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Abstract — Robot Learning from Demonstration (RLfD) is a 
research field that focuses on how robots can learn new tasks by 
observing human performances. Existing RLfD approaches 
mainly enable robots to repeat the demonstrated tasks by 
mimicking human activities, which usually requires efficient 
demonstrations for human experts. This paper proposes a new 
Function Object-Oriented Network (FOON) based approach to 
make robots learn and optimize assembly tasks from non-expert 
demonstrations. It first proposes an assembly FOON 
construction approach with automatic subgraph creation and 
merging algorithms to extract information from multiple non-
expert demonstrations. It then proposes an assembly task tree 
retrieving approach with a robot execution optimization process 
to make the robot learn and generate the best possible task 
execution plan from the constructed FOON. The proposed 
approaches are validated through experiments with a dual-arm 
YuMi robot and the experimental results illustrate the 
effectiveness and advantages of the proposed approach. 

I. INTRODUCTION 

Industrial robots have been widely utilized for several 
decades for different applications in industrial manufacture. 
In such cases, robots are usually precisely pre-programmed 
and execute repetitive manipulations in well-constructed 
environments [1]. However, in many other cases, such as 
domestic service and collaborative assembly, robots must 
work on non-repetitively high-mix tasks in a dynamic 
environment [2]. It is impossible to pre-program all the 
potential situations and events in these applications, as they 
require robots that can solve problems on their own after 
being programmed with the necessary skills. The 
conventional machine-code level programming methods, 
which are usually time-consuming, lack flexibility and high 
expertise demanding, and are not well qualified in these cases. 
Robot Learning from Demonstration (RLfD) provides an easy 
and intuitive way to program robot behaviors, potentially 
reducing development time and costs tremendously [3].  

In the RLfD perspective, conveying human demonstrations 
to robot knowledge is an important aspect of the problem. 
Many studies have been reported in this field, and the 
information is commonly transferred by kinematic teaching 
[4], teleoperation [5], or recording human motion [6] or tool 
motion directly [7]. Most of these approaches aim to enable 
robots to either repeat or imitate the demonstrated trajectories. 
Although these approaches significantly reduced the coding 
effort and setup time cost for new tasks, robots still lack the 
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knowledge of the insights of their tasks and corresponding 
environments. The demonstrations for each task are 
independent of those of other tasks, and robots need to be 
reprogrammed by new demonstrations when there are tiny 
changes in some factors of the task. It makes these approaches 
not efficient enough for applications in assembly tasks. For 
example, different assembly tasks usually consist of different 
sequences of manipulations, but when we split those 
manipulation sequences, they usually share some common 
one-step manipulations on standard parts or tools, which 
means some sections of human demonstrations for one 
assembly task are potentially reused in other assembly tasks. 
To this end, studies on modeling task-level knowledge (e.g. 
features and states of objects, task constraints, etc.) and robot 
manipulations in the same framework become a new frontier 
in robotics. 

Many approaches have been investigated for assembly task 
modeling based on RLfD, such as vision-based approaches 
[8], natural-language-based approaches [9], graph-based 
approaches [10], probabilistic-based approaches [11], 
machine-learning-based approaches [12], and multimodal-
based approaches [13]. Recently Huang and Sun [14] have 
used Long Short Term Memory networks (LSTM) to learn 
how to handle the dynamics in pouring. These approaches 
enable robots to learn knowledge of demonstrated tasks and 
necessary primitive skills from human demonstrations. With 
the learned knowledge, robots can achieve a certain level of 
adaptation to new tasks or environments by taking advantage 
of the learned skills and a situational awareness ability. 
Additionally, some approaches are also developed to 
represents the hierarchical tasks and the corresponding 
primitive skills, which enable robots to learn hierarchical 
tasks from human demonstrations [15], [16]. Mohseni-Kabir 
et al. [17] proposed a framework that makes robots learn the 
task hierarchy and trajectory-level primitive skills 
simultaneously. However, most of the existing approaches 
usually assume that the demonstrations are performed by 
human experts who can conduct the task in an efficient way 
in order to achieve efficient robot executions through learning 
in RLfD, e.g., in assembly tasks, the demonstrations must be 
conducted by an expert worker in the assembly domain. To 
enable robots to learn from non-expert demonstration can 
reduce the time and the cost of human training in industrial 
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field and make robots more friendly to ordinary people, which 
is potentially expand the usage of robots in the daily life. 

