchie and A. Howie, “Inelastic scattering probabilities in scanning
transmission electron microscopy,” Philos. Mag. A 58, 753–767 (1988).

142. F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.
82, 209–275 (2010).

143. A. Karnieli, N. Rivera, A. Arie, and I. Kaminer, “The coherence of light is
fundamentally tied to the quantum coherence of the emitting particle,” Sci. Adv.
7, eabf8096 (2021).

https://doi.org/10.1021/acsphotonics.0c01950
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1038/s42254-020-0224-2
https://doi.org/10.1103/PhysRevLett.126.019501
https://doi.org/10.1103/PhysRevLett.126.019502
https://doi.org/10.1063/1.1707333
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1126/sciadv.abe4270
https://doi.org/10.1364/OPTICA.404598
https://doi.org/10.1103/PhysRevResearch.3.L032036
https://doi.org/10.1021/acsphotonics.0c01133
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1103/PhysRevA.99.052107
https://doi.org/10.1016/j.physleta.2018.03.049
https://doi.org/10.1103/PhysRevLett.123.060401
https://doi.org/10.1103/RevModPhys.60.471
https://doi.org/10.1080/01418618808209951
https://doi.org/10.1103/RevModPhys.82.209
https://doi.org/10.1126/sciadv.abf8096


Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 925

144. O. Kfir, V. Di Giulio, F. J. G. de Abajo, and C. Ropers, “Optical coherence transfer
mediated by free electrons,” Sci. Adv. 7, 6380 (2021).

145. A. Gorlach, A. Karnieli, R. Dahan, E. Cohen, A. Pe’er, and I. Kaminer, “Ultrafast
non-destructive measurement of the quantum state of light using free electrons,”
(2020).

146. V. L. Ginzburg, “Radiation by uniformly moving sources (Vavilov–Cherenkov
effect, transition radiation, and other phenomena),” Phys.-Usp. 39, 973–982
(1996).

147. S. Tsesses, G. Bartal, and I. Kaminer, “Light generation via quantum interaction
of electrons with periodic nanostructures,” Phys. Rev. A 95, 013832 (2017).

148. I. Kaminer, M. Mutzafi, A. Levy, G. Harari, H. H. Sheinfux, S. Skirlo, J.
Nemirovsky, J. D. Joannopoulos, M. Segev, and M. Soljacic, “Quantum Čerenkov
radiation: spectral cutoffs and the role of spin and orbital angular momentum,”
Phys. Rev. X 6, 011006 (2016).

149. S. Huang, R. Duan, N. Pramanik, J. S. Herrin, C. Boothroyd, Z. Liu, and L.
J. Wong, “Quantum recoil in free electron-driven spontaneous emission from
van der Waals crystals,” in Conference on Lasers and Electro-Optics, Technical
Digest Series (Optica Publishing Group, 2022), p. FF4C.4.

150. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges
moving across a grating,” Phys. Rev. 92, 1069 (1953).

151. R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M.
Soljačić, I. Kaminer, and A. Arie, “Spectral and spatial shaping of Smith–Purcell
radiation,” Phys. Rev. A 96, 061801 (2017).

152. M. J. Moran, “X-ray generation by the Smith–Purcell effect,” Phys. Rev. Lett. 69,
2523–2526 (1992).

153. A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, K. K.
Berggren, I. Kaminer, and M. Soljačić, “Smith–Purcell radiation from low-energy
electrons,” ACS Photonics 5, 3513–3518 (2018).

154. Z. Su, F. Cheng, L. Li, and Y. Liu, “Complete control of Smith–Purcell radiation
by graphene metasurfaces,” ACS Photonics 6, 1947–1954 (2019).

155. L. Jing, X. Lin, Z. Wang, I. Kaminer, H. Hu, E. Li, Y. Liu, M. Chen, B.
Zhang, and H. Chen, “Polarization shaping of free-electron radiation by gradient
bianisotropic metasurfaces,” Laser Photonics Rev. 15, 2000426 (2021).

156. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of
frequency-locked coherent terahertz Smith–Purcell radiation,” Phys. Rev. Lett.
94, 054803 (2005).

157. I. Kaminer, S. E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. López, R. Remez, S. A.
Skirlo, Y. Yang, J. D. Joannopoulos, A. Arie, and M. Soljacic, “Spectrally and
spatially resolved Smith–Purcell radiation in plasmonic crystals with short-range
disorder,” Phys. Rev. X 7, 011003 (2017).

