
Inverse Problems and Imaging
Vol. 16, No. 6, December 2022, pp. 1643-1667
doi:10.3934/ipi.2022053

KANTOROVICH-RUBINSTEIN METRIC

BASED LEVEL-SET METHODS FOR INVERTING

MODULUS OF GRAVITY-FORCE DATA

Wenbin Li�1 and Jianliang Qian�∗2,3

1School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China

2Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

3Department of CMSE, Michigan State University, East Lansing, MI 48824, USA

In memory of Dr. Victor Isakov
for his many original contributions to inverse problems

Abstract. We propose to use the Kantorovich-Rubinstein (K-R) metric as
a novel misfit function for the level-set based inverse gravity problems, where
modulus of gravity-force data is used. By using the modulus data, we can
satisfy the non-negativity requirement of distribution for the K-R metric natu-
rally. Moreover, the K-R metric based level-set method can tolerate high level
noise in the modulus data so that we can solve the domain inverse problem

of gravimetry to high resolution. We develop the computational framework
systematically. Numerical examples demonstrate the performance and effec-

tiveness of the proposed algorithms.

1. Introduction. Inverse gravimetry as an inverse source problem has a long his-
tory [14], and in fact, prototypical inverse problems of potential theory were for-
mulated by Laplace more than 200 years ago. However, such inverse problems
are rather difficult to solve for two reasons: they are nonlinear and they are im-
properly posed. In 1943, to analyze stability of the inverse problem of potential
theory, Tikhonov introduced certain important concepts of the theory of condition-
ally correct problems, which laid down the foundation for regularization theory of
ill-posed problems. According to this theory, any conditionally correct problem can
be studied numerically by means of regularization and the success of this solution
process depends on the correctness class. Although existence theorems are of im-
portance since they make sure that we do not use extra data, uniqueness questions
are central in the theory of conditionally correct problems [14]. Over the years,
a variety of uniqueness theorems for the inverse problem of potential theory have
been established and most of these results are well summarized in the celebrated
monograph by Dr. Victor Isakov [14]. Inspired by uniqueness results in [14], in
[15, 16] Isakov and his collaborators developed a level-set framework to handle do-
main inverse problems which consist of one conditionally correct class of inverse
gravimetry problems. Since such domain inverse problems have very poor stability
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properties, such as logarithmic stability, and measured gravity anomaly data usu-
ally have very low precision, it is crucial to develop numerical inversion algorithms
which can tolerate very high level of noise in measurements. Therefore, based on
our recent works in [13, 12, 27], we further innovate the level-set framework for
domain inverse problems by adopting the Kantorovich-Rubinstein (K-R) metric to
measure data misfit, yielding an algorithm capable of tolerating very high level of
noise in gravity-force data, where modulus of gravity force rather than gravity force
itself is used in the inverse problem; this is the first time that the K-R metric is
used for modulus of such data.

Since the gravitational force varies location-wise from that of a uniform sphere
due to the earth’s topographical features, such anomalous data, the so-called gravity
anomaly, can be used to find subsurface anomalous volume mass distributions from
the Newtonian gravitational force, which leads to the inverse problem of potential
theory or the so-called inverse gravimetry. Consequently, we may solve such an
inverse problem for many different applications at different scales, such as regional,
explorational, or archaeological scales. Because of the equivalent source principle of
gravitational potential, the inverse gravimetry is ill-posed in the Hadamard sense,
where the Fredholm integral operator of the first kind defined by the Newtonian
potential kernel has a nontrivial null space so that the inverse problem does not
have a unique solution in general. Thus, to regain well-posedness from the inverse
problem, we need to single out a conditionally correct class of problems that en-
joys uniqueness, which is crucial for applying the Tikhonov regularization theory.
One such conditionally correct class of problems is based on the equivalent source
principle and is physically motivated by the following reasoning. Although subsur-
face anomalous mass can be distributed arbitrarily, the equivalent source principle
indicates that there exists an average density-contrast function f and an associ-
ated domain D in Rn so that the anomalous measure µ = fχ(D) can reproduce
the given gravimetry data, where χ(D) is the characteristic function of domain D.
However, without further assumption, one still cannot find density f and domain
D simultaneously because there may exist infinitely many pairs (f ;D) that will
reproduce the same gravimetry data. By making different assumptions on f and
D, we can have various uniqueness results for different formulations of the inverse
gravimetry problems, such as domain inverse problems, density inverse problems,
and domain-density inverse problems [14]. In this paper, we will aim at the domain
inverse problem, where the density-contrast function f is assumed to be a known
constant, and the domain D is assumed to satisfy certain geometrical constraints
so that the domain inverse problem has a unique solution which is logarithmically
stable with respect to the given data in terms of modulus of gravity force.

Because a domain in the domain inverse problem may take a variety of shapes
and may have multiple disconnected components, in [15, 16, 28] we have developed
local level-set methods for the domain inverse problem, where the measurement data
are gravity force. To do that, we start with a continuous function which is defined
everywhere in the whole computational domain, and we further require that this
function be positive inside a targeted domain and negative outside, which implies
that the zero level-set where the function is zero describes exactly the boundary of
the targeted domain, and this function is called the level-set function. A level-set
implicit parametrization gives rise to many advantages, such as we have a globally
defined function to manipulate, and the changes of geometry shape and connectiv-
ities can be automatically taken care of due to the underlying physical mechanism.
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To tackle the so-called nil-zone problem induced by a varying density function of the
anomalous mass distribution arising from the gravity inverse problem in geophysical
prospecting [17, 18, 21, 1], where the density function should be understood as the
“density contrast” function which may change its sign rather than as the “classical”
density which is always non-negative, in [24] we have applied our level-set method to
solve the corresponding domain inverse problem, where the given density function
depends only on the x3-variable in the depth direction, and the measurement data
are gravity force.