It is worth mentioning that there are several recent works 
[18]–[20] which use reinforcement learning to learn from 
imperfect human demonstrations. However, such works 
mainly aim to learn the lower-level control policies which are 
very different from higher-level assembly tasks. Also, these 
approaches usually require a significantly large amount of 
demonstrations and usually cannot always guarantee the best 
solution compared to model-based approaches because of 
their data-driven heuristic nature.  

In this paper, we aim to advance the robot learning from 
demonstration by reducing the requirement of demonstrations 
with human experts. Our major motivation is to make robots 
learn just like humans who can usually learn tasks from others 
from different perspectives and then synthesize the best way 
to accomplish the task although the others may not always 
demonstrate the tasks in efficient ways. Therefore, we 
propose a new FOON-based approach to address robot 
learning from non-expert demonstrations in the robotic 
assembly contexts. We have previously introduced FOON as 
a graphical knowledge representation of human cooking tasks 
[21], [22]. In this paper, we extend FOON to learning 
assembly tasks from non-expert demonstrations. We 
reconstruct some features of Functional Object-Oriented 
Network (FOON) to make it suitable for assembly tasks and 
also develop automatic subgraph creation and merging 
algorithms for FOON construction from multiple non-expert 
assembly demonstrations. Furthermore, we also propose an 
assembly task tree retrieving algorithm with the robot 
execution optimization process to enable robots to learn and 
generate the best possible task execution based on the 
constructed FOON. Because our approach employs models, it 
requires just a few demonstrations, which is significantly 
fewer compared to existing data-driven approaches.  

II. WEIGHTED FUNCTIONAL OBJECT-ORIENTED 

NETWORK FOR ASSEMBLY TASKS 

A. Structure of FOON 

The FOON proposed in our paper is a graphical task 
representation that includes robot motions, physical 
interactions between robots and objects in the workspace, and 
overall assembly task state descriptions. It provides a more 
intuitive way to represent, analyze, and visualize human 
demonstrations. More importantly, FOON decouples objects 
and motion from a holistic view of action. This decoupling 
allows FOON nodes to have a more granular representation 
and gives FOON more flexibility than traditional task-step 
representations. The flexibility created by the motion nodes 
and object nodes enables more integrated task-tree merging 
and can generate more optimal task trees.  

The constructed FOON for assembly tasks is a bipartite 
network that contains motion nodes and object state nodes. To 
make it suitable for assembly task representations, as opposed 
to the original FOON for cooking tasks, a specific type of 
object node, the so-called assembly state node, is introduced 
into the FOON to keep track of the assembly states in human 
demonstrations. Mathematically, an assembly state node can 

be either an input node or an output node of a motion node, 
and each motion node can have at most one assembly state 
node in its input nodes and at most one assembly node in its 
output nodes.  FOON would only allow the object state nodes 
and assembly state nodes to be connected to motion nodes, 
and the motion nodes to be connected to object state nodes 
and assembly state nodes, which form a bipartite network. 
1) Nodes 

The nodes in FOON for assembly tasks have three types: 
object state  𝑂, motion 𝑀 , and assembly state 𝐴 . An object 
state node 𝑁ை represents a state of an object, which includes 
the object’s identifier, name, and attributes. The attributes of 
an object include but are not limited to, its position, mass, 
size, color, and so on. For assembly tasks, a single part in a 
specific state can be defined as an object state node. When the 
state of the part is changed, a new object state node is 
generated. When more than one part is assembled as a 
component, a new object state node is also generated for this 
component. An assembly node 𝑁஺ has the same mathematical 
properties as an object node. It does not represent the state of 
a part or component, but rather it represents the state 
variations of the final assembly product.  A motion 𝑁ெ 
represents a manipulation related to specific objects. The 
information in a motion node includes, but is not limited to, 
the type of action, manipulated objects, start position, goal 
position, and so on. In a FOON for assembly, each object node 
and assembly node are unique in their name and attributes. 
Motion nodes with exactly the same attributes can appear at 
different locations in the FOON graph. 
2) Edges 

FOON for assembly is a directed graph. An edge can be 
drawn from an object state node or an assembly state node to 
a motion node, or vice-versa. In general, the object state nodes 
with edges directed to a motion node are regarded as task 
constraints of the manipulation in the motion node. The object 
state nodes that have edges that come from a motion node are 
regarded as the manipulation outcomes. These are analogous 
to input and output nodes coined in [21]. 

