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extract ray directions, which are further incorporated into a ray-based interior-penalty
discontinuous Galerkin (IPDG) method to solve the corresponding Helmholtz equations at

giﬁvgolrefr'mng higher frequencies. In this way, we observe no apparent pollution effects in the resulting
Ray tracing Helmholtz solutions in inhomogeneous media. Our 2D and 3D numerical results show that
Helmholtz equation the proposed scheme is very efficient and yields highly accurate solutions.

Discontinuous Galerkin © 2022 Elsevier Inc. All rights reserved.

1. Introduction

The high-frequency Helmholtz equation is numerically hard to solve. The Shannon’s sampling principle [35] states that
a necessary condition to solve the high-frequency Helmholtz equation is that the mesh size h and frequency w satisfies
the relationship: h = O(a)”). Thus, if the ambient dimension of the Helmholtz equation is d, the degrees of freedom
(DOES) are O (a)d), which means that solving the Helmholtz equation needs a large complexity if the frequency is high.
However, this complexity is difficult to achieve numerically. The difficulty is mainly due to the pollution effect in error
estimates for finite element methods [3,4,22]. The pollution effect states that the ratio between the numerical error and the
best approximation error from a discrete finite element space is @ dependent. This will lead to a difficulty in developing
an accurate and stable discretization when the frequency w is high and the above relation h = O (afl) is maintained. In
this paper, inspired by ray theory and related micro-local analysis, we develop a deep learning approach to extract ray
directions from a reduced-frequency Helmholtz solution, which are further incorporated into an IPDG method to solve
the corresponding high-frequency Helmholtz equation in inhomogeneous media, leading to a new IPDG method with no
apparent pollution effect for Helmholtz equations.
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Ray theory provides a powerful asymptotic method for treating high-frequency wave phenomena [28,1,2]. Microlocal
analysis is built upon ray theory but is much further developed [39]. In mathematical analysis, microlocal analysis consists
of Fourier-transform related techniques for analyzing variable-coefficient partial differential equations, including Fourier
integral operators, wavefront sets, and oscillatory integral operators, so that such analysis allows localized scrutiny not
only with respect to location in space but also with respect to cotangent directions at a given point [39]. Since wave
singularities propagate along characteristics, applying microlocal analysis to spatial wave fields will reveal cotangent-space
related characteristic (or ray) information at each spatial point [6,31,32,5]. Moreover, such localized ray information can
be incorporated into a finite-element basis so that one can design effective numerical methods to solve wave equations
[12,13,10,7,25].

The notion of numerical microlocal analysis (NMLA) method was first proposed in [6]. Assuming that the to-be-processed
data are solutions of Helmholtz equations, the authors in [6] designed a Jacobi-Anger expansion and Fourier-transform based
plane-wave analysis method to process Dirichlet observables collected on a sphere around each to-be-analyzed point. Later,
authors in [27] improved the method in [6] by using L! minimization instead of Tikhonov regularization to obtain much less
noise-sensitive results. To overcome stability issues and improve accuracy in identified ray directions, the method in [6] was
further developed in [5] to analyze impedance observables in a similar setup; to deal with multiple plane waves or point
sources arriving at an observation point, the authors of [5] further developed a decomposition filter with Gaussian weights.
The NMLA method is used for numerically and locally finding crossing rays and their directions from samples of wave-fields
[6,5]. Comparing to other methods, such as the Prony’s method [8] and the matrix pencil method [21], that perform similar
tasks, the NMLA is simpler and more robust.

In comparison to the approaches in [6,5], the NMLA method in [25] is much straightforward and easy to implement in
the sense that fast Gaussian wavepacket transforms are applied directly to the given oscillatory wavefield, where the method
neither assumes the underlying model being Helmholtz nor preprocesses the input data into Dirichlet or impedance data
on a certain sphere around an observation point, and the relevant ray directions are encoded into cotangent directions in
terms of coefficients of Gaussian wavepacket expansions.

In the above works on numerical microlocal analysis [6,5,25], ray directions are extracted via hard-core numerical anal-
ysis. Motivated by recent development in deep learning and related computational methodologies [38,37,36,9], we develop
a deep learning approach to train a deep neural network (DNN) on a set of local plane-wave fields to predict ray direc-
tions at discrete locations, resulting in DNN based microlocal analysis (DNN-MLA) method. Our deep neural network (DNN)
based ray-direction extraction method provides a nonlinear parametrized “solution operator” for mapping a highly oscil-
latory wave field into ray directions, once the DNN is trained on a set of plane waves and corresponding ray directions.
We emphasize that our new method of extracting ray directions does not require the input training oscillatory data to be
Helmholtz solutions, which is similar to the method in [25]. This original DNN based microlocal analysis method is our first
contribution.

To solve high-frequency Helmholtz equations, we further apply the DNN-MLA method to a reduced-frequency Helmholtz
solution to extract ray directions, which are further incorporated into an interior penalty discontinuous Galerkin (IPDG)
method to solve the high-frequency Helmholtz equation. This is our second contribution.

Our third contribution is to provide an error analysis for the newly developed ray-based IPDG (ray-IPDG) method. The
theorem indicates that, in the high-frequency regime, when the frequency parameter o is large, the L? error of the numer-
ical solution is dominated by the mesh size and the approximation error in ray directions.

1.1. The high-frequency Helmholtz problem

Let w > 0 be the frequency parameter and Q c RY be the computational domain, where d = 2 or 3 is the dimension.
Our goal is to find the unknown wave field u such that

—V2u—(w/0)*u=f ing, (1.1)

where we may impose impedance boundary conditions, Cauchy conditions or perfectly matched layer (PML) boundary
conditions. Here the wave speed c is a smooth function with positive lower bound cpj, and upper bound cnmax, and f €
1%(2) is the source function. We will apply the idea of “probing” from [12] for solving the high-frequency Helmholtz
problem. Let x € Q and f = 0. We consider the following geometric optics ansatz (cf. [24,29,34,1,33,11]) for the Helmholtz
equation