158. Z. Wang, K. Yao, M. Chen, H. Chen, and Y. Liu, “Manipulating Smith–Purcell
emission with babinet metasurfaces,” Phys. Rev. Lett. 117, 157401 (2016).

159. L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, “Multi-color and
multidirectional-steerable Smith–Purcell radiation from 2D sub-wavelength hole
arrays,” Appl. Phys. Lett. 113, 013501 (2018).

160. T. Fu, D. Wang, Z. Yang, Z. Deng, and W. Liu, “Steering Smith–Purcell radiation
angle in a fixed frequency by the Fano-resonant metasurface,” Opt. Express 29,
26983–26994 (2021).

161. Y.-C. Lai, T. C. Kuang, B. H. Cheng, Y.-C. Lan, and D. P. Tsai, “Generation of con-
vergent light beams by using surface plasmon locked Smith–Purcell radiation,”
Sci. Rep. 7, 11096 (2017).

162. Y. Yang, C. Roques-Carmes, I. Kaminer, A. Zaidi, A. Massuda, Y. Yang, S. E.
Kooi, K. K. Berggren, and M. Soljacic, “Manipulating Smith–Purcell radiation

https://doi.org/10.1126/sciadv.abf6380
https://doi.org/10.1070/PU1996v039n10ABEH000171
https://doi.org/10.1103/PhysRevA.95.013832
https://doi.org/10.1103/PhysRevX.6.011006
https://doi.org/10.1103/PhysRev.92.1069
https://doi.org/10.1103/PhysRevA.96.061801
https://doi.org/10.1103/PhysRevLett.69.2523
https://doi.org/10.1021/acsphotonics.8b00743
https://doi.org/10.1021/acsphotonics.9b00251
https://doi.org/10.1002/lpor.202000426
https://doi.org/10.1103/PhysRevLett.94.054803
https://doi.org/10.1103/PhysRevX.7.011003
https://doi.org/10.1103/PhysRevLett.117.157401
https://doi.org/10.1063/1.5034248
https://doi.org/10.1364/OE.434580
https://doi.org/10.1038/s41598-017-11622-1


926 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

polarization with metasurfaces,” in Conference on Lasers and Electro-Optics
(2018), Paper FW4H.1.

163. T. Latychevskaia, “Spatial coherence of electron beams from field emitters and
its effect on the resolution of imaged objects,” Ultramicroscopy 175, 121–129
(2017).

164. B. Cho, T. Ichimura, R. Shimizu, and C. Oshima, “Quantitative evaluation of
spatial coherence of the electron beam from low temperature field emitters,”
Phys. Rev. Lett. 92, 246103 (2004).

165. E. Pomarico, I. Madan, G. Berruto, G. M. Vanacore, K. Wang, I. Kaminer, F.
J. García De Abajo, and F. Carbone, “meV resolution in laser-assisted energy-
filtered transmission electron microscopy,” ACS Photonics 5, 759–764 (2018).

166. O. L. Krivanek, N. Dellby, J. A. Hachtel, J. C. Idrobo, M. T. Hotz, B. Plotkin-
Swing, N. J. Bacon, A. L. Bleloch, G. J. Corbin, M. V. Hoffman, C. E. Meyer, and
T. C. Lovejoy, “Progress in ultrahigh energy resolution EELS,” Ultramicroscopy
203, 60–67 (2019).

167. L. Reimer and H. Kohl, Transmission Electron Microscopy: Physics of Image
Formation (Springer, 2008).

168. M. Liebtrau, M. Sivis, A. Feist, H. Lourenço-Martins, N. Pazos-Pérez, R. A.
Alvarez-Puebla, F. J. G. de Abajo, A. Polman, and C. Ropers, “Spontaneous
and stimulated electron–photon interactions in nanoscale plasmonic near fields,”
Light: Sci. Appl. 10, 82 (2021).

169. E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,”
Phys. Rev. 28, 1049–1070 (1926).

170. R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on
Physics.

171. M. Born, “Born’s Nobel lecture on the statistical interpretation of quantum
mechanics,” Nobel Lect. Tech. Report (1954).

172. N. Talebi, “Schrödinger electrons interacting with optical gratings: quantum
mechanical study of the inverse Smith–Purcell effect,” New J. Phys. 18, 123006
(2016).