If there is an assembly node that has an edge directed to a 
motion node, this assembly node would indicate the state of 
the final assembly product before the manipulation 
corresponding to the motion node. If a motion node has an 
edge directed to an assembly node, this assembly node would 
indicate the state of the final assembly product after the 
manipulation corresponding to the motion node. Some motion 

 
Fig. 1.  A functional unit with m object state nodes and one 

assembly state node as input, (n-m) object state nodes and one 
assembly state node as output. 
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nodes may not lead to a change in the final assembly state so 
that they do not have an assembly node as input or output. 
3) Functional Unit 

A functional unit in a FOON for assembly tasks consists of 
a motion node and multiple object state nodes. Some 
functional units also contain one assembly state node as input 
and/or output. As shown in Fig. 1, the object state nodes and 
the assembly node with edges directed to the motion node are 
the input nodes of the functional unit, and the object state 
nodes and the assembly state node with edges pointing from 
the motion node are the output of the functional unit. In 
assembly tasks, the input assembly state node represents the 
state of the final assembly product before the manipulation of 
the motion node. Together, the object state nodes form the 
task constraints of the manipulation. A functional unit is 
defined as a minimum learning unit in a FOON for assembly.  

B. Integrating Weights into a FOON 

In this paper, the weights of FOON reflect both the success 
rate 𝑊ௌோ and average efficiency 𝑊௘ of a given manipulation. 
The success rate is mainly related to the capabilities of robots, 
which corresponds to the accuracy required for executing 
manipulations. For example, robots have payload limitations 
for their arms and object size limitations for their grippers. It 
is nearly impossible for robots to handle manipulations 
beyond those limitations. Low-accuracy manipulations, such 
as handover, usually have a relatively higher success rate. On 
the contrary, the high-accuracy manipulations, such as 
placing a bolt into a hole, usually have a relatively lower 
success rate.  In terms of average efficiency, it mainly relates 
to safety and the complexity of manipulations. For instance, 
robots can move at a higher speed when simply picking up a 
single part from stock and handing it over to humans. On the 
contrary, robots may have to run at a slower speed when 
moving a component, which contains some loose parts on it, 
from one location to another. Moreover, some manipulations, 
such as switching the location of two parts, may contain 
multiple motion steps and require two robot arms to cooperate 
with each other, which means relatively higher complexities 
and lower efficiency. The weight of manipulation for the 
corresponding functional unit can be computed by: 

𝑊ி௎ ൌ 𝑊ௌோ ൈ𝑊௘ ሺ 1 ሻ 
where 𝑊ௌோ is the success rate of the manipulation and 𝑊௘ is 
the weight of efficiency for the manipulation. 

The representative success rates of manipulations can be 
determined empirically. The average efficiency of a specific 
type of manipulation can be identified from the average time 

cost of those in human demonstrations via hand tracking and 
object tracking with the optical tracking system. However, 
these are not trivial tasks to perform. To simplify this, we 
assign estimated weights based on our experiences and results 
of waypoint teaching and trajectory execution time. 
Manipulations that cannot be executed by a robot were 
assigned a success rate 𝑊ௌோ  of 0.01, while other motions 
would be assigned higher values which varies between 0.8 to 
0.95.  In addition, single-arm-single-part manipulations were 
assigned a higher average efficiency weight which varies 
between 0.9 to 0.95, single-arm-multi-parts manipulations 
(moving a component) were assigned a medium average 
efficiency weight which varies between 0.75 to 0.85, and 
dual-arm-single-component manipulations, which require 
both robot arms to work on different parts of a single 
component at the same time, assign a lower average 
efficiency weight of 0.1.  