. N
u(x) = superposition of {An(X)E“""’” (")} 0™,
n=

where N is the number of wavefronts passing through each point, A, and ¢, are respectively the amplitude and phase
functions. Note that the phase function satisfies the Eikonal equation |V¢,| = c~!. Throughout the paper, to simplify the
presentation, we will assume that N is the same at all points, so that there are N dominant wavefronts at each point. The
functions A, and ¢, are independent of the frequency w, but depend on the wave speed c(x). We will assume that the
functions A, and ¢, are locally smooth. Consider a point xo € €2 in the computational domain. The Taylor expansion of each
¢n for |[x — x| <h « 1 is given by
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$1(X) = n (X0) + [Vbn (x0)] o - (x = x0) + O (1),

— V()
where dn = 55 G

is the ray direction. Similarly, the Taylor expansion of A, gives

An(X) = A (X0) + VAn (x0) - (x = X0) + O (h?) .
Hence, each wave component in the solution u(x) can be written as
An(x)e" ™) = B, (x — xg) ' (@/cF0)n-x=X0) 4 ) (h2 + wh® + a)‘l) :

where By (x) = e!“#0) (A (x9) + VAy (Xo) - X) is a linear function. By taking h ~ O (w™!), we see that u(x) can be approx-
imated by superposition of products of a linear function and a plane wave with an error of O (a)‘l). This motivates us to
use products of bilinear functions with ei®/c(*0)dn:(X=X0) a5 [ocal basis.

1.2. Probing of ray directions

To solve the high frequency Helmholtz equation (1.1), the above discussion motivates the use of functions e'®/¢(0)dn-(x~Xo)
as local basis. Thus, the ray-based IPDG method [10] will be used for solving the high frequency Helmholtz equation. The
most important step is to determine the local ray directions d,. To do so, we need to compute the solution of a reduced
frequency Helmholtz equation

—V2i—(@/0)i=f inQ, (1.2)

where @ < w is a reduced frequency. After having this reduced frequency solution, we may use the Gaussian wavepacket
transform based NMLA method to find the ray directions from the reduced frequency solution as proposed in [25]. But in
this paper, we propose a deep learning approach to extract those ray directions. Finally, we use the computed ray directions
to form the local basis for the ray-based IPDG method to solve the high frequency Helmholtz equation. We summarize the
steps as follows:

1. Use the standard IPDG method to solve the reduced-frequency Helmholtz equation;
2. Use a deep learning or NMLA method to compute ray directions;

3. Use the computed ray directions to form the basis for the Ray-IPDG method;

4. Use the Ray-IPDG method to solve the high-frequency Helmholtz equation.

In order to solve the high frequency Helmholtz equation to a certain accuracy, our goal is to develop a ray-based IPDG
method to achieve this, and further more the ray-based IPDG method will use much less computational time and cost than
the standard IPDG method does.

1.3. Related works

In a recent survey [20], the authors have given a quite comprehensive review of construction and properties of Trefftz
variational methods for the Helmholtz equation. Since such methods use oscillating basis functions in the trial spaces, they
may achieve better approximation properties than classical piece-wise polynomial spaces. So far, as stated in [20], it is hard
to make unequivocal statements about the merits of exact Trefftz methods in that theory developed in the literature such
as [18,19,16] fails to provide information about the crucial issue of w-robust accuracy with w-independent cost, and these
methods provide no escape from the pollution error.

Since Trefftz finite-element methods require test and trial functions to be exact local solutions of the Helmholtz equation,
these methods are able to easily deal with discontinuous and piece-wise constant wave speeds. However, when the wave
speed is smoothly varying, in general there are no exact analytical solutions for the underlying Helmholtz equation so that
no analytical Trefftz functions are available either. Therefore, approximate Trefftz functions are appealing for problems with
smoothly varying wave speeds; see [7] for ray-based modulated plane-wave discontinuous Galerkin methods and [23] for
generalized plane-wave numerical methods, which are two examples of such approximate Trefftz methods.

As stated in [20], the policy of incorporating local direction of rays is particularly attractive for plane-wave based approxi-
mate Trefftz methods, since plane-wave basis functions naturally encode a direction of propagation, and overall accuracy may
benefit significantly from a priori directional adaptivity [30,26,15]; moreover, the survey [20] also remarks that this strat-
egy appears as the most promising way to achieve w-uniform accuracy with degrees of freedom that remain w-uniformly
bounded or display only moderate growth as w — oco. On the one hand, the methods in [30,15] are able to incorporate
ray directions only when the underlying geometry is simple and the wave speed is constant, in which the resulting ray
directions can be computed on the fly; on the other hand, the works in [12,13,10,7,25] have developed such ray-based
plane-wave methods for smoothly varying wave speeds, in which ray directions are obtained a priori in some ingenious
ways.
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From this perspective, the method proposed in this article can be viewed as a plane-wave based approximate Trefftz
method as well in that we develop a versatile approach to obtain ray directions from highly oscillatory wave fields by
carrying out numerical microlocal analysis via a deep neural network and further incorporate these directions into an IPDG
method.

2. The ray-based IPDG method

We will present our ray-based method in this section. In Section 2.1, we will present the variational formulation and the
approximation space. In Section 2.2, we will give an error estimate on using our basis functions to approximate the solution.

2.1. Method description

We let Q =10, 1]¢ be the computational domain. We consider a uniform partition, denoted as 7y, of the domain € with
mesh size H. For each element K € Ty, we further consider a set of nodal points {X; 1<},L:1, where L is the total number of
nodal points within K. We will use these L points to define the basis functions for each element K. We define Fy, ]—',’,, and
F ,‘3 to be respectively the set of all faces, interior faces and boundary faces of the partition 7y. We also define N to be the
number of coarse elements.

Next, we define the approximation space. Let K € Tj; be an element. There are 2¢ standard Lagrange-type bilinear
basis functions on K. Let x; ¢ be the vertices of K and ¢; ¢ be the standard Lagrange-type bilinear basis on K such that
©jK (x,;K) = §jj. For each element K € 7y, we define Ok as the set of ray directions in K. In particular, each entry d € O
corresponds to a ray direction at the nodal point {X; 1<}1L:]. To start with, we assume that there is only one ray at each nodal
point so that there are L entries in @ ; we will deal with the case of multiple rays passing through a nodal point later. For
eachd; x {dl,K},L:1 = Ok, we define the phase function ?5“( :K— R by

bk (%) =1/cRy)dy g - (X — Ry K). 2.1)

Given a set of directions ® for K, we define the basis functions by
Qi keI eOp 1<I<L1<j<2" (2.2)

Note that there are totally 2¢L basis functions for each element K when we assume that there is only one ray passing
through each nodal point. We denote the local approximation space by Vg (®k), which consists of linear combinations of
these basis functions over C, and the global approximation space by

Vg =Tkery Vh (Ok).

