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We develop a deep learning approach to extract ray directions at discrete locations 
by analyzing highly oscillatory wave fields. A deep neural network is trained on a set 
of local plane-wave fields to predict ray directions at discrete locations. The resulting 
deep neural network is then applied to a reduced-frequency Helmholtz solution to 
extract ray directions, which are further incorporated into a ray-based interior-penalty 
discontinuous Galerkin (IPDG) method to solve the corresponding Helmholtz equations at 
higher frequencies. In this way, we observe no apparent pollution effects in the resulting 
Helmholtz solutions in inhomogeneous media. Our 2D and 3D numerical results show that 
the proposed scheme is very efficient and yields highly accurate solutions.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

The high-frequency Helmholtz equation is numerically hard to solve. The Shannon’s sampling principle [35] states that 
a necessary condition to solve the high-frequency Helmholtz equation is that the mesh size h and frequency ω satisfies 
the relationship: h = O

(
ω−1

)
. Thus, if the ambient dimension of the Helmholtz equation is d, the degrees of freedom 

(DOFS) are O
(
ωd

)
, which means that solving the Helmholtz equation needs a large complexity if the frequency is high. 

However, this complexity is difficult to achieve numerically. The difficulty is mainly due to the pollution effect in error 
estimates for finite element methods [3,4,22]. The pollution effect states that the ratio between the numerical error and the 
best approximation error from a discrete finite element space is ω dependent. This will lead to a difficulty in developing 
an accurate and stable discretization when the frequency ω is high and the above relation h = O

(
ω−1

)
is maintained. In 

this paper, inspired by ray theory and related micro-local analysis, we develop a deep learning approach to extract ray 
directions from a reduced-frequency Helmholtz solution, which are further incorporated into an IPDG method to solve 
the corresponding high-frequency Helmholtz equation in inhomogeneous media, leading to a new IPDG method with no 
apparent pollution effect for Helmholtz equations.
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Ray theory provides a powerful asymptotic method for treating high-frequency wave phenomena [28,1,2]. Microlocal 
analysis is built upon ray theory but is much further developed [39]. In mathematical analysis, microlocal analysis consists 
of Fourier-transform related techniques for analyzing variable-coefficient partial differential equations, including Fourier 
integral operators, wavefront sets, and oscillatory integral operators, so that such analysis allows localized scrutiny not 
only with respect to location in space but also with respect to cotangent directions at a given point [39]. Since wave 
singularities propagate along characteristics, applying microlocal analysis to spatial wave fields will reveal cotangent-space 
related characteristic (or ray) information at each spatial point [6,31,32,5]. Moreover, such localized ray information can 
be incorporated into a finite-element basis so that one can design effective numerical methods to solve wave equations 
[12,13,10,7,25].

The notion of numerical microlocal analysis (NMLA) method was first proposed in [6]. Assuming that the to-be-processed 
data are solutions of Helmholtz equations, the authors in [6] designed a Jacobi-Anger expansion and Fourier-transform based 
plane-wave analysis method to process Dirichlet observables collected on a sphere around each to-be-analyzed point. Later, 
authors in [27] improved the method in [6] by using L1 minimization instead of Tikhonov regularization to obtain much less 
noise-sensitive results. To overcome stability issues and improve accuracy in identified ray directions, the method in [6] was 
further developed in [5] to analyze impedance observables in a similar setup; to deal with multiple plane waves or point 
sources arriving at an observation point, the authors of [5] further developed a decomposition filter with Gaussian weights. 
The NMLA method is used for numerically and locally finding crossing rays and their directions from samples of wave-fields 
[6,5]. Comparing to other methods, such as the Prony’s method [8] and the matrix pencil method [21], that perform similar 
tasks, the NMLA is simpler and more robust.