III. FOON CONSTRUCTION FROM NON-EXPERT 

DEMONSTRATIONS 

    In assembly tasks, parts and their corresponding attributes, 
such as mass, color, shape, etc. are usually well-defined. 
Using object tracking and human hand tracking, the velocities 
and locations of parts and the sequence of human 
manipulations can be obtained through human 
demonstrations. Therefore, FOON for assembly tasks can be 
learned from human demonstrations. However, the human 
demonstrations of non-expert end-users can be inefficient. 
For example, humans may first place a part at an incorrect 
location and then fix it, which introduces unnecessary 
manipulations into the demonstration. Similarly, humans may 
accomplish assembly tasks with an unoptimized manipulation 
sequence, which increases the usage of manipulations with 
lower success rates or efficiency. To eventually get an 
efficient solution, we first need to learn the assembly task 
representation using FOON based on the non-expert 
demonstration. 

A. Creating Subgraphs 

For each assembly task, multiple rounds of human 
demonstrations are performed by different non-expert users. 
Each round of human demonstration automatically generates 
a list of functional units based on object tracking and human 
hand tracking. The process is also recorded as an instructional 
video online. The corresponding object state nodes, assembly 
state nodes for both input and output, and the motion node of 
each functional unit are manually verified according to the 
instructional video. These functional units are then connected 
and combined into a subgraph automatically. The subgraph of 
FOON is then visualized and verified manually. Each 
subgraph represents the structured knowledge of an overall 
process of an assembly task. However, each process may be 
inefficient since it is demonstrated by a non-expert user. 

B. Merging Subgraphs 

The FOON for assembly can be expanded by merging new 
subgraphs generated by different human demonstrations of 
different assembly tasks. The merging algorithm is described 
in Algorithm 1. Two functional units are regarded as equal if 

Algorithm 1: Merging New Subgraph to Universal FOON 
    for all functional unit FUi in new subgraph: 
        for all existed functional unit FUj in the universal FOON do 
               if FUi is equal to FUj then 
                   FUi is already existed in the universal FOON. 
                   continue to search next functional unit in new subgraph 
               else  
                    Add FUi to the universal FOON 
                    Add input object state nodes of FUi to node list 
                    Add input assembly state node nodes of FUi to node list 
                    Add output object state nodes of FUi to node list 
                    Add output assembly state node of FUi to node list 
    (The connections are rebuilt in the task retrieval process) 
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and only if the set of nodes in one functional unit is exactly 
the same as the other functional unit. The FOON is first 
empty; the subgraph of each round of human demonstration 
for each assembly task is merged into the universal FOON in 
sequence. For each functional unit in the subgraph, if it does 
not exist in the universal FOON, it will be added to the 
universal FOON. The merged FOON contains the structured 
knowledge from multiple rounds of non-expert 
demonstrations for multiple assembly tasks, which gives the 
potential to robots to find the optimized efficient solution for 
each assembly task. The functional units in the universal 
FOON can be further connected according to their input and 
output nodes. For each output node of a functional unit, it 
might connect to the same input node of other functional 
units. The connections are rebuilt in the following task 
retrieval process. 

IV. ASSEMBLY TASK RETRIEVAL AND 

OPTIMIZATION FROM NON-EXPERT 

DEMONSTRATIONS 

In addition to FOON being a knowledge representation 
obtained or learned from human demonstrations, a FOON can 
also be used by robots for problem-solving and process 
optimization for assembly tasks. Given the goal of an 
assembly task, robots can search for all possible solutions and 
then choose the most efficient solution for the assembly task 
based on all the assembly tasks learned from human 
demonstrations. As mentioned in the previous section, each 
subgraph of FOON corresponds to a single round of human 
demonstration of an assembly task. Robots can at least choose 
the most efficient subgraph from the original non-expert 
demonstrations. Additionally, when multiple rounds of 
demonstrations of multiple assembly tasks are merged as a 
universal FOON, it is possible to find more efficient 
subgraphs other than the original demonstrations for assembly 
tasks. 

A. Retrieving Assembly Task Tree 

Once multiple non-expert demonstrations for multiple 
assembly tasks have been conducted, a universal FOON can 
be established by merging subgraphs generated by each round 
of human demonstrations using Algorithm 1. In order to find 
the optimized solution for a task, we need to find all the 
possible assembly processes based on the universal FOON. 
Most existing symbolic planning algorithms focus on solving 
the planning problems that are represented using planning 
domain definition languages. Since the proposed FOON for 
assembly tasks uses a different representation, we will need 
to develop a corresponding planning algorithm for it. Each 
assembly process is a combination of functional units, which 
gives the path from an initial condition to the goal of an 
assembly task. The algorithm to retrieval all possible 
assembly task processes is shown in Algorithm 2.  

