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Bilateral Adaptation of Longitudinal Control of Automated
Vehicles and Human Drivers

Longxiang Guo and Yunyi Jia

Abstract— Automated vehicles have great potential to transform our
existing transportation systems by improving driving safety, comfort,
congestion, and emissions. Despite the tremendous efforts that have been
spent on the development of various automated driving technologies, user
acceptance of automated driving technologies is still low, which is largely
caused by the gaps between automated driving controllers and human
preferences. Recent research efforts have been focusing on adapting
automated driving behaviors to human demonstrations. However, most
existing methods assume that human demonstration is perfect and only
focus on mimicking human driving behaviors. In reality, the human
demonstration will not be ideal and will include some over-aggressive
or over-conservative actions that compromise the safety or efficiency
of the trained automated driving controller. In this paper, an Inverse
Model Predictive Control (IMPC) based bilateral adaptation method for
automated vehicles and human drivers is proposed. The method can
adapt automated longitudinal driving behaviors to human preferences
based on human interventions during automated driving. Meanwhile,
it can also reject improper interventions and send warnings to the human
driver such that he/she can realize the irrationality in his/her behaviors.
Eventually, the automated driving controller will adapt to the human
driver’s preferences and the human driver will get rid of his/her bad
driving habits. Human-in-the-loop experiments were conducted using
a driving simulator to demonstrate the effectiveness of the proposed
approach.

Index Terms— Human driving behaviors, inverse model predictive
control, learning, and prediction.

I. INTRODUCTION

Automated driving technology has the potential of reducing traffic
jams, increasing road and intersection capacity [1], [2], improving
driving safety [3], and saving energy [4]. Tremendous efforts have
been spent on various automated driving technologies to improve
driving safety and comfort. However, according to multiple surveys
about automated vehicles, user acceptance of automated vehicles is
still low [5], [6]. A vital truth has been ignored that the technical-
ities of driving safety and comfort do not necessarily indicate the
human perception of safety and comfort. Human perceived safety
and comfort are usually subjective. For instance, a certain time
headway, which lies within the technically safe range, may cause
conservative drivers to feel nervous and unsafe, but at the same time,
cause aggressive drivers to feel impatient and uncomfortable. This
research gap indicates that technology-focused research efforts fail
to put humans into consideration or in the loop of automated vehicle
planning and control, which consequently limits the user acceptance
of automated vehicles.

To address this problem, many recent research works propose
to adapt automated vehicles to human drivers. The adaptation of
automated vehicles refers to the process of adjusting automated
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driving parameters to achieve some desired driving behaviors. Some
vehicles have already provided interfaces for human drivers to
manually adjust several control parameters, such as speed in cruise
control and speed and headway in adaptive cruise control. But these
simple parameters are far from enough to represent human driving
preferences. This paper focuses on the adaptation of longitudinal
behaviors of automated vehicles and human drivers. Related research
works have attempted to automatically learn and adapt these control
parameters for automated vehicles, and many of them have been using
car-following models such as the Tampère (TMP) model [7], Optimal
Velocity Model (OVM) [8], and Intelligent Driver Model (IDM)
[9]. The parameters of these models are identified based on human
demonstrations. The limitations of these models are their simple
structure and an insufficient number of parameters, which make them
unsuitable for adapting to an individual human driver. In recent years,
many data-driven machine learning approaches have been proposed
to learn the behaviors of a human driver. The most popular ones are
the Artificial Neural Network (ANN)-based approaches [11], [12],
[13], [14], [15], [16]. However, these approaches require a large set
of carefully prepared data to train the network parameters.