We remark that the choice of ®k will be presented in Section 3. Next, we discuss the IPDG formulation for the Helmholtz
equation with different boundary conditions.

2.1.1. Impedance boundary condition
Consider the Helmholtz problem (1.1) with an impedance boundary condition:

Vu-n+i(w/c)u=g onoQ.

Following the derivation of the standard IPDG method [17], we obtain the following scheme for this problem: Find uy € Vy
such that for any vy € Vy,

2

aH (tuvH)—wZ (C7 ug,VHy :(fsVH)LZ(Q)+(gaVH)L2(E)Q) (2.3)

)LZ(Q)

where ay is given by

ag(u,v) = f Vu - Vvdx — /{{Vu} - [v]ds — /[[u]] -{Vvids + aﬁp /[[u]] - [vlds +i/ wc luvds
2 Fh F} Fl Fh

with ap > 0 serving as the penalty parameter, which is taken to be large enough. Here we have used the usual average and
jump operators for discontinuous Galerkin methods. Let K* € 7y be two elements sharing a face F € F!, and n* be the
outward normal of K*, which is perpendicular to F. Let u be a smooth scalar function defined on K*. Then,

{Vu}:==(Vut +vu7), [u]:=u'nt+un".

N =
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2.1.2. Cauchy boundary condition
Let 9Q =Tp UTy, where I'p and I'y are disjoint. Consider the Helmholtz problem (1.1) with the Cauchy boundary
condition:

u=gy onlp, and Vu-n=g; only,
where n is the unit outward normal vector on 9. We define the interior local approximation space
Vi ©) i=span [ c (0 :d e O, ¢ klan =0, 1< j =27

and the interior global approximation space Vy; := Ike7;, V| (®k). Then we solve the following problem: Find up €
Vy (®k) such that for any vy € Vy

af, (ug, vy) —w? (c‘zuH, vH) =(f, VH)12() s forany vy € V),

L2(Q)

qudes:/ngds, forany vy € Vy\Vy,

I'p I'p
/VuH-ands:/gszds, forany vy € Vy\Vy,
I'n I'n

C . .
where a}; is given by

_ _ a
af,(u, V) ::fVu - Vvdx — /{Vu} - [v]ds — f[[ul] -{Vv}ds + Ep /[[u}] - [v]ds.
o 7 ! !
2.1.3. Perfectly matched layer (PML) ~

Supposing that 2 is embedded in a larger domain € :=[—§, 1 + §]%, where § > 0 is the width of the PMLs. Typically,
we choose & to be approximately several wavelengths. Furthermore we assume that § is divisible by the mesh-size H. In
this way, we can divide € into (M + 28/H)? cubic _elements. We denote the set of all these elements by Th. Note that
Th C Th. Supposing that O is defined for all K € Ti1, we extend the _definition of the interior local approximation space

V5 (®k) and the interior global approximation space Vy; to the mesh TH. We denote the extended spaces by V° (®k) and
V,‘_’,, respectively. Then we introduce the PML function s(x):

1
s(x) ::W’ Y (X) _—(X Xix<0y(X) +(x—1) X{x>1)

where xs is the characteristic function of set S, Apy controls the magnitude of s(x), and § is the width of the PML. Define

5. 9 5
= (5 (x1) ax » S (Xa) X)

The IPDG scheme for the Helmholtz problem with PML boundary conditions is: Find uy € Vﬁ, such that

Ay (uy, vy) — 0° (c‘zuH, vH) =(f.vH)i2q). forany vy € Vj

L2(Q)

where
ay(u,v) ::/%w%?dx— /{%u}-[[ﬂ]ds— /[[u]]-{%?}ds+%p /[[u]] - [vlds
Q Fl Fl Fl

with ap the penalty parameter.
2.2. Error analysis

In this section, we will present an error estimate of approximating the solution u of (1.1) by the global approximation
space V. We first recall some results from [14]. Let bpg be an auxiliary bilinear form given by

bpc(u,v) =apg(u,v) +2a)2(c_2u, Vg, Yu,veV+Vy. (2.4)

We define the DG-norm as follows,
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1
WVlibe = D IVVIEge +H g VI, +@lviZ, + @1V g, (2.5)
KeTh

where
1 1
2 2 Z 2 2 2 Z 2
”ap |Iv]]”]_-ll.’ - “ap [IVII|IL2(E)1 ”v”}-g - ”v”LZ(E)'
EeF}, EcF]

Then we have the following continuity condition,

lapc(u, v)| < CeontllUllpG IVIIDG, Yu,v e Vy, (2.6)

and the following coercivity condition,

Ibpc (v, V)| > CoerllVlihg, Vv € Vy. (2.7)

Notice that we have assumed that the (penalty parameter a, is large enough; see [14]. We remark that the constants Ceont,
Ccoer and ap do not depend on w. Recall that the following Poincare inequality holds,

IVl < CoHIVIg ). ¥V € Hy(K), (2.8)

where, without loss of generality, we assume that C;, is the same for all elements K. On the other hand, we use the notation
a < b to denote the inequality a < Cbh, where C is a constant independent of w and H.

We will first prove an approximation result. We will assume that the following high-frequency asymptotic approximation
[1.2]

N
ux) =Y An(x)e "™ 1+ 0 (a)‘“—‘%) (2.9)

n=1

holds in each element K, where A, and ¢, are smooth functions. Here we have assumed that, when using the geometric
optics ansatz, there are multiple wavefronts passing through the point x, and we also assume that the number of wavefronts,
N, is the same for all elements to simplify the discussions. Notice that we skip the dependence of A, and ¢, on K to
simplify the notations.

On the other hand, we assume that the ray directions in ©® are sufficiently accurate. That is for the set of approximate

directions Ok = {an,l,,(}:l:l‘l:l. we have
sup dnik —dnik| <e, (2.10)

where & > 0 is small. Here, we use d,; x to denote the ray direction of ¢, at the point X; x and use an“( to denote the
corresponding approximate ray direction.