Although in a series of works [15, 16, 28, 29, 24, 26, 25, 12], we systematically
developed level-set methods for solving this class of domain inverse problems, there
are issues which are not well resolved, such as how to deal with sensitivity of L2-norm
based misfit functions to noise and how to choose which set of gravity data to use.
Advances in optimal transport theory [4, 9, 2, 3, 33, 31] in past several decades have
motivated us to apply Wasserstein distances to measure the data-misfit in inverse
gravity problems. In [13], we have developed a K-R metric based level-set method
for inverting gradiometry (gravity-gradient) data in the conditionally correct class
of domain inverse problems, which is capable of tolerating high-level noise; in [12]
we proposed and analyzed a regularized Kantorovich-Rubinstein (K-R) metric to
measure the distance between two given distributions, and we further applied this
metric to solve the domain inverse problem of gravity so that we can recover the
unknown support with high resolution, yielding an algorithm which is insensitive to
Gaussian noise. On the other hand, to compute Wasserstein distances between two
distributions, the two distributions are usually required to be non-negative, which
is seldomly satisfied in many practical applications. To satisfy this non-negativity
requirement, we propose to use the modulus of gravity-force data rather than the
gravity force itself in the domain inverse problem so that we can apply the K-
R metric in the level-set framework to measure data-misfit naturally, yielding an
algorithm which is insensitive to high-level noise and using all the components of
gravity force simultaneously rather than separately, where the modulus data enable
us to avoid the issue of which set of data to use.

Other related works. We remark that in the literature the level-set method
[30] has been widely used as a suitable and powerful tool for interfaces and shape-
optimization problems mainly due to its ability in automatic interface merging and
topological changes. In terms of non-geophysical inverse problems, the level-set
method was first used for inverse obstacle problems in [32]; since then it has been
applied to a variety of inverse problems. The level-set method was used for inverse
scattering problems to reconstruct geometry of extended targets in [11] and [6]; see
[5, 6] for surveys of related applications. In terms of geophysical inverse problems,
the level-set method has also found its wide applications, such as in travel-time
tomography problems in different settings [22, 36, 23].

Since contemporary gravity gradiometer measures various components of the
gravity gradient, which is the second-order derivative of the exterior gravitational
potential, in [29] we have developed fast local level-set methods to tackle the domain
inverse problem, where the density function is assumed to be a known constant and
the measurement data are gravity gradient; see [13, 19] for further developments in
solving inverse problems using gravity gradiometry with different setups.

The paper is organized as the following. Section 2 formulates the inverse prob-
lem of modulus of gravity force. Section 3 develops the K-R metric based level-set
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method, including implementation details. Section 4 shows some numerical exam-
ples to illustrate the performance and effectiveness of the proposed new algorithm.
Section 5 provides a discussion about the choices of parameters in practice. And
Section 6 draws the conclusion.

2. The inverse problem of modulus of gravity force. The gravity potential
U generated by a mass distribution µ with suppµ ⊂ Ω is defined as follows,

U(y;µ) = γ

∫

Ω

K(y,x)dµ(x), (1)

where K(y,x) = K(|y − x|) is the fundamental solution of Laplace’s equation,

K(y,x) =

{
− 1

2π ln|y − x| , x,y ∈ R2 ,
1

4π|y−x| , x,y ∈ R3 ,
(2)

and γ is a constant related to the universal gravitational constant. The vector
∇U(y;µ) represents the gravity force at y generated by the mass distribution µ,
and |∇U(y;µ)| is the modulus of gravity. Since |∇U(y;µ)| is nonlinear stacking
of multiple components of the gravity-force vector ∇U(y;µ), it is considered to be
less sensitive to systematic measurement noises than∇U(y;µ) which is directionally
dependent. The inverse problem of modulus of gravity-force data is posed as follows:
Given the modulus of gravity force |∇U(y;µ)| on Σ0 ⊂ Rn \ Ω, find the mass
distribution µ with suppµ ⊂ Ω.

In this work, we will focus on a conditionally correct class of inverse problems as
the following: the volume mass distribution takes the form of µ = f χD, where χD

denotes the indicator function of the source domain D,

χD(x) =

{
1 , x ∈ D
0 , x /∈ D

, (3)

and f is the density-contrast coefficient function. Starting from the work of Novikov
(1938), a variety of well-posedness theorems have been proved for the gravity in-
verse problems with volume mass distribution [14]. We summarize some relevant
uniqueness results in the following.

Let Ω be a bounded domain in Rn with connected Rn \ Ω, and D1 ,D2 and
D be open sets in Ω having piecewise smooth boundaries. Let Ω0 be a convex
domain with analytic (regular) boundary, Ω ⊂ Ω0, and Σ0 ⊂ ∂Ω0 be a nonempty
hyper-surface. Denote the spatial coordinate x ∈ Rn as x = (x1, · · · , xn).

We start with the following notion. The center of gravity of a positive measure
µ is a point satisfying ‖µ‖−1

∫
xdµ(x), and accordingly, the center of gravity of a

bounded open set Ω is the center of gravity of the measure χ(Ω)dx. We have the
following results.

Lemma 2.1 (Corollary 1.8.2 in [14]). Consider the Laplacian operator defined by
the Newtonian potential kernel. If Newtonian potentials of two positive measures
with compact supports coincide outside a certain ball, then these measures have the
same centers of gravity.

Lemma 2.2 (Lemma 2.1.1 in [14]). Uj = U(·;µj) with the measures µj ≥ 0,
1 ≤ j ≤ 2. Then |∇U1| = |∇U2| on Σ0 =⇒ U1 = U2 on Rn \ Ω.

