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EVOLUTIONARY BIOLOGY

An evolutionary trade-off between host immunity
and metabolism drives fatty liver in male mice

Joni Nikkanen'?, Yew Ann Leong?3, William C. Krause!, Denis Dermadi*®, J. Alan Maschek®”,
Tyler Van Ry®”’, James E. Cox®7, Ethan J. Weiss?, Omer Gokcumen®,
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Adaptations to infectious and dietary pressures shape mammalian physiology and disease risk.
How such adaptations affect sex-biased diseases remains insufficiently studied. In this study,

we show that sex-dependent hepatic gene programs confer a robust (~300%) survival advantage for
male mice during lethal bacterial infection. The transcription factor B cell lymphoma 6 (BCL6),
which masculinizes hepatic gene expression at puberty, is essential for this advantage. However,
protection by BCL6 protein comes at a cost during conditions of dietary excess, which result in
overt fatty liver and glucose intolerance in males. Deleting hepatic BCL6 reverses these phenotypes
but markedly lowers male survival during infection, thus establishing a sex-dependent trade-off
between host defense and metabolic systems. Our findings offer strong evidence that some
current sex-biased diseases are rooted in ancient evolutionary trade-offs between immunity

and metabolism.

nfections are one of the strongest evolu-

tionary pressures shaping human phys-

iology and disease. As such, the immune

system and host defense responses are often

prioritized at the expense of other physio-
logical systems (7, 2). As a result, genetic variants
that are associated with noninfectious diseases
may be maintained in the population if they
simultaneously improve survival during infec-
tion. For example, variants in human HBB
and APOLI increase the risk of sickle cell ane-
mia and chronic Kidney disease (3) but exert a
strong protective effect against malaria and
trypanosome infections, respectively. These
studies highlight the notion of an “evolu-
tionary trade-off” whereby natural selection
fails to optimize two traits simultaneously,
which causes increased adaptation for one
trait at the expense of another and ultimately
may elevate disease risk.
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Shifting environments also magnify the dis-
ease risk associated with trade-offs, resulting
in so-called mismatch diseases (4). Thus, the
initial benefit of a trait becomes detrimental
in a new environment. For example, a mis-
match between our genetic legacy and the
modern diet that is high in calories, fat, and
refined sugars is proposed to account for the
high prevalence of chronic metabolic dis-
eases, such as type 2 diabetes (T2D), heart
disease, and fatty liver (5). However, although
the evolutionary mismatch theory can ex-
plain chronic diseases that affect immunity
and metabolism, their marked sex bias in
the human population is poorly understood.
Notably, men carry a much higher disease
burden for common metabolic disorders
compared with premenopausal women (6-8).
Similarly, some infectious diseases exhibit
a strong sex bias with poorer outcomes ob-
served in either males or females depending
on the pathogen (9). Together, inherent sex
differences in physiological systems dictate
disease progression in males and females. In
this study, we examined the relationship be-
tween biological sex during a dietary excess
challenge and infection in mice.

Prior studies found that mice housed at
thermoneutral temperature (30°C) are sus-
ceptible to the metabolic consequences of
chronic dietary excess (10, 11) and infection
(12). We therefore used thermoneutral con-
ditions to examine the potential trade-offs
between metabolism and host defense mech-
anisms in C57BL/6J males and females (Fig. 1A).
Despite an equivalent increase in body weight
and fat mass when fed a high-fat diet (HFD)
(Fig. 1, B and C), only male mice developed
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severe fatty liver and overt macrosteatosis
(Fig. 1, D to F, and fig. S1A). Using thermo-
neutral conditions, we then examined how
sex affects host survival during infection with
a sublethal dose of Escherichia coli (strain
0111:B4) in mice that were fed standard chow.
Males were far less susceptible to infection
and showed a markedly higher survival rate
and body mass preservation at thermoneu-
trality than females (Fig. 1G and fig. S1, B and C).
Spleen bacterial counts were equivalent in
both sexes (Fig. 1H), suggesting that males
limit their immunopathology and that path-
ogen clearance fails to account for the sex dif-
ferences in survival. Greater survival in males
was also observed after activation of host im-
munity by the endotoxin lipopolysaccharide
(LPS) (Fig. 1I). Collectively, our results expose
a stark relationship, specifically in males, be-
tween hepatic fat accumulation after die-
tary excess and host survival after bacterial
infection.