The existing unidirectional adaptation approaches for automated
driving models adapt automated vehicles to human drivers in order
to purely mimic human driving behaviors, which may also mimic
some poor human driving behaviors. Thus, an adaptation method
that can resist such undesired human demonstration is needed. Also,
it is equally important to adapt the human driver such that he/she
can give up the expectation of undesired driving behaviors in order
to improve user acceptance. However, the related research is quite
limited. Existing research has shown that automated driving functions
can send audio, visual, and haptic signals to human drivers when
their attention is needed [17], [18] and that human drivers change
their driving behaviors in response to such feedback from automated
driving functions [19]. Most research works have focused on the
short-term transient behaviors of human drivers in ad-hoc ways after
they receive the signals as reminders to ensure the safe operation
of automated driving functions [21], [22]. Few have focused on
the change in human long-term driving styles. Moreover, most of
these works do not have a theoretical model to support how this
feedback influences human drivers. Few have studied using warning
feedback to change human long-term driving styles and expectations
on automated driving behaviors and subsequently influence human
interventions on automated vehicles. Therefore, creating intuitive
feedback from automated vehicles to humans to change their driving
styles and their expectations of the behaviors of automated vehicles,
and generating appropriate human intervention data to adapt the
controls of automated vehicles are of great research value.

Using soft constraints is a popular method in optimization [23]
and optimal control [24], [25] for increasing feasibility. Despite their
popularity, soft constraints are mainly used for control purposes.
Few studies have used them to learn the driving control models,
which is an inverse problem of controls. Our previous works [26],
[27], [28] have proposed an inverse model predictive control (IMPC)
based modeling method for the longitudinal motion of human-driven
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Fig. 1. Framework of bilateral adaptation mechanism.

vehicles. Hence, integrating soft constraints into our proposed IMPC
to learn the driving models is worth studying. The IMPC proposed
in our previous work was mainly used for the prediction of human-
driven vehicles’ trajectories. This work further extends the method to
the modeling of automated driving behaviors and the adaptation of
the automated driving model based on human interventions, which is
new and different from our previous work. The major contributions
are summarized as follows.
1. Proposing a new bilateral adaptation framework for both auto-

mated vehicles and human drivers. The framework first extracts
the models of automated driving vehicles based on our proposed
IMPC approach. It then builds on these models to adapt the auto-
mated driving behaviors according to human interventions and also
adapt human expectations on automated driving by incorporating
safety and efficiency constraints and intuitive warning feedback.

2. Designing and conducting human-in-the-loop automated driving
experiments to validate that the proposed bilateral adaptation
framework can adapt both automated driving controllers and
human expectations on automated vehicles without causing safety
hazards and compromising efficiency.
The rest of the paper is organized as follows. Section II intro-

duces the details of the bilateral adaptation mechanism. Section III
presents the experimental design and the analysis of the results.

II. BILATERAL ADAPTATION OF AUTOMATED VEHICLES

AND HUMAN DRIVERS

In this section, the framework for the bilateral adaptation mech-
anism is described in II-A. The details of IMPC-based automated
driving model extraction and adaption are introduced in II-B and
II-C respectively. The method for adapting human drivers is presented
in II-D

A. Framework for Bilateral Adaptation

In this paper, we separate the bilateral adaptation mechanism into
two steps. The first step is the construction and adaptation of the
automated driving model, while the second step is the adaptation of
human drivers. The structure of the bilateral adaptation mechanism is
shown in Fig. 1. The lines with different colors in the figure represent
the information transfer in different processes.

Given an automated vehicle, it is important to know how it drives
before performing any adaptation. We propose to learn the automated
driving model of an automated vehicle from its real-time driving data.
In this paper, we choose to construct a generic automated driving
control model in the form of model predictive control (MPC) using
the IMPC method that we proposed before. The IMPC method has
been shown to be effective in modeling human drivers’ longitudinal
driving behaviors. In this paper, we are extending the application field
of the IMPC method to the modeling of a generic automated driving
controller. The cost function of MPC will be core to describe the
behaviors of an automated vehicle. For different automated vehicles,

their cost functions will be different. After the model of the automated
vehicle is obtained, it is adapted to the human driver’s preferences
using the driver’s intervention data during automated driving. IMPC
approach is applied here again to complete the adaptation of the
automated driving model.

During the adaptation, if improper human interventions are
detected, the vehicle will inform the human driver about the situation
such that the human driver can eventually avoid similar improper
interventions. Meanwhile, the IMPC will penalize the cost functions
that cause the vehicle to drive in an unsafe or inefficient way such
that the adapted automated driving model is not affected by those
improper human interventions.

B. Extraction of Automated Driving Model

The purpose of this model extraction is to turn any generic
automated driving controller into a unified form that is proven to
be effective in modeling a human driver. In this paper, we chose
to use IMPC to extract the automated driving model to a model
predictive controller. Since the details of IMPC have been included
in our previous papers [26], [27], [28], this section will only provide
a brief description of the IMPC.