Theorem 2.1 (Theorem 2.2.1 in [14]). Suppose that either (i) D1 and D2 are star-
shaped with respect to their centers of gravity; or (ii) D1 and D2 are convex in the
x1 direction. Then U(·;χD1

) = U(·;χD2
) on Rn \ Ω =⇒ D1 = D2.
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Theorem 2.2 (Theorems 3.1.3 and 3.1.4 in [14]). Suppose that either (i) D1 and
D2 are convex, f ∈ L1(Ω), and 0 < f on Ω; or (ii) D1 and D2 are convex in x1, f
does not depend on x1, f ∈ C(Ω), and Ω ⊂ supp f . Then U(·; f χD1

) = U(·; f χD2
)

on Rn \ Ω =⇒ D1 = D2.

In the above theorems, a domain D in Rn is said to be star-shaped with respect
to a point x0 if x0 ∈ D and the intersection of any ray originated at x0 with D is an
interval; an open set D is said to be convex in x1 if the intersection of any straight
line parallel to the x1-axis with D is an interval. Lemma 2.2 is a continuation result
for the measurement gravity data. Theorems 2.1 and 2.2 are uniqueness theorems for
recovering the unknown domain of the mass distribution. There are actually plenty
of more well-posedness results provided in [14] including the uniqueness theorems
for recovering the unknown density contrast and for simultaneously recovering the
unknown domain and density contrast, some of which are also summarized in our
previous work [27]. In this paper, we will focus on the recovery of unknown domain
D in the form of volume mass distribution µ = f χD by freezing the density-contrast
coefficient function f . Combining Lemma 2.2, Theorem 2.1 and Theorem 2.2, it is
immediate to get the following result [27].

Corollary 2.1. Given data as the modulus of gravity, d = |∇U |, on Σ0 and given
f ≥ 0 in Ω, the domain D of the volume mass distribution µ = f χD can be uniquely
determined if one of the following constraints is satisfied:

(i) D is star-shaped with respect to its center of gravity, and f = C, where C is
a constant;

(ii) D is convex in x1, and f = C, where C is a constant;
(iii) D is convex in x1, f does not depend on x1, f ∈ C(Ω), and Ω ⊂ supp f ;
(iv) D is convex, f ∈ L1(Ω), and 0 < f on Ω.

The requirement f ≥ 0 arises from Lemma 2.2, which ensures that the partial
measurements of |∇U | imply the full measurements of U . In practice, violating the
condition f ≥ 0 is admissible if there are sufficient and near complete measurements.

Applying Lemma 2.1 to the conditionally correct class of mass distribution, µ =
f χD, we conclude that all those distributions will have the same center of gravity,
no matter how f is chosen, large or small. Further, Theorem 2.1 says that D is
unique if f is given. Therefore, even if we choose f unreasonably large or small,
we will always be able to capture the same center of gravity of all those equivalent
sources. Such reconstruction results will tell us a lot about the unknown source
that we are interested in.

3. Level-set methods with Kantorovich-Rubinstein metrics.

3.1. Level-set formulation. Starting from the work [15], the level-set method is
used to formulate the mass distribution in gravity inverse problems. Let ρ be the
representation function of the mass distribution µ, viz. µ(ψ) =

∫
Ω
ψρ dx for all

ψ ∈ C(Ω) with suppψ ⊂ Ω. Since µ takes the form of volume mass distribution as
µ = f χD, the representation function ρ can be naturally expressed as

ρ(x) = f(x)H(φ(x)), (4)

where φ is the level-set function,

φ(x)





> 0 , x ∈ D
= 0 , x ∈ ∂D
< 0 , x ∈ D̄c

, (5)
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and H(·) is the Heaviside function in the following form,

H(φ) =

{
1 , x ≥ 0
0 , x < 0

. (6)

Equation (4) is the level-set formulation for the representation function ρ. The
zero level-set {x | φ(x) = 0} indicates the location of ∂D or the boundary of
the domain D, and the Heaviside function H(φ) corresponds to the characteristic
function χD in the volume mass distribution µ. To recover the unknown domain D
with a given density-contrast coefficient f , one only needs to compute the level-set
function φ(x). The derivative of the mass representation function ρ with respect to
the level-set function φ is given as follows,

∂ρ

∂φ
(x) = f(x) δ(φ(x)) , (7)

where δ(φ) is the Dirac delta function that arises from the derivative of the Heaviside
function H(φ).

In numerical computation, continuous functions are used to evaluate φ(x), H(φ)
and δ(φ) so that we can avoid numerical instabilities in computation. Specifically,
the level-set function φ is maintained to be a continuous signed distance function
in the following form,

φ(x) =

{
dist(x, ∂D) , x ∈ D
−dist(x, ∂D) , x ∈ D̄c , (8)

where dist(x, ∂D) denotes the distance between x and ∂D. The Heaviside function
H(φ) is approximated by a smooth numerical Heaviside function Hτ (φ),

Hτ (φ) =





0 , φ < −τ
1
2 + φ

2τ + 1
2π sin

(
πφ
τ

)
, −τ ≤ φ ≤ τ

1 , φ > τ

, (9)

where τ is a parameter that controls the thickness of the interface ∂D in numerical
expression. The Dirac delta function δ(φ) is evaluated by the following approximate
delta function [35],

δǫ(φ) = χ(Tǫ) |∇φ| , (10)

where χ(·) is the indicator function, and Tǫ denotes the region Tǫ = {x : |φ(x)| < ǫ}
which is a neighborhood of the zero level set.