Lemma 2.1. Let u be the solution of (1.1). Assume that H = O(w ™). Assume further that wHCp /cmax < 1. Then there exists a function
uy(x) € Vy such that

d-3
lux) — w1 lne < € (0 (@) +wH +we) + GHIS 20, (211)

where Cp > 0 is a constant independent of H and w.

Proof. We first assume that the source term f =0 in (11). Let K € Ty. Let dyk := Ve (X.x) / |[Vén (R1,k)| be the ray
direction of Ap(x)e'®n® at X k. Next, we define the nodal interpolation of u on K by

N

1 L
urG0 =70 ) An (xj.k) @ (e,
n=1 jl
where
D1 (X) == n (X)) + |Vén (Rik) | dnk - (x—Rik) . (2.12)
and xj g, for j=1,2,-- .24, are the vertices of K. The above summation is over j=1,2,---,2¢ and =1,2,---,L. We

start with estimating the error of using the expansion (2.12) to approximate ¢,. Notice that

6
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n (%) = B (210,
< H(Pn %) = ¢n (X1.5) — Voo (R.x) - (X = Rp k) H 12(K)
+ |V (%) | | (dnsk — dnik) - (x =Rk | 2(k)

d
= H2|¢n|H2(K) +eH't2 ldnllw .00k -

So, we have

—~ d
[lpn (x) — ¢n,l(x)||L2(1<) S H2|¢n|H2(K) + eHT2 ||¢n||w1,00(1<) .

Similarly, we have

~ d
IV (@ (X) = ¢n 1)l 12k S Hlpnlp2 )y + €H2 llgnllwiook) -

Using the triangle inequality and the assumption (2.9), we obtain

lu) —urX)l2,

N N Zd
< Z An(x)elw¢n(x) _ Z Z An (Xj,K) 0K (X)elwqb,,(x)
n=1 n=1 j=1 2a)
Ly b d d=3
iwdn iwgn ¢ —(1-%2
I ZZAH (X)) @1,k (%) [e""¢ ) _ gl v'(">] +0 (sz (1-4 ))
n=1 j|l 20
N 2d
<D An0 = D An (%K) 9k ()
= = 12(K)
Iy &, d d-3
_ A llroo eiw¢n(x) _ eiwqbn,,(x) o (Hiw_(l_%))
+1 222 Al .
n=1 jl
; - d d—3
SH2Y | Anlzgoy + @ Y I Anllioe i) 6n(X) = G126, + O (H?w*“*T))
n=1 n=1

Summing this inequality for all K € 7y and using (2.13), we have

lu) —urll2(q)
N N i
SH2Y Muligy +© Y Anlie@) (H2 19l + 6H [dnllwigg ) + O (@017

n=1 n=1

< H? + wH? + weH + O (w_“_d%»

Using the assumptions on H, we have

d-3
O uE) — u Mg S + 0 H + 0 +0(07).

(213)

(2.14)

(2.15)
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Next, we estimate the gradient term. Using similar techniques as above, we have

V@) = ur))ll 2k

N N 2
<[ V(2 Anetn® — 373 An (x1.k) @ (R )
n=1 n=1 j=1 12(K)
1 N ; Lo d d-3
+7 V(Z D An (X)) 910 [e"‘"”"(x’ - e’“"”"-"")] ) +0 (H?a)T)
n=1 jl L2(K)
N 24
SO V(A0 = D7 An (x16) 95, 0)
n=1 j=1 12(K)
N 24
+ @llgnllwrcoy Y [ An) = An (X)) 911 ()
n=1 j=1 12(K)
N o~
+HTY Y Anlli) “eiw¢"(x) — el@Pni®) )
n=1 j,l
N o~
+) ) Al H V (el ™) _ iofni(X)) o T o (H%wd%)
n=1 j|l
N N N
SHY |Anlizo) + @H2 Y Anlyziey + ©H™ Y 1Al 6n () = dna (2 k)
n=1 n=1 n=1
N
+ @Y Anlloo i)l (%) — Gnill 20,
n=1
N d d—3
+0 Y Al IV (0 = riDll 2y + O (H2 T )
n=1

Summing this inequality for all K € 7y, using (2.13)-(2.14), and using the assumptions on H, we have
IVuE) —urx)ll2g)
SH+oH? + oH (H? + sH) + 02(H2 4+ 6H) + o(H + ) + 0 (07 (216)
d—
<o+ wH + (WH)? + we + (’)(a)73) .

We will now estimate the terms involving faces. First, we recall the trace inequality,

2 -1 2 2
”v”LZ(aK)SH |IVI|L2(K)+HIV|H1(K)' (2.17)
So,
1 1.1 1.1
02 [[u) =l zp S@ZHTZ [u() — w2 + @2 H2 [u(X) — 11 X)|y1(e)-
Moreover,

H™ 3 [u(x) — ur [l < H™ u®) — ui ()l 2(g) + 1) = w1 (X))

Combining all results, we obtain (2.11) for the case f =0.
Now, we consider the general case with non-zero source f. Let zx € H}(K) be the solution of

—V?zx — (w/c)’zx = f, inK. (218)

Here we assume that the problem (2.18) is well-posed. Then,

12k 5 o) — @/ 12K 12 gy = (f 200120
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Using the assumption wHC)/cmax < 1, there is a constant Cp such that

lzklipe < CoHII fll2(0)- (2.19)

Hence, (2.11) follows. 0O
Next, we prove a quasi-optimality result.