The IMPC utilizes the cost function in MPC to represent a
controller’s driving preferences. IMPC finds the best primitive costs
to be included in the cost function and identifies the weights and the
references of those primitive costs to formulate the most suitable cost
function dedicated to the controller.

The vehicle motion model (1) used by IMPC is a linear time-
invariant (LTI) model with a first-order lag with a time constant τ

[29], where aa is the ego automated vehicle’s acceleration, va is its
speed, sa is the travelled distance, and ua is the control intput. ṡa

v̇a
ȧa

 =

 0 1 0
0 0 1
0 0 −

1
τ

  sa
va
aa

 +

 0
0
1
τ

 ua (1)

The MPC problem can be formulated by a constrained optimization
problem that minimizes the cost function Jaover the prediction
horizon:

u∗
a = arg minua Ja

s.t. − 10m/s2
≤ aa ≤ 5m/s2

0 ≤ va ≤ 40m/s

− 10m
/

s2
≤ ua ≤ 5m

/
s2

da ≥ 1.5m (2)

These basic constraints are introduced to ensure the feasibility and
rationality of the MPC controller. The MPC also requires another
model for the lead vehicle, which is as follows:[

ṡl
v̇l

]
=

[
0 1
0 0

] [
sl
vl

]
+

[
0
1

]
al (3)

where al is the lead vehicle’s acceleration, vl is its speed, sl is
its traveled distance. This facilitates the calculation of the headway
distance da = sl − sa over the prediction horizon.

The cost function Ja is further expressed as:

Ja =

∑
�T

a 8a (4)

where 8a = (φ1, φ2, . . .)T is a set of primitive costs for the human-
driven vehicle and �a = (ω1, ω2, . . .)T is a set of associated weights.
A primitive cost φ j is shown in (5), where k is the number of the
current time step, N is the number of prediction steps, and r j is the
target value of the motion states y j . Note that motion states can be
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the ego vehicle’s speed, look-ahead distance gap and control inputs,
etc.

φ j = g
(
xh , xa, r j , uh

)
=

k+N∑
κ=k

(
y j (κ) − r j

)2 (5)

The primitive costs are used independently as stand-alone cost
functions, which can be written as:

Jφ j = φ j =

k+N∑
κ=k

(
y j (κ) − r j

)2 (6)

and then the reference r j is learned with a higher-level
optimization (7). In (7), E is the evaluation error of the MPC
over an automated driving demonstration, and Cr j is the admissible
set for r j . When the higher-level optimization finishes, a minimum
prediction error Eφ j over demonstrations will be obtained for the
primitive cost φ j .

r∗
j = arg minr j E

s.t. : r j ∈ Cr j (7)

If the controller is focusing on φ j and trying to maintain y j at
a specific target value during driving, the resultant Eφ j should be
small. This means that φ j can be a ‘good’ primitive cost in the
final cost function. Otherwise, the resulted Eφ j should be large, and
φ j might better be excluded from the cost function. All primitive
costs are then ranked based on their Eφ j values. We assume that
8∗

a = (φ∗
1 , φ∗

2 . . . , φ∗
j )

T is the set of all available primitive costs
that have been ranked from good to bad, with φ∗

1 being the best and
φ∗

j being the worst. Followed by this, we propose to formulate the
cost function by combining the primitive costs from ‘good’ to ‘bad’,
which can be described by (8).

J1 = ω1φ∗
1 ,

J2 = ω1φ∗
1 , +ω2φ∗

2 ,

J3 = ω1φ∗
1 , +ω2φ∗

2 , +ω3φ∗
3 . . . .

