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Abstract — Robot Learning from Demonstration (RLfD) is a
research field that focuses on how robots can learn new tasks by
observing human performances. Existing RLfD approaches
mainly enable robots to repeat the demonstrated tasks by
mimicking human activities, which usually requires efficient
demonstrations for human experts. This paper proposes a new
Function Object-Oriented Network (FOON) based approach to
make robots learn and optimize assembly tasks from non-expert
demonstrations. It first proposes an assembly FOON
construction approach with automatic subgraph creation and
merging algorithms to extract information from multiple non-
expert demonstrations. It then proposes an assembly task tree
retrieving approach with a robot execution optimization process
to make the robot learn and generate the best possible task
execution plan from the constructed FOON. The proposed
approaches are validated through experiments with a dual-arm
YuMi robot and the experimental results illustrate the
effectiveness and advantages of the proposed approach.

I. INTRODUCTION

Industrial robots have been widely utilized for several
decades for different applications in industrial manufacture.
In such cases, robots are usually precisely pre-programmed
and execute repetitive manipulations in well-constructed
environments [1]. However, in many other cases, such as
domestic service and collaborative assembly, robots must
work on non-repetitively high-mix tasks in a dynamic
environment [2]. It is impossible to pre-program all the
potential situations and events in these applications, as they
require robots that can solve problems on their own after
being programmed with the necessary skills. The
conventional machine-code level programming methods,
which are usually time-consuming, lack flexibility and high
expertise demanding, and are not well qualified in these cases.
Robot Learning from Demonstration (RL{D) provides an easy
and intuitive way to program robot behaviors, potentially
reducing development time and costs tremendously [3].

In the RLfD perspective, conveying human demonstrations
to robot knowledge is an important aspect of the problem.
Many studies have been reported in this field, and the
information is commonly transferred by kinematic teaching
[4], teleoperation [5], or recording human motion [6] or tool
motion directly [7]. Most of these approaches aim to enable
robots to either repeat or imitate the demonstrated trajectories.
Although these approaches significantly reduced the coding
effort and setup time cost for new tasks, robots still lack the

This work was supported by the National Science Foundation under grant
11S-1845779.

Yi Chen is currently with the ABB US Research Center in Raleigh, NC,
and he previously performed this work with the Department of Automotive
Engineering, Clemson University, Greenville, SC 29607, USA. Yunyi Jia is

knowledge of the insights of their tasks and corresponding
environments. The demonstrations for each task are
independent of those of other tasks, and robots need to be
reprogrammed by new demonstrations when there are tiny
changes in some factors of the task. It makes these approaches
not efficient enough for applications in assembly tasks. For
example, different assembly tasks usually consist of different
sequences of manipulations, but when we split those
manipulation sequences, they usually share some common
one-step manipulations on standard parts or tools, which
means some sections of human demonstrations for one
assembly task are potentially reused in other assembly tasks.
To this end, studies on modeling task-level knowledge (e.g.
features and states of objects, task constraints, etc.) and robot
manipulations in the same framework become a new frontier
in robotics.

Many approaches have been investigated for assembly task
modeling based on RLfD, such as vision-based approaches
[8], natural-language-based approaches [9], graph-based
approaches [10], probabilistic-based approaches [11],
machine-learning-based approaches [12], and multimodal-
based approaches [13]. Recently Huang and Sun [14] have
used Long Short Term Memory networks (LSTM) to learn
how to handle the dynamics in pouring. These approaches
enable robots to learn knowledge of demonstrated tasks and
necessary primitive skills from human demonstrations. With
the learned knowledge, robots can achieve a certain level of
adaptation to new tasks or environments by taking advantage
of the learned skills and a situational awareness ability.
Additionally, some approaches are also developed to
represents the hierarchical tasks and the corresponding
primitive skills, which enable robots to learn hierarchical
tasks from human demonstrations [15], [16]. Mohseni-Kabir
et al. [17] proposed a framework that makes robots learn the
task hierarchy and trajectory-level primitive skills
simultaneously. However, most of the existing approaches
usually assume that the demonstrations are performed by
human experts who can conduct the task in an efficient way
in order to achieve efficient robot executions through learning
in RLfD, e.g., in assembly tasks, the demonstrations must be
conducted by an expert worker in the assembly domain. To
enable robots to learn from non-expert demonstration can
reduce the time and the cost of human training in industrial
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field and make robots more friendly to ordinary people, which
is potentially expand the usage of robots in the daily life.