Lemma 2.2. Let u be the solution of (1.1) and uy € Vy be the solution of (2.3). Assume that 2cr_m21.la)HCl7 < Ccoer- We have

. d-3
lu=unllpe S _inf llu=viling+0 (07 ) +wH +we.
VHGVH

Proof. By the coercivity condition (2.7) and the Galerkin orthogonality,

Ceoerllu — unllpg <bpe(u —up, u—up)
=apc(u—uy, u—vy) + 20> (2 (u—uy), u— UH)2()
for all vy € V. So, we have
Ceoerllu — unllpg < Ceontlltt — unllng it = vallng + 2%y llu — unllf g -
Let z be the solution of the dual problem with source w?(u — ug), namely,
—Az— (w/c)zz = a)z(u —ug).
Using the same argument as in the proof of Lemma 2.1, we have
1200 = 210l = € (0 (07 ) + we ) + @*HCpllu — unlyz()- (2220)

By the definition of z and the consistency of the IPDG scheme, we have

2 2

o”|u —unllj> ) =apc(u —up, 2)
=apc(u—uy,z—2p)
<|lu—unllpcliz— zillpc-

We have
0 u—un g, = € (0 (07 ) +we) lu = unlloe + @ HCyllu — unllpllu — w2y
=C(0(0) +we) Iu = unlipe + @HCy lu — un g
So, if Zc;izna)HCb < Ccoer, We have
lu—unlpe < llu— vH||Dc+o(wd%3) + wH + we.
This completes the proof. O

Finally, we state the error bound, which proof is based on Lemma 2.1 and Lemma 2.2.

Theorem 2.3. Let u be the solution of (1.1) and uy € Vy be the solution of (2.3). Assume that the conditions on H stated in Lemma 2.1
and Lemma 2.2 hold. We have

d-3
lu=unlipg SO (@7 ) +wH + e + Hilfll2(0)- (2.21)

and

d—3
It — 2 S O (a)T—‘) +H+e+0 'Hlfll2) (2.22)

We remark that the convergence of the DG-norm (2.21) requires @H — 0.

9
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3. Learning ray directions via deep neural networks

In this section, we will present a machine learning approach to determine ray directions required in the ray-based basis
functions.

3.1. Deep neural network model

We will use the notation N to denote a neural network with M layers, where x is the input and y is the corresponding
output. We write

y=N;0):=0 (Wyo (---0 (W0 (Wix+Db1)+b2)---)+bum),

where 60 := (Wq,---,Wp, by, ---,by), W; are the weight matrices and b; are the bias vectors, and o is the activation
function. A neural network describes the connection of a collection of nodes (neurons) sitting in successive layers. The
output neurons in each layer are simultaneously the input neurons in the next layer. The data propagate from the input
layer to the output layer through hidden layers. The neurons can be switched on or off as the input is propagated forward
through the network.

Suppose we are given a collection of sample pairs {(xj, }’j)}y;p and the goal is then to find 6* by solving an optimization
problem
N
6* =argmin ) "loss(y;, N (x;; 0)),
6 4
j=1

where N; is the number of samples. Here, the function loss(y, N” (x s 9)) is known as the loss function. One needs to select
a suitable number of layers, a suitable number of neurons in each layer, a suitable activation function, the loss function, and
the optimizers for the network.

We will use a deep neural network N to model the process of determining ray directions for our basis functions. Let @
be the frequency of the high frequency Helmholtz equation (1.1) to be solved. Let @ be the reduced frequency that we use
to determine the ray directions as in the NMLA method. Recall that the basis functions in the ray-based IPDG method are
defined by (2.2), which will need a set of ray directions Ok for each element K € 7y. We will perform the training process
on a generic element K, and apply the result to all elements. The resulting neural network is able to predict ray directions
needed by our proposed method. We will use functions of the form eiod(x=%) 35 the input of the training data.

We will choose the random number o uniformly from the range [@ — §, @ + §), § > 0, and choose X randomly from the
element K. This choice for o is due to the fact that the wave number for the Helmholtz equation with reduced frequency
(1.2) is @/c, and we will take 0 = @/c(X; ) when we apply the neural network. Furthermore, we observe that the outputs
that we need are the values of the directions d which are randomly generated from the ‘unit circle (or sphere).

The following summarizes the training settings of our deep neural network:

e Input: x = {Zj Aje”‘dj‘(xfﬁt«)}, where we notice that x and x are different notations. Here X i is a set of randomly
chosen points in K and d; is a set of randomly chosen directions of unit length. Note that there are multiple ray
directions at each point X; . The functions A; are bilinear (for the 2D case) or trilinear (for the 3D case) in K with
randomly selected nodal point values. The input is therefore a superposition of plane waves in K. We remark that the
actual number of random points and ray directions will be specified in each of the examples in Section 4.

e Output: y = {d;}. The output of the network contains the corresponding ray directions d; at the point X; x. Note that
we assume that the total number of directions N on each element K is fixed.

e Sample pairs: Ns = 10000 sample pairs of (xi, yr) are used. Note that each x; is a superposition of plane waves with
directions {d;} and yj are the corresponding directions {d;}.

e Standard loss function:

N
1 & 2
N. ’;—1 Yk =N (X 0)ll3  (MSE)

e Customized loss function:
1 N; 1 Ns
N D e =N @ 0115 + N >N ]uyk,,-u% — IV (%: 0); 15| (MSE+norm1)
k=1 k=1 j

In the above y ; denotes the j-th direction for the k-th training data, and N (xi; 6) j denotes the j-th predicted direc-
tion for the k-th training data. We will use this customized loss function to improve the performance. Notice that we
added a term to normalize the length of the predicted ray directions.

10
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, . Convolution Max-Pooling Fully connected
Convolution Max-Pooling layer layer layer

Inputs layer layer output(ray directions)

Fig. 3.1.1. A schematic for our deep neural network (Algorithm 1).

e Activation function: The popular RelLU function (the rectified linear unit activation function) is a common choice for
activation function in training deep neural network architectures.

In between the input and output layers, we use M — 1 convolution layers with a constant rate of kernel size 3 with batch-
normalization activations on given parameters and pooling operation with Max pooling filter and a constant rate of kernel
size 2. The neural network follows with a fully connected hidden layer and finally an output layer. The details of neural
network are shown in Algorithm 1, and a schematic is shown in Fig. 3.1.1. As for the training optimizer, we minimize the
loss function by using AdaMax, which is a stochastic gradient descent (SGD) type algorithm well suited for high dimensional
parameter space.

In Algorithm 1, the neural network takes an input function u, which is defined on an element K. The output of the
algorithm is a set of ray directions {d;}. Thus, our neural network will learn the ray directions from the wave field. This is
our Algorithm 2. The algorithm takes a global wave field as input. Then the restriction of the wave field in each element
Ky, k=1,2,---, Ng, is entered into the neural network (Algorithm 1), which, in turn, returns the local ray directions. The
output of the Algorithm 2 is the set of all ray directions.