J j = ω1φ∗
1 , +ω2φ∗

2 + . . . + ω j φ
∗
j (8)

Since a controller normally focuses on more than one aspect during
driving, it is reasonable to skip J1 and start with a combination of
the top two or three best primitive costs in the cost function first.
Subsequently, in the following attempts, the next best primitive cost
is added to the cost function. Every cost function J j will learn its
parameters using the higher-level optimization. Denoting the set of
references r1 . . . r j by R j , and the set of weights ω1 . . . ω j by � j ,
the optimization can be expressed as:

(�∗
j , R∗

j ) = arg min�a ,R E

s.t. : � j ∈ C� j , R j ∈ CR j (9)

where C� j and CR j are the admissible sets for � j and R j
respectively. The total error E is reduced by optimizing the weights
� j and the references R j in the cost function. Since only the
relative values of the weights are important, it is practical to fix
a weight to 1 and optimize the rest [31]. The objective function of
this higher-level optimization is yet another optimization problem,
however, the Jacobian of E is not obtainable. Thus, the Pattern
Search (PS) algorithm [32] is adopted in this paper. Each cost function
J j will get a minimal evaluation error E j from the higher-level
optimization. Adding an effective primitive cost φ j should reduce
the error E j while adding an ineffective primitive cost will not bring
any benefit but affect the optimization convergence, which will result
in a larger evaluation error. Thus, the addition of primitive costs will
be repeated until the evaluated performance of the predictor starts to

deteriorate. At this point, the previous cost function can be selected to
be the best cost function. It has been shown that the proposed method
to select the cost function is very effective, and the best cost function
in this paper is chosen to be (10), where vr is the relative speed
between the ego vehicle and the lead vehicle, and TTCi =vr

/
da

is the time to collision inverse. The three other primitive costs that
have been evaluated but excluded from the cost function are the time
headway inverse THWia = va

/
da , the headway distance da, and the

ego vehicle speed va.

Ja =

k+N∑
κ=k

[ωa(aa(κ) − are f
a )

2
+ ωv(vr (κ) − v

re f
r )

2

+ ωT T Ci (T T Cia(κ) − T CCire f
a )

2
+ ωu(ua(κ) − ure f

a )
2
]

(10)

C. Adaptation of Automated Driving Model

After the automated driving model has been extracted, it is adapted
to the human drivers’ preferences using human intervention data
collected during automated driving. The IMPC process given in
II-B is repeated by using the human intervention data instead of the
automated driving data as the demonstration. However, in order to
avoid the negative impacts caused by improper human interventions,
the higher-level optimization step (10) needs to be modified to
accommodate this extra requirement. Directly adding stricter hard
constraints to (2) can make sure the controller does not violate
any safety or efficiency requirements. However, doing such will
completely change the rank of the primitive costs and even cause
feasibility issues during the higher-level optimization process. Thus,
instead of adding hard constraints to the MPC, we chose to add
soft constraints to the higher-level optimization, and hence, (9) turns
into (11): (

�∗
j , R∗

j

)
= arg min�a ,R E + P

s.t. : � j ∈ C�h , R j ∈ CR (11)

P is a set of performance constraints pn :

P =

N∑
n=1

ωn

M∑
m=1

pn(m)ts (12)

where M is the total number of data points of each evaluation, ts is
the sample time, and ωn is the weight for different performance
constraints. Each performance constraints pn(m) is further detailed
as follows:

pn(m) =

{
0, x(m)meetstherequirements
p, otherwise

(13)

where p is a positive penalty value.

D. Adaptation of Human Driver

In the previous step, we propose to adapt the automated vehicles
according to human interventions, driving performance, and human-
perceived safety and comfort levels. In this second step, we also
propose to take appropriate adaptation measures to make humans
aware of their improper behaviors when their intervention will make
the automated driving performance worse, and eventually correct
them.

While the human driver is experiencing automated driving, he/she
can take over the control of the vehicle by directly operating the
brake or throttle pedals. The automated driving will be resumed by
pressing a button on the steering wheel. During the intervention,
the necessary data is recorded for the adaptation of the automated
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Fig. 2. The safety warning light (left) and the efficiency warning light (right)
for the human driver during intervention.

driving model, and the driver’s performance is monitored. The same
performance constraints in (13) are evaluated in real-time during
human interventions. If any of the constraints is violated, then the
intervention is considered to be harmful to the driving performance.