In comparison to the approaches in [6,5], the NMLA method in [25] is much straightforward and easy to implement in 
the sense that fast Gaussian wavepacket transforms are applied directly to the given oscillatory wavefield, where the method 
neither assumes the underlying model being Helmholtz nor preprocesses the input data into Dirichlet or impedance data 
on a certain sphere around an observation point, and the relevant ray directions are encoded into cotangent directions in 
terms of coefficients of Gaussian wavepacket expansions.

In the above works on numerical microlocal analysis [6,5,25], ray directions are extracted via hard-core numerical anal-
ysis. Motivated by recent development in deep learning and related computational methodologies [38,37,36,9], we develop 
a deep learning approach to train a deep neural network (DNN) on a set of local plane-wave fields to predict ray direc-
tions at discrete locations, resulting in DNN based microlocal analysis (DNN-MLA) method. Our deep neural network (DNN) 
based ray-direction extraction method provides a nonlinear parametrized “solution operator” for mapping a highly oscil-
latory wave field into ray directions, once the DNN is trained on a set of plane waves and corresponding ray directions. 
We emphasize that our new method of extracting ray directions does not require the input training oscillatory data to be 
Helmholtz solutions, which is similar to the method in [25]. This original DNN based microlocal analysis method is our first 
contribution.

To solve high-frequency Helmholtz equations, we further apply the DNN-MLA method to a reduced-frequency Helmholtz 
solution to extract ray directions, which are further incorporated into an interior penalty discontinuous Galerkin (IPDG) 
method to solve the high-frequency Helmholtz equation. This is our second contribution.

Our third contribution is to provide an error analysis for the newly developed ray-based IPDG (ray-IPDG) method. The 
theorem indicates that, in the high-frequency regime, when the frequency parameter ω is large, the L2 error of the numer-

ical solution is dominated by the mesh size and the approximation error in ray directions.

1.1. The high-frequency Helmholtz problem

Let ω > 0 be the frequency parameter and � ⊂ Rd be the computational domain, where d = 2 or 3 is the dimension. 
Our goal is to find the unknown wave field u such that

−∇2u − (ω/c)2u = f in �, (1.1)

where we may impose impedance boundary conditions, Cauchy conditions or perfectly matched layer (PML) boundary 
conditions. Here the wave speed c is a smooth function with positive lower bound cmin and upper bound cmax , and f ∈
L2(�) is the source function. We will apply the idea of “probing” from [12] for solving the high-frequency Helmholtz 
problem. Let x ∈ � and f = 0. We consider the following geometric optics ansatz (cf. [24,29,34,1,33,11]) for the Helmholtz 
equation

u(x) = superposition of
{
An(x)e

iωφn(x)
}N

n=1
+O

(
ω−1

)
,

where N is the number of wavefronts passing through each point, An and φn are respectively the amplitude and phase 
functions. Note that the phase function satisfies the Eikonal equation |∇φn | = c−1 . Throughout the paper, to simplify the 
presentation, we will assume that N is the same at all points, so that there are N dominant wavefronts at each point. The 
functions An and φn are independent of the frequency ω, but depend on the wave speed c(x). We will assume that the 
functions An and φn are locally smooth. Consider a point x0 ∈ � in the computational domain. The Taylor expansion of each 
φn for |x− x0| < h ≪ 1 is given by
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φn(x) = φn (x0) + |∇φn (x0)|dn · (x− x0) +O

(
h2

)
,

where dn := ∇φn(x0)
|∇φn(x0)| is the ray direction. Similarly, the Taylor expansion of An gives

An(x) = An (x0) + ∇An (x0) · (x− x0) +O

(
h2

)
.

Hence, each wave component in the solution u(x) can be written as

An(x)e
iωφn(x) = Bn (x− x0) e

i(ω/c(x0))dn·(x−x0) +O

(
h2 + ωh2 + ω−1

)
,

where Bn(x) = eiωφn(x0) (A (x0) + ∇An (x0) · x) is a linear function. By taking h ∼ O
(
ω−1

)
, we see that u(x) can be approx-

imated by superposition of products of a linear function and a plane wave with an error of O
(
ω−1

)
. This motivates us to 

use products of bilinear functions with eiω/c(x0)dn ·(x−x0) as local basis.