It is worth mentioning that there are several recent works
[18]-[20] which use reinforcement learning to learn from
imperfect human demonstrations. However, such works
mainly aim to learn the lower-level control policies which are
very different from higher-level assembly tasks. Also, these
approaches usually require a significantly large amount of
demonstrations and usually cannot always guarantee the best
solution compared to model-based approaches because of
their data-driven heuristic nature.

In this paper, we aim to advance the robot learning from
demonstration by reducing the requirement of demonstrations
with human experts. Our major motivation is to make robots
learn just like humans who can usually learn tasks from others
from different perspectives and then synthesize the best way
to accomplish the task although the others may not always
demonstrate the tasks in efficient ways. Therefore, we
propose a new FOON-based approach to address robot
learning from non-expert demonstrations in the robotic
assembly contexts. We have previously introduced FOON as
a graphical knowledge representation of human cooking tasks
[21], [22]. In this paper, we extend FOON to learning
assembly tasks from non-expert demonstrations. We
reconstruct some features of Functional Object-Oriented
Network (FOON) to make it suitable for assembly tasks and
also develop automatic subgraph creation and merging
algorithms for FOON construction from multiple non-expert
assembly demonstrations. Furthermore, we also propose an
assembly task tree retrieving algorithm with the robot
execution optimization process to enable robots to learn and
generate the best possible task execution based on the
constructed FOON. Because our approach employs models, it
requires just a few demonstrations, which is significantly
fewer compared to existing data-driven approaches.

II. WEIGHTED FUNCTIONAL OBJECT-ORIENTED
NETWORK FOR ASSEMBLY TASKS

A. Structure of FOON

The FOON proposed in our paper is a graphical task
representation that includes robot motions, physical
interactions between robots and objects in the workspace, and
overall assembly task state descriptions. It provides a more
intuitive way to represent, analyze, and visualize human
demonstrations. More importantly, FOON decouples objects
and motion from a holistic view of action. This decoupling
allows FOON nodes to have a more granular representation
and gives FOON more flexibility than traditional task-step
representations. The flexibility created by the motion nodes
and object nodes enables more integrated task-tree merging
and can generate more optimal task trees.

The constructed FOON for assembly tasks is a bipartite
network that contains motion nodes and object state nodes. To
make it suitable for assembly task representations, as opposed
to the original FOON for cooking tasks, a specific type of
object node, the so-called assembly state node, is introduced
into the FOON to keep track of the assembly states in human
demonstrations. Mathematically, an assembly state node can

be either an input node or an output node of a motion node,
and each motion node can have at most one assembly state
node in its input nodes and at most one assembly node in its
output nodes. FOON would only allow the object state nodes
and assembly state nodes to be connected to motion nodes,
and the motion nodes to be connected to object state nodes
and assembly state nodes, which form a bipartite network.

1) Nodes

The nodes in FOON for assembly tasks have three types:
object state O, motion M , and assembly state A . An object
state node N, represents a state of an object, which includes
the object’s identifier, name, and attributes. The attributes of
an object include but are not limited to, its position, mass,
size, color, and so on. For assembly tasks, a single part in a
specific state can be defined as an object state node. When the
state of the part is changed, a new object state node is
generated. When more than one part is assembled as a
component, a new object state node is also generated for this
component. An assembly node N, has the same mathematical
properties as an object node. It does not represent the state of
a part or component, but rather it represents the state
variations of the final assembly product. A motion Ny
represents a manipulation related to specific objects. The
information in a motion node includes, but is not limited to,
the type of action, manipulated objects, start position, goal
position, and so on. In a FOON for assembly, each object node
and assembly node are unique in their name and attributes.
Motion nodes with exactly the same attributes can appear at
different locations in the FOON graph.

2) Edges

FOON for assembly is a directed graph. An edge can be
drawn from an object state node or an assembly state node to
a motion node, or vice-versa. In general, the object state nodes
with edges directed to a motion node are regarded as task
constraints of the manipulation in the motion node. The object
state nodes that have edges that come from a motion node are
regarded as the manipulation outcomes. These are analogous
to input and output nodes coined in [21].