3.2. Kantorovich-Rubinstein metric for the modulus data fitting. The
components of the gravity force g = ∇U ∈ Rn are given by

gi(y; ρ) = γ

∫

Ω

Ki(y,x)ρ(x)dx, 1 ≤ i ≤ n, (11)

where ρ(x) is the representation function of the mass distribution µ, and the integral
kernel Ki(y,x) has the following form,

Ki(y,x) =
∂K(y,x)

∂yi
= −

1

2n−1π

yi − xi
|y − x|n

, n = 2 or 3 . (12)

The gravity modulus datum d := |∇U | is then computed by

d(y; ρ) =
( n∑

i=1

g2i (y; ρ)
) 1

2

. (13)



K-R INVERSION OF GRAVITY MODULUS DATA 1649

Denote the spatial coordinate y ∈ Rn as y = (y1, · · · , yn), and suppose that the
measurement data can be parameterized on an (n− 1)-dimensional plane

Σ0 = {s(y) : s(y) = (y1, · · · , yn−1)} ⊂ Rn−1 , (14)

where we abuse the notation Σ0. We propose to use a Kantorovich-Rubinstein met-
ric to measure the discrepancy between simulated modulus data and observations,

Ed = ‖d(y; ρ)− d∗(y)‖KR,c := max
v∈BLipc

∫

Σ0

(d(y; ρ)− d∗(y)) v(s(y)) ds(y) , (15)

where d and d∗ denote the simulated and observed gravity modulus data, respec-
tively, and BLipc denotes the bounded Lipschitz set defined as follows,

BLipc =

{
v(s(y)) : |v| ≤ 1,

∣∣∣∣
∂v

∂yi

∣∣∣∣ ≤ c, i = 1, · · · , n− 1

}
. (16)

The Kantorovich-Rubinstein metric is closely related to the L1-Wasserstein distance
[20, 33]. Some recent works have shown that using Wasserstein distance to measure
data discrepancy has the advantage of mitigating non-convexity and local minima [7,
8], but directly applying the Wasserstein distance generally requires non-negativity
of the data and the mass conservation between the simulated and observed data,
which may cause difficulties to many applications. In our work, the gravity modulus
data |∇U | are naturally nonnegative, and the boundedness constraint |v| ≤ 1 in the
definition of BLipc relaxes the requirement of data conservation. There are also
some other slightly different formulations for the Kantorovich-Rubinstein metric
[20, 12]. In this paper we choose to use the form defined by equations (15) and (16)
for direct and simple computations of the metric in numerical implementation.

Let v̂ denote the maximizer in equation (15),

v̂(s(y)) := argmax
v∈BLipc

∫

Σ0

(d(y; ρ)− d∗(y)) v(s(y)) ds(y) . (17)

The discrepancy function Ed can be computed as follows,

Ed = ‖d(y; ρ)− d∗(y)‖KR,c =

∫

Σ0

(d(y; ρ)− d∗(y)) v̂(s(y)) ds(y) . (18)

The Fréchet derivative of Ed with respect to d is given by

∂Ed

∂d
(y) = v̂(s(y)) . (19)

As a result, solving v̂ in equation (15) is essential for the computations of the
Kantorovich-Rubinstein-metric based data discrepancy.

Similar to the work [13], we propose to use an alternating-direction method
of multipliers (ADMM) algorithm [10, 34] to efficiently compute the maximizer
v̂(s(y)). The details are as follows. Firstly, let

B =
{
w = (w1, · · · , wn)

T : |wi(s)| ≤ 1, 1 ≤ i ≤ n
}
, (20)

and introduce a linear operator A defined as

Av(s) =

(
v,

1

c

∂v

∂y1
, · · · ,

1

c

∂v

∂yn−1

)T

. (21)

The bounded Lipschitz set BLipc can be re-formulated as

BLipc = {v(s) : Av(s) ∈ B} . (22)
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Denoting ιB the zero-infinity indicator function,

ιB(w) =

{
0 , w ∈ B
+∞ , w /∈ B

, (23)

one can rewrite the optimization problem of (17) in the following equivalent form,

v̂(s) = argmin
v

−〈d− d∗, v〉+ ιB(Av) . (24)

Introducing the auxiliary variable w = Av, the augmented Lagrangian for (24) is

L(v,w;λ) = −〈d− d∗, v〉+ ιB(w) +
1

α
〈λ,Av −w〉+

1

2α
‖Av −w‖22 . (25)

The optimizer v̂(s) is achieved by solving the saddle-point problem of (25),

(v̂, ŵ; λ̂) = sup
λ

inf
v,w

L(v,w;λ) . (26)

We employ the ADMM algorithm to solve this saddle-point problem, which leads
to the following alternating iterations,





vk+1 = argmin
v

L(v,wk;λk) ,

wk+1 = argmin
w

L(vk+1,w;λk) ,

λk+1 = λk +Avk+1 −wk+1 .

(27)

In particular, we have

vk+1 = argmin
v

1

2α
‖Av −wk + λk‖

2
2 − 〈d− d∗, v〉

= (A∗A)
−1

(A∗(wk − λk) + α(d− d∗)) (28)

and

wk+1 = argmin
w

1

2α
‖Avk+1 −w + λk‖

2
2 + ιB(w)

= max (−1,min(Avk+1 + λk, 1)) , (29)

where A∗ denotes the Hilbert adjoint of A,

A∗w(s) =

(
1,−

1

c

∂

∂y1
, · · · ,−

1

c

∂

∂yn−1

)
w(s) for w(s) = (w1(s), · · · , wn(s))

T ,

(30)
and so

A∗A = 1−
1

c2

n−1∑

i=1

∂2

∂y2i
. (31)

3.3. Optimization and level-set evolution. The level-set function φ(x) that
models the unknown domain D of the mass distribution is reconstructed by solving
the following optimization problem,

φ := argmin
φ

Ed(ρ(φ)) , (32)

where Ed(ρ(φ)) denotes the data-discrepancy function defined by equation (15). In
practice, some regularization terms can be added to the objective function, which
help to provide smoothness for φ and avoid sharp oscillations on the interface; for
example, see [27] for such details. Here we choose not to include regularization terms
in the objective function, so that when we compare the Kantorovich-Rubinstein
metric based solution with the L1-norm and L2 -norm based ones, the effects of
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regularization terms disappear and the differences of solutions are only caused by
different choices of data discrepancies.