1.2. Probing of ray directions

To solve the high frequency Helmholtz equation (1.1), the above discussion motivates the use of functions eiω/c(x0)dn ·(x−x0)

as local basis. Thus, the ray-based IPDG method [10] will be used for solving the high frequency Helmholtz equation. The 
most important step is to determine the local ray directions dn . To do so, we need to compute the solution of a reduced 
frequency Helmholtz equation

−∇2ũ − (ω̃/c)2ũ = f in �, (1.2)

where ω̃ < ω is a reduced frequency. After having this reduced frequency solution, we may use the Gaussian wavepacket 
transform based NMLA method to find the ray directions from the reduced frequency solution as proposed in [25]. But in 
this paper, we propose a deep learning approach to extract those ray directions. Finally, we use the computed ray directions 
to form the local basis for the ray-based IPDG method to solve the high frequency Helmholtz equation. We summarize the 
steps as follows:

1. Use the standard IPDG method to solve the reduced-frequency Helmholtz equation;
2. Use a deep learning or NMLA method to compute ray directions;
3. Use the computed ray directions to form the basis for the Ray-IPDG method;

4. Use the Ray-IPDG method to solve the high-frequency Helmholtz equation.

In order to solve the high frequency Helmholtz equation to a certain accuracy, our goal is to develop a ray-based IPDG 
method to achieve this, and further more the ray-based IPDG method will use much less computational time and cost than 
the standard IPDG method does.

1.3. Related works

In a recent survey [20], the authors have given a quite comprehensive review of construction and properties of Trefftz 
variational methods for the Helmholtz equation. Since such methods use oscillating basis functions in the trial spaces, they 
may achieve better approximation properties than classical piece-wise polynomial spaces. So far, as stated in [20], it is hard 
to make unequivocal statements about the merits of exact Trefftz methods in that theory developed in the literature such 
as [18,19,16] fails to provide information about the crucial issue of ω-robust accuracy with ω-independent cost, and these 
methods provide no escape from the pollution error.

Since Trefftz finite-element methods require test and trial functions to be exact local solutions of the Helmholtz equation, 
these methods are able to easily deal with discontinuous and piece-wise constant wave speeds. However, when the wave 
speed is smoothly varying, in general there are no exact analytical solutions for the underlying Helmholtz equation so that 
no analytical Trefftz functions are available either. Therefore, approximate Trefftz functions are appealing for problems with 
smoothly varying wave speeds; see [7] for ray-based modulated plane-wave discontinuous Galerkin methods and [23] for 
generalized plane-wave numerical methods, which are two examples of such approximate Trefftz methods.

As stated in [20], the policy of incorporating local direction of rays is particularly attractive for plane-wave based approxi-
mate Trefftz methods, since plane-wave basis functions naturally encode a direction of propagation, and overall accuracy may 
benefit significantly from a priori directional adaptivity [30,26,15]; moreover, the survey [20] also remarks that this strat-
egy appears as the most promising way to achieve ω-uniform accuracy with degrees of freedom that remain ω-uniformly 
bounded or display only moderate growth as ω → ∞. On the one hand, the methods in [30,15] are able to incorporate 
ray directions only when the underlying geometry is simple and the wave speed is constant, in which the resulting ray 
directions can be computed on the fly; on the other hand, the works in [12,13,10,7,25] have developed such ray-based 
plane-wave methods for smoothly varying wave speeds, in which ray directions are obtained a priori in some ingenious 
ways.
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From this perspective, the method proposed in this article can be viewed as a plane-wave based approximate Trefftz 
method as well in that we develop a versatile approach to obtain ray directions from highly oscillatory wave fields by 
carrying out numerical microlocal analysis via a deep neural network and further incorporate these directions into an IPDG 
method.