If there is an assembly node that has an edge directed to a
motion node, this assembly node would indicate the state of
the final assembly product before the manipulation
corresponding to the motion node. If a motion node has an
edge directed to an assembly node, this assembly node would
indicate the state of the final assembly product after the
manipulation corresponding to the motion node. Some motion

Fig. 1. A functional unit with m object state nodes and one
assembly state node as input, (n-m) object state nodes and one
assembly state node as output.
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nodes may not lead to a change in the final assembly state so
that they do not have an assembly node as input or output.
3) Functional Unit

A functional unit in a FOON for assembly tasks consists of
a motion node and multiple object state nodes. Some
functional units also contain one assembly state node as input
and/or output. As shown in Fig. 1, the object state nodes and
the assembly node with edges directed to the motion node are
the input nodes of the functional unit, and the object state
nodes and the assembly state node with edges pointing from
the motion node are the output of the functional unit. In
assembly tasks, the input assembly state node represents the
state of the final assembly product before the manipulation of
the motion node. Together, the object state nodes form the
task constraints of the manipulation. A functional unit is
defined as a minimum learning unit in a FOON for assembly.

B. Integrating Weights into a FOON

In this paper, the weights of FOON reflect both the success
rate Wsg and average efficiency W, of a given manipulation.
The success rate is mainly related to the capabilities of robots,
which corresponds to the accuracy required for executing
manipulations. For example, robots have payload limitations
for their arms and object size limitations for their grippers. It
is nearly impossible for robots to handle manipulations
beyond those limitations. Low-accuracy manipulations, such
as handover, usually have a relatively higher success rate. On
the contrary, the high-accuracy manipulations, such as
placing a bolt into a hole, usually have a relatively lower
success rate. In terms of average efficiency, it mainly relates
to safety and the complexity of manipulations. For instance,
robots can move at a higher speed when simply picking up a
single part from stock and handing it over to humans. On the
contrary, robots may have to run at a slower speed when
moving a component, which contains some loose parts on it,
from one location to another. Moreover, some manipulations,
such as switching the location of two parts, may contain
multiple motion steps and require two robot arms to cooperate
with each other, which means relatively higher complexities
and lower efficiency. The weight of manipulation for the
corresponding functional unit can be computed by:

Wry = Wsg X W (1)
where W, is the success rate of the manipulation and W, is
the weight of efficiency for the manipulation.

The representative success rates of manipulations can be
determined empirically. The average efficiency of a specific
type of manipulation can be identified from the average time

Algorithm 1: Merging New Subgraph to Universal FOON
for all functional unit FU;in new subgraph:
for all existed functional unit #Ujin the universal FOON do
if FU,is equal to U, then
FU; is already existed in the universal FOON.
continue to search next functional unit in new subgraph
else
Add FU; to the universal FOON
Add input object state nodes of FU; to node list
Add input assembly state node nodes of FU; to node list
Add output object state nodes of FU; to node list
Add output assembly state node of FU; to node list
(The connections are rebuilt in the task retrieval process)

cost of those in human demonstrations via hand tracking and
object tracking with the optical tracking system. However,
these are not trivial tasks to perform. To simplify this, we
assign estimated weights based on our experiences and results
of waypoint teaching and trajectory execution time.
Manipulations that cannot be executed by a robot were
assigned a success rate Wsgp of 0.01, while other motions
would be assigned higher values which varies between 0.8 to
0.95. In addition, single-arm-single-part manipulations were
assigned a higher average efficiency weight which varies
between 0.9 to 0.95, single-arm-multi-parts manipulations
(moving a component) were assigned a medium average
efficiency weight which varies between 0.75 to 0.85, and
dual-arm-single-component manipulations, which require
both robot arms to work on different parts of a single
component at the same time, assign a lower average
efficiency weight of 0.1.