Algorithm 1: Neural Network.

. N

1 Function {d;},_, =NN(u):

2 F] =u

3 for k=1:M—1do

4 Fpr = BatchNorm(Fy) // batch-normalize activations
5

6 Fex = Conv(Fp) // convolution operator
7

8 Fi+1 = Pool(Fck)

// pooling operation with Max pooling filter

9 end
10 Fy =flat(Fr41) // flatten layer
11
12 Ffc =FConn(Fy) // fully connected layer
13
14 {dj}?’:1 = output(F ) // output layer
15

Algorithm 2: Ray Learning.

N,
1 Function [{dj,,(k};“:l}k: — RAYLEARNING (u):
2 for k=1:Ng do a

3 {dj i}, = NNalg,)

// CNN followed by fully connected hidden layer
4 end

5 | return [{dJ;Nk }?]:1 }NQ

k=1

Remark. In practice, it is desirable to learn the number of ray directions instead of fixing it. To do so, we will set an upper bound of
the number of ray directions. That is, N is the upper bound of the number of ray directions. In the case that the solution has fewer ray
directions, we will apply the singular value decomposition to remove the redundant directions. We will illustrate this in Section 4.5.

11
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3.2. The ray-based IPDG method

In order to learn the ray directions, we first solve the Helmholtz equation (1.2) with the reduced frequency @. Then we
use Algorithm 2 with the reduced frequency solution u to learn the ray directions for each coarse element. The resulting
ray directions will be used in our ray-based IPDG method to solve the high frequency Helmholtz equation (1.1).

First of all, we need the standard IPDG method to solve the reduced frequency Helmholtz equation (1.2). We denote the
reduced frequency Helmholtz solution as U and the detailed implementation of the standard IPDG is shown in Algorithm 3.
Here, we use B to denote the IPDG bilinear form and F to denote the source terms. In addition, {¢;} denotes the standard
IPDG basis functions, and Ng denotes the number of basis functions.

Algorithm 3: Standard IPDG Helmholtz Solver.

1 Function u,, = S-IPDG(w, h,c, f, g):
2 fori,j=1:Ng do

3 Hjj = B (¢i. 9)) // Bssemble Helmholtz matrix
4 bj=]'—((ﬂj) // Assemble right-hand side
5 end

6 u,=H"b // Solve linear system
7 return u,,

Once the ray directions for all elements have been computed, we then construct the ray-IPDG space V. Next, we will
introduce the details of the ray-IPDG method, which is implemented in Algorithm 4. We note that the algorithm takes,
N;i,Ng

among other quantities, the ray directions {d,,Kj }l Jl - as input. Here, we recall again that Ng is the number of elements.
=1,j=

To simplify the notations, we use N; to denote the number of ray directions in the element K;. Notice that, since each
nodal point X;, k; can have multiple ray directions, XK ; and Xy k; can represent the same nodal point when [ # I,

Algorithm 4: Ray-IPDG Helmholtz Solver.

Nj.Ng
1 Function u,, y = RAY-IPDG(w, H, ¢, f, g, {dI‘KJ l‘ ]1 . :
—1,j=
2 Ndof =0
3 for j=1:Ng,I=1:Nj,k=1:2¢ do
4 Ndof = Ndof + 1,m = Ngof
/el e Vi -
5 Ym(X) = (Pk(x)elw/r(xl"(f) LKj X // Construct ray-IPDG basis
6 @m =VYm ()A(I_Kj) // Nodal values of ray-IPDG basis
7 end
8 for m,n=1:Ngor do
9 Hinn = B Ym. ¥n) // Assemble Helmholtz matrix
10 by = F (Yn) // Bssemble right-hand side
11 end
12 v=H"'b // Coefficients of ray-IPDG basis
13 U=V // Ray-IPDG solution on mesh nodes
14 return u,, y

Finally, our ray-based IPDG high-frequency IPDG Helmholtz solver is formed by the above ray-IPDG method and the deep
neural network, which is presented in Algorithm 5. The accuracy of the solution computed by Algorithm 4 using ray-IPDG
depends on the accuracy of ray directions computed by the neural network model.

Algorithm 5: Ray-based IPDG High-Frequency Helmholtz Solver.

1 Function uy = DEEP-RAY-IPDG(w, H, c, f, g):

2 d~Jo,H~w ' h~w!

3 ug, =S-IPDG(@. h,c, f.g) // Low-frequency waves
Nj.N

a | d= [d,_,(j ]1 . ‘ | = RAYLEARNING (u) // Low-freq ray learning
—1,j=

5 u,, H = RAY-IPDG (w, H, ¢, f, g, d) // High-frequency waves

6 return u, gy

4. Numerical examples

In this section, we will present some numerical examples to show the performance of our proposed deep learning based
IPDG high-frequency Helmholtz equation solver using ray-based basis functions. In our 2D simulations, we will take

w=23x107, @=+23x10x.

In 3D simulations, we let

w=2*x10, @&=+22x107.

12
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We set the computational domain Q = [0, 1]? in Examples 1-5. Also, the wave speed for Examples 1-5 is set as ¢ = 1 and
the source is set as f = 0. The impedance boundary condition is used for Examples 1-5:

Vu-n+i(w/c)u=g onads.

For Examples 6 and 7, we solve the problem in the computational domain Q” = [0.25, 0.75]% supplemented with the Cauchy
boundary condition on x; = 0.25 and PML conditions on the other three sides. We will consider inhomogeneous sound
speeds for these two examples. We will also present some 3D test cases in Example 8, where the impedance boundary
condition is considered. We will compare the performance by using the NMLA method and our ray-based IPDG method.

In Examples 1-5, the computational time for the NMLA method is 3.265 s and that for ‘our deep learning based method
is 0.120 s. By using the NVIDIA TensorRT which optimizes the network by combining layers and optimizing kernel selection
for improved latency, throughput, power efficiency, and memory consumption, the time consumed for the deep learning
based method will ‘decrease to 0.002 s. We can see an improvement to computational efficiency.