Algorithm 1 Bilateral Adaptation Process
while automated driving

if no human intervention do
collect vehicle state data
extract automated driving model

else
if intervention is making vehicle unsafe do

display red alarm light
play rapid siren

else if intervention is making vehicle inefficient do
display yellow reminder light
play gentle beep sound

end
collect intervention data
adapt automated driving model

end
end

When that situation happens, proper feedback needs to be provided
to the human driver to let him/her be aware of the improper
behaviors. Such feedback is provided in the form of resistant force
feedback generated on the accelerator and brake pedals in addition
to conventional alarm signals such as sounds and lights. In this
paper, the simulator will display red alarm lights and play a rapid
siren to the driver when the safety constraints are violated and
display a yellow reminder light, and play a gentle beep sound to
the driver. The warning interface is shown in Fig. 2. The human
drivers will learn from the feedback information and eventually stop
improper intervention during automated driving. The entire bilateral
adaptation process including the adaption of the human driver is given
in Algorithm 1. This process is repeated until the human driver’s
intervention percentage drops to or close to zero during a long enough
automated driving experience.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the experimental results and analysis are presented.
The setup of the experimental environment is introduced in III-A.
The result of the automated driving model extraction is presented
in III-B. The bilateral adaption results of an aggressive driver and a
conservative driver are discussed in III-C and III-D respectively.

A. Experiment Setup

In this paper, the experiment is conducted using a 3D real-time
driving simulator with motion feedback. It has been shown that a
well-designed driving simulation can produce results close to reality.
Our simulation was carefully designed with realistic driving scenarios

Fig. 3. Real-time 3D simulation with motion feedback.

Fig. 4. Speed profiles of different cycles a. Artemis cycle b. HWFET cyclec.
NYCC cycle.

including an accurate vehicle dynamics model, high-quality vehicle
3D model, and high-fidelity feedback such that the influence of the
difference between the simulation model and the real-life vehicle
could be minimized.

The simulator used in this paper is shown in Fig. 3. There are
two vehicles in the simulation. The lead vehicle is an automated
vehicle that tracks a cycle that is merged from three standard driving
cycles. The first one is the EPA Highway Fuel Economy Test Cycle
(HWFET) [33], which is a 12-minute-long mild highway cycle.
The second is the Artemis Motorway 130 cycle [34] which is an
18-minute-long aggressive motorway cycle with heavier braking and
wider open throttle. The last one is the New York City Cycle (NYCC)
[33] with shortened stop time, which is an eight-minute-long urban
driving cycle. These three cycles provide a variety of different driving
behaviors for the experiment. The longitudinal motion model of this
vehicle is a kinematic model that takes speed as an input.

The rear vehicle is the ego vehicle to be controlled by either an
MPC controller or a human driver in real time. The motion model
of this vehicle is a longitudinal dynamics model that considers air
resistance, rolling resistance, and the inertia of the vehicle body and
the wheels. The model takes torque at wheel as the input. When this
vehicle is controlled by a human driver, the signals from the brake
and throttle pedals are transformed into torque at the wheel’s request
directly. Both positive torque (throttle) and negative torque (brake)
signals pass through a first-order lag element to simulate the response
time in the powertrain and brake systems. The powertrain system has
a larger time constant of τp = 0.45s, and the brake system has a
smaller time constant of τb = 0.1s. When this vehicle is driven by
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an MPC, the desired acceleration generated by the MPC is converted
to torque at wheel by using a PI controller.

During automated driving, human intervention is triggered if the
human’s torque request has a different sign from the MPC’s torque
request, or if it has a larger amplitude. In both the learning and
the testing phases, the prediction horizon of MPC was chosen to
be 10 seconds, and the prediction step size 1tP was chosen to be
0.5 seconds. The control frequency was 20Hz. In this paper, the MPC
problem is solved using the ACADO toolkit [35].

B. Automated Driving Model Extraction

In this section, the result of the automated driving model extraction
is presented. The Tampère (TMP) [7] cruise controller is selected as
the generic automated longitudinal controller:

ua = k1(vl − va) + k2(d − ddesired ) (14)

where k1 and k2 are the tunable weights, d is the current headway
distance, and ddesired is the desired headway distance, which is
calculated by:

ddesired = dmin + T H W desiredva (15)

where dmin is the minimum allowed safety distance and
T H W desired is the desired time gap. In the experiment, k1 and k2
were chosen to be 2 and 0.8 respectively, and dmin was chosen to be
1.5m, which is the same as the minimum allowed headway distance of
the MPC controller. T H W desired was chosen to be 0.7s. Such values
were selected based on our experience in our previous work [33]
to mimic a neutral driving style. The IMPC-based model extraction
method was applied to the TMP controller, and the result is shown
in Fig. 5. From the figure, it is seen that the extracted controller
is maintaining almost the same headway distance as the original
TMP controller. This implies that the IMPC method is effective in
extracting automated driving models from the generic longitudinal
controller.

