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Abstract. We present a butterfly-compressed representation of the Hadamard-Babich (HB)
ansatz for the Green’s function of the high-frequency Helmholtz equation in smooth inhomogeneous
media. For a computational domain discretized with N, discretization cells, the proposed algorithm
first solves and tabulates the phase and HB coefficients via eikonal and transport equations with
observation points and point sources located at the Chebyshev nodes using a set of much coarser
computation grids, and then butterfly compresses the resulting HB interactions from all N, cell
centers to each other. The overall CPU time and memory requirement scale as O(N, log? N,,) for
any bounded two-dimensional (2D) domains with arbitrary excitation sources. A direct extension
of this scheme to bounded 3D domains yields an O(Nf,1 / 3) CPU complexity, which can be further
reduced to quasi-linear complexities with proposed remedies. The scheme can also efficiently handle
scattering problems involving inclusions in inhomogeneous media. Although the current construction
of our HB integrator does not accommodate caustics, the resulting HB integrator itself can be applied
to certain sources, such as concave-shaped sources, to produce caustic effects. Compared to finite-
difference frequency domain methods, the proposed HB integrator is free of numerical dispersion
and requires fewer discretization points per wavelength. As a result, it can solve wave propagation
problems well beyond the capability of existing solvers. Remarkably, the proposed scheme can
accurately model wave propagation in 2D domains with 640 wavelengths per direction and in 3D
domains with 54 wavelengths per direction on a state-of-the-art supercomputer at Lawrence Berkeley
National Laboratory.
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1. Introduction. We are interested in finding the solution to the high-frequency
Helmholtz equation with variable refractive index n(r) subject to an arbitrary source:

(1.1) [A+w?n?(r)ju=—s(r) in R
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where
(1.2) A:Z— r=[z1,20,...,24]",

n(r) is the index of refraction (or the slowness function), s(r) is a generic source
function with compact support in a bounded domain V C R?, w is a large angular
frequency, d is the dimension, and the Sommerfeld radiation condition is imposed at
infinity. When the source is a point source, s(r) = é(r,rg), the point source solution
of (1.1) is the Green’s function G(r,r() with source location ry. Assume that we are
given a volumetric discretization of the computational domain V with N, degrees
of freedom (DOFs) so that the Shannon sampling principle, wh = O(1), is obeyed,
where h is the volumetric mesh size, implying that N, = O(w?). Accordingly, numer-
ical discretization of the Helmholtz equation (1.1) by a variety of methods, such as
finite-difference, finite-element, integral equation, or hybrid asymptotic finite-element,
gives rise to an NN, X N, linear system. Ideally, we desire a numerical scheme to
have two properties: having almost linear complexity, up to polylogarithmic factors,
in both CPU time and memory storage units, and having asymptotically uniform
accuracy with respect to 1/w (at least) as w — oo while respecting the Shannon
sampling principle. However, so far, no method is available enjoying the two proper-
ties simultaneously in the literature. Observing that the Helmholtz solution can be
written as

(1.3) u(r)://VG(r,ro)s(ro)dro

if the Green’s function G(r,r) is known, we propose to first use the Hadamard—Babich
(HB) high-frequency asymptotic ansatz to compute the Green’s function, and then
use the fast butterfly algorithm to compress the HB integrator, and finally apply the
compressed integrator to the source function to obtain the desired Helmholtz solution.
As we will see, the resulting new numerical scheme enjoys the two desired properties
simultaneously.

Why to use the HB ansatz. High-frequency asymptotics typically assumes an
expansion series for the Green’s function in terms of the phase (or travel time) and am-
plitude functions, which satisfy the eikonal and transport equations, respectively. The
Eulerian asymptotics solves these equations with partial differential equation (PDE)
solvers and utilizes the resulting asymptotic ingredients to construct the Green’s func-
tion for each point source. However, the usual geometrical-optics ansatz [3] does not
yield uniform accuracy near the source as w — oo and poses difficulties when initial-
izing the amplitudes. Recently, HB ansatz [4] based Eulerian asymptotics has been
developed in [56] which yields a uniform asymptotic solution in the region of space
containing a point source but no other caustics. The eikonal and transport equations
for the HB coefficients are solved with high-order Lax—Friedrichs weighted nonoscil-
latory (WENO) schemes which are initialized near the source point with high-order
Taylor expansions [56]. The resulting HB integrator is a highly accurate approxima-
tion of the Green’s function for media with a smooth and analytic refractive index n(r)
that does not introduce caustics. That said, for a computational domain discretized
with N, cells, the Eulerian asymptotics requires solving the eikonal and transport
equations N, times for an arbitrary source function s(r) that can be nonzero across
the entire computational domain. Because such an N, x N, discretized HB integra-
tor is still prohibitively expensive to compute, a fast compressed representation is
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called for. Therefore, we will develop low-rank representations using the Chebyshev
interpolation for these HB ingredients.

Why to use the butterfly algorithm. We consider an algebraic compression
tool called butterfly [34, 35, 39, 46, 52|, a multilevel numerical linear algebra algo-
rithm well-suited for representing highly oscillatory operators such as Fourier trans-
forms and integral operators [10, 66, 67], special function transforms [9, 50, 62], and
free-space [40, 46, 47], numerical [37], and inverse [25, 26, 27, 38] Green’s functions for
Helmholtz and Maxwell’s equations. As the HB integrator consists of nonoscillatory
HB coefficient functions and oscillatory Hankel functions defined via nonoscillatory
phase functions, we show that the discretized HB integrator is butterfly compress-
ible. The proposed scheme first constructs low-rank representations for the phase
function and HB coefficients via solving the eikonal and transport equations with a
set of coarse grids for a constant number of point sources located at the Chebyshev
interpolation nodes. Next, it leverages butterfly algorithms and its hierarchical ex-
tension, the hierarchical off-diagonal butterfly (HODBF') matrix [38], to compress the
HB integrator for cell sizes proportional to the angular frequency, via sampling the
phase and HB coefficients in a manageable way. Once compressed, the HB integrator
can be applied to any source function as a simple matrix-vector multiplication. This
framework is also extended to handle a computational domain with sound-hard inclu-
sion, where an additional surface integral equation using the HB integrator is solved.
We analyze our proposed algorithm to validate that the CPU time and memory re-
quirement for most involved discretized integrators scale at most as O(N, log® N,,).
Moreover, this scheme obeys the Shannon sampling principle, is free of dispersion er-
rors due to the asymptotic nature of the method, and requires much smaller numbers
of cell points per wavelength (PPW) than finite-difference solvers, and it further has
been distributed-memory parallelized. As a result, it can solve wave propagation prob-
lems well beyond the capability of existing finite-difference frequency-domain (FDFD)
solvers. Remarkably, the proposed scheme can accurately model wave propagation in
two-dimensional (2D) domains with 640 wavelengths per direction and 3D domains
with 54 wavelengths per direction on a state-of-the-art supercomputer at Lawrence
Berkeley National Lab.

1.1. Related works. To put our work into perspective, let us first point out that
in the high-frequency regime, the notion of convergence is different from the standard
numerical analysis. Because of pollution errors (numerical dispersions) [6], numerical
errors of standard methods for the Helmholtz equation (1.1) do not decay as w — oo
if wh is fixed, namely, the Shannon sampling principle is respected. Consequently, in
the high-frequency asymptotic regime, namely, w — 0o, we seek numerical methods
which both converge asymptotically with respect to w and obey the Shannon sampling
principle.

There are three popular classes of numerical methods for solving the variable
coefficient Helmholtz (or Maxwell’s) equations: the differential-equation method such
as the finite-difference [11, 51] or finite-element [5, 48] method, the volume-integral
equation (VIE) method [15, 58, 68], and the hybrid asymptotic finite-element based
methods [19, 20, 24, 29, 31, 49]. We consider the following three aspects.

Accuracy. The differential-equation method, for instance, the FDFD method,
leverages absorbing boundary conditions and finite-difference stencils to form a sparse
N, X N, linear system, whose inverse gives numerical Green’s functions. Given a
uniform accuracy requirement for all frequencies w, pollution errors demand that
differential-equation methods oversample the numerical solution to mitigate the
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pollution effects, leading to large-scale systems with suboptimal DOFs to solve when
w — 00, and the resulting CPU time and memory storage units are suboptimal with
respect to the Shannon principle. On the other hand, the VIE method [57] leverages
volumetric equivalent sources and the exact, free-space Green’s function to form a
dense N, x N, linear system. The solution of the linear system yields the equivalent
source densities. Although VIE is almost free of numerical dispersion, the system solve
is even more expensive than FDFD. The hybrid asymptotic finite-element methods
[19, 20, 24, 29, 31, 49] incorporate phase or phase gradient information into the for-
mulation, and the hybrid methods in [19, 20] demonstrate almost linear complexity in
CPU time and converge asymptotically as 1/1/w when w — oo for 2D problems. We
refer to [19] for references on various approaches to eliminate or mitigate pollution
effects. Our proposed approach is different from the above three classes, and it is
based on the uniform asymptotic HB ansatz and enjoys the following unique feature:
given a uniform accuracy requirement for all frequencies w, the accuracy behaves as
1/w (at least) asymptotically and shows no apparent dispersion errors when w — oo,
as long as wh is fixed.

Efficiency. Given CPU time and storage requirement scalable with respect to
w by fixing wh to be a constant, we would like to solve the linear system N, x N,
in O(N,) time and O(N,) memory storage, up to polylogarithmic factors. As stated
in [19], standard sparse linear algebra algorithms based on nested dissection [22] and
multifrontal methods [14] have a suboptimal complexity, and they are prohibitively
expensive memorywise in dimension greater than two [2, 7, 8, 13, 33, 64]. As a
result, quasi-linear-cost preconditioners are developed, such as [12, 16, 17, 59, 63,
69], among many others. In a recent work [37], a sparse approximate multifrontal
factorization with butterfly compression for high-frequency wave equations has been
developed, and complexity analysis and numerical experiments demonstrate that it
enjoys O(NN, log? N,) computation and O(N,,) memory complexity when applied to an
N, x N, sparse system arising from 3D high-frequency Helmholtz problems. However,
most of these methods use low-order discretizations so that they require oversampling
to produce accurate solutions, thus resulting in suboptimal complexities with respect
to the frequency w. Our proposed approach is also based on butterfly compression, but
it enjoys the following unique feature: the overall CPU time and memory requirement
scale as O(N, log? N,)) when w — 0o as long as wh is fixed (no oversampling).

Accuracy and efficiency. As stated in [19], only a few references deal with
both accuracy and efficiency simultaneously. [61] develops a hybridizable discontinu-
ous Galerkin method coupled with the method of polarized traces, [36, 70] deal with
an integral version of the Helmholtz equation with inclusions by coupling with sparsi-
fication and a fast preconditioner, and [19, 20, 31] develop adaptive discretizations for
Helmholtz equations by learning the dominant wave directions. In our work, we also
consider an integral version of the Helmholtz equation for curved inclusions. Our pro-
posed approach for cases of both inclusion and no-inclusion enjoys both accuracy and
efficiency simultaneously in the sense that the overall CPU time and memory require-
ment scale as O(N,, log® N,) and the accuracy behaves as 1/w (at least) asymptotically
when w — oo, as long as wh is fixed (no oversampling).