We will apply the gradient descent method to solve the optimization problem
in equation (32). The gradient direction of Ed is evaluated in the following way.
Firstly,

∂Ed

∂φ
(x) =

∂Ed

∂ρ
(x)

∂ρ

∂φ
(x) =

∂ρ

∂φ
(x)

∫

Σ0

∂Ed

∂d
(y)

∂d

∂ρ
(y,x) ds(y)

= γf(x)δ(φ(x))

∫

Σ0

v̂(s(y))

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) , (33)

where we have used equations (7), (11), (13), and (19) in the calculation. Replacing
the delta function with the numerical delta function δǫ(φ) = χ(Tǫ) |∇φ| as shown
in equation (10), equation (33) is approximated by

∂Ed

∂φ
(x) = γf(x)χ(Tǫ) |∇φ|

∫

Σ0

v̂(s(y))

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) , (34)

which can be denoted as

∂Ed

∂φ
(x) = Vn(x) |∇φ(x)| , (35)

with

Vn(x) := γf(x)χ(Tǫ)

∫

Σ0

v̂(s(y))

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) . (36)

The level-set function φ is then updated according to the negative gradient de-
scent direction,

∂φ

∂t
= −

∂Ed

∂φ
= −Vn |∇φ| , (37)

where t denotes the artificial evolution time. The updating equation (37) can be
viewed as a Hamilton-Jacobi equation. We propose to use a direct forward Euler
scheme to discretize ∂φ

∂t
, where the step-size ∆t should satisfy the following Courant-

Friedrichs-Lewy (CFL) condition to ensure the stability of evolution,

∆t
maxx |Vn(x)|

min{∆x1, · · · ,∆xn}
< 1 . (38)

In practice, we take the time step-size as

∆t = β
min{∆x1, · · · ,∆xn}

maxx |Vn(x)|
, (39)

where β ∈ (0, 1) is a constant, e.g. β = 0.5 in our numerical computation.
In addition, the level-set reinitialization is applied to φ after every update of φ,

so that the level-set function φ is maintained to be roughly a continuous signed
distance function as shown in equation (8). The details of level-set reinitialization
can be found in our previous works [15, 27].

We summarize the overall algorithm as follows, which is in the framework of the
Isakov-Leung-Qian algorithm [15, 28]:

1. Initialize the level-set function φ.
2. Compute the simulated data according to (11) and (13).
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3. Compute v̂(s(y)) according to (17) by the ADMM algorithm; compute the deriv-
ative term Vn according to (36).

4. Evolve the level set function φ according to (37).
5. Reinitialize the level set function to maintain the signed distance property.
6. Repeat 2-5 until it converges.

4. Numerical examples. We provide synthetic 2D examples to illustrate the ef-
ficacy of the inversion algorithm. The spatial coordinate x ∈ R2 is denoted as
x = (x, z), where x indicates the horizontal direction and z indicates the vertical
direction. The synthetic measurement data are generated according to equations
(11) and (13). We add Gaussian noises to the linear components of the gravity
modulus data,

g∗i = gi (1 + η · N (0, 1)) , i = 1, 2 (40)

where gi is generated according to equation (11), N (0, 1) denotes the Gaussian
noises with zero mean and standard deviation 1, and η is the parameter prescribing
the percentage of noises. Then the synthetic modulus data are generated according
to equation (13):

d∗ =
(
(g∗1)

2
+ (g∗2)

2
) 1

2

.

To illustrate the effect of the Kantorovich-Rubinstein metric in the inversion
algorithm, we will compare our solutions using the Kantorovich-Rubinstein metric
as data fitting with the solutions using the L1-norm and L2-norm as data fitting,
respectively. Here, the L1-norm and L2-norm data discrepancies are defined as
follows,

Ed,L1 := ‖d(y; ρ)− d∗(y)‖L1 =

∫

Σ0

|d(y; ρ)− d∗(y)| ds(y) ,

Ed,L2 := ‖d(y; ρ)− d∗(y)‖2L2 =
1

2

∫

Σ0

(d(y; ρ)− d∗(y))
2
ds(y) .

The details of the corresponding inversion algorithms are included in Appendix A.

4.1. Example 1. Figure 1 (a) shows the exact model, where the mass distribution
includes two circles with a constant density contrast f = 1. The computational
domain is Ω = (0, 1) × (0, 0.5) km, and the mesh size is ∆x = ∆z = 0.01 km. The
measurement data are uniformly collected along the surface

Σ0 = {(x, z) : −0.5 ≤ x ≤ 1.5, z = −0.05} ,

where the sampling distance is taken as ∆xm = 0.01 km. To perform the inversion
algorithm, we take the initial guess of the level-set function φ as follows,

φ0(x, z) = 0.1−

√(
x− 0.5

2

)2

+ (z − 0.25)2 ; (41)

Figure 1 (b) plots the initial structure of mass distribution.
Figures 2 and 3 show the inversion results, where we provide the solutions using

the Kantorovich-Rubinstein metric, the L1 norm and L2 norm for data fitting,
respectively. In this example, we take c = 6 for the Kantorovich-Rubinstein-metric
based data discrepancy as shown in equation (15). We have performed inversions for
the gravity modulus data with different rates of Gaussian noises, where the noises
are added to the linear components of the modulus data as shown in equation (40).
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We consider the data with 20%, 40%, 60% and 80% noise, respectively. The left
column of Figure 2 provides the results for the modulus data with 20% Gaussian
noise, where Figure 2 (a) shows the noisy data, Figure 2 (c) plots the solution using
the Kantorovich-Rubinstein metric for data fitting, Figure 2 (e) plots the solution
using the L1 norm for data fitting, and Figure 2 (g) plots the solution using the L2

norm for data fitting. Similarly, the right column of Figure 2 provides the results
for the modulus data with 40% Gaussian noise. Figure 3 provides the inversion
results for the modulus data with 60% and 80% Gaussian noise. In addition, Figure
4 plots the data discrepancy functions Ed, Ed,L1 and Ed,L2 in the above inversions.
Basically we perform a large number of iterations and take the recovered solutions
after full convergences. The data discrepancy function can be oscillating in the
iterations partly due to the nonlinearity of level-set inversion and partly due to the
noise contamination.

