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Abstract. We develop an efficient operator—splitting method for the eigenvalue problem of the Monge—Ampere
operator in the Aleksandrov sense. The backbone of our method relies on a convergent Rayleigh inverse itera-
tive formulation proposed by Abedin and Kitagawa (Inverse iteration for the Monge—Ampere eigenvalue problem,
Proceedings of the American Mathematical Society, 148 (2020) 4975-4886). Modifying the theoretical formu-
lation, we develop an efficient algorithm for computing the eigenvalue and eigenfunction of the Monge—Ampere
operator by solving a constrained Monge—Ampere equation during each iteration. Our method consists of four
essential steps: (i) Formulate the Monge—Ampere eigenvalue problem as an optimization problem with a con-
straint; (ii) Adopt an indicator function to treat the constraint; (iii) Introduce an auxiliary variable to decouple the
original constrained optimization problem into simpler optimization subproblems and associate the resulting new
optimization problem with an initial value problem; and (iv) Discretize the resulting initial-value problem by an
operator—splitting method in time and a mixed finite element method in space. The performance of our method is
demonstrated by several experiments. Compared to existing methods, the new method is more efficient in terms of
computational cost and has a comparable rate of convergence in terms of accuracy.
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1. INTRODUCTION

The Monge-Ampere equation is a second-order fully nonlinear PDE in the form of
detD%u = f, (1.1)
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where D?u denotes the Hessian of u. The Monge-Ampere equation originates from differential
geometry in which it describes a surface with prescribed Gaussian curvature [3, 35]. The ex-
istence, uniqueness and regularity of the solution has been extensively studied [3, 26, 44], and
related applications can be found in optimal transport [4, 23], seismology [17], image process-
ing [33], finance [45], and geostrophic flows [21].

Due to its broad applications, in the past decade, a lot of efforts have been devoted to devel-
oping numerical methods for the Monge-Ampere equation. One line of research is to develop
wide-stencil based finite-difference schemes [24, 25] for equation (1.1) with Dirichlet bound-
ary conditions. Such a class of methods utilizes the fact that detD?u equals the product of
the eigenvalues of D?u, so that these methods use wide-stencils to estimate the eigenvalues.
Later on, such methods were extended to accommodate transport boundary conditions in [23].
Another line of research is to design finite-element based methods. In [20, 22], the authors
proposed the vanishing moment method, which approximates a fully nonlinear second-order
PDE by a fourth-order PDE. In [9, 10, 14, 15], the authors formulate equation (1.1) as an opti-
mization problem. Fast augmented Lagrangian algorithms are then designed to solve the new
problems. Recently, operator—splitting methods have been proposed in [30, 39]. Taking ad-
vantage of the divergence form of detD?u, the authors of [30, 39] decouple the nonlinearity
of equation (1.1) by introducing an auxiliary variable so that solving equation (1.1) is reduced
to finding the steady-state solution of an initial value problem, which is time-discretized by an
operator—splitting method and space-discretized by a mixed finite-element method. Other nu-
merical methods for equation (1.1) include [2, 5, 6, 11, 12, 19]; see the survey [18] for more
related works.

Existing works discussed above target equation (1.1) with various boundary conditions. An-
other interesting problem of the Monge—Ampere type is the eigenvalue problem, reading as

{det(Dzu) =Aluf inQ,

1.2
u=20 on dQ, (12)

where Q € R? (d > 2) is an open bounded convex domain, and A = A[Q] is the unknown
eigenvalue of the Monge—Ampere operator on Q. Problem (1.2) was first studied by Lions in
[38] and later by Tso in [46]. They proved the existence, uniqueness and regularity of the so-
lution on an open, bounded, smooth, uniformly convex domain. The result was then extended
by Le in [36] to general bounded convex domains. Theoretically, to find the solution of equa-
tion (1.2), a variational formulation was proposed in [46], and a convergent Rayleigh quotient
inverse iterative formulation was proposed in [1] which was further improved in [37]. Since,
during each Rayleigh quotient iteration, the algorithm in [1] requires solving a Monge—Ampere
type equation, how to efficiently implement this formulation numerically has not been studied.
The only work on the numerical solution of equation (1.2) we are aware of is [28], in which
the authors proposed operator—splitting methods for a class of Monge-Ampere eigenvalue prob-
lem. In [28], taking advantage of the divergence form, the authors takes equation (1.2) as the
optimality condition of a constrained optimization problem, in which A is considered as the
Lagrange multiplier, and an operator—splitting method was proposed to solve the new problem.

Similar to equation (1.1), the eigenvalue problem (1.2) is a fully nonlinear second-order PDE.
One effective way to solve such PDEs is the operator—splitting method, which decomposes
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complicated problems into several easy—to—solve subproblems by introducing auxiliary vari-
ables. Then the new problem will be formulated as solving an initial value problem, which is
then time discretized using operator—splittings. All variables will be updated in an alternative
fashion, where each subproblem either has an explicit solution or can be solved efficiently. The
operator—splitting method has been applied to numerically solving PDEs [30, 39], image pro-
cessing [16, 40, 41, 42], surface reconstruction [34], inverse problems [29], obstacle problems
[43], and computational fluid dynamics [7, 8]. We refer readers to monographs [31, 32] for
detailed discussions on operator—splitting methods.