Finally, we remark that a version of the butterfly algorithm [10] has been im-
plemented in fast Huygens sweeping methods for computing high-frequency Green’s
functions of point-source Helmholtz equations based on traditional geometrical optics
[44] and the HB ansatz [42], respectively. Our butterfly-compressed HB integrator
proposed here is different from those in [42, 44, 54] in that we are treating arbitrary
sources rather than a single point source and we are using the HODBF algorithm [38],
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which is more efficient than the classical butterfly algorithm [10] or hierarchical matri-
ces [26] to compress the high-frequency interaction matrix. We also mention in passing
that the necessity of using butterfly compression for fast computing high-frequency
waves has been shown in [18].

1.2. Contents. In section 2, we introduce the HB ansatz for the point-source
problem of Helmholtz equations. Direct computation of the HB integrator for ar-
bitrary sources is detailed in section 3. Fast computation of the HB integrator for
arbitrary sources is described in section 4. In section 5, we show numerical results to
demonstrate the performance of the proposed scheme.

2. Hadamard—Babich ansatz for point source. To solve (1.1) asymptoti-
cally with a point source when w — oo, Babich [4] used Hadamard’s method to obtain
the following Hankel-based ansatz so as to expand the solution u(r) = G(r,ro):

(2.1) gn(r,10) :sz(ryro)fsf(dfz)/z(%7)7
s=0

where

(2.2) folw,7) :igeiq” <2w—7>qul>(m).

Here Hgl) is the gth Hankel function of the first kind, and the phase 7, more precisely
its square 72, satisfies the eikonal-squared equation (2.3),

(2.3) V722 = 4102, 7%(r,r0)|r=r, =0,
which is equivalent to the usual form of the eikonal equation,
(24) |VT| =n, T(r7r0)|r:r0 =0.

We remark that two forms of eikonal equations as (2.3) and (2.4) are needed because
T itself as a distance function near the source is not differentiable at the source but
72 is, as long as n is locally smooth [3, 60].

We call the above ansatz the Hadamard-Babich, or HB, ansatz and the coefficients
vs the HB coefficients which are different from amplitude functions in the classical
geometrical optics.

The HB coefficients vsy1 in expansion (2.1) satisfy the recurrent system

Ovs
(2.5) Arn? g“+vs+1 [A72 420225+ 2 —d)] = Av,, s=-1,0,1,...,
T

and v_; =0, where the differentiation a% is performed along the ray departing from

ro. Assuming vs(r,ro) to be continuous in the neighborhood of r = rg, we get the
initial conditions for vy at r =rq,

d—2
N

(26) lUO(ra r0)|r:r0 = W, ng = n(ro).

If n(r) is smooth, then 7 is smooth in the neighborhood of ry except at the source
point itself, but 72 is smooth in the source neighborhood, including the source itself. If
n(r) is analytic, it can be shown [4, 42] that the function vg(r,rp) will also be analytic
in r when r is in the neighborhood of rg; furthermore, vsy;(r,rg) are determined in
terms of vg and 7 so that vsy; are analytic when v are analytic for s =0,1,....
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2.1. Assumption and essential estimates. In the following, we assume that
these functions 72 and v, (s = 0,1,2,...) are analytic in the computational domain
V for all source points rg € V, so that the HB ansatz is valid for all point sources
ro € V. This means that all these HB ingredients are smooth single-valued functions
in V for any point source in V. Although this is a strong assumption, it will serve as
a good starting point for many applications.

By the essence of asymptotics [32], the difference between the true Green’s func-
tion of (1.1) and the HB ansatz (2.1) can be written as

(2.7) G(r,10) — gnp(r,10) = O(1/w™),

where the “error” term on the right-hand side (RHS) means that the difference can be
made arbitrarily smooth for all r, as long as the HB ingredients 72 and v, (s =0,1,...)
are analytic.

Moreover, when |7| < A = constant, the Hankel-based terms f, with ¢=N — (d —
2)/2 have the following asymptotic forms for large w [4]:

(2.8)
o ((5)(1 (WT)71/2) = O(wqul/qufl/z) if wr > A, = constant,
felw,7)=< O(ln(wr)+1) if wr < A; and ¢ =0,
O ((5)" (wr)™1) =0(w™) if wr < Ay and ¢> 1,

where N =0,1,2,..., and both A and A; are arbitrarily fixed positive constants.
In this article, we truncate the HB ansatz (2.1) to obtain an (N 4 1)-term expan-
sion,
N

(2.9) g(r,ro) :ZUs(rer)fs—(d—Z)/Z(waT)a

s=0

and we can estimate the truncation error asymptotically in w by using the asymptotic
forms of f, in (2.8),

(210) thb('7r0) - g('arO)”Lo"(V) S O ((1/OJ)(N+1_%)) ;

see a similar analysis in [19].
Now we estimate the difference of the following solution formulas,

(2.11) utme(r)://‘/G(r,ro)s(ro)dro for reV,

(2.12) uhb(r)://vg(r,ro)s(ro)dro for reV,

where we have assumed that the source s is compactly supported and an appropriate
absorbing boundary condition has been used to truncate the entire space R? to the
computational domain V. Accordingly, we have

lttrue — wl| Ly < / / 1G(1x0) — (-, 0) | 2= (v l3(ro) o
1%
< / / 1G(r0) — g -0 e v (o) o
1%

+ / /V (7o) — 910 [ v ls(x0) o
(2.13) <0 ((1/@““”2;3)).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/01/23 to 35.8.11.3 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

BUTTERFLY HADAMARD-BABICH INTEGRATOR FOR HELMHOLTZ 275

This estimate is the foundation for our new numerical schemes, and further numerical
analysis is an ongoing work.

In what follows, we drop the subscript of v and by default refer to it as the HB
ansatz solution, and we will only consider two cases, N =0 and N =1, yielding the
first- and second-order asymptotic expansions, respectively.

2.2. Approximations of eikonals and HB coefficients near the source.
Evaluating (2.9) requires computation of the squared-phase function 72 and the HB
coefficient functions vy and v;. In a neighborhood of the point source where the
function 7 is single-valued, 72, vy, and v; can be computed by solving the eikonal
equation (2.4) and transport equations (2.5) with initial conditions vy in (2.6) and
v1(r,r0)|r=r, to be determined, and the numerical details have been given in [56].

To expedite our presentation, we summarize some numerical aspects in the follow-
ing subsections. One essential difficulty in computing the eikonal and HB coefficients
to high-order accuracy is how to initialize these quantities near the point source for
numerical PDE solvers, such as Lax—Friedrichs WENO schemes [30, 72, 73]. Because
initial conditions for the eikonal and transport equations are only specified at the
source point and high-order schemes need accurate initial values within a small neigh-
borhood of the source to start with, our analyticity assumptions allow us to extract
high-order approximations of eikonals and HB coefficients near the source. To do that,
we may carry out local Taylor expansions of these functions and further insert these
relations into related PDEs so that we may obtain some recursive relations to com-
pute these functions locally. Since such recursive relations actually provide (crude)
approximations to the HB ingredients which in turn may be used to construct the
Green’s function (in a very crude manner) in a large neighborhood, we illustrate how
to obtain such recursive relations in the following.

2.2.1. High-order factorization of eikonals. We have the following expan-
sion near the source point ry (dropped in the expressions below) for squared 7 and
n:

Pr Ps
(2.14) ()& Y Ti(r), n’(r)~> Si(r),

k=0 k=0

where Tj(r) and S (r) are homogeneous polynomials of degree k in r, and Pr and Pg
denote the truncation order of 72 and n?, respectively. Upon substituting (2.14) into
(2.3), we can determine T}, term-by-term by

(2.15) To=0, Ty=0, Ty(r)=Sor?
P-2 1 P-2
(2.16) (P—1)SyTp = 2 SkTpok— ; ;2 VTies1-VTp_pi1, P>3.

Since we will solve for 7 in the eikonal equation (2.4) rather than 72, we will take
the square root of (2.14) to obtain an approximate 7, which will serve as a high-order
approximation of the exact 7 in numerically solving the eikonal equation (2.4).

2.2.2. High-order factorization of coefficients vs. Although v, are assumed
to be analytic near the source, we still need to obtain high-order approximations to
vs within a small neighborhood of the source so that high-order numerical schemes
can be initialized near the source. Therefore, we will expand the coefficients v, as
homogeneous polynomials of degree k in r as well.
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The coefficient vg can be expanded as

Pp
(2.17) vo=> _ Bi(r),
k=0

where By(r) are homogeneous polynomials of degree k in r. Upon substituting (2.17)
into (2.5), we can determine By term-by-term by

d—2
. ng 1 1
(218) BO — W’ B1 - E <—QBOAT3 + dBOSl) 5
P-1 1 P-1
(2.19) 2PSoBp=—» VBy-VTpis j— 3 > BiATp sy
k=1 k=0
P—-1
+d Z .BkSp,]67 P>2.
k=0

Similarly, we expand v; as

(2.20) v = ZC Ci(r)
k=0

and obtain Cy and C,

1
(2.21) 25000 = 5 ABy.,

1 1
(2.22) 45001 = 5AB; — S ATy Gy — (2 d)S) G,

and Cp for P > 2 by

P-1 P-1
1 1
2P +1)S0Cp = 5By - kz_:l VO VTpiai — 5 kz_; CyATpio_y
P—1
(2.23) —(2-d) Y CiSp_y.

k=0

To ensure the same order of accuracy for solving (2.3) and (2.5), the truncation
orders are chosen as Pg = Ps = Pp —2 = P+ 2. If the analytic function n varies very
slowly in a certain neighborhood of the point source that we are interested in so that
the resulting Taylor expansions for 72, vg, and v, are sufficiently accurate, then we
may use these Taylor expansions to compute the HB ingredients so as to construct the
Green’s function in this neighborhood. However, in most situations, we are interested
in wave propagation in large domains, and we will use these local Taylor expansions
to initialize high-order Lax—Friedrichs WENO sweeping schemes; the related details
have been given in [56], which is briefly summarized here.

2.3. Efficient algorithms for computing eikonals and HB coefficients.
According to numerical analysis for PDEs, to obtain v; with first-order accuracy,
we need a third-order accurate approximation of vg and hence a fifth-order accurate
approximation of 7. The Lax—Friedrichs WENO schemes as illustrated in [56] can be
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employed to solve the eikonal equation (2.3). To resolve the singularity at the source,
we use the factorization approach [21, 45, 53, 71] so that 7 can be factored as

(2.24) T =77

Here 7 is predetermined analytically to capture the source singularity, and, for in-
stance, we can choose 7(r,rp) as n(rg)|r — ro| or the square root of the expansion
(2.14). Hence 7 is the new unknown which is smooth at the source and satisfies the
factored eikonal equation

(2.25) |7V7 +7V7| =n.

Accordingly, high-order Lax—Friedrichs WENO schemes [30, 56, 65, 72] can be
applied to solve (2.25). In order to obtain a Prth-order accurate approximation of 7
on a mesh of size hg, 7 needs to be initialized in a neighborhood of size 2(Pr — 1)hg
centered at the source, and these initial values will be fixed during the iterations. In
the computation, we will take Pr =6 to obtain 7.