4.1. Example 1

For the first numerical example, we will take the wave field as

U = ein1 X

The computational domain is divided into a 40 x 40 grid, that is, H = 1/40. For each element, we consider a finer grid of
4 x 4. This finer grid is used to define the reduced frequency solution. Fig. 4.1.1 shows a plot of exact directions, approximate
directions by the neural network, the reduced frequency IPDG solution, and the high frequency ray-IPDG solution from the
approximate directions. Note that we only show the ray directions at some selected points for clarity of presentation.

Table 4.1.1 shows the relative errors of directions and IPDG solutions from the NMLA and the neural network method.
Our neural network is trained to learn one ray direction for each element. The relative error of ray directions from the
NMLA method is 0.1418. The relative error of ray directions from our neural network method is 0.07605. In terms of the
solution, the relative error is 0.03296 for the NMLA method. In addition, the relative error is 0.00967 for the neural network
method. We also observe that the loss function including the length of the ray directions gives better results.

exact direction 3 approx. direction

B e e

N e

0.5 0.5 |~y

————e——a—

——r— e — i ——

0 0
0 0.5 1 0 0.5 1

low fre?uency ipdg solution(input of NN) hlgl1| frequency ray-ipdg solution

0.75

0.75

0.5

0.25

0 0
0 025 05 075 1 0 025 05 075 1

Fig. 4.1.1. Example 1: ray-directions and solutions.

Table 4.1.1
Root mean square error for Example 1.

relative error of directions  relative error of solutions

NMLA 0.1418 0.03296
Neural Network(mse+norm1)  0.07605 0.00967
Neural Network(mse) 0.08687 0.01693
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Fig. 4.2.1. Example 2: ray directions and solutions.

Table 4.2.1
Root mean square error for Example 2.

relative error of directions  relative error of solutions

NMLA 0.1418 0.01979
Neural Network(mse+norm1)  0.05782 0.00369
Neural Network(mse) 0.08257 0.00913

4.2. Example 2
For the second numerical example, we will take the wave field as

Uy = pl®X1 4 olXs

The grid is the same as that of Example 1. Fig. 4.2.1 shows a plot of exact directions, approximate directions by the neural
network, the reduced frequency IPDG solution, and the high frequency ray-IPDG solution from the approximate directions.

Table 4.2.1 shows the relative errors of ray directions and solutions from the NMLA and our neural network method.
Our neural network is ‘trained to learn two ray directions in each element. The relative error of ray directions from the
NMLA method is 0.1418, and the relative error of ray directions from our neural network method is 0.05782. Moreover, the
relative error of the solution from the NMLA method is 0.01979, while the relative error from our neural network method
is 0.00369. We also observe that the customized loss function gives better performance.

4.3. Example 3

For the third numerical example, we will take the wave field as

1
uz = VoHg (@ [x = xol)

where Xg = (2,2). The grid size is the same as that of Example 1. Fig. 4.3.1 shows a plot of exact directions, approximate
directions by the neural network, the reduced frequency IPDG solution, and the high frequency ray-IPDG solution from the
approximate directions.

Table 4.3.1 shows the relative errors of ray directions and the solutions from both the NMLA and our method. In particu-
lar, the relative errors of ray direction from the NMLA method are 0.07571, while that from our method is 0.04347. Also, the
relative error for the solution is 0.01197 and 0.00272 for the NMLA method and our method respectively. We again observe
that our method is able to give accurate approximation solution. We remark that our network is trained to learn one ray
direction in each element.

14
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Fig. 4.3.1. Example 3: ray directions and solutions.

Table 4.3.1
Root mean square error for Example 3.

relative error of directions  relative error of solutions

NMLA 0.07571
Neural Network(mse+norm1)  0.04347
Neural Network(mse) 0.04996

0.01197
0.00272
0.00538

4.4. Example 4

For the fourth numerical example, we will take the wave field as

Us = \/BH((JD (|x—x01]) + 0.5\/5H(()1) (w]x —x0.2|)

where Xo,1 = (2,2) and xg2 = (—0.5,2). We use the same grid setting as in Example 1. Fig. 4.4.1 shows a plot of exact
directions, approximate directions by the neural network, the reduced frequency IPDG solution, and the high frequency

ray-IPDG solution from the approximate directions.

exact direction
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Fig. 4.4.1. Example 4: ray directions and solutions.
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Table 4.4.1
Root mean square error for Example 4.

relative error of directions relative error of solutions

NMLA 0.1048 0.01183
Neural Network(mse+norm1)  0.07637 0.00333
Neural Network(mse) 0.05549 0.00242

Table 4.4.1 shows the relative error of ray directions and numerical solutions from the NMLA and our method. In partic-
ular, the relative error of ray directions from the NMLA method is 0.1048, while the relative error of ray directions from our
method is 0.07637. In addition, the relative errors of the approximate solutions from the NMLA method and our method are
0.01183 and 0.00333, respectively. We observe that our method is able to give an accurate solution efficiently. We remark
that the neural network is trained to learn two ray directions in each element.

4.5. Example 5

This section is devoted to test our method for predicting the number of ray directions for each element. We will repeat
Examples 1 and 3. However, instead of specifying the number of ray directions, we only specify a maximum number of
directions. Then we use our deep neural network to predict the directions, and we then use the SVD to determine the
number of ray directions by eliminating redundant directions.

We will repeat the Example 1. We will test the two different neural networks. One of them will learn two ray directions
in each element, and the other will learn four ray directions in each element. Then the SVD is applied to remove redundant
ray directions by considering magnitude of singular values. For the neural network learning two ray directions, the energy
of the first singular vector is 98.94%, where the energy is defined using singular values. For the neural network learning

Percentage of Eigenvalues for 4's direction NN

0.8 1
v 06
o
o
]
Y
504
a
02
0.0 4
10 15 20 25 30 35 40
Number of Eigenvalues
Fig. 4.5.1. Percentage of Eigenvalues for Example 1.
Percentage of Eigenvalues for 4's direction NN
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Number of Eigenvalues

Fig. 4.5.2. Percentage of Eigenvalues for Example 3.
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four ray directions, we present the eigenvalues in Fig. 4.5.1. We observe that the first eigenvector carries most of the energy,
and it shows that the proposed technique is able to give one ray direction.

We will also repeat Example 3. For the neural network learning two ray directions, the energy of the first singular vector
is 96.65%, where the energy is defined using singular values. For the neural network learning four ray directions, we present
the eigenvalues in Fig. 4.5.2. We observe that the first eigenvector carries most of the energy, and it shows that the proposed

technique is able to give one ray direction.