III. FOON CONSTRUCTION FROM NON-EXPERT
DEMONSTRATIONS

In assembly tasks, parts and their corresponding attributes,
such as mass, color, shape, etc. are usually well-defined.
Using object tracking and human hand tracking, the velocities
and locations of parts and the sequence of human
manipulations can be obtained through human
demonstrations. Therefore, FOON for assembly tasks can be
learned from human demonstrations. However, the human
demonstrations of non-expert end-users can be inefficient.
For example, humans may first place a part at an incorrect
location and then fix it, which introduces unnecessary
manipulations into the demonstration. Similarly, humans may
accomplish assembly tasks with an unoptimized manipulation
sequence, which increases the usage of manipulations with
lower success rates or efficiency. To eventually get an
efficient solution, we first need to learn the assembly task
representation using FOON based on the non-expert
demonstration.

A. Creating Subgraphs

For each assembly task, multiple rounds of human
demonstrations are performed by different non-expert users.
Each round of human demonstration automatically generates
a list of functional units based on object tracking and human
hand tracking. The process is also recorded as an instructional
video online. The corresponding object state nodes, assembly
state nodes for both input and output, and the motion node of
each functional unit are manually verified according to the
instructional video. These functional units are then connected
and combined into a subgraph automatically. The subgraph of
FOON is then visualized and verified manually. Each
subgraph represents the structured knowledge of an overall
process of an assembly task. However, each process may be
inefficient since it is demonstrated by a non-expert user.

B. Merging Subgraphs
The FOON for assembly can be expanded by merging new
subgraphs generated by different human demonstrations of

different assembly tasks. The merging algorithm is described
in Algorithm 1. Two functional units are regarded as equal if
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and only if the set of nodes in one functional unit is exactly
the same as the other functional unit. The FOON is first
empty; the subgraph of each round of human demonstration
for each assembly task is merged into the universal FOON in
sequence. For each functional unit in the subgraph, if it does
not exist in the universal FOON, it will be added to the
universal FOON. The merged FOON contains the structured
knowledge from multiple rounds of non-expert
demonstrations for multiple assembly tasks, which gives the
potential to robots to find the optimized efficient solution for
each assembly task. The functional units in the universal
FOON can be further connected according to their input and
output nodes. For each output node of a functional unit, it
might connect to the same input node of other functional
units. The connections are rebuilt in the following task
retrieval process.

IV. ASSEMBLY TASK RETRIEVAL AND
OPTIMIZATION FROM NON-EXPERT
DEMONSTRATIONS

In addition to FOON being a knowledge representation
obtained or learned from human demonstrations, a FOON can
also be used by robots for problem-solving and process
optimization for assembly tasks. Given the goal of an
assembly task, robots can search for all possible solutions and
then choose the most efficient solution for the assembly task
based on all the assembly tasks learned from human
demonstrations. As mentioned in the previous section, each
subgraph of FOON corresponds to a single round of human
demonstration of an assembly task. Robots can at least choose
the most efficient subgraph from the original non-expert
demonstrations. Additionally, when multiple rounds of
demonstrations of multiple assembly tasks are merged as a
universal FOON, it is possible to find more -efficient
subgraphs other than the original demonstrations for assembly
tasks.

A. Retrieving Assembly Task Tree

Once multiple non-expert demonstrations for multiple
assembly tasks have been conducted, a universal FOON can
be established by merging subgraphs generated by each round
of human demonstrations using Algorithm 1. In order to find
the optimized solution for a task, we need to find all the
possible assembly processes based on the universal FOON.
Most existing symbolic planning algorithms focus on solving
the planning problems that are represented using planning
domain definition languages. Since the proposed FOON for
assembly tasks uses a different representation, we will need
to develop a corresponding planning algorithm for it. Each
assembly process is a combination of functional units, which
gives the path from an initial condition to the goal of an
assembly task. The algorithm to retrieval all possible
assembly task processes is shown in Algorithm 2.