After obtaining a high-order approximation for 7, we apply Lax—Friedrichs WENO
schemes to solve transport equations (2.5) as illustrated in [56]. When s = —1, vy
will be initialized as (2.17) in a neighborhood of size 2(Pgp — 1)ho centered at the
source and these values will be fixed during iterations; at other points, high-order
Lax—Friedrichs WENO-based schemes are used to update vg. Similarly, when s =0,
v is then initialized as (2.20) in a neighborhood of size 2(Pc — 1)hg centered at the
source and these values will be fixed during iterations; the values at other points for
v1 will be updated using the high-order Lax—Friedrichs WENO-based schemes.

To analyze the complexity of these numerical schemes for computing these HB
ingredients, we assume that the d-dimensional computational domain is partitioned
into a finite-difference mesh of N{jlv points with Ny sampling points in each direc-
tion. Since these high-order Lax—Friedrichs WENO-based schemes are iterative by
nature, we may assume that these high-order schemes have a superlinear complex-
ity as analyzed [42], and hence the computational cost for these HB ingredients is
O(N{g, log Ny) in general.

Nevertheless, we emphasize that since these HB ingredients are independent of the
angular frequency w, the above complexity is for computing the HB ingredients only
and consequently is not directly related to computing wavefields, and we can use very
coarse meshes to compute these quantities. Moreover, once they are computed, these
ingredients can be compressed into low-rank representations and reused for different
frequencies as shown in section 4.1.

3. Direct computation of Hadamard—Babich integrator for arbitrary
source. Considering (1.1) in a spatial domain V = [0,1]¢, we can apply the HB
ansatz to compute the wavefield in V' due to an arbitrary source function s(r). We
consider two situations: domains without inclusion and domains with inclusion.

3.1. Domain with no inclusion. When no inclusion is present, the field u(r)
can be expressed as

(3.1) utr) = [ /V 9(x,0)s(ro)dro,

where the Green’s function g(r,rp) is given in (2.9). We call this the Hadamard—
Babich integrator.
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To numerically compute (3.1), the domain is discretized into N, regular cells
with cell size h, where h is typically a constant fraction of the w-dependent wave-
length. The source function can be discretized with local volume basis functions
s(r) =3, s(rj)hdb}’(r), where the basis function b7 (r) is nonzero only inside the
source cell ¢; with center r;:

L ifrec;
3.2 pu(r)=4n7 BEED
(32) 5 (5) {O otherwise.

Note that for a point source located inside cell ¢;, the source function is approximated
with s(r;) =6;;/h?. The field at the center of each cell u(r;) can be computed as

(3.3) U=K""I,

where I denotes a vector of length N,, that collects s(r;)h?, U denotes a vector that
collects u(r;), and K?" = g(r;,r;) for i # j. The self term K} can be computed
analytically by integrating the free space Green’s function over the source cell, where
the index of refraction n is taken to be constant; see Appendix A for more details.

The naive computation of all nondiagonal terms of KV?" requires solving the
eikonal equation (2.4) and transport equations (2.5) for IV, times to tabulate 7%(r;, r;),
vo(ri, 1), and v (ry,r;), requiring at least O(N2) CPU time and memory. Moreover,
the assembly and application of K?2" also require O(N?2) time and memory.

We remark in passing that when the medium is homogeneous, the HB integrator
(3.1) is exact since the HB ansatz (2.9) yields the exact Green’s function in this case;
when the medium is inhomogeneous and smooth without inducing caustics, the HB
integrator (3.1) is accurate in the asymptotic order O(1/w) without truncating the
ansatz (2.9), and it is accurate in the asymptotic order O(1/ w(Q’%)) when truncating
the ansatz (2.9) up to the first two terms. Detailed numerical analysis on this is an
ongoing work.

3.2. Domain with sound hard inclusion. For simplicity, this subsection only
considers 2D domains with curve inclusion; however, the proposed scheme can be
trivially extended to 3D domains with surface inclusion. Considering a sound hard
curve denoted by C, the source function will generate an incident field u™°(r) that
induces an equivalent source p(r) on C, which in turn generates a scattered field
u*®(r). More specifically, we have

(3.4) uinc(r) = //Vg(r,ro)s(ro)dro, reC,
(3.5) u*?(r) := /Cg(r,ro)p(ro)dro, reCorV.

Here the equivalent source p can be solved by the following integral equation:
(3.6) u™(r) = —u**(r), reC.

To numerically solve (3.6) and compute the total field u = u™® + u** in V, the
domain V is discretized with N, cells with cell size h. After discretization of the
inclusion into N line segments with length w; for i = 1,..., Ny and enforcement of
(3.6) at segment centers, we solve a linear system

(3.7) Ks2sp=yie
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with

— M_ P
(3.8) Ks?s:{ (1+12 (log( 1)) ifi=j,

—g(ri,r)w; otherwise,

where 7 is the Euler constant, U™¢ = u™°(rf), and P; = p(r{) with r{ denoting
segment centers. The RHS in (37) is computed by

(3.9) Une = K],

where T is the same as that in (3.3), and the discretized volume-to-surface operator
is K}?* = g(r§,r;). Here the source function does not overlap with the curve.

Once the equivalent source p(r) is obtained, the scattered field at any point r of
the computational domain is computed using (3.5),

(3.10) Use® = K2V P,

Here U = u>*(r;) with r; being the center of cell i, and K" = g(r,r$)w; which
can be directly calculated from the transpose of K925, Comblnlng (3.3), (3.7), (3.9),
and (3.10), the total fields at the cell centers can be expressed as

(311) U:(KUQ'U +K82U(K828)_1Kv28)1.

As a typical curve in two dimensions requires Ny = N /2 discretization segments,
the naive computation of K¥?* and K*2* requires solving the eikonal equation (2.4)
and transport equations (2.5) for N, times. In addition, the computation of Kv2*,
K525 and (K°2%)~! requires O(N2/?) time and memory. Overall, the computation of
(3.11) is still O(N?2) dominated by the computation of Kv2v.

4. Fast computation of Hadamard—Babich integrator for arbitrary
source. Here we propose a quasi-linear complexity algorithm for the computation
of (3.3) and (3.11). The proposed algorithm leverages the low-rank representation
of the squared phase function 72 and HB coefficient functions vy and v; to avoid
solving eikonal and transport equations for all point sources. Once these low-rank
representations are obtained, the discretized volume-to-volume, volume-to-surface,
and surface-to-surface operators are compressed using butterfly algorithms and their
hierarchical extensions.

4.1. Low-rank representation of the phase and HB coefficients. Since we
have assumed that 72, vg, and v, are analytic, they permit low-rank representations
as shown in [41, 42, 43, 55]. Letting f = 72, vy, and v1, respectively, we consider the
following analytical low-rank representation using the Chebyshev interpolation:

(4.1) f(r,rp) ZZT r{,r5)T;(ro).

=1 j5=1

Let n; denote the order of the Chebyshev interpolation and r§ for ¢=1,..., Ny with
N; = n¢ be the Chebyshev nodes (i.e., d-dimensional Chebyshev sampling of the
domain V =[0,1]¢). Accordingly, we define the Lagrange interpolants Tj(r), where

d
(4.2) Ti(r)=[J ti(re) = H [ ==t —
s=1 s= 11<k1;<zn, Sl sk

r= [T17~--7Td]7 and I'g: [7"%,...,7‘21—].
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® ® Gridin WENO
o o scheme

Computation ® o - Chebyshev nodes
domain o Cubic interpolation nodes

Fra. 4.1. The computation of f(r§,r$) in a 2D domain (shown as the green area) with [ =

72, v0,v1. Here r$, i=1,..., Ny, denote the Chebyshev nodes with Ny = 52 (the black dots). Two
instances of rg are shown: for each instance, a fast sweeping method with a grid size ho, grid points

?, and a point source collocated at one Chebyshev node (the red dot) is used to compute f(r?,r; .

For eachr§, i # j (the yellow dots), f(rg, r?) is compuled via cubic interpolation from the grid points
r? (the blue dots).

r

In (4.1), the set of function samples {f(rf,r$)} of cardinality N2 requires solving
the eikonal and transport equations via the Lax—Friedrichs WENO schemes with Ny

point sources located at r¢, as explained in section 2. More specifically, for each

J
Chebyshev node rj, we create a grid with mesh size ho and grid points r) for i =
1,...,1/hg that are aligned with the point source at rj. In other words, the grid covers

the computation domain V' and its ghost regions and has one grid point collocated
with r§. This gives rise to solutions f (r9, r{). For each rf, we compute f(r{,r§) with
i # j from a local cubic interpolation using data points f(r?, rj) See Figure 4.1 for a
2D example with two point sources (in red dots).

Once the set { f(r7,r{)} is obtained, the computation of f(r,ro) for any point pair
(r,rp) requires O(N?) = O(n2?) time. We can assume Ny to be constant as typically
ny < 15. In addition, we can leverage a blocked version of (4.1) to further improve its
computational efficiency. Consider an m x n block F' with F;; = f(r;,r;) for arbitrary
lists of n source points r; and m observation points r;. The block F' can be computed
as

(4.3) F~TOFT*.

Here, T}, = Tj(r;), T;; = Ti(r;), and Ff; = f(r{,r$). By using this blocked form,
repetitive computation of the interpolants 7° and T is avoided, and high-performance
BLAS libraries can be used. As a result, this requires O(min(m,n)N? +mnN;) time
using (4.3) as opposed to O(mnN?) using (4.1).

One may attempt to compute F for all entries of K2 (and similarly for K*2V,
Kv2?% and K*2%), but this leads tc_computational time. As we will see next,
we propose the butterfly algorithm for constructing a compressed representation of
K"2? and the other discretized operators, requiring only a total of mn = O(N,, log? Ny)

entries in (4.3).
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4.2. Butterfly representation of the discretized integral operators. The
butterfly algorithm exploits the fact that judiciously selected submatrices of the dis-
cretized operators KV2V, K2V K25 and K*?* arelow-rank compressible, despite of
the full rankness of these operators.

The algorithm first recursively subdivides the geometry point sets associated with
the rows and columns of these operators into two subsets of approximately equal sizes,
using, for example, k-dimensional tree clustering algorithms, until the subsets contain
a predefined number of points. For the N, cell centroids in the computational domain,
the procedure generates a complete binary tree Tz, of L, levels with root level 0 and
leaf level L,. Each node 7 at level [ is an index set 7 C {1,...,N,}. Similarly for the
N, segment centers for the inclusion, the procedure generates a complete binary tree
T, of Lg levels. In both trees, a non-leaf node 7 at level [ has two children 7 and
To, where 7 =71 U7 and 71 N7 = 0. For a non-root node 7, its parent is denoted p,.