In searching prior literature for a sex-
dependent hepatic factor that might medi-
ate these divergent outcomes between the
sexes, the transcriptional repressor B cell
lymphoma 6 protein (BCL6) emerged as a
top candidate given its role in hepatic lipid
handling (13, 14) and its enrichment in the
male liver as previously shown (15, 16). We
found that BCL6 is male biased at both 22°C
and 30°C, with Bcl6 transcripts and protein
highly expressed in male hepatocytes and livers
(Fig. 2, A and B, and fig. S2A). Conditional
deletion of Bl6 in the liver (Bel6"*") (Fig. 2B)
feminizes the adult male liver and eliminates
its male-biased gene signature (Fig. 2, C and
D; data S1; and fig. S2, B to D). Profiling active
enhancers and promoters for acetylated his-
tone 3 lysine 27 (H3K27ac) by chromatin im-
munoprecipitation sequencing (ChIP-seq) also
revealed an essential role of BCL6 in main-
taining sex-dependent hepatic chromatin
acetylation and male-biased H3K27ac peaks
(Fig. 2, Cand D, and fig. S2, E and F).

Having established the masculinizing role of
BCL6 in hepatic gene signatures, we assessed
whether BCL6 is essential for maintaining
the distinct sex-specific outcomes of HFD and
infection. Indeed, deleting hepatic Bcl6 abol-
ished all morphological hallmarks of fatty liver
in males without changing their total fat mass
or percent body weight gain (Fig. 2, E and F,
and fig. S3, A and B). Liver weights, hepatic
triglycerides (TAGs), lipid accumulation, and
droplet size were all reduced in Bcl61°°™ male
mice (Fig. 2, G to I), which is consistent with a
prior study that found that BCL6 blocks the
breakdown of fat by lowering fatty acid oxida-
tion (I4). Hepatic TAGs also fell in Bcl62%¢™
mice that were fed a standard diet (SD) (fig.
S3C). Eliminating the low amounts of BCL6
present in female livers also attenuated he-
patic TAGs, but more subtly (Fig. 2, G to I). The
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loss of hepatic BCL6 markedly improved glu-
cose homeostasis in mutant male cohorts that
were fed either a HFD or a SD and abolished
any notable sex differences in this metabol-
ic parameter (Fig. 2J and fig. S3D). In stark
contrast to the improved metabolic state in
Bcl64C™ males, their survival dropped pre-
cipitously after E. coli infection or LPS treat-
ment, plummeting to the levels exhibited by
control females (Fig. 2K and fig. S3E). Patho-
gen clearance in the spleen was unaffected
in Bcl6**™ mice (Fig. 2L). Thus, high hepatic
BCL6 in males is essential for optimizing host
survival during infection but drives fatty liver
and glucose intolerance during dietary excess,
suggesting a strong association between hepa-
tic lipid handling and host defense responses.
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Low survival in females that were fed a SD
at 30°C is closely correlated with extremely
high plasma TAGs, a condition that is observed
in septic humans (7) and rats (78). Infection-
induced hyperlipidemia is only observed
at thermoneutrality (Fig. 3A and fig. S4A).
Likewise, compromised survival in infected
Bcl6%°"® males was linked with a substantial
rise in the concentrations of circulating TAG
species, similar to those of infected control
females (Fig. 3, B and C, and fig. S4B). In-
creased plasma TAGs in infected Bcl6%c
mutant male mice prompted us to investi-
gate whether genes that are crucial in the
packaging and clearance of very low-density
lipoproteins (VLDLs) and their TAG cargo are
regulated by BCL6. Of the three candidate
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Fig. 1. HFD and infection elicit strong
sex-dependent phenotypes in mice.