First, we give a goal assembly state node Ngoal to the robot. 
All the nodes, which contain Ngoal as an output assembly state 
node, in the universal FOON are appended to a list of root tree 
nodes R. Over each root node ri in R, it is possible to generate 
multiple task tree paths, which can accomplish the given 
assembly task. Starting from the root tree node, we iterate for 

each input object state node of the corresponding functional 
unit and search for the functional units which can produce it. 
When we search for the dependencies of a functional unit, we 
define this functional unit as the head. For an input object 
state node Ninput of the head, if a functional unit contains it as 
an output object state node and it is not an ancestor of the 
head, then this functional unit is regarded as a dependency of 
the head for the input object node Ninput. All of the functional 
units that produce Ninput are regarded as candidate functional 
units and are added to the list of candidate functional units Lc, 
which is then appended to a list of the preliminary tree nodes 
Lp. This step proceeds until the tree stack is empty; at this 
point, the list Lp covers the functional units for the 
dependencies for all the object state inputs. To accomplish the 
given assembly task, we only need one functional unit to meet 
the dependency for each input object state node. Thus, we 
compute the Cartesian product of the list Lp. Each product set 
of functional units will contain a whole path that meets object 
state input requirements of the corresponding root. By 
conducting a breadth-first search BFS(ri) with respect to the 
root ri, we can obtain one assembly process to accomplish the 
assembly task. By iterating for each product set, we can obtain 
all possible assembly processes for the given assembly goal 
from the universal FOON. 

Algorithm 2:  Retrieval of Assembly Processes 
Let Ngoal be the goal assembly state node. 
Let R be the list of root tree nodes. 
Let Pall be the list of all possible assembly process. 
Initialize R and Pall as empty list. 
for all functional units FUi in the universal FOON do 

if Ngoal is the output assembly state node of FUi then 
        Add FUi to R. 
    end if 
end for 
for all root nodes ri in R do 
    Initialize a tree stack TS. 
    Initialize a prelim tree node list Lp 

    Append the root node ri to TS. 
    Append the root node ri to Lp. 
    while the tree stack TS is not empty do 
        Pop the functional unit FUh from the right side of TS. 
        Set the head of search h to FUh. 
        for all input object state nodes Ninput do 
            Initialize a list of candidate functional units Lc 

            for all functional units FUi in the universal FOON do 
                if Ninput is one of the output object state nodes and FUi is not    
                an ancestor of the head h then 
                    Set FUi as a child of the head h 
                    Set h as the parent of the functional unit FUi 
                    Append FUi to candidate list Lc 

                end if 
            end for 
            Append candidate list Lc to prelim tree node list Lp 

        end for 
    end while 
    Let Pd to be the cartesian product of Lp. 
    for each dependent tree path dp in Pd do 
        for all task paths p found by breath-first-search BFS(ri) do 
            Append path p to Pall. 
        end for 
    end for 
for all path in Pall do 
    Calculate the integrated weight of the path 
return optimized task path p* 

2015

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 23,2023 at 05:22:19 UTC from IEEE Xplore.  Restrictions apply. 



  

B. Robot Execution Optimization 

Once all possible assembly processes are determined, the 
optimal solution for the given assembly task is determined by 
the integrated weight of the assembly process. For an 
assembly process consisting of N functional units and weights 
Wi (i=1,2,…, N) for each function unit, the integrated weight 
of the assembly process can be written as  

𝑊ூ ൌ 𝛱
௜ୀଵ
ಿ

𝑊௜  ሺ 2 ሻ 

The optimal assembly process can be determined by   
𝑝∗ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥

ௐ಺

ሺ𝑃௔௟௟ሻ ሺ 3 ሻ 

where 𝑃௔௟௟ is the set of all possible assembly processes of the 
given assembly task. Once the optimized task-level assembly 
process 𝑝∗ is determined using FOON and the corresponding 
task retrieval algorithm, for each motion in  𝑝∗, the robot will 
search for the trajectory with minimum execution time among 
all the taught trajectories of the motion based on the situation 
of the workspace. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

To evaluate the proposed approaches, different non-expert 
demonstrations for different assembly tasks are conducted. In 
this section, we first present the experimental setup. The 
assembly tasks and the corresponding non-expert 
demonstrations used in our experiments are then explained 
respectively. Based on the demonstrations, the results of robot 
learning and task retrieval and optimization are discussed. 