The butterfly representation of a matrix requires binary trees 7, and T; with L
levels for the row and column indices, respectively, which are defined for the integral
operators as follows:

e KV2?: For any two siblings 7, and 7> at level [ of Tw,, let o=7; and s = 7o.
K"?(0,5) is compressed as a butterfly with L = L, — [ levels. Let 7, and
Ts be the subtrees of Ty, rooted at o and s, respectively. As a result, there
are 2! butterfly representations at each level [ = 1,...,L,. The 2L+ blocks
Kv2°(7,7) for node 7 at level L, are kept as dense blocks. This representation
is the HODBF representation [38].

e K*25: For any two siblings 7 and 75 at level [ of Tz, let 0o =71 and s = 7o.
K*2%(0,5) is compressed as a butterfly with L = L, — [ levels. Let 7, and Ty
be the subtrees of Tz rooted at o and s, respectively. Similar to K¥2V, we
seek a HODBF representation of K 2.

e K*2 (or K¥**): Let o and s be the roots of Tz, and Tp,, respectively.
K*%Y(0,5) = K*2" is compressed as & single butterfly with L = min{L,, L.}
levels. Let 7, =Ty, and Ty = Tg, .

4.2.1. Butterfly algorithm. The L-level butterfly representation of the inte-
gral operator K(o,s) € C"™*" (superscripts of K are dropped) requires the comple-
mentary low-rank property: at any level 0 <[ < L, for any node 7 at level [ of 7,
and any node v at level L —1 of T, thesubblock K (7,v) is numerically low-rank with
rank r,, bounded by a small number r called the butterfly rank. We will comment
on the butterfly rank for the three integral operators in subsections 4.2.2, 4.2.3, and
4.2.4, respectively.

For any subblock K (7,v), the complementary low-rank property permits a low-
rank representation using, for instance, interpolative decomposition (ID) as

(4.4) K(r,v) ~ K(7,9)Vr.,

where the skeleton matrix K (7,7) contains 7., skeleton columns indexed by 7, and
the interpolation matrix V; , has bounded entries. The ID can be computed via, for
instance, rank-revealing QR decomposition with a relative tolerance tol. There are
several equivalent butterfly representations in the literature [34, 35, 39, 52] and here
we briefly describe the so-called ‘columnwise butterfly representation [39].

At level [ =0, the interpolation matrices V; , areexplicitly formed, while at level
1> 0, they are represented in a nested fashion. To see this, consider a node pair (7,v)
at level [ > 0 and let v, 15, and p, be the children and parent of v and 7, respectively.
From (4.4), we have
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K(Tﬂ/):[K(Tvl/l) K(Tal/?)]

(4.5) ~[K(nn) K(r7)] {me V}er]

(4.6) ~ K (r,0) W, [Vp ] .

VPTq”?
Here W, and v are the interpolation matrix and skeleton columns from ‘the ID of
[K(7,11), K(7,72)], respectively. This allows representing V; ,, as

V,
47 Ve =W,, | P ]
47) L= [ v

We will refer to W, as the transfer matrices in the rest of this paper. We note that
the computation of interpolation matrices V;, at level [ = 0 and transfer matrices
W, at level 0 <1 < L (does not require the ID on the full subblocks K (7,v) and
[K(1,11), K(7,2)], as this immediately leads to an O(mn) compression complexity
at level [ =0.

Instead, we can select a number of O(r,, ) proxy rows 7 C 7 to compute V; , and
W, via ID as

(4.8) K(t,v)~K(7,0)V;,, 1=0,

(4.9) (K (7,01) K(7,0)] = K(#,0)W,,, 1>0.

When | = L and 7 = 7, no proxy rows are needed. We will discuss the choice of the
proxy rows in more detail in subsections 4.2.2, 4.2.3, and 4.2.4.

With all the interpolation and transfer matrices computed, the butterfly repre-
sentation of K (o,s) is

(4.10) K(o0,s) = KEwtwt=1  wivo,
Let v1,v9,...,v5c—1 denote the nodes at level L — [ of T, and let 71,72, ..., 7o denote

the nodes at level I of 7,. The interpolation factor V', the transfer factors W' for
l=1, ..., L, and the skeleton factor K are

(4.11) VO =diag(Vrw,s-- s Vew,, ), (7,1:) at level 1 =0,
(4.12) K' =diag(K(r1,7),...,K(ror, 7)), (#50) at level I = L,
(4.13) W' =diag(Wry,...,Wry-1), 1=1,...,L,
o diag(WT.lA,Vl’ s aW-r.l,V L1 ) {1,2}
(4.14) W, = dia’g(WTiQ,lll? . ,WTE’U;_[) , (7 ,v;) at level [,

where 7} and 772 denote the children of ;. Note that V9 and K L contain 2L diag-
onal blocks each with O(r,,) nonzeros, and W' contains 2% blocks W, , each with
O(r2,) nonzeros. The construction of these blocks via (4.8) at each level I requires
the computation of O(n) submatrices (i.e., the left-hand side (LHS) of (4.8)) of sizes
O(rrp) X O(rr,). From the discussion of (4.3) in subsection 4.1, each submatrix can
be computed in O(r, , N? ‘H"Z,VNI) time, which is timewise optimal assuming Ny con-
stant. If max,, 7, is O(1), it is immediately clear that the butterfly representation
(IDs and matrix entry computation) requires O(nlogn) memory and CPU time. We
will see that this is not the case for any of K¥?, K*?*, and K*2°, but quasi-linear
complexities can still be attained for most of these operators.

In what follows, we discuss the rank estimate, proxy row selection, and computa-
tional complexity for each of the three discretized integral operators K¥2?, K*2¥, and
KS2S.
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4.2.2. Computation of KV2V. Consider the top level off-diagonal block of its
HODBEF representation, K??(0,s) with o and s being the children of the root of Ty, ,
and sizes m =n = N,,/2. This permits a butterfly representation with L = L,,—1 levels.
Letting l,,, = L /2 denote the middle butterfly level, we can show that among the O(N,)
subblocks K (7,v) at each level [, there are O(2|l_lm‘/dN£d71)/2d) subblocks represent-
ing interactions between adjacent or close-by geometry subdomains, where d = 2 or
3 denotes the problem dimension. Their ranks scale as r;, = O(2"l*l"L|/qu§d_1)/2d)
dominated by the interface DOFs between the two computational subdomains. Each
of these nonconstant rank subblocks requires O(r2 ) storage and matrix entry com-

T,V

putation, and O(?"f.,l,) ID cost. Thus, they require

Zr37V0(2|Hm‘/ngd*”/?d) = O(N3@=D/2d)y < O(N,) storage
1

and

> ok oI I/ANEDR = (N2 D/Y) - CPU time

T,V
l

for the interpolation and transfer matrices. Specifically, the CPU time is O(N,,) when
d=2 and O(Nf,l/?’) when d = 3. The rest of the subblocks essentially have r,, = O(1)
and require O(N, log N,,) CPU time and memory based on the DOF analysis in [47].
Note that the suboptimal CPU complexity for d =3 can be improved by considering
strong-admissible hierarchical matrices [26] to keep butterfly rank constant, or con-
sidering alternatives to ID, e.g., analytical interpolation schemes such as (4.1) or the
one in [10], which brings the O(r2 ) CPU cost per block back to O(rZ ). However,
we will not implement the analytical interpolation-based butterfly representation in
this article due to the large prefactors in these schemes and will leave that as a future
work.

As an example, Figure 4.2 (top) shows a 2D computational domain with a par-
titioning tree Tz, with L, =5 levels. K"??(0,s) with o and s being the children of
the root Ty, (i.e., the left and right half of the domain) is compressed as a 4-level
butterfly. Figure 4.2(a)—(d) shows the subdomain pairs at levels | =0, 1,2, 3, respec-
tively. For each level, one subdomain pair with nonconstant interaction rank is shown
in gray. The cell centroids in green represent the skeleton columns 7, which mainly
lie on the subdomain interface.

As mentioned above, the computation of 7 is performed via (4.8) with proxy rows.
Specifically, consider (7,v) at level 0 < I < L (with [ = 0, L being similar). Let n;
denote the nearest neighboring centroids ¢ (e.g., all centroids that are within a 10h
distance of r;), and let f. denote the x| U 2| uniformly selected centroids near the
boundary of subdomain 7 with an oversampling parameter x. We choose the proxy
rows as

(4.15) 7= (Uienumni) NTU fr.

For example, Figure 4.2(a)—(d) shows the nearest neighboring proxy rows in yellow
and the uniform proxy rows in red.

Because of the above rank estimate and proxy row selection scheme, O(N, log N,)
CPU time and memory complexities can be achieved for the top-level off-diagonal
block of the HODBF. This leads to an O(N,log? N,) complexity for the overall
HODBF construction.
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FiG. 4.2. Top: illustration of the butterfly compression of 4 levels for one top-level off-diagonal
block of HODBF representation of KV2Y in a 2D computational domain. The subdomains at levels
1=0,1,2,3 (panels (a)—(d)) are denoted by the vertical and horizontal lines. One subdomain pair
(1,v) at each level with nonconstant rank rr, is shown in the shaded areas (left: ; right: v). The
green dots correspond to skeleton columns (cell centroids) for the ID computation, and the red and
yellow dots correspond to uniformly sampled and mearest neighboring prozy rows (cell centroids)
used to compute the ID. Note that the unused cell centroids at each stage are not plotted. Bottom:
illustration of the butterfly compression with 5 levels for K52V involving a circular inclusion in a 2D
computational domain. The subdomains and arcs at levels | =0,1,2,3 (panels (e)—(h)) are denoted
by the vertical/horizontal lines and dashed lines, respectively. One subdomain-arc pair (1,v) at each
level with nonconstant rank rr , is shown with the shaded areas for the subdomain and curves ending
with red dashed lines for the arc. The green dots correspond to skeleton columns (line segments)
for the ID computation, and the red and yellow dots correspond to uniformly sampled and nearest
neighboring proxy rows (cell centroids) used to compute the ID.

4.2.3. Computation of K*2V. Consider K*? between a 2D computational
domain with N, cells and a curve inclusion with N, discretization segments with typ-
ically N, = N2 K2 i compressed as a butterfly with L = min{L,, Ls} levels. For
simplicity we assume that Ls = L,,, each leaf node in 7, contains O(1) columns, and
each leaf node in 7, contains O(N,/N,) = O(N,) rows. Just like the K" operator,
we need to identify the subblocks with nonconstant ranks r,,. We first identify a
level [,,, at which the side length of 7 is on the same order as the length of v. From
Nsl/22(L_lm)/2 = N,2!m where the LHS and the RHS represent lengths of 7 and v
at level [,,,, respectively, we have [, = O(%) For each level | < l,,,, we can show
that there are O(27!Ny) subblocks, out of the total of O(Ns) subblocks, representing
interactions between a node v of T, fully contained in or close to some node 7 of 7.
These subblocks have ranks at most 7., = O(2') (i.e., the length of v). These non-
constant rank subblocks require 3, | r2 , O(27'N;) = O(Nf/g) = O(Ng/ﬁ) storage
and matrix entry computation, and >, 3 ,0(27'N;) = O(Nz/S) = O(NZ/G) CPU
time for the IDs. On the other hand, for each level [ > [,,,, we can show that there are
O(2"/?) subblocks, out of the total of O(N,) subblocks, representing interactions be-
tween a node 7 of 7, intersecting with some node v of T,. These subblocks have ranks
at most 7., = O(2"/2N) (i.e., the side length of 7). These nonconstant rank sub-
blocks again require O(N{? 6) storage and matrix entry computation, and O(NZ/ 6)
CPU time for the IDs. Just like K%Y in three dimensions, we can use analytical
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interpolation schemes to reduce O(NZ/6) to O(N5/6). The rest of the subblocks es-
sentially have r,, = O(1) based on the DOF analysis in [47], and their CPU and
memory complexities are dominated by ! = L, which scale as O(N,).