Under 20% or 40% Gaussian noise, inversions using the Kantorovich-Rubinstein
metric, the L1 norm, and the L2 norm, all yield reasonable solutions. However, the
effect of the Kantorovich-Rubinstein metric becomes significant as the level of noise
contamination becomes high. As shown in Figure 3 (c) and Figure 3 (d), the K-R
solutions adequately recover the true models even under the strong Gaussian noise
of 60% or 80%, respectively. These results show that the K-R metric based level-set
inversion algorithm using modulus of gravity-force data is insensitive to very high
level of Gaussian noise.

4.2. Example 2. We consider a 2D salt model with varying density contrast in
this example. Figure 5 (a) shows the exact model. The salt contour is taken from
a slice of the SEG/EAGE 3D salt model, and the varying density contrast is given
as f(x, z) = 0.2 · (1.8 − z). The computational domain is (0, 13.4) × (0, 4) km and
the mesh size is ∆x = ∆z = 0.02 km. The initial guess of the level-set function φ is
taken as

φ0(x, z) = 1−

√(
x− 6.7

2

)2

+ (z − 2)2 ; (42)

Figure 5 (b) shows the initial structure of mass distribution.
The measurement data are collected along

Σ0 = {(x, z) : −13 ≤ x ≤ 27, z = −0.1}

with the sampling distance ∆xm = 0.2 km. We perform inversions for the modulus
data with 20%, 40%, 60% and 80% Gaussian noise, respectively. Figures 6 and 7
show the inversion results, where we provide the solutions using the Kantorovich-
Rubinstein metric, the L1 norm, and the L2 norm for data fitting, respectively.
We take c = 2 in the formula of the Kantorovich-Rubinstein metric based data
discrepancy Ed. To illustrate the convergence history, Figure 8 plots the data
discrepancy functions Ed, Ed,L1 and Ed,L2 in the above inversions.

As shown in Figures 6 and 7, the solutions using the K-R metric based data
discrepancy are generally more accurate than those using the L1 norm and L2

norm data discrepancy, which capture the top shape and the overall contour of the
salt model more accurately. More importantly, the inversions using the K-R metric
data discrepancy show strong capabilities of tolerating high-level noise. As shown
in Figure 7 (d), the solution remains stable even under 80% Gaussian noise. In
contrast, the solutions with the L1 norm or L2 norm data discrepancies generate
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plenty of artifacts due to the noise contamination as shown in Figures 6 (f)-(h) and
7 (e)-(h).

4.3. Example 3. We consider a 2D salt model with a constant density contrast in
this example. Figure 9 (a) shows the exact model. Similar to Example 2, the salt
contour is taken from a slice of the SEG/EAGE 3D salt model, and the difference
is that the density contrast is given as f(x, z) = 0.2. The computational domain is
(0, 13.4) × (0, 4) km and the mesh size is ∆x = ∆z = 0.02 km. The initial guess of
the level-set function φ is again taken as equation (42):

φ0(x, z) = 1−

√(
x− 6.7

2

)2

+ (z − 2)2 ;

Figure 9 (b) shows the initial structure of mass distribution.
The measurement data are collected along

Σ0 = {(x, z) : −13 ≤ x ≤ 27, z = −0.1}

with the sampling distance ∆xm = 0.2 km. We perform inversions for the modulus
data without noise and with 5%, 10% and 20% Gaussian noise, respectively. Figures
10 and 11 show the inversion results, where we provide the solutions using the
Kantorovich-Rubinstein metric, the L1 norm, and the L2 norm for data fitting,
respectively. We take c = 1.5 in the formula of the Kantorovich-Rubinstein-metric
based data discrepancy Ed. Figure 12 shows the convergence history of the data
discrepancy functions Ed, Ed,L1 and Ed,L2 in the above inversions.

As shown in Figures 10 and 11, the K-R-metric based solutions are more reliable
than the solutions using the L1 norm and L2 norm data discrepancy terms. By
fitting the modulus data with the K-R metric, the solutions successfully recover
the top shape and the overall contour of the salt model. The advantage of using
the K-R metric becomes significant as the level of noises becomes high. As shown
in the right column of Figure 11, 20% Gaussian noise with the L1 norm or the L2

norm data discrepancy generates artifacts polluting the solutions, while the solution
using the K-R-metric based discrepancy remains stable and adequately recovers
the salt model. We conclude that the proposed level-set inversion algorithm using
gravity modulus data and the Kantorovich-Rubinstein metric has the capability of
tolerating high-level random noises.
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Figure 1. Example 1. Two circles with constant density contrast.
(a) Exact model of mass distribution; (b) initial guess.
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Figure 2. Example 1. Recovered solutions. The left column
shows the results for the modulus data with 20% Gaussian noises
added to the components; the right column shows the results for
the modulus data with 40% Gaussian noises added to the compo-
nents. (a), (b): modulus data with 20% noises and 40% noises,
respectively; (c), (d): corresponding solutions using Kantorovich-
Rubinstein metric for data fitting; (e), (f): corresponding solutions
using L1 norm for data fitting; (g), (h): corresponding solutions
using L2 norm for data fitting. In (c)-(h), the dashed line plots the
exact model for reference.
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Figure 3. Example 1. Recovered solutions. The left column
shows the results for the modulus data with 60% Gaussian noises
added to the components; the right column shows the results for
the modulus data with 80% Gaussian noises added to the compo-
nents. (a), (b): modulus data with 60% noises and 80% noises,
respectively; (c), (d): corresponding solutions using Kantorovich-
Rubinstein metric for data fitting; (e), (f): corresponding solutions
using L1 norm for data fitting; (g), (h): corresponding solutions
using L2 norm for data fitting. In (c)-(h), the dashed line plots the
exact model for reference.
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Figure 4. Example 1. Evolution of data-discrepancy functions.
The first, second, and third column: the K-R metric Ed, the L