(A) Schematic of housing conditions. (B to
F) Body weight gain (B), fat percentage

(C), liver weights (Wts) (D), hepatic lipid
droplet size (E), and whole livers with
corresponding hematoxylin and eosin (H&E)
staining (F) after 21 weeks of SD or HFD.
(G) Survival curves and body weights of
C57BL/6J mice that were infected with E. coli
[1 x 108 colony-forming units (CFU)].

Weight curves were analyzed by two-way
analysis of variance (ANOVA). (H) Bacterial
CFUs of mice that were infected with E. coli
(1 x 107 CFU). (1) Survival curves of mice
treated with LPS (2 mg/kg). All mice were
housed at 30°C. Data are presented as mean
+ SEM; NS, not significant; ****p < 0.0001.
Scale bars, 100 um.

genes examined, hepatic Apoc3, whose gene
product inhibits TAG clearance, increased
sharply in Bel64°“"® mice, whereas ApoB and
ApoAl were unchanged (Fig. 3D and fig. S4C).
Reanalysis of the hepatic BCL6 ChIP-seq data-
set by Waxman’s group (I6) revealed that BCL6
binds directly to the Apoc3 locus to dampen
its expression (Fig. 3E). Thus, as predicted,
increased plasma APOC3 occurs after elim-
inating high hepatic BCL6 in uninfected males.
This relationship is not as clear-cut in Bcl ibCre
females, who fail to exhibit high APOC3 levels
despite an increase in Apoc3 transcripts. These
results suggest that posttranscriptional factors
are at play during the packaging of female
hepatic APOC3 into lipoproteins (Fig. 3F).
Nevertheless, wild-type females that are treated
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Fig. 2. BCL6 maintains hepatic maleness
and survival to infection but impairs
metabolism. (A) In situ hybridization for
Bcl6 (magenta, white arrows) in livers of mice
at 22°C. Scale bar, 50 um. (B) Immunoblot
for BCL6 and LMNBL in liver nuclear extracts
of 8-week-old Bcl6”" and Bcl6**°® mice

at 22°C. (C and D) Heatmaps for top
hepatic 100 (C) female- and (D) male-biased
genes (filtered by fold change) with
corresponding female- or male-biased
H3K27ac peaks (adjusted p value for both
<0.05) in mice that were housed at 22°C.
Scale bars, Z-scores. (E to H) Livers

(E), fat percentage (F), liver weights (G),
and liver TAGs (H) from mice that were
fed a HFD at 30°C. (I) Hepatic Oil Red O
staining (ORO) and quantification of lipid
droplet (red) size from mice that were

fed a HFD for 21 weeks at 30°C. Nuclei
stained with 4',6-diamidino-2-phenylindole
(DAPI) (blue). Scale bars, 100 pum.

(J) Glucose concentrations and area under
the curve (AUC) after an intraperitoneal
(IP) glucose tolerance test (GTT) in mice
that were fed a HFD for 8 weeks at 30°C.
(K and L) Survival curves of mice that
were fed a SD and infected with E. coli

(1 x 108 CFU) or treated with LPS

(1.75 mg/kg) at 30°C (K) and spleen
bacterial counts at 30°C (L). Data for
control Bel6”" mice in (F), (G), and

(1) are regraphed from Fig. 1, C to E (HFD).
Data are presented as mean + SEM. LC,
loading control (total protein). **p < 0.01;
***%p < 0.0001.