As an example, Figure 4.2 (bottom) shows the compression of K*2V representing
interaction between a 2D computational domain and a circle inclusion, with L =
Lg =5 levels. Figure 4.2(e)—(h) shows the subdomain-arc pairs at levels [ =0,1,2,3,
respectively. For each level, one subdomain-arc pair with nonconstant interaction
rank is shown in gray for the subdomain and red for the arc. The discretization line
segments in green on the curve represent the skeleton columns 7, which mainly lie on
the intersection of the arc with the subdomain. Note that for [ =0, 1, the arc is fully
contained in the subdomain, and the green points overlap with the red arc; for [ =2, 3,
the subdomain intersects with the arc. Just like the K2V operator, proxy rows in
the subdomains are chosen by (4.15), except that f. is a set of x| U 7p| uniformly
distributed centroids in the subdomains. In Figure 4.2(e)—(h), the nearest neighboring
and uniform proxy rows (centroids) are shown in yellow and red, respectively.

4.2.4. Computation of K*2¢ and its inverse. Just like K2, we seek an
HODBEF representation of K*2° for d = 2. Considering a top-level off-diagonal block
K*?%(0,s), it has been shown in [40] that its butterfly rank scales as O(log Ny) and its
CPU time and memory scales as O(Nlog N;). As aresult, the HODBF representation
of K*2* requires O(N, log® N,) = O(Nq}/2 log? N,) CPU time and storage units.

Once constructed, the inverse of the HODBF compressed K*2* can be computed
using algorithms described in [37, 38] leveraging sketching-based butterfly construc-
tion algorithms [39]. For K*?* the HODBF inversion requires O(NSB/2 log N;) =
O(Ng’/4 log N,,) based on the analysis in [38].

We summarize the algorithmic complexities in subsections 4.2.2, 4.2.3, and 4.2.4.
The computation of K2V requires O(N, log® N,) memory for d = 2,3, O(N,log® N,
time for d = 2, and O(NZL/S) time for d = 3 (the latter becoming quasi-linear if
analytical interpolation rather than ID-based butterfly algorithms are used or strong-
admissible hierarchical matrices are used). The computation of K*2V for d = 2 requires
O(N,) memory and O(NZ/6) CPU time (O(N, ) attainable if the analytical interpola-
tion is used). The computation and inversion of K 2% for d = 2 require O(N, /2 log? N,)
memory and O(Ng’/ *log N,) CPU time. Therefore, the overall complexities of the
proposed butterfly-compressed HB integrator scale as O(N, log? Ny).

4.3. Expected convergence behavior. Although a complete numerical analy-
sis of our new method is an ongoing work, we sketch the expected convergence behavior
of the algorithm.

Our new algorithm has three principal sources of numerical errors: the first source
is due to numerical computation of HB ingredients, such as 7, vy, and v;; the second
one is due to truncating the infinite asymptotic series to keep only the leading or the
first two terms: N =0 or N =1 in (2.9); the third one is due to the butterfly com-
pression. Therefore, the overall error of our HB integrator will be roughly controlled
by the above three sources of errors.

To start with, we consider the first source of errors. According to (2.5), v1 depends
on Avg (the Laplacian of vg) and Ar. To have first-order accurate vy (which is a
minimum requirement for our current setup of the new algorithm), we need at least
first-order accurate Avg and A7. To have first-order Avg, vy itself must be computed
to third-order accuracy so that it can be numerically differentiated twice to yield first-
order accurate Laplacian Avg. To have third-order accurate vg, A7 (the Laplacian
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of 7) must be computed to third-order accuracy according to (2.5) again, which in
turn implies that 7 itself must be computed to fifth-order accuracy. Consequently, we
have chosen to apply the fifth-order Lax—Friedrichs WENO scheme to compute 7, vg,
and v in our current implementation so that the computed 7, vy, and v; will have
fifth-, third-, and first-order accuracy, respectively. We denote the computational
errors of these ingredients as O(hg ), where hg is the mesh size and § is the order
of accuracy: 8 =1,3,5, respectively. Since these ingredients are independent of the
frequency parameter w, they can be computed just once and reused for many different
frequencies as explained below.

Now we consider the second source of errors. According to (2.9), when we keep
the leading-order term of the HB ansatz, we are expecting the first-order asymptotic
convergence in the form of O((l/w)(NH*%)), where N =0; when we keep the first
two terms of the HB ansatz, we are expecting the second-order asymptotic convergence
in the form of O((1/w)™N+1=5%))  where N = 1.

In addition, we consider the error due to the butterfly compression. Since a
detailed analysis of the butterfly compression algorithm with prescribed proxy rows is
beyond the scope of the current work, we assume that the error is simply represented
as O(eps) to simplify the matter, where ep¢ is a small positive constant. That said, one
can refer to section 5 of [39] for a detailed analysis of SVD-based butterfly algorithms.

Finally, when d = 3, by using some estimates provided in Appendix B, we can
write the overall error of our algorithm roughly as

(4.16) Frota1 = O ((1/w)<N+1f%>) FO(R2) + Owh3) + Oeny)

for N =0 and

(@17) Bua =0 ((1/) 755 4 O(h3) + O(wh}) + 0 (’;) - O(en)

for N =1. When d =2, we may use the analysis in [19] for the HB ansatz to obtain
analogous estimates. Note that here we ignore the errors of Chebyshev and cubic
interpolations assuming that they do not dominate those induced by the high-order
Lax—Friedrichs WENO schemes.

We remark that the term O(whj) in (4.16) captures the magnification of numerical
phase errors by the frequency w in the Hankel-based HB ansatz, in which the phase
function 7 appears together with w in the form of w; this implies two things: first,
given a set of computed HB ingredients, we can reuse these ingredients for many
different frequencies as long as the sum of the error terms O(wh() and O(h3) is not
dominant over the other errors; second, if it happens that the frequency w is so
large that the error from O(why) + O(h3) is dominant over other errors for a given
set of computed HB ingredients, then we can always compute more accurate HB
ingredients on finer meshes so that the resulting error from O(whg) + O(h}) is not
dominant. Note that such computation tabulates the HB ingredients on the fixed
Chebyshev nodes in the offfine stage and does not affect the computation time for
the wave function in the online stage. Similar observations apply to the estimate
(4.17).

Our numerical results demonstrate that the above error estimates are sound.

5. Numerical results. This section provides several numerical examples to
demonstrate the accuracy and efficiency of the proposed butterfly-compressed HB in-
tegrator when applied to 2D and 3D computational domains with both homogeneous
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and inhomogeneous media. The low-rank compression of the phase/HB coefficients
in subsection 4.1 and the butterfly compression of Kv?¥, K*2V K2 and (K*®2%)~!
in subsection 4.2 have been implemented with distributed-memory parallelism. Most
of the experiments are performed on the Haswell nodes of the Cori machine, a Cray
XC40, at NERSC in Berkeley, where each of the 2,388 Haswell nodes has two 16-core
Intel Xeon E5-2698v3 processors and 128 GB of 2133 MHz DDR4 memory. For most
experiments we use 64 Haswell nodes for both the proposed algorithm and the refer-
ence FDFD solver. Part of the experiments are performed on development nodes at
the High Performance Computing Center (HPCC) of MSU, where each node has two
2.4 GHz 20-core Intel Xeon Gold 6148 CPUs and 377 GB of RAM.

5.1. Accuracy comparison with FDFD. We first compare the performance
of the proposed algorithm with that of state-of-the-art FDFD solvers for both 2D and
3D computational domains.

5.1.1. 2D domains without and with inclusion. We consider the following
examples of homogeneous and inhomogeneous media:

e Constant media: the computational domain is V = [0,2]? with n(r) =
n(x,y) = 2. The phase has an analytical form 7(r,rg) = n(rg)|r — ro|. The

HB coefficients have analytical formulas vg(r,rg) = 1/%2\/7?) and vy (r,rg) =0.
Therefore, the HB integrator becomes g(r,rg) = iHol)(wn(roﬂr —ro|), e,

the well-known form of the free-space Green’s function. We use high-order
Lax—Friedrichs WENO methods with hy = 0.01 to solve (2.4) and (2.5) with

point sources, construct their low-rank representation with an order of ny =3

for the Chebyshev interpolation, and compare the results with these exact

formulas.
e Constant-gradient media: the computational domain is V = [0,1]? with
n(r) =n(z,y) = W(y—%)' Note that 1/n has a nonzero constant partial

derivative in y. Let r. = (0.5,0.5). When the point source r is in the interior
of V, the phase function has an analytical formula 7(r,rg) = ﬁarccosh(l +

$n(r)ng|Gol?|r—ro[?), where Go = [0, —0.25] and ng = % The
HB coefficients have no known analytical expressions. We use the high-order
Lax—Friedrichs WENO method with hy = 0.0025 to solve (2.4) and (2.5) with
point sources, and construct their low-rank representation with an order of
ny = 13 for the Chebyshev interpolation.

e Sinusoidal media: the computational domain is V = [0,1]? with n(r) =
n(z,y) = 1+O.2sin(7r(:c+(1).05))sin(0.57ry)’ In this case, both the phase and the HB
coefficients have no known analytical expressions. We use the high-order Lax—
Friedrichs WENO method with hg = 0.01 to solve (2.4) and (2.5) with point
sources, and construct their low-rank representation with an order of ny =13
for the Chebyshev interpolation. Since the exact solutions are not available,
we use FDFD solutions as references and compare the corresponding results
accordingly.

e Waveguide media: the computational domain is V = [0,1]? with n(r) =
n(x,y) = W In this case, both the phase and the HB coei-
ficients have no known analytical expressions. We first use the high-order
Lax-Friedrichs WENO method with hg = 0.01 to solve (2.4) and (2.5) with
point sources, and construct the low-rank representation with an order of
ny = 13 for the Chebyshev interpolation. We then compare the results with

the FDFD solutions.
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For the inclusion (if present), we consider a semicircle of radius 0.5 and an open
square of side length 0.8 centered at the domain center. When computing Kv2V, K52V,
and K*%¢, let n, denote the number of PPW for the discretization of the computational
domain or the curve inclusion. The computational domain is discretized with h =
27 /(wnmaxnp) with n, =10 and nmax being the maximum refractive index over the
domain. Similarly, the curve inclusion is discretized with w; = 27/(wWnhmaxn,) with
np =100 ~ 500 to ensure highly accurate approximation for K*2¢. The butterfly and
HODBF compression of K2V, K2V and K*2° are computed with tolerance tol = 10~8
in (4.4) and oversampling factor x =20 in (4.15).