1-
norm Ed,L1 , and the L2-norm Ed,L2 , respectively. (a)-(c): the
modulus data with 20% Gaussian noises added to the components;
(d)-(f): 40% Gaussian noises; (g)-(i): 60% Gaussian noises; (j)-(l):
80% Gaussian noises.
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Figure 5. Example 2. Salt model with varying density contrast.
(a) Exact model of mass distribution; (b) initial guess.
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Figure 6. Example 2. Recovered solutions. The left column
shows the results for the modulus data with 20% Gaussian noises
added to the components; the right column shows the results for
the modulus data with 40% Gaussian noises added to the compo-
nents. (a), (b): modulus data with 20% noises and 40% noises,
respectively; (c), (d): corresponding solutions using Kantorovich-
Rubinstein metric for data fitting; (e), (f): corresponding solutions
using L1 norm for data fitting; (g), (h): corresponding solutions
using L2 norm for data fitting. In (c)-(h), the dashed line plots the
exact model for reference.
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Figure 7. Example 2. Recovered solutions. The left column
shows the results for the modulus data with 60% Gaussian noises
added to the components; the right column shows the results for
the modulus data with 80% Gaussian noises added to the compo-
nents. (a), (b): modulus data with 60% noises and 80% noises,
respectively; (c), (d): corresponding solutions using Kantorovich-
Rubinstein metric for data fitting; (e), (f): corresponding solutions
using L1 norm for data fitting; (g), (h): corresponding solutions
using L2 norm for data fitting. In (c)-(h), the dashed line plots the
exact model for reference.
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Figure 8. Example 2. Evolution of data-discrepancy functions.
The first, second, and third column: the K-R metric Ed, the L

1-
norm Ed,L1 , and the L2-norm Ed,L2 , respectively. (a)-(c): the
modulus data with 20% Gaussian noises added to the components;
(d)-(f): 40% Gaussian noises; (g)-(i): 60% Gaussian noises; (j)-(l):
80% Gaussian noises.
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Figure 9. Example 3. Salt model with constant density contrast.
(a) Exact model of mass distribution; (b) initial guess.
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Figure 10. Example 3. Recovered solutions. The left column
shows the results for the modulus data without noises; the right
column shows the results for the modulus data with 5% Gaussian
noises added to the components. (a), (b): modulus data without
and with 5% noises, respectively; (c), (d): corresponding solutions
using Kantorovich-Rubinstein metric for data fitting; (e), (f): cor-
responding solutions using L1 norm for data fitting; (g), (h): cor-
responding solutions using L2 norm for data fitting. In (c)-(h), the
dashed line plots the exact model for reference.
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Figure 11. Example 3. Recovered solutions. The left column
shows the results for the modulus data with 10% Gaussian noises
added to the components; the right column shows the results for
the modulus data with 20% Gaussian noises added to the compo-
nents. (a), (b): modulus data with 10% noises and 20% noises,
respectively; (c), (d): corresponding solutions using Kantorovich-
Rubinstein metric for data fitting; (e), (f): corresponding solutions
using L1 norm for data fitting; (g), (h): corresponding solutions
using L2 norm for data fitting. In (c)-(h), the dashed line plots the
exact model for reference.
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Figure 12. Example 3. Evolution of data-discrepancy functions.
The first column plots the K-R metric data-discrepancy function
Ed, the second column plots the L1-norm data-discrepancy function
Ed,L1 , and the third column plots the L2-norm data-discrepancy
function Ed,L2 . (a)-(c): Evolution of Ed, Ed,L1 and Ed,L2 for the
modulus data without noises; (d)-(f): evolution of Ed, Ed,L1 and
Ed,L2 for the data with 5% Gaussian noises; (g)-(i): evolution of
Ed, Ed,L1 and Ed,L2 for the data with 10% Gaussian noises; (j)-(l):
evolution of Ed, Ed,L1 and Ed,L2 for the data with 20% Gaussian
noises.



1664 WENBIN LI AND JIANLIANG QIAN

5. Discussion. The parameter c plays an important role in constructing the K-
R metric based data discrepancy function. In numerical computations, reliable
inversion results rely on reasonable choices for the values of the parameter c. Here
we provide some insights and discussions.

Let r = d− d∗ denote the data residual. Consider the situation that r ∈ L1(R),
and suppose r has a compact support in R. Similar to the discussions in [13], we
have the following result,

‖r‖KR,c ∼

{
‖r‖L1 , as c→ +∞ ,

c
∥∥∥
∫ x

−∞
r(s) ds

∥∥∥
L1

, as c→ 0 .
(43)

Moreover, if the residual r ∈ L1(R) satisfies mass conservation, i.e.
∫
R
r(s) ds = 0,

we have
‖r‖KR,c ∼ c‖r‖KR,∗ as c→ 0 , (44)

where ‖ · ‖KR,∗ denotes the K-R metric for measuring the distance between two
distributions with equal masses. We omit the details on deriving equations (43)
and (44), which can be found in [13].