4.6. Example 6

In our next nur}'nerical examyle, we will take the wave field as ug = the free-space solution with wave speed cg =
1 — 0.5~ 100[(y=04?+(x+0.5y-0.7%)] ' \vhich is shown in Fig. 4.6.1 and source

fo:= 10%e—10*x—xol?

where xp = (0.5,0.1). The domain is divided into 40 x 40 coarse grid, that is, H = 1/40. For each element, we consider
a finer grid of 8 x 8. Fig. 4.6.1 shows a plot of reference directions predicted by the NMLA method, the ‘approximate ray
directions by our neural network, the reduced frequency IPDG solution, and the high frequency ray-IPDG solution using
the approximate ray directions. We have shown the reduced frequency solution, which is the input of the neural network.
Moreover, we have shown both the reference solution computed by the NMLA method as well as the approximate solution
computed by our neural network method. We observe good agreement between these two solutions.

Table 4.6.1 shows the relative error of solutions from the NMLA and our neural network methods. The neural network
will learn 4 ray directions in each element. The relative error of the high-frequency ray-IPDG solution from the NMLA
method is 0.02723, while that from our neural network method is 0.02540. We observe a comparable performance of these
two methods. We remark that our neural network is able to predict ray directions more efficiently.

wave speed cg NLMA direction approx. direction
0.75 0.75 0.756
¥ ¥ W W \ 4 v Vv v v v
v Vv Vv Vv v ¥ W v v v
05 stV ¥ Vv v v o5ty WV V¥ v W
vV Y oy v FUARNVRN .
v WY Y e 8 2\ Y v
0.25 0.25 0.25
025 0.5 0.75 025 0.5 0.75 025 0.5 0.75
Ig\;vsu ,pdg ondine it of NN) Ojl;g‘e high frequency ray-ipdg solution 0.";1 h freq y ray-ipdg (NN)

0.5 0.5 0.5

0.25 = - - " 0.25 0.25
0.25 0.5 075 025 0.5 075 025 0.5 075

Fig. 4.6.1. Example 6: sound speed, ray directions and solutions.

Table 4.6.1
Root mean square error for Example 6.

relative error of solutions

NMLA 0.02723
Neural Network (mse+norm1)  0.02540
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Fig. 4.7.1. Example 7: sound speed, ray directions and solutions.

Table 4.7.1
Root mean square error for Example 7.

relative error of solutions

NMLA 0.02889
Neural Network (mse+norm1)  0.03018

4.7. Example 7

For the seventh numerical example, we will take the wave field as u; = the free space solution with wave speed
c7 = a scaled smooth Marmousi model showed in Fig. 4.7.1. Other settings are the same as Example 6. Fig. 4.7.1 shows a
plot of ‘exact directions, approximate directions by the neural network, the reduced frequency IPDG solution, and the high
frequency ray-IPDG solution from the approximate directions. We again observe very good agreement between the reference
and approximate solutions.

Table 4.7.1 shows the relative errors of the solutions from the NMLA and the neural network method. Our neural network
will give 4 ray directions in each element. The relative error of the high frequency ray IPDG solution from the NMLA method
is 0.02889, while that from our neural network method is 0.03018. We observe that our neural network method gives a
reasonable result. We remark that our method is able to predict the ray directions in a more efficient way.

4.8. 3D examples

Finally, we consider some 3D numerical examples. We will first take the wave field as

ug = eia»q ,
the wave speed ¢ = 1. The domain [0, 1] x [0, 0.2] x [0, 0.2] is divided into 20 x 4 x 4 grid. Our neural network is designed
to learn one ray direction in each element.

Fig. 4.8.1 shows the reduced frequency IPDG solution and the high frequency ray-IPDG solution. Note that the reduced
frequency solution is used as input of our neural network. The relative error of our approximate solution is 0.0399.

For the second 3D numerical example, we will take the wave field as

ug — ela»q + ela)XZ + ele3 ,

the wave speed ¢ = 1. The domain and mesh are the same as the previous example. For this example, we take two points
in each element, and our neural network will learn three ray directions in each of these two points. Fig. 4.8.2 shows the
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Fig.4.8.1. 3D example 1, L? relative error is 0.0399. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 4.8.2. 3D example 2, L? relative error is 0.0252.

reduced frequency IPDG solution and the high frequency ray-IPDG solution. The relative error of our approximate solution

is 0.0252.

For the third numerical example, we will take the wave field as

1
uip = «/51‘1(() ) (@]x —Xol)

where Xp = (2, 2,2), and the wave speed ¢ = 1. The domain and mesh are the same as the previous example. For this
example, we take two points in each element, and our neural network will learn one ray direction in each of these two
points. Fig. 4.8.3 shows the reduced frequency IPDG solution and high frequency ray-IPDG solution. The relative error of our

approximate solution is 0.020104.
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Fig. 4.8.3. 3D example 3, L? relative error is 0.020104.
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Fig. 4.8.4. 3D example 4, L? relative error is 0.024663.

For the fourth 3D numerical example, we will take the wave field as

iy = V) (@]~ xo1]) + 05voHS (o x — x02)

where x0.1 =(2,2,2) and xg2 = (—0.5, —0.5, 2]). We also let the wave speed ¢ = 1. The domain and mesh are the same
as the previous example. For this example, we take two points in each element, and our neural network will learn two
ray directions in each of these two points. Fig. 4.8.4 shows the reduced frequency IPDG solution and the high frequency
ray-IPDG solution. The relative error of our approximate solution is 0.024663.
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5. Conclusion

We have developed a deep learning approach to extract ray directions at discrete locations by analyzing highly oscilla-
tory wave fields. A deep neural network is trained on a set of local plane-wave fields to predict ray directions at discrete
locations. The resulting deep neural network is then applied to a reduced-frequency Helmholtz solution to extract the direc-
tions, which are further incorporated into a ray-based interior-penalty discontinuous Galerkin (IPDG) method to solve the
Helmbholtz equations at higher frequencies. In this way, we observe no apparent pollution effects in the resulting Helmholtz
solutions in inhomogeneous media. Numerical results show that the proposed scheme is very efficient and yields highly
accurate solutions.
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