Once the discretized integral operators are computed, we apply (3.3) and (3.11)
to the following source functions (i.e., RHSs) centered at r. = (z¢,y.) (the domain
center):

e Point source: s(r)=1/h? if r is inside the source cell centered at r..

e Gaussian wavepacket source: s(r) = exp(—|r — r.|?/(20?))exp(iwo(r -
d))t(|r — re|, w1, w2) with ¢ = 0.15, w; = 0.3, we = 0.1, wy = 0.9w, and
d= %[1, 1]. Here t(z,wy,ws) is the cosine tapering function:

(5.1) t(z, w1, w) =0.5(1 + cos((z — wy)m/we)) if w1 <2 < wa,

and t(z,wy,ws) =1 if z <wq, and t(z,wr,ws) =0 if > ws.

e Concave kite-shaped source: Let a kite-shaped curve be 9Q = {(z,y) :
x(t) = b(cos(t) +0.65 cos(2t) — 0.65) + z¢, y(t) = 1.5bsin(t) +y. for 0 <t <27}
with a scaling factor b =0.2. s(r) =1if r € Q and s(r) = t(Jr — rc|, w1, w2)
if r ¢ Q with the tapering function in (5.1). Here wg = 0.1, w1 = |rmin|, and
I'min is the point on 9N closest to the line r — r..

Note that although the current form of HB ansatz (2.9) needs further modification
to handle media permitting presence of caustics, we can still model caustics induced
by the interaction of the RHS (the source) with the medium, as shown in the two
examples: the concave kite-shaped source and the open cavity inclusion; both cases
will induce caustics in the wavefield, as we will see.

As for the reference FDFD solver for computing wavefields ugq(r), we use the
9-point staggered grid scheme in [11]. The computational domain is extended in
each direction with a perfectly matched layer (PML) of thickness 87/(wnmax) (i-e., 4
wavelengths). The extended domain is discretized with h = 27/ (wnmaxn,) with PPW
np = 10 ~ 50. The resulting sparse linear system is solved with a multifrontal sparse
direct solver STRUMPACK [23, 37]. When inclusion is present, the rows and columns
of the system which represent grid cells overlapping with the inclusion are removed
from the system. This can introduce significant staircase approximation errors to the
inclusion, unless more sophisticated subgridding techniques are used. Nevertheless,
by careful implementation, we still manage to produce good FDFD results in the
examples that we are going to show.

For the constant medium, we first consider w = 807, which amounts to 160 wave-
lengths in each direction. The fields computed by the proposed scheme (PPW =10)
and FDFD (PPW =10, 50) and their differences are shown in Figure 5.1. Note that
for the point source without inclusion (row 1 in Figure 5.1), the exact solution is also
plotted (in dashed green) in the third column. One can clearly see that the solu-
tion by the proposed scheme matches well with the exact solution, while it requires
PPW =50 or higher for FDFD to achieve a similar order of accuracy. For the kite-
shaped source (row 2 in Figure 5.1), the concave shape can induce caustics, which
are well-captured by the proposed scheme. FDFD matches better with the proposed
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Fic. 5.1. Constant media. w = 807 (160 wavelengths each direction). Left column: the field
Re(unp) (in linear scale) computed by the proposed scheme. Middle column: difference |up, —usq| (in
log scale) between the fields computed by the proposed scheme (PPW=10) and FDFD (PPW=50).
Right column: the fields |unbl, |usal, |utrue| (in log scale) drawn along the line y = ypost. Row 1:
point source with ypost =2 —10h and h corresponding to PPW = 10. Row 2: kite-shaped source with
Ypost = 2 — 10h. Row 3: Gaussian packet source with ypost = 1 — 10h and a semicircle inclusion.
Row 4: Gaussian packet source with ypost =2 — 10h and an open square inclusion.

scheme if PPW =50 other than PPW =10 is used. For the Gaussian wavepacket
source with the semicircle inclusion (row 3 in Figure 5.1), FDFD results match poorly
with the proposed scheme even using PPW = 50, particularly near the inclusion, due
to the staircase error in FDFD (this is the case for all the source functions consid-
ered). As a workaround, we consider the open square inclusion (row 4 in Figure 5.1)
for which FDFD introduces no staircase error. Again, FDFD requires PPW =50 or
higher to achieve a similar accuracy as the proposed scheme. Note that the square
inclusion permits a hierarchical matrix representation of K2 as an alternative to
HODBF, but this is not considered in this paper.
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FiGc. 5.2. Constant media. w = 3207 (640 wavelengths each direction). Left column: the field
Re(unp) (in linear scale) computed by the proposed scheme. Middle column: difference |un, —usq| (in
log scale) between the fields computed by the proposed scheme (PPW=10) and FDFD (PPW=10).
Right column: the fields |unbl, |usal, |utrue| (in log scale) drawn along the line y = ypost. Row 1:
point source with Ypost = 2—10h and h corresponding to PPW=10. Row 2: Gaussian packel source
with ypost = 2 — 10h. Row 3: Gaussian packet source with ypost = 2 — 10h and an open square
inclusion.

Based on these experiments, we further consider w = 3207, which amounts to
640 wavelengths in each direction. The fields computed by the proposed scheme
(PPW =10) and FDFD (PPW =10) and their differences are shown in Figure 5.2.
We note that the FDFD solver with PPW =10 already results in a sparse system
of dimension 387,223,684, and denser discretization causes memory crashes. As a
comparison, the proposed scheme results in a dense, butterfly-compressed K2V matrix
of dimension N,, = 40,972,801. One can see from the point source case (row 1 in Figure
5.2) that the proposed scheme is still very accurate when changing from w = 807 to
w = 3207, but FDFD suffers from dispersion errors. From the Gaussian wavepacket
source without and with inclusion (rows 2-3 in Figure 5.2), it is clear that PPW =10
for FDFD does not give satisfactory results.

For the constant-gradient medium, we consider w = 507 and w = 1007, which
amount to 100 and 200 wavelengths in each direction, respectively. The results are
shown in Figures 5.3 and 5.4. It is not hard to see that for the point source, kite
source, and Gaussian wavepacket source without inclusion (rows 1 and 2 in Figures
5.3 and 5.4), FDFD requires at least PPW =50 to achieve a similar accuracy as the
proposed scheme. However, for w = 100w, FDFD with PPW =20 already leads to a
sparse system of dimension 193,710,724. In contrast, the proposed scheme leads to
a dense, butterfly-compressed K¥2Y matrix of dimension N, = 16,008,001. Similar
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Fic. 5.3. Constant-gradient media. w = 50w (100 wavelengths each direction). Left column:
the field Re(upp) (in linear scale) computed by the proposed scheme. Middle column: difference
|upp —utd| (in log scale) between the fields computed by the proposed scheme (PPW=10) and FDFD
(PPW=50). Right column: the fields |upnp|, |uga| (in log scale) drawn along the line y = ypost. Row
1: point source with ypost =1 — 10h and h corresponding to PPW=10. Row 2: kite-shaped source
with Ypost = 1 — 10h. Row 3: Gaussian packet source with ypost = 0.5 — 10h and a semicircle
inclusion. Row 4: Gaussian packet source with ypost =1 — 10h and an open square inclusion.

conclusions can be drawn for the Gaussian wavepacket source with inclusions (rows 3
and 4 in Figures 5.3 and 5.4).

To see that our method can be applied to generic inhomogeneous media, we test
two more models: the sinusoidal model and the waveguide model.

For the sinusoidal model, we first consider w = 807, which amounts to 50 wave-
lengths in each direction, and the results are shown in the first three rows of Figure
5.5. It is not hard to see that for the point source and Gaussian wavepacket source
without inclusion (rows 1 and 2 in Figure 5.5), the proposed scheme can achieve a
similar accuracy as FDFD with PPW = 50; similar conclusions can be drawn for the
Gaussian wavepacket source with inclusions (row 3 in Figure 5.5). In addition, we also
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FiGc. 5.4. Constant-gradient media. w = 1007w (200 wavelengths each direction). Left column:
the field Re(un,) (in linear scale) computed by the proposed scheme. Middle column: difference
|unp —utd| (in log scale) between the fields computed by the proposed scheme (PPW=10) and FDFD
(PPW=20). Right column: the field |unp|,|usa| (in log scale) drawn along the line y = ypost. Row
1: point source with ypost = 1 — 10h and h corresponding to PPW=10. Row 2: Gaussian packet
source with Ypost =1 —10h. Row 3: Gaussian packet source with ypost = 0.5 — 10h and a semicircle
inclusion. Row 4: Gaussian packet source with ypost =1 — 10h and an open square inclusion.

show the result in row 4 of Figure 5.5 when w = 407 for the concave kite-shaped source,
and we have chosen this particular frequency so that caustic effects are apparent near
the concave region.

For the waveguide model, we consider w = 407, which amounts to 40 wavelengths
in each direction. We compute wavefields for three different types of sources: the point
source, the Gaussian wavepacket source, and the concave kite-shaped source, and the
results are shown in rows 1 to 3 in Figure 5.6. The FDTD solutions are computed as
references. It can be seen that the proposed scheme can achieve a similar accuracy as
FDFD with PPW = 50.
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FiGc. 5.5. Sinusoidal media. w = 807 (50 wavelengths each direction) for the first three rows
and w = 407 (25 wavelengths each direction) for the last row. Left column: the field Re(unp) (in
the linear scale) computed by the proposed scheme. Middle column: difference |up, — ugq| (in the
log scale) between the fields computed by the proposed scheme (PPW=10) and FDFD (PPW=50).
Right column: the fields |uny|,|usa| (in the log scale) drawn along the line y = ypost. Row 1: point
source with Ypost =1 — 10h and h corresponding to PPW=10. Row 2: Gaussian packet source with
Ypost =1 —10h. Row 3: Gaussian packet source with ypost = 0.5 and a semicircle inclusion. Row 4:
concave kite-shaped source with ypost =1 — 10h.

5.1.2. 3D domain without inclusion. We consider the following examples of
homogeneous and inhomogeneous media for d = 3:

e Constant media: the computational domain is V = [0,0.5]* with n(r) =
n(x,y,z) = 2. The phase function has an analytical formula 7(r,ry) =
n(rg)|r —rg|. The HB coefficients have analytical form vo(r,ro) = n(re)/(2m)
and v1(r,rg) = 0. The HB integrator becomes g¢(r,rg) = exp(iwn(rp)|r —
ro|)/(4m|r —rpl), i.e., the well-known form of the free-space Green’s function.
We use the Lax—Friedrichs WENO method with hg = 0.01 to solve (2.4) and
(2.5) with point sources, construct the low-rank representation with an order
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Fic. 5.6. Waveguide media. w = 40w (40 wavelengths each direction). Left column: the
field Re(unp) (in the linear scale) computed by the proposed scheme. Middle column: difference
|upp — ugq| (in the log scale) between the fields computed by the proposed scheme (PPW=10) and
FDFD (PPW=50). Right column: the fields |up|,|uta| (in the log scale) drawn along the line
Y = Ypost. Row 1: point source with ypost = 1 — 10h and h corresponding to PPW=10. Row 2:
Gaussian packet source with ypost =1 —10h. Row 3: concave kite-shaped source with ypost =1 —10h.
Row 4: Gaussian packet source with ypost = 0.5 and a semicircle inclusion.

of ny = 3 for the Chebyshev interpolation, and compare the results with these
exact formulas.