2. The ray-based IPDG method

We will present our ray-based method in this section. In Section 2.1, we will present the variational formulation and the 
approximation space. In Section 2.2, we will give an error estimate on using our basis functions to approximate the solution.

2.1. Method description

We let � = [0, 1]d be the computational domain. We consider a uniform partition, denoted as TH , of the domain � with 
mesh size H . For each element K ∈ TH , we further consider a set of nodal points {x̂l,K }L

l=1
, where L is the total number of 

nodal points within K . We will use these L points to define the basis functions for each element K . We define FH , F I
H , and 

F B
H to be respectively the set of all faces, interior faces and boundary faces of the partition TH . We also define NE to be the 

number of coarse elements.

Next, we define the approximation space. Let K ∈ TH be an element. There are 2d standard Lagrange-type bilinear 
basis functions on K . Let xi,K be the vertices of K and ϕ j,K be the standard Lagrange-type bilinear basis on K such that 
ϕ j,K

(
xi,K

)
= δi j . For each element K ∈ TH , we define �K as the set of ray directions in K . In particular, each entry d ∈ �K

corresponds to a ray direction at the nodal point {x̂l,K }L
l=1

. To start with, we assume that there is only one ray at each nodal 
point so that there are L entries in �K ; we will deal with the case of multiple rays passing through a nodal point later. For 
each dl,K ∈ {dl,K }L

l=1
= �K , we define the phase function φ̂l,K : K → R by

φ̂l,K (x) = 1/c(x̂l,K )dl,K · (x− x̂l,K ). (2.1)

Given a set of directions �K for K , we define the basis functions by

ϕ j,K (x)eiωφ̂l,K (x), dl,K ∈ �K ,1 ≤ l ≤ L,1 ≤ j ≤ 2d. (2.2)

Note that there are totally 2dL basis functions for each element K when we assume that there is only one ray passing 
through each nodal point. We denote the local approximation space by V H (�K ), which consists of linear combinations of 
these basis functions over C, and the global approximation space by

V H = �K∈TH
V H (�K ) .

We remark that the choice of �K will be presented in Section 3. Next, we discuss the IPDG formulation for the Helmholtz 
equation with different boundary conditions.

2.1.1. Impedance boundary condition
Consider the Helmholtz problem (1.1) with an impedance boundary condition:

∇u · n + i(ω/c)u = g on ∂�.

Following the derivation of the standard IPDG method [17], we obtain the following scheme for this problem: Find uH ∈ V H

such that for any vH ∈ V H ,

aH (uH , vH ) − ω2
(
c−2uH , vH

)
L2(�)

= ( f , vH )L2(�) + (g, vH )L2(∂�) (2.3)

where aH is given by

aH (u, v) :=
∫

�

∇u · ∇vdx−
∫

F I
H

{{∇u}} · �v̄�ds −
∫

F I
H

�u� · {{∇v}}ds + ap

H

∫

F I
H

�u� · �v�ds + i

∫

F B
H

ωc−1uv̄ds

with ap > 0 serving as the penalty parameter, which is taken to be large enough. Here we have used the usual average and 
jump operators for discontinuous Galerkin methods. Let K± ∈ TH be two elements sharing a face F ∈ F I

H , and n± be the 
outward normal of K± , which is perpendicular to F . Let u be a smooth scalar function defined on K± . Then,

{{∇u}} := 1

2

(
∇u+ + ∇u−)

, �u� := u+n+ + u−n−.

4
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‖φn(x) − φ̂n,l(x)‖L2(K )

≤
∥∥φn(x) − φn

(
x̂l,K

)
− ∇φn

(
x̂l,K

)
·
(
x− x̂l,K

)∥∥
L2(K )

+
∣∣∇φn

(
x̂l,K

)∣∣ ∥∥(
dn,l,K − d̂n,l,K

)
·
(
x− x̂l,K

)∥∥
L2(K )

� H2|φn|H2(K ) + εH1+ d
2 ‖φn‖W 1,∞(K ) .