First, we give a goal assembly state node Ng,« to the robot.
All the nodes, which contain Ng.« as an output assembly state
node, in the universal FOON are appended to a list of root tree
nodes R. Over each root node 7; in R, it is possible to generate
multiple task tree paths, which can accomplish the given
assembly task. Starting from the root tree node, we iterate for

Algorithm 2: Retrieval of Assembly Processes
Let Ny, be the goal assembly state node.
Let R be the list of root tree nodes.
Let P, be the list of all possible assembly process.
Initialize R and P,; as empty list.
for all functional units FU; in the universal FOON do
if Ngoq 1s the output assembly state node of FU; then
Add FU; to R.
end if
end for
for all root nodes 7; in R do
Initialize a tree stack 7.
Initialize a prelim tree node list L,
Append the root node 7; to TS.
Append the root node 7; to L,,.
while the tree stack 7S is not empty do
Pop the functional unit U, from the right side of 7.
Set the head of search /4 to FU,,.
for all input object state nodes N, do
Initialize a list of candidate functional units L.
for all functional units FU; in the universal FOON do
if Ny is one of the output object state nodes and FU; is not
an ancestor of the head h then
Set FU; as a child of the head &
Set 4 as the parent of the functional unit FU;
Append FU, to candidate list L,
end if
end for
Append candidate list L. to prelim tree node list L,
end for
end while
Let P, to be the cartesian product of L,,.
for each dependent tree path d, in P, do
for all task paths p found by breath-first-search BFS(r;) do
Append path p to P,.
end for
end for
for all path in P,; do
Calculate the integrated weight of the path
return optimized task path p*

each input object state node of the corresponding functional
unit and search for the functional units which can produce it.
When we search for the dependencies of a functional unit, we
define this functional unit as the /sead. For an input object
state node Ninpu 0f the head, if a functional unit contains it as
an output object state node and it is not an ancestor of the
head, then this functional unit is regarded as a dependency of
the head for the input object node Ninput. All of the functional
units that produce Ninp are regarded as candidate functional
units and are added to the list of candidate functional units L.,
which is then appended to a list of the preliminary tree nodes
L,. This step proceeds until the tree stack is empty; at this
point, the list L, covers the functional units for the
dependencies for all the object state inputs. To accomplish the
given assembly task, we only need one functional unit to meet
the dependency for each input object state node. Thus, we
compute the Cartesian product of the list L,. Each product set
of functional units will contain a whole path that meets object
state input requirements of the corresponding root. By
conducting a breadth-first search BFS(r;) with respect to the
root r;, we can obtain one assembly process to accomplish the
assembly task. By iterating for each product set, we can obtain
all possible assembly processes for the given assembly goal
from the universal FOON.
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B. Robot Execution Optimization

Once all possible assembly processes are determined, the
optimal solution for the given assembly task is determined by
the integrated weight of the assembly process. For an
assembly process consisting of N functional units and weights
W:(i=1,2,..., N) for each function unit, the integrated weight
of the assembly process can be written as

i=1
N
W, = 11w, (2)
The optimal assembly process can be determined by
p" = argmax(Pey) (3)

Wi

where P, is the set of all possible assembly processes of the
given assembly task. Once the optimized task-level assembly
process p* is determined using FOON and the corresponding
task retrieval algorithm, for each motion in p*, the robot will
search for the trajectory with minimum execution time among
all the taught trajectories of the motion based on the situation
of the workspace.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the proposed approaches, different non-expert
demonstrations for different assembly tasks are conducted. In
this section, we first present the experimental setup. The
assembly tasks and the corresponding non-expert
demonstrations used in our experiments are then explained
respectively. Based on the demonstrations, the results of robot
learning and task retrieval and optimization are discussed.

A. Experimental Setup

The proposed approaches are verified and evaluated on a
multi-model human-robot collaborative assembly test
platform. The hardware setup of the test platform is illustrated
in Fig. 2 (a). In our experiments, we use the ABB Yumi,
which is a dual-arm collaborative robot. The human stands
face to face with the robot to work in a shared workspace. The
Kinect RGB-D sensor offers a top-view point cloud of the
workspace for part recognition and tracking. The software of
the test platform is developed based on the Robot Operating
System (ROS) and visualized through Rviz. The trajectory-
level motion planning from point to point is accomplished
based on the Open Motion Planning Library (OMPL) via
Movelt! motion planning framework.

RGBD b we-
Sensor

Assembly Stock Zone

Zone

Human-robot £
shared workspace e

Fig. 2. Experimental setup. (a) The configuration of the robot and
RGB-D sensor. (b) The top view of the human-robot shared
workspace captured by the RGB-D sensor. (¢) The final state of the
stacking task. (d) The final state of the shape constructing task.
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Fig. 3. The subgraph obtained from the first-round demonstration of
the stacking task.