173. E. Lorin, S. Chelkowski, and A. Bandrauk, “A numerical Maxwell–Schrödinger
model for intense laser–matter interaction and propagation,” Comput. Phys.
Commun. 177, 908–932 (2007).

174. I. P. Ivanov, V. G. Serbo, and V. A. Zaytsev, “Quantum calculation of the Vavilov-
Cherenkov radiation by twisted electrons,” Phys. Rev. A 93, 053825 (2016).

175. D. V. Karlovets and A. M. Pupasov-Maksimov, “Nonlinear quantum effects in
electromagnetic radiation of a vortex electron,” Phys. Rev. A 103, 012214 (2021).

176. Y. Pan and A. Gover, “Spontaneous and stimulated radiative emission of mod-
ulated free-electron quantum wavepackets—semiclassical analysis,” J. Phys.
Commun. 2, 115026 (2018).

177. A. Gover, R. Ianconescu, A. Friedman, C. Emma, N. Sudar, P. Musumeci, and
C. Pellegrini, “Superradiant and stimulated-superradiant emission of bunched
electron beams,” Rev. Mod. Phys. 91, 035003 (2019).

178. C. Pellegrini, A. Marinelli, and S. Reiche, “The physics of x-ray free-electron
lasers,” Rev. Mod. Phys. 88, 015006 (2016).

179. A. Karnieli, N. Rivera, A. Arie, and I. Kaminer, “Superradiance and subradiance
due to quantum interference of entangled free electrons,” Phys. Rev. Lett. 127,
060403 (2021).

180. A. Angioi and A. Di Piazza, “Quantum limitation to the coherent emission of
accelerated charges,” Phys. Rev. Lett. 121, 010402 (2018).

181. P. Kling, E. Giese, C. M. Carmesin, R. Sauerbrey, and W. P. Schleich, “High-gain
quantum free-electron laser: emergence and exponential gain,” Phys. Rev. A 99,
053823 (2019).

https://doi.org/10.1016/j.ultramic.2016.11.008
https://doi.org/10.1103/PhysRevLett.92.246103
https://doi.org/10.1021/acsphotonics.7b01393
https://doi.org/10.1016/j.ultramic.2018.12.006
https://doi.org/10.1038/s41377-021-00511-y
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1088/1367-2630/18/12/123006
https://doi.org/10.1016/j.cpc.2007.07.005
https://doi.org/10.1016/j.cpc.2007.07.005
https://doi.org/10.1103/PhysRevA.93.053825
https://doi.org/10.1103/PhysRevA.103.012214
https://doi.org/10.1088/2399-6528/aae2ec
https://doi.org/10.1088/2399-6528/aae2ec
https://doi.org/10.1103/RevModPhys.91.035003
https://doi.org/10.1103/RevModPhys.88.015006
https://doi.org/10.1103/PhysRevLett.127.060403
https://doi.org/10.1103/PhysRevLett.121.010402
https://doi.org/10.1103/PhysRevA.99.053823


Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 927

182. W. P. S. Peter Kling, E. Giese, R. Endrich, P. Preiss, and R. Sauerbrey, “What
defines the quantum regime of the free-electron laser?” New J. Phys. 17, 123019
(2015).

183. G. R. M. Robb and R. Bonifacio, “Coherent and spontaneous emission in the
quantum free electron laser,” Phys. Plasmas 19, 073101 (2012).

184. L. J. Wong, N. Rivera, C. Murdia, T. Christensen, J. D. Joannopoulos, M. Soljačić,
and I. Kaminer, “Control of quantum electrodynamical processes by shaping
electron wavepackets,” Nat. Commun. 12, 1700 (2021).

185. V. Di Giulio, O. Kfir, C. Ropers, and F. Javier García de Abajo, “Modulation of
cathodoluminescence emission by interference with external light,” ACS Nano
15, 7290–7304 (2021).

186. V. L. Ginzburg, “Quantum theory of radiation of electron uniformly moving in
medium,” Zh. Eksp. Teor. Fiz. 10, 589 (1940).

187. C. M. Carmesin, P. Kling, E. Giese, R. Sauerbrey, and W. P. Schleich, “Quantum
and classical phase-space dynamics of a free-electron laser,” Phys. Rev. Res. 2,
023027 (2020).