A. Experimental Setup 

The proposed approaches are verified and evaluated on a 
multi-model human-robot collaborative assembly test 
platform. The hardware setup of the test platform is illustrated 
in Fig. 2 (a). In our experiments, we use the ABB Yumi, 
which is a dual-arm collaborative robot. The human stands 
face to face with the robot to work in a shared workspace. The 
Kinect RGB-D sensor offers a top-view point cloud of the 
workspace for part recognition and tracking. The software of 
the test platform is developed based on the Robot Operating 
System (ROS) and visualized through Rviz. The trajectory-
level motion planning from point to point is accomplished 
based on the Open Motion Planning Library (OMPL) via 
MoveIt! motion planning framework. 

B. Subgraphs of Non-expert demonstrations 

In our experiments, we use blocks with different numbers 
to represent different types of parts (O1 to O5). Initially, there 
are 12 parts in total located at different given locations in the 
stock zone. A 3 x 3 grid (G1 to G9) is defined as an assembly 
zone on the workbench. The start positions and the goal 
positions of pick-place and stacking robot actions between 
different grids are defined by assembly task in advance and 
the motion trajectories for the actions are generated via 
sampling-based motion planning algorithms in MoveIt! 
motion planning framework. The motions and corresponding 
object states are learned via human demonstrations. The 
observed motions are mapped to corresponding elements in 
the action set according to the corresponding grid locations. 
The corresponding robot action assignment based on the 
observed motions is executed by sending the corresponding 
start position and the goal position and calling the sampling-
based motion planner to realize the action. Two types of 
assembly tasks are performed: the stacking task and the shape 
constructing task. The final assembly states of both tasks and 
the indexes of the grid locations are shown in Fig. 2 (c) and 
Fig. 2 (d). Three non-expert demonstrations are conducted for 
each task. 

For the stacking task, the goal is to build a 3-level stack 
(O3O2O1) at G5. The process of the first demonstration (Fig. 
3) is picking an O1 from stock and placing it at G1; then 
picking an O2 from stock and placing it onto the O1 at G1; 
then picking O2O1 together and moving them from G1 to G5; 
picking an O3 from stock and stacking it on the O2O1 at G5. 
This demonstration is not efficient because the human stacked 
the first two parts at an improper location and then fixed it by 
moving the component to the correct location. The process of 
the second non-expert demonstration (Fig. 4) is picking an O2 
from stock and placing it to G5; then picking an O1 from stock 
and stacking it on the O2; then switching the positions of O1 

 
Fig. 3. The subgraph obtained from the first-round demonstration of 

the stacking task. 

 
Fig. 4. The subgraph obtained from the second-round demonstration of 

the stacking task. 

 
Fig. 2. Experimental setup. (a) The configuration of the robot and 

RGB-D sensor. (b) The top view of the human-robot shared 
workspace captured by the RGB-D sensor. (c) The final state of the 

stacking task. (d) The final state of the shape constructing task. 
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and O2; finally picking an O3 from stock and stacking it on 
the O2 at G5. This demonstration is inefficient since an extra 
dual-arm manipulation was conducted to fix the order of the 
stack. The process of the third demonstration (Fig. 6) is 
picking an O3 from stock and placing it to G8; then picking 
an O2 from stock and stacking it on the O2 at G8; then 
switching the positions of O2 and O3; then picking an O1 
from stock and placing it to G5; finally picking the component 
(O3O2) from G8 and stacks it on the O1 at G5. This 
demonstration is less efficient than the previous two 

demonstrations since it contains five manipulations, including 

one dual-arm manipulation, to accomplish a three-parts 
stacking task.  