01(¢1)

02(stock)

B. Subgraphs of Non-expert demonstrations

In our experiments, we use blocks with different numbers
to represent different types of parts (O1 to O5). Initially, there
are 12 parts in total located at different given locations in the
stock zone. A 3 x 3 grid (G1 to G9) is defined as an assembly
zone on the workbench. The start positions and the goal
positions of pick-place and stacking robot actions between
different grids are defined by assembly task in advance and
the motion trajectories for the actions are generated via
sampling-based motion planning algorithms in Movelt!
motion planning framework. The motions and corresponding
object states are learned via human demonstrations. The
observed motions are mapped to corresponding elements in
the action set according to the corresponding grid locations.
The corresponding robot action assignment based on the
observed motions is executed by sending the corresponding
start position and the goal position and calling the sampling-
based motion planner to realize the action. Two types of
assembly tasks are performed: the stacking task and the shape
constructing task. The final assembly states of both tasks and
the indexes of the grid locations are shown in Fig. 2 (c) and
Fig. 2 (d). Three non-expert demonstrations are conducted for
each task.

For the stacking task, the goal is to build a 3-level stack
(030201) at GS. The process of the first demonstration (Fig.
3) is picking an O1 from stock and placing it at G1; then
picking an O2 from stock and placing it onto the Ol at G1;
then picking 0201 together and moving them from G1 to G5;
picking an O3 from stock and stacking it on the O201 at G5.
This demonstration is not efficient because the human stacked
the first two parts at an improper location and then fixed it by
moving the component to the correct location. The process of
the second non-expert demonstration (Fig. 4) is picking an O2
from stock and placing it to G5; then picking an O1 from stock
and stacking it on the O2; then switching the positions of O1

0102(G5)

PP; tock,02(G5))  01(stock)  02(stock)

SW,0201(G5,G5)

1(G5)
A[x,x,x,x,039201,x,x,x,x]

\Pﬁ%.ock,GS)

ck{0201(G5))

030201(G5)

Fig. 4. The subgraph obtained from the second-round demonstration of
the stacking task.
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and O2; finally picking an O3 from stock and stacking it on
the O2 at G5. This demonstration is inefficient since an extra
dual-arm manipulation was conducted to fix the order of the
stack. The process of the third demonstration (Fig. 6) is
picking an O3 from stock and placing it to G8; then picking
an O2 from stock and stacking it on the O2 at GS8; then
switching the positions of O2 and O3; then picking an Ol
from stock and placing it to G5; finally picking the component
(0302) from G8 and stacks it on the Ol at GS5. This
demonstration is less efficient than the previous two

01(G5)
1037 PP,01(stock,G5)

OR(stock)

0 03(G1),G7)
0303(G1) —

02(stock)
03(G7)
]

Fig. 5. The subgraph obtained from the first-round demonstration of
the shape constructing task.

demonstrations since it contains five manipulations, including

PPO3(pck G8)  O3(5jock)

PP,01(sock,G5)
s‘gzkv/se\% ?

030068)/
SW,0203(G8.G8)

Fig. 6. The subgraph obtained from the third-round demonstration of
the stacking task.
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02(stock)
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PP,02(stock,01(G4))
PP,01(stock,G4) 03(stock)

PP,03(stock,G1)

0201(G5)
]

A[O3,x,x,x,0=01.

Fig. 7. The subgraph obtained from the second-round demonstration

of the shape constructing task.
one dual-arm manipulation, to accomplish a three-parts
stacking task.