C. Bilateral Adaptation of Aggressive Driver and Automated
Driving Controller

In this section, an aggressive driver was required to experience the
extracted automated driving model using the driving simulator and
intervene if he/she was uncomfortable in real-time. After the extracted
model has completed a merged cycle, the intervention data collected
from the human driver is used for the first round of adaptation.
During the adaptation, safety cost (16) is used to mitigate the negative
influence of over-aggressive interventions. Designing pn in this form
penalizes the cost function if THW is too small, and the penalty
accumulates over time. The training process reduces the value and
lasting time of THW which breaks the safety limit.

In our previous work [33], the most aggressive driver maintained an
average THW of 0.67s. In [34], the automated cruise control caused
string instability when maintaining a time headway lower than 0.6s,
and was barely maintaining string stability when the time headway
was 0.7s. Thus, a THW smaller than 0.6s is considered dangerous
and aggressive for both human drivers and autonomous controllers.
A THW threshold of 0.5s for over-aggressive interventions is selected
in this paper.

pn(m) =

{
0, T H W > 0.5s∫

(T H W−1
− 2)dt, otherwise

(16)

After the first round of adaptation is finished, the human driver
will experience the adapted model controlling the vehicle to fol-
low the lead vehicle again and intervene if he/she feels necessary.

TABLE I
AUTOMATED DRIVING MODEL ADAPTION

RESULT FOR AGGRESSIVE DRIVER

TABLE II
HUMAN INTERVENTION PERCENTAGE – AGGRESSIVE DRIVER

The automated driving model is then adapted using the second round
of intervention data with the same safety cost in (16). This process is
repeated until the human intervention percentage drops to or close to
zero. The adaptation results of the automated driving controller are
shown in Fig. 6 and TABLE I. The intervention percentage of the
human driver in every intervention iteration is shown in TABLE II

Fig. 6 shows that the extracted original driving model was trying to
keep a time gap of 0.7 seconds. The aggressive driver tried to maintain
a time headway that was shorter than 0.7 seconds most of the time.
By using the aggressive training data to adapt the driving model, the
model after the first adaptation was able to maintain a much shorter
headway distance than the original model. TABLE I shows that both
the average and maximum THWi increase. In other words, the time
gap decreases significantly after the first adaption. Meanwhile, due
to the existence of penalty (16) in the higher-level optimization, the
adapted driving model never went below the safety time headway
constraint of 0.5 seconds. As shown in TABLE I, the maximum
THWi stays below or around 2.0 most of the time. However, in the
Artemis cycle, the maximum THWi is slightly above 2.0 to 2.03,
which is caused by the difference between the motion model used by
the MPC and the motion model of the vehicle. After the first round of
adaptation, the human driver still felt uncomfortable and intervened
during the 2nd round of automated driving experience, although the
intervention percentage dropped massively from 70.03% to 45.85%.
After training the driving model with the 2nd round of intervention
data, the performance of the model only changed a little bit since the
driving model in the first round of adaptation was already approaching
the safety constraint. Although the 2nd round of adaptation did not
make big changes to the automated driving controller, it reduced the
intervention rate from 45.85% to 0% since the human driver kept
receiving warnings during the 2nd round of intervention. Overall,
the proposed bilateral adaptation mechanism was able to adapt the
automated driving controller to human preferences without creating
safety hazards, while correcting the human driver’s over-aggressive
driving habits.
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Fig. 5. Result of the TMP model extraction.

Fig. 6. Adaptation result of the aggressive driver a. Adaptation result from
the Artemis cycle b. Adaptation result from the HWFET cycle c. Adaptation
result from the NYCC cycle.