So, we have

‖φn(x) − φ̂n,l(x)‖L2(K ) � H2|φn|H2(K ) + εH1+ d
2 ‖φn‖W 1,∞(K ) . (2.13)

Similarly, we have

‖∇(φn(x) − φ̂n,l(x))‖L2(K ) � H|φn|H2(K ) + εH
d
2 ‖φn‖W 1,∞(K ) . (2.14)

Using the triangle inequality and the assumption (2.9), we obtain

‖u(x) − u I (x)‖L2(K )

≤

∥∥∥∥∥∥

N∑

n=1

An(x)e
iωφn(x) −

N∑

n=1

2d∑

j=1

An

(
x j,K

)
ϕ j,K (x)eiωφn(x)

∥∥∥∥∥∥
L2(K )

+ 1

L

∥∥∥∥∥∥

N∑

n=1

∑

j,l

An

(
x j,K

)
ϕ j,K (x)

[
eiωφn(x) − eiωφ̂n,l(x)

]
∥∥∥∥∥∥
L2(K )

+O

(
H

d
2 ω−(1− d−3

2 )
)

≤
N∑

n=1

∥∥∥∥∥∥
An(x) −

2d∑

j=1

An

(
x j,K

)
ϕ j,K (x)

∥∥∥∥∥∥
L2(K )

+ 1

L

N∑

n=1

∑

j,l

‖An‖L∞(�)

∥∥∥eiωφn(x) − eiωφ̂n,l(x)
∥∥∥
L2(K )

+O

(
H

d
2 ω−(1− d−3

2
)
)

�H2
N∑

n=1

|An|H2(K ) + ω

N∑

n=1

‖An‖L∞(K )‖φn(x) − φ̂n,l(x)‖L2(K ) +O

(
H

d
2 ω−(1− d−3

2 )
)

Summing this inequality for all K ∈ TH and using (2.13), we have

‖u(x) − u I (x)‖L2(�)

� H2
N∑

n=1

|An|H2(�) + ω

N∑

n=1

‖An‖L∞(�)

(
H2|φn|H2(�) + εH ‖φn‖W 1,∞(�)

)
+O

(
ω−(1− d−3

2 )
)

� H2 + ωH2 + ωεH +O

(
ω−(1− d−3

2
)
)

Using the assumptions on H , we have

ω ‖u(x) − u I (x)‖L2(�) �ω−1 + ω2H2 + ωε +O

(
ω

d−3
2

)
. (2.15)
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Fig. 3.1.1. A schematic for our deep neural network (Algorithm 1).

• Activation function: The popular ReLU function (the rectified linear unit activation function) is a common choice for 
activation function in training deep neural network architectures.

In between the input and output layers, we use M−1 convolution layers with a constant rate of kernel size 3 with batch-
normalization activations on given parameters and pooling operation with Max pooling filter and a constant rate of kernel 
size 2. The neural network follows with a fully connected hidden layer and finally an output layer. The details of neural 
network are shown in Algorithm 1, and a schematic is shown in Fig. 3.1.1. As for the training optimizer, we minimize the 
loss function by using AdaMax, which is a stochastic gradient descent (SGD) type algorithm well suited for high dimensional 
parameter space.

In Algorithm 1, the neural network takes an input function u, which is defined on an element K . The output of the 
algorithm is a set of ray directions {d j}. Thus, our neural network will learn the ray directions from the wave field. This is 
our Algorithm 2. The algorithm takes a global wave field as input. Then the restriction of the wave field in each element 
Kk , k = 1, 2, · · · , NE , is entered into the neural network (Algorithm 1), which, in turn, returns the local ray directions. The 
output of the Algorithm 2 is the set of all ray directions.

Algorithm 1: Neural Network.