The shape constructing is to build a specific 3D shape in
the 3 x 3 grid. The goal is to have a block O3 at both G1 and
G7 and have a block O2 on the top of a block Ol at G5.
Similar to the stacking task, we also conducted three non-
expert demonstrations for the shape constructing task. The
process of the first demonstration (Fig. 5) is stacking two O3
at G1; then picking an Ol from stock and placing it to G5;
then picking an O2 from stock and stacking it onto the O1 at
GS5; finally moving the O3 at the top of the component O303
to G7. This demonstration is inefficient because of the error
pick-place action in the second step, which is fixed in the last
step. The process of the second non-expert demonstration

A[03,x,x,x,O‘Ol,x.03,x,x]

PP,03(69,G1)
PP,03(stock,G9)

Fig. 8. The subgraph obtained from the third-round demonstration of
the shape constructing task.
(Fig. 7) is picking an O3 and placing it to G1; then building
the component O201 via two pick-place actions at G4; then
picking another O3 from stock and placing it to G7; finally
moving the 0201 from G4 to G5. The process of the third
non-expert demonstration (Fig. 8) is picking an O3 from stock
and placing it to G9; then picking another O3 from stock and

O1(stock)
PP,Ol(Stw/,

Fgn)
PP,02(stock;G5) \

0203(!
PP,02(stogck,01(G1
02(stock;
2,02(stock:03(G8))

SW,0203(G8,G8) O30R(GER)

PP, (G8,01(G5))

SW,0201(G5,G5) \
\Q. Alx,X, X030 (.)1035){,x,x,><]
02Q1(G5)
A 01.(21@/~ PP, 03(stock,0201(G5))

03(sto
stock,G8

Fig. 9. The merged graph obtained from the three demonstrations of the
stacking task.
placing it to G8; then moving them to G1 and G7 respectively;
afterward, a block O1 and a block O2 are picked from stock
and stack at G5 to accomplish the task.

C. Results of FOON Generation and Optimal Assembly Task
Tree Retrieving

To verify the proposed approaches, we merge the
subgraphs generated by the non-expert demonstrations
progressively to establish the universal FOON. For each
stage, we compare the optimal assembly task process we can
obtain based on the present situation of the robot knowledge.

In the first stage, the universal FOON was only built based
on the three non-expert demonstrations of the stacking task is
shown in Fig. 9. It contains 12 functional units. Based on this
merged FOON, the assembly process retrieval algorithm finds
the same as the three non-expert demonstrations. The
integrated weights of these three demonstrations are 0.478,
0.050, and 0.032 respectively. The results indicate that the
robot will implement the stacking task by repeating the first
human demonstration at this stage of merged FOON. The real
robot execution of the stacking task is shown in Fig. 10. Also,

v

Fig. 10. The real robot execution of the stacking task at the first stage.
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the robot cannot find a solution for the shape formatting task
since none of its demonstrations has been integrated into the
merged FOON yet.

AlX,X,X,X,030201,x,%,x,x] PP,03(stock 0201(G5))
Q201 x.xxx] ,03(s!

?022}(5?)‘ AN

——0204(G5)

3(s£ock)

PP,01(stock,G5)

PP,02(stock,01(G5))
01 (sgock)— ——

o5 —

02(stock)

Fig. 11. The optimized result of the stacking task.

Fig. 12. The real robot execution based on the optimized solution of the
stacking task.

PP,03(stock,G1) 03(stock)

0201(G5)
PP,03(stock,G7)

Fig. 14. The real robot execution of the optimized strategy for the shape
constructing task.

In the second stage, the universal FOON was built based
on the three non-expert demonstrations of the stacking task
and the first non-expert demonstration of the shape

constructing task. For the stacking task, the robot can find an
optimized assembly process with three single-arm-single-part
manipulations as shown in Fig. 11, which is to pick up a block
01, a block 02, and a block O3 from stock and stack them at
G5 in sequence. The corresponding integrated weight of this
assembly process is 0.625, which is higher than all the non-
expert demonstrations of the stacking task. The real robot
execution of the optimized strategy on the stacking task is
shown in Fig. 12. For the shape constructing task, the first-
round human demonstration is successfully reconstructed as
the solution of the task at this stage of the merged FOON.

In the third stage, we merged all the six non-expert
demonstrations for both tasks to construct a universal FOON.
The result of the universal FOON contains all six non-expert
demonstrations of both the stacking task and shape
constructing task. At this stage, the optimized result for the
stacking task is also found as same as the three-motions
solution shown in Fig. 11. For the shape constructing task, an
optimized solution with four single-arm-single-part
manipulations is found, which is to directly pick up a block
01, a block 02, and two O3 blocks and place them to their
corresponding locations in sequence. The subgraph of the
optimized solution of the shape constructing task is shown in
Fig. 13, and the robot execution of this optimized strategy is
shown in Fig. 14.