188. Y. Adiv, H. Hu, S. Tsesses, R. Dahan, K. Wang, Y. Kurman, H. Chen, X. Lin, G.
Bartal, and I. Kaminer, “Observation of 2D Cherenkov radiation and its quantized
photonic nature using free-electrons,” Conf. Lasers Electro-Optics (2021), Pap.
FM1L.6.

189. K. E. Echternkamp, A. Feist, S. Schäfer, and C. Ropers, “Ramsey-type phase
control of free-electron beams,” Nat. Phys. 12, 1000–1004 (2016).

190. M. Krüger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons
emitted from a nanoscale metal tip,” Nature 475, 78–81 (2011).

191. A. Feist, G. Huang, G. Arend, Y. Yang, J.-W. Henke, A. S. Raja, F. J. Kappert, R.
N. Wang, H. Lourenço-Martins, Z. Qiu, J. Liu, O. Kfir, T. J. Kippenberg, and C.
Ropers, “Cavity-mediated electron–photon pairs,” Science 377, 777–780 (2022).

192. R. J. Glauber, “Quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539
(1963).

193. O. Schwartz, J. J. Axelrod, S. L. Campbell, C. Turnbaugh, R. M. Glaeser, and H.
Müller, “Laser phase plate for transmission electron microscopy,” Nat. Methods
16, 1016–1020 (2019).

194. P. Das, J. D. Blazit, M. Tencé, L. F. Zagonel, Y. Auad, Y. H. Lee, X. Y. Ling, A.
Losquin, C. Colliex, O. Stéphan, M. García de Abajo, and Kociak, “Stimulated
electron energy loss and gain in an electron microscope without a pulsed electron
gun,” Ultramicroscopy 203, 44–51 (2019).

195. C. Liu, Y. Wu, Z. Hu, J. A. Busche, E. K. Beutler, N. P. Montoni, T. M.
Moore, G. A. Magel, J. P. Camden, D. J. Masiello, G. Duscher, and P. D. Rack,
“Continuous wave resonant photon stimulated electron energy-gain and electron
energy-loss spectroscopy of individual plasmonic nanoparticles,” ACS Photonics
6, 2499–2508 (2019).

196. A. Ryabov, J. W. Thurner, D. Nabben, M. V. Tsarev, and P. Baum, “Attosecond
metrology in a continuous-beam transmission electron microscope,” Sci. Adv. 6,
abb1393 (2020).

Roy Shiloh studied Physics and Electrical Engineering and received
his PhD in 2017 from Tel Aviv University under the supervision of
Prof. Ady Arie, where he pioneered the field of computer-generated
holograms in electron optics using thin membranes as amplitude
and phase masks. Since then he has been researching methods for
nanophotonic control of electron beams, mainly in the contexts of
the on-chip electron accelerator and the PINEM effect. He was
the co-leader of the Injector group under the Accelerator on a Chip

https://doi.org/10.1088/1367-2630/17/12/123019
https://doi.org/10.1063/1.4729337
https://doi.org/10.1038/s41467-021-21367-1
https://doi.org/10.1021/acsnano.1c00549
https://doi.org/10.1103/PhysRevResearch.2.023027
https://doi.org/10.1038/nphys3844
https://doi.org/10.1038/nature10196
https://doi.org/10.1126/science.abo5037
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1038/s41592-019-0552-2
https://doi.org/10.1016/j.ultramic.2018.12.011
https://doi.org/10.1021/acsphotonics.9b00830
https://doi.org/10.1126/sciadv.abb1393


928 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

International Program (ACHIP). In 2023 he will join the faculty of the Applied Physics
Department of the Hebrew University of Jerusalem.

Norbert Schönenberger was instrumental in the Accelerator on a
Chip International Program (ACHIP) efforts in Erlangen, culminat-
ing in the experimental demonstration of the record-breaking 270 as
electron bunch train generation using DLA.

Yuval Adiv is a PhD candidate at the Technion – Israel Institute
of Technology. He received his Bachelor of Science in Electrical
Engineering and Physics in 2019 from the Technion. He is currently
investigating quantum interactions between free electrons and light
in the AdQuanta group led by Professor Ido Kaminer.



Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 929

Ron Ruimy graduated summa cum laude in Electrical Engineering
and Physics double major BSc at the Technion, Israel. Currently in
the direct PhD track in the faculty of electrical engineering in the
Technion under the supervision of Professor Ido Kaminer. During
his graduate studies, his research focus was theoretical work con-
cerning the quantum aspects of electron–matter interaction, trying
to explore how the quantum properties of the free electrons could
be utilized as a unique probe for quantum technologies.