with LPS exhibit a notable increase in both
circulating APOC3 and TAGs (Fig. 3G), which
is consistent with the essential role of APOC3
in maintaining plasma TAGs (19). Our find-
ings support the postulate by Scholl and col-
leagues (18) that decreased clearance of plasma
TAGs by lipoprotein lipase (LPL) contributes
to sepsis-induced hyperlipidemia.
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To determine whether high plasma TAGs
contribute directly to poor survival in females,
we used ANGPTL4 knockout (KO) mice (20)
that clear out TAGs because of increased
LPL activity (Fig. 3H). Normalizing TAGs in
infected Angptl4~'~ females restored both sur-
vival and body weights (Fig. 3H and fig. S4D).
Angptl4~'~ males also showed a drop in TAGs
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and remained resistant to infection (fig. S4, E
and F). Conversely, increasing plasma TAGs by
using poloxamer 407 (P407), a synthetic in-
hibitor of LPL, worsened the survival of males
after infection (Fig. 3I). Our results establish
that the marked sex differences in infection
outcomes are tightly linked with the amounts
of circulating TAGs.
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Fig. 3. Sex-dependent hyperlipidemia is linked to host defense responses.
(A and B) Plasma TAGs of (A) wild-type mice over time and (B) Bcl6”" and
Bcl6"PC" mice that were infected with E. coli (1 x 107 CFU) at 30°C. (C) Top 10
most abundant TAG species measured by lipidomics in infected Bcl6”" and
Bcl6""PC" mice. Scale bar, Z-scores. (D) Transcript abundances of hepatic ApoB,
Apoal, and Apoc3 in Bel6”" and Bcl6*PC® mice (RNA-seq) at 30°C. TPM,
transcripts per million. (E) Genomic binding of BCL6 in Apoc3/Apoal locus in the

We next investigated what factors enable
BCL6 to control the hepatic gene programs
in male mice. The appearance of male-biased
genes coincides with puberty, which becomes
apparent at 8 weeks of age (Fig. 4A and fig.
S5A). Surgical castration (GDX) of prepu-
bescent males enhanced female-biased gene
expression in the liver (fig. S5B), led to a steep
drop in survival that was accompanied by
elevated plasma TAGs after E. coli infection
(fig. S5, C and D), and diminished hepatic

Nikkanen et al., Science 378, 290-295 (2022)

were infected with E. coli

are presented as mean =+

BCL6 levels, which were partially restored
by a testosterone (T) treatment (fig. S5E).
Pulsatile secretion of growth hormone (GH)
from the anterior pituitary is distinctive in
males and consists of peaks with prolonged
extended dips; this pattern is required for
male-biased hepatic gene expression in mice
(16, 21). Indeed, after reanalyzing datasets
from (22), focusing on our set of 200 sex-biased
genes, we confirmed that continuous infu-
sion of GH feminizes male livers (Fig. 4B and

21 October 2022

Time (hours)

male liver (ChIP-seq) at 22°C. (F) Plasma APOC3 in Bcl6”" and Bcl6**C" mice
that were housed at 30°C. (G) Plasma APOC3 and TAGs in control and LPS-
treated (0.5 mg/kg) C57BL/6J female mice at 30°C. Cont., control. (H) Plasma
TAGs (1 x 107 CFU) and survival curves (1 x 108 CFU) of female mice that

at 30°C. (I) Plasma TAGs (1 x 107 CFU) and survival

curves (1 x 10% CFU) of male mice that were infected with E. coli at 30°C. Data

SEM. **p < 0.0L; ***p < 0.001; ****p < 0.0001.

fig. S5F). We also found that GH treatment
strongly represses hepatic BCL6 protein and
transcripts (Fig. 4C). Although saturating
levels of GH in primary hepatocytes also
suppressed Bcl6, T and estradiol (E) had no
effect in this setting, which implies that the
T-induced rescue of BCL6 expression in vivo
must be indirect (Fig. 4D and fig. S5E). Ex-
pectedly, disrupting normal GH pulsatility
by continuous GH infusion reduced hepatic
BCL6 and diminished host survival in males
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Fig. 4. Sex-dependent GH signaling controls BCL6 expression and survival to infection. (A and