1 Function
{
d j

}N
j=1

= NN (u):

2 F1 = u

3 for k = 1 : M − 1 do

4 Fbk = BatchNorm(Fk) // batch-normalize activations
5

6 Fck = Conv(Fbk) // convolution operator
7

8 Fk+1 = Pool(Fck)

// pooling operation with Max pooling filter
9 end

10 F f = flat(F L+1) // flatten layer
11

12 F f c = FConn(F f ) // fully connected layer
13

14
{
d j

}N
j=1

= output(F f c) // output layer
15

Algorithm 2: Ray Learning.

1 Function
{{

d j,Kk

}N
j=1

}NE

k=1
= RAYLEARNING (u):

2 for k = 1 : NE do

3
{
d j,Kk

}N
j=1

= NN(u|Kk
)

// CNN followed by fully connected hidden layer
4 end

5 return
{{

d j,Nk

}N
j=1

}N�

k=1

Remark. In practice, it is desirable to learn the number of ray directions instead of fixing it. To do so, we will set an upper bound of 
the number of ray directions. That is, N is the upper bound of the number of ray directions. In the case that the solution has fewer ray 
directions, we will apply the singular value decomposition to remove the redundant directions. We will illustrate this in Section 4.5.

11









T.S.A. Yeung, K.C. Cheung, E.T. Chung et al. Journal of Computational Physics 465 (2022) 111380

Fig. 4.3.1. Example 3: ray directions and solutions.

Table 4.3.1

Root mean square error for Example 3.

relative error of directions relative error of solutions

NMLA 0.07571 0.01197

Neural Network(mse+norm1) 0.04347 0.00272

Neural Network(mse) 0.04996 0.00538

4.4. Example 4

For the fourth numerical example, we will take the wave field as

u3 =
√

ωH
(1)
0

(
ω

∣∣x− x0,1
∣∣) + 0.5

√
ωH

(1)
0

(
ω

∣∣x− x0,2
∣∣)

where x0,1 = (2, 2) and x0,2 = (−0.5, 2). We use the same grid setting as in Example 1. Fig. 4.4.1 shows a plot of exact 
directions, approximate directions by the neural network, the reduced frequency IPDG solution, and the high frequency 
ray-IPDG solution from the approximate directions.

Fig. 4.4.1. Example 4: ray directions and solutions.
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Fig. 4.8.1. 3D example 1, L2 relative error is 0.0399. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4.8.2. 3D example 2, L2 relative error is 0.0252.

reduced frequency IPDG solution and the high frequency ray-IPDG solution. The relative error of our approximate solution 
is 0.0252.

For the third numerical example, we will take the wave field as

u10 =
√

ωH
(1)
0 (ω |x− x0|)

where x0 = (2, 2, 2), and the wave speed c = 1. The domain and mesh are the same as the previous example. For this 
example, we take two points in each element, and our neural network will learn one ray direction in each of these two 
points. Fig. 4.8.3 shows the reduced frequency IPDG solution and high frequency ray-IPDG solution. The relative error of our 
approximate solution is 0.020104.

19
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Fig. 4.8.3. 3D example 3, L2 relative error is 0.020104.

Fig. 4.8.4. 3D example 4, L2 relative error is 0.024663.

For the fourth 3D numerical example, we will take the wave field as

u11 =
√

ωH
(1)
0

(
ω

∣∣x− x0,1
∣∣) + 0.5

√
ωH

(1)
0

(
ω

∣∣x− x0,2
∣∣)

where x0,1 = (2, 2, 2) and x0,2 = (−0.5, −0.5, 2]). We also let the wave speed c = 1. The domain and mesh are the same 
as the previous example. For this example, we take two points in each element, and our neural network will learn two 
ray directions in each of these two points. Fig. 4.8.4 shows the reduced frequency IPDG solution and the high frequency 
ray-IPDG solution. The relative error of our approximate solution is 0.024663.

20





T.S.A. Yeung, K.C. Cheung, E.T. Chung et al. Journal of Computational Physics 465 (2022) 111380

[21] Yingbo Hua, Tapan K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. 
Acoust. Speech Signal Process. 38 (5) (1990) 814–824.