Aviv Karnieli received his BSc degrees (summa cum laude) in
Physics and Electrical Engineering from Tel-Aviv University in
2017. He then enrolled to the direct PhD track in Physics, in the
Sackler School of Physics and Astronomy in Tel-Aviv University,
receiving the prestigious Adams Fellowship by the Israel Academy
of Sciences and Humanities in 2019. In his PhD research, under
the joint supervision of Prof. Ady Arie and Prof. Ido Kaminer from
the Technion, Israel, he studies quantum optical effects in nonlinear

optics and free-electron–light interactions.

Tyler Hughes is a research scientist at Flexcompute, Inc. He
received his PhD and Master’s degree in Applied Physics from
Stanford University. His research interests include computational
electromagnetics and integrated photonics.

Dr. Joel England obtained his PhD in accelerator physics at the
University of California Los Angeles, where he developed a method
of generating tailored drive beams for more efficient excitation of
plasma-based particle accelerators. In 2008, he joined the Advanced
Accelerator Research Department at SLAC as a postdoc working on
optical-scale particle accelerators powered by solid-state lasers. As
a recipient of the Panofsky Fellowship, he led the Dielectric Laser
Acceleration Group at SLAC from 2010 to 2015. This led to the

first demonstrations of high-gradient acceleration in laser-driven dielectric structures
conducted in collaboration with Prof. Robert Byer at Stanford. He is currently a lead
scientist at SLAC and the Head of Accelerator Operations for the Ultrafast Electron
Diffraction Group. He serves as co-leader and executive committee member for the
Accelerator on a Chip International Program (ACHIP), which aims to develop a
laser-driven microchip particle accelerator.

Ken Leedle was the main experimentalist of the Accelerator on a Chip
International Program (ACHIP) in Stanford for many years. He was
the co-leader of the Injector group and made substantial contributions
toward the program’s goals on nanostructures and integration into a
stand-alone compact device.



930 Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics Review

Dr. Dylan Black received his PhD from Stanford University, and his
Bachelor’s degree from UCLA. His thesis work demonstrates the
first direct measurement of attosecond-scale electron bunching in
dielectric laser accelerators and was chosen as Stanford University’s
entry to the Council of Graduate Schools’ Distinguished Disserta-
tion award. His research on laser-powered electron lenses has also
been featured in Science magazine. He is currently employed as a
Research Scientist at PsiQuantum, Inc. His interests include accel-

erator physics, nonlinear optics, photonic quantum computing, and Middle Egyptian
hieroglyphics.

Zhexin Zhao received the Bachelor’s degree (with honors) in Elec-
tronic Engineering from Tsinghua University, Beijing, China, in
2015, and the MS and PhD degrees in Electrical Engineering (with
PhD minor in physics) from Stanford University in 2018 and 2021,
respectively. Her research interests include electromagnetic theory,
photonic design and optimization, quantum physics, and accelerator
physics.

Prof. Pietro Musumeci is the director of the UCLA Pegasus Photoin-
jector Lab. He joined the Department of Physics and Astronomy at the
University of California Los Angeles in 2006. Before that, he was one
of the leaders of the experimental effort on the Italian free-electron laser
project SPARC at the Laboratori Nazionali di Frascati, Italy. He was
elected APS Fellow in 2017 for his contribution on laser acceleration,
photoinjector and high-brightness ultrashort electron beam production.
His interests lie in the application of new ultrafast high-power laser

technologies to the field of accelerators and beam physics. He has authored over 200
publications and serves on various committees for funding agencies and international
conferences. He is active in the field of high-brightness electron sources, ultrafast
electron scattering techniques, high-efficiency free-electron lasers, and high-gradient
laser accelerators.

3 
 

Biography:  

Please add the following for Prof. Byer: 

 

Professor Robert L. Byer is the William R. Kenan, Jr. Professor of Applied Physics at Stanford University.  He has 

conducted research and taught classes in lasers and nonlinear optics at Stanford University since 1969.  He has 

made numerous contributions to laser science and technology including the demonstration of the first tunable 

visible parametric oscillator, the development of the Q-switched unstable resonator Nd:YAG laser, remote 

sensing and coherent laser radar,  and precision spectroscopy using Coherent Anti Stokes Raman Scattering 

(CARS).  Current research includes lasers and suspensions for LIGO, gravitational wave detection, and laser 

particle acceleration; accelerators on a chip. 