B) Heatmaps of top 100 (A) male-biased genes and (B) female-/male-biased genes at postnatal day 28
(P28) and P56 or in male mice after GH treatment at 22°C. Scale bars, Z-scores. (C) Immunoblotting and
reverse transcription—-quantitative polymerase chain reaction (RT-QPCR) for hepatic BCL6 protein and
transcript in adult mice infused with vehicle (Veh) or recombinant mouse GH for 15 days at 22°C. (D) Bcl6
mRNA expression in primary mouse hepatocytes treated with vehicle (V), T, estradiol benzoate (E2)
(n=3), or GH (n = 6). (E) Survival curves of male mice infused with Veh or GH for 13 days and then infected
with E. coli (1 x 108 CFU) at 30°C. (F) STAT5 binding to Bcl6 locus in the male liver (ChIP-seq) at 22°C.
Chr, chromosome. (G) Effect size correlation of all (gray) or differentially expressed (red) transcripts in livers
of Bel6"'*C™® and Ghrd3 male mice. (H) Schematic of the GH-BCL6 axis in regulating sex-dependent
endpoints when challenged by diet or infection. LE, long exposure. Data are presented as mean + SEM;

*p < 0.05, ****p < 0.000L

(Fig. 4E). As shown by Waxman’s group, the
major effector of hepatic GH signaling, STATS5,
binds to the Bcl6 locus (16), which provides a
direct molecular link between GH and BCL6
levels (Fig. 4F).

To extend these findings, we leveraged a
mouse model that carries the common human
variant of growth hormone receptor (GHRd3,

Nikkanen et al., Science 378, 290-295 (2022)

deletion of exon 3) that mimics increased GH
signaling and confers a marked protective ef-
fect in humans (~4-fold) against developing
T2D (23). This variant feminizes livers in male
mice and is thought to impart an evolution-
ary advantage during periods of food scar-
city in humans (24). The significant (R? = 0.92,
P < 7.6 x 107*2) overlap in hepatic gene changes
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detected in Ghrd3 and Bcl6"°“" mutant males
(Fig. 4G and fig. S5G) suggests that this com-
mon GHR variant attenuates hepatic BCL6
function. In contrast to the notable hepatic
gene changes with the onset of puberty or
after castration, we failed to find any signif-
icant changes in our sex-biased gene signa-
tures in estrogen receptor alpha (EsrI) liver
KO mice after reanalyzing datasets by Maggi
and colleagues (25) (fig. S5H). The ability of
the GHRd3 variant to stave off nutritional
stress (24), coupled with our study, might
suggest that the GH-BCL6 signaling axis
creates a trade-off for females that dimin-
ishes survival during infection while enhanc-
ing survival in the fasted state. This notion
is partially supported by the fact that sur-
vival rates for women outpace men during
famine (26).

In male mice, the hepatic GH-BCL6 axis is
essential for mounting protective defenses
against infection while promoting substantial
hepatic fat accumulation and glucose intoler-
ance during caloric excess (Fig. 4H). Although
sex differences in this pathway remain to be
documented in humans, it has been noted that
patients with hypopituitarism and low GH
develop fatty liver, which improves after GH
therapy (27). On the basis of the conserved
features of metabolic programs across mam-
mals, we speculate that the current preva-
lence of fatty liver in males might stem from
older host defense mechanisms that coevolved
from increased exposure to pathogens due
to aggressive behaviors required for mating
and social status (28). Our study leads us to
propose that adaptations to infectious and
dietary pressures sculpt sexually dimorphic
pathways, contributing to modern sex-biased
diseases.
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One cannot have everything

It is well known that there are sex-specific differences in the incidence of various diseases. It is likewise understood
that some genes associated with metabolic disease and other medical conditions were likely selected during evolution
because they were adaptive under other circumstances. In an example that ties together both of these concepts,
Nikkanen et al. used mice to show that the hepatic transcription factor BCL6 plays a key role in determining the
genetic program active in male versus female mice and hence their survival in different conditions (see the Perspective
by Waxman and Kineman). Male mice had a high expression of BCL6, resulting in protection from infection but
vulnerability to metabolic disease, and the opposite was observed in the female mice. —YN
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