Constant-gradient media: the computational domain is V = [0,0.52]® with
n(r) = n(x,y,2) = 045_0.8@_0.26) = y:é:§g5. Note that 1/n has a nonzero
constant partial derivative in y. The phase function has an analytical form
7(r,ro) = ‘G—lolarccosh(l + 2n(r)n(ro)|Gol?r — ro|?) with Go = [0,—0.8,0].
The HB coefficients have no known analytical expressions. We use the fifth-
order Lax—Friedrichs WENO method with hg = 0.01 to solve (2.4) and (2.5)
with point sources, and construct the low-rank representation with an order

of ny =9 for the Chebyshev interpolation. It is worth mentioning that the
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Fic. 5.7. Constant media in d = 3. w = 407 (20 wavelengths each direction). Left column:
the field Re(unp) (in linear scale) computed by the proposed scheme. Middle column: difference
|unp — usg| (in log scale) between the fields computed by the proposed scheme (PPW=5) and FDFD
(PPW=10). Right column: the field |upy|, |utd|, |utrue| (in log scale) drawn along the line y =
0.5 — 10h and z = 0.5 — 10h with h corresponding to PPW=5. Row 1: point source. Row 2:
Gaussian packet source.

ellyo—ePt/? :
exact Green’s function [28] exists as g(r,rg) = %exp (2i(a?w? —
T

1/4)'/2arctanh(R/R’)). Here a = 1.25, ¢ = 0.885, R = |r — ro|, and R’ =
V(@ —20)2+ (y+yo — 2¢)2 + (2 — 20)2.

To compute K?¥, we discretize the domain with h = 27/ (wnmaxnp) With n, ~
5 and npax being the maximum refractive index over the domain. The HODBF
compression of K¥2? is computed with tolerance tol = 10~ in (4.4) and oversampling
factor x = 4 in (4.15). We apply (3.3) to the following RHSs centered at r. (the
domain center):

e Point source: s(r) =1/h? if r is inside the source cell centered at r..

e Gaussian wavepacket source: s(r) = exp(—|r — r.|?/(20?))exp(iwo(r -
d)t(|r — re|, w1, we) with o = 0.15, wy = 0.05, we = 0.05, wy = 0.9w, d =
%[1, 1,1], and ¢ is the tapering function in (5.1).

As for the reference FDFD solver, we use the 27-point staggered grid scheme
in [51]. The computational domain is extended in each direction with a PML. The
resulting sparse linear system is solved with STRUMPACK [23, 37].

For the constant medium, we use PMLs of thickness 37/(wnmax) (1.5 wave-
lengths). We consider w = 407 (20 wavelengths in each direction). The fields com-
puted by the proposed scheme (PPW =5) and FDFD (PPW =10) and their dif-
ferences are shown in Figure 5.7. For the point source (row 1 in Figure 5.7), the
exact solution is also plotted (in dashed green) in the third column. We can see
that for both the point source and the Gaussian wavepacket source, the results from
FDFD with PPW =10 are not satisfactory. The FDFD scheme with PPW =10 re-
sults in a sparse system of dimension 2403 = 13,824,000, and PPW =20 will lead to
4803 =110, 592,000. In contrast, the proposed scheme results in a dense, compressed
matrix of dimension N, =1,030,301.

For the constant-gradient medium, we use PMLs of thickness 107/(wnmax) (5
wavelengths). We first consider w = 327 (27 wavelengths in each direction). The
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Fic. 5.8. Constant-gradient media in d = 3. Left column: the field Re(uny) (in linear scale)
computed by the proposed scheme. Middle column: difference |unp — uga| (in log scale) between the
fields computed by the proposed scheme and FDFD. Right column: the field |upp|, |usd|, |utrue| (in
log scale) drawn along the line y = 10h and z = 10h with h corresponding to PPW=4.56. Row 1:
w = 327 (27 wavelengths each direction) with point source. Row 2: w = 32w (27 wavelengths each
direction) with Gaussian packet source. Row 3: w =647 (54 wavelengths each direction) with point
source.

fields computed by the proposed scheme (PPW =4.56) and FDFD (PPW =9.12) and
their differences are shown in Figure 5.8. For the point source (row 1 in Figure 5.8), the
exact solution is also plotted (in dashed green) in the third column. The FDFD scheme
with PPW =9.12 results in a sparse system of dimension 3523 = 43,614,208. The
proposed scheme results in a dense, compressed matrix of dimension N, = 2,248,091.
Next, we consider w = 647 (54 wavelengths in each direction). The fields computed by
the proposed scheme (PPW =4.56) and FDFD (PPW = 4.56) and their differences are
shown in Figure 5.8. For the point source (row 3 in Figure 5.8), the exact solution is
also plotted (in dashed green) in the third column. Clearly, the FDFD results are not
reliable. The FDFD scheme with PPW =4.56 results in a sparse system of dimension
3053 = 28,372,625 and even higher PPWs for the FDFD scheme lead to large-scale
linear systems of dimensions that no existing sparse direct solvers can deal with. In
contrast, the proposed scheme results in a dense, compressed matrix of dimension
N, =17,779,581.

5.2. Convergence test. Next, we validate the convergence of high-order Lax—
Friedrichs WENO schemes and the overall error estimates (4.16) and (4.17) of the HB
ansatz using the 3D constant-gradient model with a point source excitation, where
d = 3. As mentioned in subsection 5.1.2, both the phase 7 and the Green’s function
in such a medium have exact formulas.
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Fic. 5.9. Convergence test for a constant-gradient model in d = 3 with a point source. Left:
Errors (w.r.t. the exact solution) of the phase function computed by the first-, third-, and fifth-
order Laz—Friedrichs WENO schemes with varying ho. Right: Errors (w.r.t. the exzact solution; see
(2.10)) of the wavefield using the one-term (N =0) or two-term (N = 1) HB ansatz (2.9), where
the phase function is computed by the fifth-order Laz—Friedrichs WENO scheme.

First, errors of the phase computed by the first-, third- and fifth-order Lax—
Friedrichs WENO schemes with varying ho are shown in Figure 5.9 (left), which
behave as O(hg ) with higher convergence order 8 for higher-order WENO schemes.
When we apply the fifth-order Lax—Friedrichs WENO scheme to compute 7, vy and
vy are expected to have third-order and first-order accuracy, respectively, since vy and
vy are computed from 7. Because exact solutions of vy and v; are unknown, we will
use the third- and first-order accuracy of 7 as the reference accuracy for vy and vy,
respectively.

Second, overall errors of wavefields (Green’s functions) using the one-term (N = 0)
or two-term (N =1) HB ansatz (2.9) with the HB ingredients computed by the fifth-
order Lax—Friedrichs WENO scheme are shown in Figure 5.9 (right), which behave as
O(w™1) and O(w™?) as estimated by (4.16) and (4.17), respectively, for the one-term
and two-term expansions.

When N =1, the HB coefficient v; only has first-order accuracy O(hg) which is
dominant over the accuracy of 7 and vy, and thus the overall error Eioa in (4.17)
reduces to

5 Fuaw =0 ((1/0") + 001 + 0wy +0 (),

where the butterfly compression is not used and thus its error does not appear in the
above. When the O((1/w)?) term is larger than the other terms combined, the first
error term dominates so that we can observe the second-order asymptotic convergence
in 1/w clearly; however, once w is so large that the sum of three terms, O(h3) +
O(whj) + O(%), dominates, the overall error nearly saturates since the O(why) term
increases slowly as w does. Such convergence behavior can be seen clearly in Figure
5.9.

When N =0, v, disappears in the HB expansion and vy has third-order accuracy
O(h}) which is dominant over that of 7; hence, the overall error Fioga) in (4.16) reduces
to

(5.3) Eiotal = O(1/w) + O(h3) + O(why),

where the butterfly compression is not used and thus its error does not appear in the
above. When the O(1/w) term is larger than the other terms combined, then the first
error term dominates so that we can observe the first-order asymptotic convergence
in 1/w clearly for a much broader band of w. Such convergence behavior can be seen
clearly in Figure 5.9.
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Fic. 5.10. CPU time (left) and storage units (right) for computing KV, K52V and K52% (and
its inverse) with problem dimension d=2. Top: constant media with an open square inclusion. The
largest data point corresponds to 640 wavelengths per direction. Bottom: constant-gradient media
with an open square inclusion. The largest data point corresponds to 400 wavelengths per direction.

5.3. Complexity validation. In this subsection, we validate the CPU and
memory complexities of the proposed scheme claimed in subsections 4.2.2; 4.2.3, and
4.2.4 using the constant and constant-gradient medium for d =2 and d =3.

5.3.1. 2D domains. For the constant medium, we consider the computational
domain [0,2]? with an open square inclusion of side length 0.8m, as described in
subsection 5.1.1. The domain and the inclusion are discretized with PPW n, = 10
and n, = 500, respectively. We vary the frequency and cell count from w = 107 and
N, = 40,401 to w = 320w and N, = 40,972,801, respectively. Note that w = 3207
corresponds to 640 wavelengths per direction. Each simulation uses 64 Cori Haswell
nodes. The CPU time and memory requirement for computing K2V, K%2?, and K*2¢
(and its inverse) are plotted in Figure 5.10 (top). Note that the value of N; for each
sample of N, is not shown here. For the memory requirement, all discretized integral
operators scale at most as O(N, log? N,) as expected. For the computational time,
Kv?? and K*?% scale at most as O(N, log? N,), and K*?¥ scales as O(NZ/G), which
can be further improved by additional matrix partitioning or analytical interpolation-
based compression. We note that the time for K*2? is about eight times faster than
KV when w = 320m.

For the constant-gradient medium, we consider the computational domain [0, 1]
with an open square inclusion of side length 0.8, as described in subsection 5.1.1.
The domain and the inclusion are discretized with PPW n, = 10 and n, = 500,
respectively. We vary the frequency and cell count from w = 12.57 and N, = 63,001
to w = 2007 and N, = 16,008,001, respectively. Note that w = 2007 corresponds to
400 wavelengths per direction. Each simulation uses 64 Cori Haswell nodes. The CPU
time and memory requirement for computing K2V, K2 and K*?° (and its inverse)
are plotted in Figure 5.10 (bottom). Just like the constant medium, the memory
requirement and CPU time mostly scale as at most O(N, log2 Ny).
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FiG. 5.11. CPU time (left) and storage units (right) for computing KV2V with problem di-
mension d = 3. Top: constant media. The largest data point corresponds to 40 wavelengths per
direction. Bottom: constant-gradient media. The largest data point corresponds to 54 wavelengths
per direction.

5.3.2. 3D domains. For the constant medium, we consider the computational
domain [0,0.5]® as described in subsection 5.1.2. The domain is discretized with PPW
np =95. We vary the frequency and cell count from w =107 and N, = 262 = 17,576 to
w =807 and N, = 2013 = 8,120,601, respectively. Note that w = 807 corresponds to
40 wavelengths per direction. Each simulation uses 64 Cori Haswell nodes. The CPU
time and memory requirement for computing Kv2V are plotted in Figure 5.11 (top). As
estimated in subsection 4.2.2, the memory requirement scales as O(N, log® N,,), and
the CPU time scales as O(Nf/g). From subsection 4.2.2, the matrix entry computation
requires O(N,log? N,)) and the IDs require O(N;l/ 3). Both theoretical curves are
plotted in Figure 5.11 (top). This suboptimal CPU complexity for the IDs can be
further improved via analytical interpolation schemes.