Professor Byer has published more than 500 scientific papers and holds 54 patents in the fields of lasers and 

nonlinear optics. His Google Scholar lifetime citations are more than 93,000 (h ~140). Professor Byer was 

elected to the National Academy of Engineering in 1987 and to the National Academy of Science in 2000 and 

charter member of the National Academy of Inventors in 2012.   

 

Professor Robert L. Byer is the William R. Kenan, Jr. Professor
of Applied Physics at Stanford University. He has conducted research
and taught classes in lasers and nonlinear optics at Stanford University
since 1969. He has made numerous contributions to laser science and
technology, including the demonstration of the first tunable visible
parametric oscillator, the development of the Q-switched unstable
resonator Nd:YAG laser, remote sensing and coherent laser radar, and
precision spectroscopy using Coherent Anti Stokes Raman Scattering

(CARS). Current research includes lasers and suspensions for LIGO, gravitational
wave detection, and laser particle acceleration; accelerators on a chip. Professor Byer
has published more than 500 scientific papers and holds 54 patents in the fields of
lasers and nonlinear optics. His Google Scholar lifetime citations are more than 93,000
(h ∼140). Professor Byer was elected to the National Academy of Engineering in 1987
and to the National Academy of Science in 2000 and as a charter member of the
National Academy of Inventors in 2012.



Review Vol. 14, No. 4 / December 2022 / Advances in Optics and Photonics 931

Prof. Ady Arie received his BSc degree in Mathematics and Physics
from the Hebrew University of Jerusalem in 1983. In 1986 and
1992 he received his MSc degree in Physics and PhD degree in
Engineering from Tel-Aviv University. Since 2006 he is a Professor
of Electrical Engineering in the Department of Physical Electron-
ics, School of Electrical Engineering in the Fleischman Faculty of
Engineering, Tel-Aviv University, and holds the Marko and Lucie
Chaoul Chair in Nano-Photonics. His research in recent years is in

the areas of classical and quantum nonlinear optics, hydrodynamics, electron optics,
and light–electron interaction. He is a Fellow of the Optical Society. In the years
2008–2014 he served as a Topical Editor of Optics Letters and since 2018 he is an
Associate Editor of Optica. In 2016 he won the Kadar Foundation Award for Excellence
in Research.

Ido Kaminer received his PhD under Prof. Mordechai Segev, where
he discovered new classes of accelerating optical beams, for which
he received the 2014 American Physical Society (APS) Award
for Outstanding Doctoral Dissertation in Laser Science. He later
did his postdoc at MIT with Prof. Marin Soljacic and Prof. John
Joannopoulos, where he established the foundations of macroscopic
quantum electrodynamics (MQED) for photonic quasiparticles. He
is now an associate professor at the Technion. His group connected

the field of free-electron radiation to quantum optics. He was recently elected to the
Israeli Young Academy, which includes 32 young Israeli faculty members below the
age of 45. He has won multiple awards and grants, including the ERC Starting Grant,
the Krill Prize, and the 2022 Schmidt Science Polymath Award. He is also the laureate
of the 2021 Blavatnik Award in Physical Sciences and Engineering in Israel, and the
recipient of the 2022 Adolph Lomb Medal, the top international award for a young
scientist (age 35 or younger) in the field of optics.

Peter Hommelhoff studied physics at TU Berlin and ETH Zurich,
received his PhD under Theodor Hänsch at LMU Munich (2002),
went to Stanford for a 4-year postdoctoral stay with Mark Kase-
vich, and ran a Max Planck Research Group in Garching from
2007 to 2012 before becoming a professor of physics at Friedrich-
Alexander-Universtität (FAU) in Erlangen. His current research
interests include laser-based electron acceleration in nanophotonic
structures, attosecond physics at the surface of and inside of solids,

quantum coherent coupling of free electrons and light, and quantum-mechanically
enhanced electron microscopy. He is a Fellow of the Max Planck Institute for the Sci-
ence of Light and has received the Leibniz Prize of the German Research Foundation
(DFG), the Leibinger Innovation Award, two ERC grants, and a Lynen Fellowship,
amongst others. Jointly with Robert L. Byer of Stanford, he was Principal Investi-
gator of the Moore Foundation-funded Accelerator on a Chip International Program
(ACHIP).