The asymptotic behavior of ‖ · ‖KR,c in L1(R) gives us some intuitions to select
the parameter c. As c → +∞, ‖ · ‖KR,c will be equivalent to the L1 norm; as
c → 0, ‖ · ‖KR,c behaves like the K-R metric for measuring the distance between
two distributions with equal masses. It suggests that we should take a reasonably
small value for c, so that ‖ · ‖KR,c preserves the good properties of the K-R metric.
Recalling the definition of BLipc in equation (16), c is used to provide bound for

∇v, i.e.
∣∣∣ ∂v
∂yi

∣∣∣ ≤ c. In discretization,
∣∣∣ ∂v
∂yi

∣∣∣ .
=

∣∣∣ v(yi+∆yi)−v(yi)
∆yi

∣∣∣ ≤ 2
∆yi

, considering

that |v| ≤ 1 as v ∈ BLipc. Therefore, taking a reasonably small value for c means
that

c≪
2

∆yi
, ∀ i = 1, · · · , n− 1 , (45)

so that c is effective to provide bound for ∇v in the bounded Lipschitz set BLipc.
On the other hand, the value of c can not be too small; otherwise we may require the
property of mass conservation in the data residual. A possible strategy is to obtain
a preliminary recovered solution and take it as the initial guess. Then hopefully
the data residual can roughly satisfy the mass conservation in the inversion process,
and we can choose a sufficiently small value for c. This point deserves a further
study in the future work.

6. Conclusion. We have developed a Kantorovich-Rubinstein metric based level-
set algorithm for the inverse problem of modulus of gravity force. Motivated by the
well-posedness theorems of gravity inverse problems in [14], we propose to solve for
the unknown domains of volume mass distributions from the measurements of mod-
ulus of gravity force. Following the framework of [15], we utilize the level-set method
for the domain inverse problem, where the level-set function implicitly represents
the boundary of the targeted domain. To develop robust inversion algorithms, we
propose to use the Kantorovich-Rubinstein metric for data fitting of the modulus
of gravity force. An ADMM algorithm is introduced to efficiently compute the K-R
metric based data discrepancy and its Fréchet derivative. We implement the in-
version algorithm in synthetic examples, where we compare the solutions using the
K-R metric with those using the L1 norm and L2 norm for data fitting. The nu-
merical examples demonstrate that the K-R metric based level-set algorithm is able
to provide robust and stable solutions under extremely high-level random noises.
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The proposed inversion algorithm shows the potential to process field measurement
data with large noise contaminations in practical inverse gravimetry problems.
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Appendix A. Level-set inversion algorithms using the L1 norm and the

L2 norm as data discrepancies. The level-set function φ is recovered by solving
the following optimization problem,

φ := argmin
φ

Ed,Lp(ρ(φ)) , p = 1, 2 , (A-1)

and we will utilize the gradient descent method as well. Considering the formulas
of Ed,L1 and Ed,L2 ,

Ed,L1 := ‖d(y; ρ)− d∗(y)‖L1 =

∫

Σ0

|d(y; ρ)− d∗(y)| ds(y) , (A-2)

Ed,L2 := ‖d(y; ρ)− d∗(y)‖2L2 =
1

2

∫

Σ0

(d(y; ρ)− d∗(y))
2
ds(y) , (A-3)

their gradient directions are evaluated in the following way,

∂Ed,L1

∂φ
(x) =

∂Ed,L1

∂ρ
(x)

∂ρ

∂φ
(x) =

∂ρ

∂φ
(x)

∫

Σ0

d(y)− d∗(y)

|d(y)− d∗(y)|

∂d

∂ρ
(y,x) ds(y)

= γf(x)δ(φ(x))

∫

Σ0

d(y)− d∗(y)

|d(y)− d∗(y)|

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) , (A-4)

∂Ed,L2

∂φ
(x) =

∂Ed,L2

∂ρ
(x)

∂ρ

∂φ
(x) =

∂ρ

∂φ
(x)

∫

Σ0

(d(y)− d∗(y))
∂d

∂ρ
(y,x) ds(y)

= γf(x)δ(φ(x))

∫

Σ0

(d(y)− d∗(y))

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) , (A-5)

where we have used equations (7), (11), and (13) in the calculation. Replacing the
delta function with the numerical delta function δǫ(φ) = χ(Tǫ) |∇φ| as shown in
equation (10), the gradient directions are approximated by

∂Ed,L1

∂φ
(x) = γf(x)χ(Tǫ) |∇φ|

∫

Σ0

d(y)− d∗(y)

|d(y)− d∗(y)|

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) ,

∂Ed,L2

∂φ
(x) = γf(x)χ(Tǫ) |∇φ|

∫

Σ0

(d(y)− d∗(y))

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) ,

which can be denoted as
∂Ed,Lp

∂φ
(x) = Vn,p(x) |∇φ(x)| , p = 1, 2 , (A-6)

with

Vn,1(x) := γf(x)χ(Tǫ)

∫

Σ0

d(y)− d∗(y)

|d(y)− d∗(y)|

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) , (A-7)

Vn,2(x) := γf(x)χ(Tǫ)

∫

Σ0

(d(y)− d∗(y))

n∑

i=1

gi(y)

d(y)
Ki(y,x) ds(y) . (A-8)
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In equation (A-7), a small constant ǫ0 > 0 is added to the denominator |d(y)−d∗(y)|
to avoid instability in the numerical computation, e.g. ǫ0 = 10−8.

The level-set function φ is updated according to the negative gradient descent
direction, which has the same formulation as equation (37),

∂φ

∂t
= −

∂Ed,p

∂φ
= −Vn,p |∇φ| , p = 1, 2 . (A-9)

Correspondingly, the step-size ∆t for the updating equation should satisfy the
Courant-Friedrichs-Lewy (CFL) condition as shown in equation (38). And in prac-
tice, we take the step-size ∆t according to equation (39),

∆t = β
min{∆x1, · · · ,∆xn}

maxx |Vn,p(x)|
, p = 1, 2 . (A-10)

where β ∈ (0, 1) is a constant, e.g. β = 0.5 in our numerical computation. To be
short, the same step-size rule is used to evolve the level-set function φ for all the
three data-fitting strategies.
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