D. Bilateral Adaptation of Conservative Driver and Automated
Driving Controller

In this section, a conservative driver was required to experience
the extracted automated driving model using the driving simulator
and intervene if he/she was uncomfortable in real-time. During the

TABLE III
AUTOMATED DRIVING MODEL ADAPTION RESULT

FOR CONSERVATIVE DRIVER

TABLE IV
HUMAN INTERVENTION PERCENTAGE – CONSERVATIVE DRIVER

adaptation, efficiency cost (17) is used to mitigate the negative
influence of over-conservative interventions. Similarly, designing pn
in this form will penalize the cost function if THW is too big, and
the penalty accumulates over time. The training process will try to
increase the value and reduce the lasting time of THW that breaks
the efficiency limit.

Existing work [35] suggests that the THW of most human drivers
lies between 1 second and 2 seconds. A THW threshold of 1.1 sec-
onds for over-conservative interventions is selected such that the
automated controller can increase road capacity compared to the
human drivers after adaption.

pn(m) =

{
0, T H W < 1.1s
p, otherwise

(17)

Similar to the aggressive driver experiment, after the first round
of adaptation is finished, the conservative driver will experience the
adapted model controlling the vehicle to follow the lead vehicle again
and intervene if he/she feels necessary. The automated driving model
is then adapted using the second round of intervention data with
the same safety cost (17). This process is repeated until the human
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Fig. 7. Adaptation result of the conservative driver a. Adaptation result from
the Artemis cycle b. Adaptation result from the HWFET cycle c. Adaptation
result from the NYCC cycle.

intervention percentage drops to or close to zero. The adaptation
results are shown in III-E and TABLE III. The intervention percentage
of the human driver in every intervention iteration is shown in
TABLE IV.

Fig. 7 shows that the extracted original driving model was trying
to keep a time gap of 0.7 seconds. The conservative driver tried to
maintain a time headway that was greater than 1.1 seconds most of
the time. By using the conservative training data to adapt the driving
model, the model after the first adaptation was able to maintain
a much longer time gap than the original model. Meanwhile, due
to the existence of penalty (17) in the higher-level optimization,
the adapted driving model never went beyond the efficient time
headway constraint of 1.1 seconds. As shown in TABLE III, the
average and maximum THWi decrease while the maximum spacing
increases a lot after the first round of adaption, indicating that the
automated driving model is catching the conservative driving behavior
of the human driver from the intervention. After the first round of
adaptation, the human driver still felt uncomfortable and intervened
during the 2nd round of automated driving experience, although the

intervention percentage dropped massively from 64.37% to 45.85%.
After training the driving model with the 2nd round of intervention
data, the performance of the model only changed a little bit since the
driving model after the first round of adaptation was already reaching
the efficiency constraint. Although the 2nd round of adaptation did
not make big changes to the automated driving controller, it reduced
the intervention rate from 45.85% to 0% since the human driver kept
receiving warnings during the 1st and 2nd rounds of intervention.
Overall, the proposed bilateral adaptation mechanism was able to
adapt the automated driving controller to human preferences without
compromising traffic efficiency, while correcting the human driver’s
over-conservative driving habits.

E. Robustness of Driver Model Extraction

To check the robustness and reliability of the algorithm, we com-
pare the performance of the model learned from the original human
intervention data without extra uncertainties, and the models learned
from the human intervention data with injected uncertainties includ-
ing both disturbances and noises. Since headway is the most impor-
tant indicator of human intervention, we have injected uncertainties
into such intervention data. The uncertainties are injected by adding
a random value to the headway distance during a human intervention.
The random value r consists of two parts, as shown in (18):

r = rU + rN , rU ∼ U (−ε, ε) , rN ∼ N (0, σ ) (18)

where rU is a random number representing the disturbance that
follows a uniform distribution between −ε and ε and rN is a random
number representing the noise that follows a normal distribution with
a mean value of 0 and a standard deviation of σ . rU is generated every
time a new human intervention event happens so that it can represent
the disturbances of different interventions. rN is generated every time
a new human intervention data point is collected to simulate the
noises within an intervention event. Then, the combined value r can
become an overall representation of uncertainties in human behaviors
during highway car-following.