[22] F. Ihlenburg, I. Babuska, Solution of Helmholtz problems by knowledge-based fem, Comput. Assist. Mech. Eng. Sci. 4 (1997) 397–415.
[23] L.M. Imbert-Gerard, B. Despres, A generalized plane-wave numerical method for smooth nonconstant coefficients, IMA J. Numer. Anal. 34 (3) (2014) 

1072–1103.

[24] Harold Jeffreys, On certain approximate solutions of linear differential equations of the second order, Proc. Lond. Math. Soc. s2–23 (1) (1925) 428–436.
[25] Chi Yeung Lam, Jianliang Qian, Numerical microlocal analysis by fast Gaussian wave packet transforms and application to high-frequency Helmholtz 

problems, SIAM J. Sci. Comput. 41 (5) (2019) A2717–A2746.
[26] Chi Yeung Lam, Chi-Wang Shu, A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying 

wavenumber, Comput. Methods Appl. Mech. Eng. 318 (2017) 456–473.
[27] Yanina Landa, Nicolay M. Tanushev, Richard Tsai, Discovery of point sources in the Helmholtz equation posed in unknown domains with obstacles, 

Commun. Math. Sci. 9 (3) (2011) 903–928.
[28] P. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24 (1957) 627–645.
[29] Erich W. Marchand, Electromagnetic Theory and Geometrical Optics (Morris Kline and Irvin W. Kay), 1966.
[30] Ngoc Cuong Nguyen, Jaime Peraire, Fernando Reitich, Bernardo Cockburn, A phase-based hybridizable discontinuous Galerkin method for the numerical 

solution of the Helmholtz equation, J. Comput. Phys. 290 (2015) 318–335.
[31] J. Qian, L. Ying, Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation, J. Comput. Phys. 229 (2010) 7848–7873.
[32] J. Qian, L. Ying, Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation, SIAM J. Multiscale Model. Simul. 

8 (2010) 1803–1837.
[33] Jianliang Qian, William Symes, An adaptive finite-difference method for traveltimes and amplitudes, Geophysics 67 (2001) 08.
[34] Rayleigh Lord, On the propagation of waves through a stratified medium, with special reference to the question of reflection, Proc. R. Soc. Lond. Ser. A, 

Contain. Pap. Math. Phys. Character 86 (586) (1912) 207–226.
[35] C.E. Shannon, Communication in the presence of noise, Proc. IEEE 86 (2) (1998) 447–457.
[36] Min Wang, Siu Wun Cheung, Wing Tat Leung, Eric T. Chung, Yalchin Efendiev, Mary Wheeler, Reduced-order deep learning for flow dynamics. The 

interplay between deep learning and model reduction, J. Comput. Phys. 401 (2020) 108939.
[37] Yating Wang, Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Min Wang, Deep multiscale model learning, J. Comput. Phys. 406 (2020) 109071.
[38] Tak Shing Au Yeung, Eric T. Chung, Simon See, A deep learning based nonlinear upscaling method for transport equations, arXiv preprint, arXiv:

2007.03432, 2020.
[39] M. Zworski, Semiclassical Analysis, Amer. Math. Soc., 2012.

22


	Learning rays via deep neural network in a ray-based IPDG method for high-frequency Helmholtz equations in inhomogeneous media
	1 Introduction
	1.1 The high-frequency Helmholtz problem
	1.2 Probing of ray directions
	1.3 Related works

	2 The ray-based IPDG method
	2.1 Method description
	2.1.1 Impedance boundary condition
	2.1.2 Cauchy boundary condition
	2.1.3 Perfectly matched layer (PML)

	2.2 Error analysis

	3 Learning ray directions via deep neural networks
	3.1 Deep neural network model
	3.2 The ray-based IPDG method

	4 Numerical examples
	4.1 Example 1
	4.2 Example 2
	4.3 Example 3
	4.4 Example 4
	4.5 Example 5
	4.6 Example 6
	4.7 Example 7
	4.8 3D examples

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