The shape constructing is to build a specific 3D shape in 
the 3 x 3 grid. The goal is to have a block O3 at both G1 and 
G7 and have a block O2 on the top of a block O1 at G5. 
Similar to the stacking task, we also conducted three non-
expert demonstrations for the shape constructing task. The 
process of the first demonstration (Fig. 5) is stacking two O3 
at G1; then picking an O1 from stock and placing it to G5; 
then picking an O2 from stock and stacking it onto the O1 at 
G5; finally moving the O3 at the top of the component O3O3 
to G7. This demonstration is inefficient because of the error 
pick-place action in the second step, which is fixed in the last 
step. The process of the second non-expert demonstration 

(Fig. 7) is picking an O3 and placing it to G1; then building 
the component O2O1 via two pick-place actions at G4; then 
picking another O3 from stock and placing it to G7; finally 
moving the O2O1 from G4 to G5. The process of the third 
non-expert demonstration (Fig. 8) is picking an O3 from stock 
and placing it to G9; then picking another O3 from stock and 

placing it to G8; then moving them to G1 and G7 respectively; 
afterward, a block O1 and a block O2 are picked from stock 
and stack at G5 to accomplish the task.  

C. Results of FOON Generation and Optimal Assembly Task 
Tree Retrieving 

To verify the proposed approaches, we merge the 
subgraphs generated by the non-expert demonstrations 
progressively to establish the universal FOON. For each 
stage, we compare the optimal assembly task process we can 
obtain based on the present situation of the robot knowledge. 

In the first stage, the universal FOON was only built based 
on the three non-expert demonstrations of the stacking task is 
shown in Fig. 9. It contains 12 functional units. Based on this 
merged FOON, the assembly process retrieval algorithm finds 
the same as the three non-expert demonstrations. The 
integrated weights of these three demonstrations are 0.478, 
0.050, and 0.032 respectively. The results indicate that the 
robot will implement the stacking task by repeating the first 
human demonstration at this stage of merged FOON. The real 
robot execution of the stacking task is shown in Fig. 10.  Also, 

 
Fig. 6. The subgraph obtained from the third-round demonstration of 

the stacking task. 

 
Fig. 5. The subgraph obtained from the first-round demonstration of 

the shape constructing task. 

 
Fig. 7. The subgraph obtained from the second-round demonstration 

of the shape constructing task. 

 
Fig. 8. The subgraph obtained from the third-round demonstration of 

the shape constructing task. 

 
Fig. 9. The merged graph obtained from the three demonstrations of the 

stacking task. 

 
Fig. 10. The real robot execution of the stacking task at the first stage. 
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the robot cannot find a solution for the shape formatting task 
since none of its demonstrations has been integrated into the 
merged FOON yet.  

In the second stage, the universal FOON was built based 
on the three non-expert demonstrations of the stacking task 
and the first non-expert demonstration of the shape 

constructing task. For the stacking task, the robot can find an 
optimized assembly process with three single-arm-single-part 
manipulations as shown in Fig. 11, which is to pick up a block 
O1, a block O2, and a block O3 from stock and stack them at 
G5 in sequence. The corresponding integrated weight of this 
assembly process is 0.625, which is higher than all the non-
expert demonstrations of the stacking task. The real robot 
execution of the optimized strategy on the stacking task is 
shown in Fig. 12. For the shape constructing task, the first-
round human demonstration is successfully reconstructed as 
the solution of the task at this stage of the merged FOON. 

In the third stage, we merged all the six non-expert 
demonstrations for both tasks to construct a universal FOON. 
The result of the universal FOON contains all six non-expert 
demonstrations of both the stacking task and shape 
constructing task. At this stage, the optimized result for the 
stacking task is also found as same as the three-motions 
solution shown in Fig. 11. For the shape constructing task, an 
optimized solution with four single-arm-single-part 
manipulations is found, which is to directly pick up a block 
O1, a block O2, and two O3 blocks and place them to their 
corresponding locations in sequence. The subgraph of the 
optimized solution of the shape constructing task is shown in 
Fig. 13, and the robot execution of this optimized strategy is 
shown in Fig. 14. 