In the first part of this section, we trained the human models when
ε equals 0 and σ equals 0.3, 0.6, and 0.9 respectively to study the
influence of noises, where such a noise of 0.9 is extreme for normal
human intervention data. The results of trained models are shown in
Fig. 8 and Fig. 9. It is shown that for both aggressive and conservative
drivers, all these noise levels have little influence on the performance
of the trained models. Their performance was very close to that of the
one without injected noise. This indicates that our proposed approach
is robust against noises during human interventions.

In the second part of this section, we trained the human models
when σ equals 0.1 while ε equals 0, 3, 6, and 12 respectively, to study
the influence of disturbances, where normal disturbances of human
intervention data are within 6m and a disturbance of 9m is really rare.
The results are shown in Fig. 10 - Fig. 12, including the statistics of
differences in headway tracking performance. The results compared
the models trained from the data with different levels of disturbances
with the one trained with no disturbance. In the statistics charts, the
blue bars represent the maximum positive headway tracking differ-
ence, the red bars represent the minimum negative tracking difference,
and the lines represent the average absolute tracking difference. The
data show that for both types of aggressive and conservative drivers,
the disturbances did not generate noticeable differences in headway
tracking performance when they are within ±6m. The disturbances
have a relatively larger influence on the aggressive driver than on the
conservative driver. This is because the relative value of the injected
disturbance compared to the original headway is much larger for the
aggressive driver. In addition, differences could be observed when

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on July 23,2023 at 03:46:07 UTC from IEEE Xplore.  Restrictions apply. 



5670 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 5, MAY 2023

Fig. 8. Headway of models trained from data with different level of noises,
aggressive driver.

Fig. 9. Headway of models trained from data with different level of noises,
conservative driver.

Fig. 10. Headway of models trained from data with different level of
disturbances, conservative driver.

the random disturbances reach ±12m, especially from the aggressive
driver. Such disturbances in real life mean that the aggressive driver
changes his driving style by doubling, tripling, or reducing headway
to a quarter frequently, which is very unlikely to happen. For the
conservative driver, the difference becomes larger but is still in an
acceptable range. In reality, a human driver may have some random
behaviors occasionally, but in general, their driving styles should have
no huge changes frequently, especially in a short period. Considering
this fact, the results indicate that our proposed method is reliable and
robust against disturbances during human interventions.

IV. CONCLUSION AND DISCUSSION

In this paper, a new bilateral adaptation mechanism for the
longitudinal motion of automated vehicles and human drivers is
proposed. The mechanism leverages the IMPC-based approach to
model the generic automated driving controller and adapt it to the
human drivers’ preferences from the intervention data. Compared to

Fig. 11. Headway of models trained from data with different level of
disturbances, aggressive driver.

Fig. 12. Max, min and average absolute headway tracking a). Aggressive
driver b). Conservative driver difference.

the one-directional adaptation methods [33], the proposed mechanism
can mitigate the negative influence of improper interventions from the
human driver. Moreover, the mechanism can adapt the human driver’s
driving habits. Human-in-the-loop experiments have been conducted
in a real-time driving simulator. The experiment results show that
the proposed bilateral adaptation method has achieved its design
objective. A neutral automated driving controller can adapt to both
aggressive and conservative driving preferences without violating
safety or efficiency constraints. Human drivers can also correct their
over-aggressive and over-conservative behaviors with the help of the
adaptation algorithm. Nevertheless, there are some limitations to the
current research work. Firstly, the existing modeling mainly focuses
on the longitudinal control of the vehicle. When lateral controls are
involved such as lane switching, the modeling will need to be further
extended to cover the cost functions related to lateral behaviors in the
future. Secondly, the current designs of the performance/safety con-
straints and weight selections to categorize and penalize ‘unwanted’
behaviors during the adaptation are a little heuristic though they
work well in our studies. They can be further improved by designing
more systematic and comprehensive performance/safety constraints
and penalty weights based on more theoretical studies. Thirdly, the
current experimental results are based on a driving simulator rather
than some real vehicles to validate the designed approaches. There
is a discrepancy in the human perception between the simulation
and the real automated vehicle. This could lead to differences in
the interventions of humans when they are sitting in a simulated
automated vehicle or a real automated vehicle. Therefore, our future
work is to transfer these approaches to real vehicles for actual field
studies.
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