D. Evaluations

The summary of the assembly process optimization of the
three stages of the universal FOON is illustrated in Table I.
The results of the raw non-expert demonstrations and the
optimized results of the stacking and the shape constructing
task are shown in Table III and Table II respectively. The
universal FOON built based on the three demonstrations of
the stacking task contains 12 functional units and 13 object
state nodes in total. Based on this universal FOON, we can
find the optimized solution for the stacking task with an
overall success rate of 0.693 and an overall efficient weight
of 0.690. By adding a non-expert demonstration of the shape
constructing task, the universal FOON contains 16 functional
units and 16 object state nodes. With the updated universal
FOON with more knowledge of assembly tasks, we can
obtain a better-optimized solution for the stacking task with
an overall success rate of 0.770 and an overall efficient weight
0f 0.812. According to the task design, this is already the best
solution for the stacking task. Also, the robot successfully
learned the shape constructing task via the additional one-
round human demonstration, though it is not very efficient.
After merging two additional non-expert demonstrations of
the shape constructing task, a better solution for the shape
constructing task is found from the universal FOON, which is

TABLE I
SUMMARY OF ASSEMBLY PROCESS OPTIMIZATION OF DIFFERENT STAGES OF UNIVERSAL FOON

Universal FOON Optimized Stacking Assembly Process Optimized Shape Constructing Process
No. of
Stage  Object No.'of No..of No.'of Overall Ovel_'all Integrated No..of Overall Oven:all Integrated

State Motion Functional Functional Success Efficient Weight Functional Success Efficient Weight
Nedo  Node Unit Unit Rate  Weight g Unit Rate  Weight g

1 13 12 12 4 0.693 0.690 0.478 None None None None

2 16 16 16 3 0.770 0.812 0.625 5 0.694 0.621 0.432

3 18 24 24 3 0.770 0.812 0.625 4 0.772 0.772 0.595
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built based on six in-efficient human demonstrations. Based
on the proposed task, the optimal solution simply contains
four single-arm-single-part manipulations, which should be
the most efficient solution based on our experimental setup.
Moreover, the most efficient solution for the stacking task,
which has already been found in the earlier stage, is also found
in this universal FOON.

Furthermore, in this paper, since we use a FOON model-
based approach, we only require several rounds of non-expert

demonstrations to derive the best possible solution for the task.

In contrast, the existing data-driven approaches [18]-[20]

TABLE IIT
RAW DEMONSTRATIONS VS OPTIMIZED SOLUTION OF
STACKING TASK
Raw Demonstrations -
ftem Ist 2nd 3rd Average Optimized
No. of Actions 4 4 5 4.33 3
Success Rate 0.693 0.616 0.520 0.609 0.770
Efficient
Weight 0.690 0.081 0.061 0.280 0.812
fntegrated 478 0050 0.032  0.187 0.625
Weight
TABLE IT

RAW DEMONSTRATIONS VS OPTIMIZED SOLUTION OF
SHAPE CONSTRUCTING TASK

Raw Demonstrations

ftem Ist 2nd 3rd Average Optimized
No. of Actions 5 5 6 5.33 4
Success Rate 0.694 0.694 0.696 0.695 0.772
Efficient
Weight 0.621 0.656 0.696 0.658 0.772
Integrated 0432 0456 0485 0457 0.595
Weight

usually require humans to demonstrate the task thousands of
times to obtain enough training data to learn the task.
Therefore, comparing to the existing data-driven approaches,
the time cost and the teaching effort of human demonstrations
can be significantly reduced using our proposed approach.

VI. CONCLUSION

This paper introduces a graph-based task representation
approach based on the Functional Object-Oriented Network
(FOON) to represent the knowledge of assembly tasks. It
creates algorithms to create a FOON from multiple non-
expert assembly demonstrations and also develops an
assembly task tree retrieving approach with a robot execution
optimization process to generate the best possible task
execution plan from the FOON. The results indicate that
robots can find the best possible assembly process among
multiple rounds of non-expert demonstrations. The evaluation
also indicates the effectiveness and advantages of the
proposed approach compared to other existing approaches.
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