D. Evaluations 

The summary of the assembly process optimization of the 
three stages of the universal FOON is illustrated in Table I.  
The results of the raw non-expert demonstrations and the 
optimized results of the stacking and the shape constructing 
task are shown in Table III and Table II respectively. The 
universal FOON built based on the three demonstrations of 
the stacking task contains 12 functional units and 13 object 
state nodes in total. Based on this universal FOON, we can 
find the optimized solution for the stacking task with an 
overall success rate of 0.693 and an overall efficient weight 
of 0.690. By adding a non-expert demonstration of the shape 
constructing task, the universal FOON contains 16 functional 
units and 16 object state nodes. With the updated universal 
FOON with more knowledge of assembly tasks, we can 
obtain a better-optimized solution for the stacking task with 
an overall success rate of 0.770 and an overall efficient weight 
of 0.812. According to the task design, this is already the best 
solution for the stacking task. Also, the robot successfully 
learned the shape constructing task via the additional one-
round human demonstration, though it is not very efficient. 
After merging two additional non-expert demonstrations of 
the shape constructing task, a better solution for the shape 
constructing task is found from the universal FOON, which is 

TABLE I 
SUMMARY OF ASSEMBLY PROCESS OPTIMIZATION OF DIFFERENT STAGES OF UNIVERSAL FOON 

Stage 

Universal FOON Optimized Stacking Assembly Process Optimized Shape Constructing Process 
No. of 
Object 
State 
Node 

No. of 
Motion 
Node 

No. of 
Functional 

Unit 

No. of 
Functional 

Unit 

Overall 
Success 

Rate 

Overall 
Efficient 
Weight 

Integrated 
Weight 

No. of 
Functional 

Unit 

Overall 
Success 

Rate 

Overall 
Efficient 
Weight 

Integrated 
Weight 

1 13 12 12 4 0.693 0.690 0.478 None None None None 
2 16 16 16 3 0.770 0.812 0.625 5 0.694 0.621 0.432 
3 18 24 24 3 0.770 0.812 0.625 4 0.772 0.772 0.595 

 
Fig. 12. The real robot execution based on the optimized solution of the 

stacking task. 

 
Fig. 13. The optimized solution for the shape constructing task. 

 
Fig. 14. The real robot execution of the optimized strategy for the shape 

constructing task. 

 
Fig. 11. The optimized result of the stacking task. 
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built based on six in-efficient human demonstrations. Based 
on the proposed task, the optimal solution simply contains 
four single-arm-single-part manipulations, which should be 
the most efficient solution based on our experimental setup. 
Moreover, the most efficient solution for the stacking task, 
which has already been found in the earlier stage, is also found 
in this universal FOON. 

Furthermore, in this paper, since we use a FOON model-
based approach, we only require several rounds of non-expert 
demonstrations to derive the best possible solution for the task. 
In contrast, the existing data-driven approaches [18]–[20] 

usually require humans to demonstrate the task thousands of 
times to obtain enough training data to learn the task. 
Therefore, comparing to the existing data-driven approaches, 
the time cost and the teaching effort of human demonstrations 
can be significantly reduced using our proposed approach. 

VI. CONCLUSION 

This paper introduces a graph-based task representation 
approach based on the Functional Object-Oriented Network 
(FOON) to represent the knowledge of assembly tasks. It 
creates algorithms to create a FOON from multiple non-
expert assembly demonstrations and also develops an 
assembly task tree retrieving approach with a robot execution 
optimization process to generate the best possible task 
execution plan from the FOON. The results indicate that 
robots can find the best possible assembly process among 
multiple rounds of non-expert demonstrations. The evaluation 
also indicates the effectiveness and advantages of the 
proposed approach compared to other existing approaches.    
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TABLE III 
RAW DEMONSTRATIONS VS OPTIMIZED SOLUTION OF 

STACKING TASK 

Item 
Raw Demonstrations 

Optimized 
1st 2nd 3rd Average 

No. of Actions 4 4 5 4.33 3 
Success Rate 0.693 0.616 0.520 0.609 0.770 

Efficient 
Weight 

0.690 0.081 0.061 0.280 0.812 

Integrated 
Weight 

0.478 0.050 0.032 0.187 0.625 

TABLE II 
RAW DEMONSTRATIONS VS OPTIMIZED SOLUTION OF 

SHAPE CONSTRUCTING TASK 

Item 
Raw Demonstrations 

Optimized 
1st 2nd 3rd Average 

No. of Actions 5 5 6 5.33 4 
Success Rate 0.694 0.694 0.696 0.695 0.772 

Efficient 
Weight 

0.621 0.656 0.696 0.658 0.772 

Integrated 
Weight 

0.432 0.456 0.485 0.457 0.595 
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