For the constant-gradient medium, we consider the domain [0,0.52]® as described
in subsection 5.1.2. The domain is discretized with PPW n, = 4.56. We vary the
frequency and cell count from w = 87 and N, = 36> = 46,656 to w = 647 and N, =
2623 = 17,984, 728, respectively. Note that w = 647 corresponds to 54 wavelengths per
direction. Each simulation uses 64 Cori Haswell nodes. The CPU time and memory
requirement for computing K?2% are plotted in Figure 5.11 (top). The conclusion is
very similar to the case of constant media.

6. Conclusion. We present a fast and accurate scheme based on the Hadamard—
Babich integrator for solving high-frequency Helmholtz equations in smooth, inhomo-
geneous media with arbitrary sources. The scheme low-rank compresses the phase and
HB coefficients in the HB integrator with Chebyshev interpolation by solving their
governing equations via Lax—Friedrichs WENO schemes with point sources located at
the Chebyshev nodes. Once compressed, the phase and HB coefficients are used in the
butterfly and HODBF compression of the resulting HB integrator discretized using
N, cells. Construction and application of the HB integrator require O(N, log2 Ny)
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CPU time and storage units. The scheme can also handle scattering problems involv-
ing sound-hard inclusion in the computational domain. In addition, the new scheme
requires a much smaller number of discretization PPW compared to finite-difference
solvers. As a result, the scheme can model wave propagation for inhomogeneous me-
dia in so far the largest 2D and 3D domains in terms of wavelength volume on a
state-of-the-art supercomputer at Lawrence Berkeley National Laboratory. Future
research directions include extension of the proposed scheme to nonsmooth media or
those media permitting presence of caustics, as well as to Maxwell’s equations.

Appendix A. Computation of self-interaction terms.

A.1. 2D self-interaction terms. By the HB ansatz (2.9), we need to integrate
the leading-order term, which reduces to integrating

folw,7) = z‘gHél)(wT(r, r0))
(A1) = igHél)(wn(rﬂr —ro|)

over the cell ¢; of size h with respect to ro, where r is the center of c¢;. Here the
leading HB coefficient is constant and is suppressed for now.

LEMMA A.1. The integral

I(r) = / | HY (wn(r)|r = ro|)dro

can be reduced to evaluating

1 T hnoo.) (1) hnow .
A2 I(r)= H — | df+4
(A.2) () lS /0 ( 2cosf ) T

(now)? 2cosf *

)

where ng =n(r), and we need to use the Bessel function to evaluate the above integral.

Proof. The integral I can be reduced to the integration over a cell of size h
centered at the origin. We further partition this cell into eight equal triangles. By
using the geodesic polar coordinates centered at the origin, the integral I can be
reduced to evaluating the following integral over one triangle:

5 Pra
. r)= wnor)rdr.
A3 I(r)=8 [ db Y d
0 0
Using the relation

9 (eu®dw) =)

from [1, formula 9.1.30], we consider the integral

hngw

h
25050 1 2058
/2 Hél)(wnor) rdr= /2 H(gl)(t) tdt
0 0

(now)?
hngw
1 Zcos® )
- ey
oo | e @
1 hnow _ (1) ( hnow 21
A4 = H —
(A-4) (now)? |:2COSQ9 ! <200s9> * 7T:| ’
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where we have used formula 9.1.9 of [1] to obtain the constant term.
Now the integral I can be further reduced to

1 I hnow 1) hnow .
A. I(r)= H —_— 4
(A.5) (x) [s% (2cose> 4o+ 4i

(now)? 2cosf *

9

where we need to use the Bessel function to evaluate the above integral. This yields
formula (A.2). d

Therefore, we approximate the self term as
i/
[ ateixoydro [ [uote.ro) Y ontw)le —ro))|

(A.6) ~ vo(r,r)ifl(r) = 2\1/% Z’\Q/%I(r) = i[(r),

where I is defined in (A.2).

A.2. 3D self-interaction terms. Near the source in the 3D case, from formulas
(2.9) and (2.2) we have by keeping the leading-order term,

WT
e

0
Ant’

(A7) g(x,r0) =n

where ng is the slowness at the source, and we refer to [56] for the reduction process.
Formula (A.7) represents the 3D Green’s function near the source. What we need
is its integration over the 3D cube of side h. We first consider a special case.

A.2.1. Integration of Hankel in 3D: A special case. The basic idea of the
calculation is to write the integral of (A.7) over a cube of side h with source point at
the center, taken as the origin. The faces of the cube are the planes = = :I:%, y= :l:%7
and z = :l:%.

Since we have

WY (r) = jo(r) +igo(r)  [[1],10.1.1]

sinr —icosr

== [[1],10.1.11,10.1.12]

(A.8) =—i—,
which is a scaled form of (A.7), we start with the integral of h(()l)(r), where r is the

spherical polar radius.
We need to integrate this function over the cube of side h, so we need

Tl(k) 1
(A.9) Q= / / WV (ryr2dr dk,
SQ 0

where k is the unit vector direction of x = (x,y, z) and r1(k) is the value of r where
the ray k pierces through the surface of the cube of “radius” %, and Sy is the unit
spherical surface in R3.

We will integrate this over the tetrahedron,

h
0<z<§, O0<zr<z, O<y<uwz.
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So now let us consider the parameterization of k. Let the ray in direction k cut the
plane z =1 in (£,71,1) or (pcos¢,psing, 1), where p is the cylindrical polar radius
and ¢ is the azimuthal angle, varying from 0 to 7. We will integrate over the region
0<z< g, 0 <z <y, drawn as quite a small tetrahedron near the origin 0. The whole
cube of side h contains 48 of these small tetrahedra.

Equation (A.9) may be rewritten

r1(k) )
(A.10) Q:—48i/,/ e'"rdr dk,
5, Jo

where dk is the surface element of the unit sphere on which k lies, and S; is a part
of the unit spherical surface to be made precise below.

We parameterize k in the first instance by (£,7), which are 2 and y coordinates
in the plane z =1. Thus, we have

B /1+€2+n2_ /1+p2

Let us radically project the element dédn = p dp d¢ onto the unit sphere. Thus,

(A.11) k— (&mn,1) (pCOSgb,psinng,l).

1
A2 k=—— .
( ) d e cos ) d€ dn

Here 1 is the angle between the normal to the plane z =1 and k, i.e.,

1 1

A.13 costp = (0,0,1)T - (&,n, DT = .
(A.13) ( )" ( ) NETRNET:
Thus,

(A.14) k=2 _ pdpdo

Q@i ()t
From (A.9) and (A.14), we get

T ri(p)
(A.15) Q = —48i / de / reirdr— P
0 0 (14p?)2
h 1
(A.16) T1(p)=§(1+p2)2.

The r integral can be done easily using integration by parts:

71 ) 1 . 1 71 1 )
/ redr = [,re”} f/ —e""dr
0 ? 0 o ¢

1 .
— leelrl + [6”‘]61

i
=—jre +e" -1

(A.17) =e(1—iry) —1.

So, from (A.10),

/4 5 d
(A.18) Q:—48i/0 d¢/0 ¢(e“‘l(1—z‘r1)—1)ﬁ.
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Set

/ 1 1
A.19 = dp= dp .
(A.19) p =pcosg, P= s
Then

w/4 1
_ . 17,ir1(p) o _ 14 1
(A.20) Q- 48@/0 d¢/0 e (i) 1)

The function f(p’, @) is given by

/ — [otr1(P) (1 _ 5 _ # !
(A.Ql) f(p v¢) [e g (1 Wl(p)) 1} (1 + pQ)% COS(ﬁ7
where
_ 7
P= cos¢’
(A.22) ri(p) = g(l Wk

by (A.16) and (A.19).

A.2.2. Integration of Hankel in three dimensions: Generic case. For-
mula (A.7) represents the 3D Green’s function near the source. What we need is
its integration over the 3D cube of side h. To do that, we just need to carry out a
coordinate transformation to transfer the integral of hol derived in subsection A.2.1
to our current setting.

We have near the source

WT

9(r.ro) =0 —
-
= ’%“h“’(m)
Zzgrwh(l)(wndr — 1))
(A.23) = lzgrw h$ (wnor),

where r = |r — rg|.
The integration of the above Green’s function in the cell centered at the source

will be
mo"’ / / h( ) (wnor)r2dr dk
Sa
wnori (k) 2
mow// g
Ss w?nd wng
wnory (k) o )
= hy 7 (t) t° dt dk
47Tw2n(2) /Sz./o 0 (1)
)
A.24 - 0.,
( ) 47Tw2n(2)Q
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where @, is the scaled integral of @ as defined in (A.20) and hence is defined by the
following integration:

/4 1 . 1
Qs:-48{A d¢ﬂ;dd[ﬂ”wxl—iﬁ(M)_l](L;;%Sam¢

/4 1
(A.25) ——asi [ as [ ass.0)

0 0
The function f(p’, ) is given by

) 1
A2 ' d) = |eir(P (1 — ] —r
(A.26) 16, 9) = [0 = in o) = 1] TPy
where
(A.27) =P and ri(p) —wnot (14 )
. p_cosqb nd ri(p) =wnog p

by (A.22). Here r1(p) is scaled by the factor wng.

Appendix B. Numerical accuracy of the truncated 3D HB ansatz. Since
the HB ansatz (2.1) is based on Hankel functions, we may directly analyze the effect
of accuracy of the HB ingredients, such as the phase and HB coefficients, on the wave
solution. However, since, away from the point source, the HB ansatz is equivalent
to the traditional geometrical optics [42, 56], to avoid some technical details we will
consider the following truncated geometrical-optics ansatz (valid for 3D wave motion)
as a proxy for the truncated HB ansatz away from the point source:

N
(B.1) scolr o) = 3 )

s=0

eu.m'(r,rg)7

where r( is the source, r is the observation point, IV is an integer, 7 is the phase satis-
fying the eikonal equation, and {As}Y ; are amplitudes satisfying transport equations
[3, 4, 42, 56].

Since these A; functions are directly linked to the HB coefficients v; [4, 42, 56|, we
can assume that these Ay functions are computed to the same orders of accuracy as
vs away from the point source. Starting from this assumption, we briefly analyze the
error between gao(r,ro) and its numerical solution gl (r,ro) for any point r away
from the source rg.

When N =0, we have

i o h
9o (r,10) = géio (r,T0)| = Ao (r,10)e™ 7 ™0) — Af(r, 10 )€™ ™ (7o)
(B.2) < O(h) + O(wh}).
When N =1, we have
! . h
|gGO (I‘, 1‘0) - ggO (I‘, 1‘0)| < |A0 (I‘, rO)elWT(rmO) - Ag (I’, 1‘0)@“")7— (r.ro) ‘
1 ) 4
+ ;|A1(I‘,I‘O)e""7(rvl‘o) _ A?(nro)ezwrh(r,ro)'
h
<00) + 0(wnd) + 0 (22) + otnf

w

(B.3) :om®+mm®+o<%>.
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Therefore, away from the point source we will use the above geometrical-optics

estimates as the proxy for the truncated HB estimates in the total error estimates.
On the other hand, near the source but excluding the source, such truncated HB
estimates also hold since we have the following two observations: (1) the HB ansatz
is an uniformly asymptotic solution to the point-source Helmholtz equation so that it
can be treated as the exact solution of the point-source equation, and (2) the computed
HB ingredients in the truncated HB expansion are initialized near the point source
according to specified orders of accuracy.
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