In this work, we propose an efficient numerical implementation of the formulation proposed
in [1] to compute the eigenvalue and eigenfunction of the Monge—Ampere operator on an open,
bounded, convex domain €. Since each Rayleigh quotient inverse iteration of the formula-
tion in [1] requires solving a Monge—Ampere equation, we first use the divergence form of
the Monge—Ampere operator to rewrite the problem as an optimization problem. To stabilize
our formulation, we consider a constrained version of the optimization problem by forcing the
eigenfunction u to have unit Ly-norm: |[u|l, = 1. The constrained problem is converted to an
unconstrained problem by utilizing an indicator function of the constraint set. Then we decou-
ple the nonlinearity of the functional by introducing an auxiliary variable, and we associate it
with an initial value problem in the flavor of gradient flow. The initial value problem is time dis-
cretized by an operator-splitting method and space discretized by a mixed finite-element method
in the space of piecewise-linear continuous functions. The efficiency of the proposed method is
demonstrated by several numerical experiments.

We organize the rest of this article as follows: We introduce the background and summarize
the convergent formulation of [1] for equation (1.2) in Section 2. Our new operator-splitting
approach for implementing this convergent formulation is presented in Section 3. Our operator-
splitting scheme is time discretized in Section 4 and space discretized in Section 5. We demon-
strate the efficiency of the proposed method by several numerical experiments in Section 6 and
conclude this article in Section 7.

2. A CONVERGENT INVERSE ITERATION FOR THE EIGENVALUE PROBLEM

Let Q C R¢ be an open bounded convex domain. In equation (1.2), if u is a convex function,
one has u <0 and |u| = —u. The existence and uniqueness of the eigen-pair was studied in [38]:

Theorem 2.1. Assume that Q C R is a smooth, bounded, uniformly convex domain. There exist
a unique positive constant Avia and a unique (up to positive multiplicative constants) nonzero
convex function u € C"1(Q) N C=(Q) solving the eigenvalue problem (1.2). The constant Ava
is called the Monge-Ampere eigenvalue of Q and u is called a Monge-Ampere eigenfunction of

Q.
Define the Rayleigh quotient of a function u for the Monge-Ampere operator as
R(u) = Jo —udet(Dzu)dx7
Jo(—u)¥*lax

2.1)

and the function space % as
A ={ue P (Q)NC™(Q) : u is convex and nonzero in Q, u = 0 on 0Q}.

Tso [46] showed that Aypga can be written as the infimum of Rayleigh quotients:
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Theorem 2.2. Assume that Q C R? is a smooth, bounded and uniformly convex domain. Then

AMaA = ulen;R(u). (2.2)

Based on the property (2.2), the following inverse iterative scheme for the eigenvalue problem
(1.2) was proposed by Abedin and Kitagawa in [1]:

0

u- = up,
det(D?u*1) = R(u¥)|u*|?  in Q, (2.3)
Wl =0 on 0Q,

where ug is a given initial condition, and they further proved the convergence of the inverse
iteration:

Theorem 2.3. Assume that Q C R? is an open bounded convex domain. Let uy € C(Q) satisfy
the following:

(i) ug is convex and ug < 0 on dQ;
(it) R(up) < oo;
(iii) det(D%ug) > cg in Q, where c( is some positive constant.

Then, for k > 0, u* in equation (2.3) converges uniformly on Q to a nonzero Monge-Ampére
eigenfunction, and R(uy) converges to Aya.

Theorem 2.3 was improved in [37] so that conditions (i) and (iii) are removed; consequently,
the inverse iteration converges for all convex initial data having finite and nonzero Rayleigh
quotient to a nonzero Monge-Ampere eigenfunction of Q.

3. A MODIFIED FORMULATION OF THE INVERSE ITERATION

Given an initial convex function up with bounded nonzero Rayleigh quotient, the inverse iter-
ation (2.3) generates the sequence {(R(u*),u*)} which is guaranteed to converge to the solution
of the eigenvalue problem (1.2). When updating u**! from u¥, one needs to solve a Monge-
Ampere equation with the Dirichlet boundary condition, which is a nonlinear problem. It has
not been studied yet how to implement the inverse iteration efficiently to produce numerical
approximations to the eigenvalue problem of the Monge-Ampere operator. Therefore, we are
motivated to develop an efficient algorithm to implement this inverse iterative method.

To achieve this purpose, we adopt a recently developed operator-splitting method (see [28,
30, 39]) to solve equation (2.3) numerically. We focus on the case d = 2. Our method can be
easily extended to higher dimensional problems.

We first reformulate equation (2.3) using the following identity:

1
det(D*u) = 5V (cof(D*u)Vu), (3.1)

Pu _ _u

ox? dxdxy

where cof(D?u) = is the cofactor matrix of D?u.

Py P
dx19x) 9x3
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Incorporating equation (3.1) into equations (2.3) and (2.1) gives rise to

0
u” = up,
V- (cof (DM 1) Vikt 1y = 2 R(u!)|u*|?  in Q, (3.2)
Ukt =0 on 0Q,

with

R /Q (cof(Du)Vu) - Vudx

2/9(—14)3dx

where we used integration by parts when deriving equation (3.3).
From equation (3.2), updating «**! from u* is equivalent to solving the optimization problem

min { /Q (cof(D?w)Vw) - Vivdx + 6 /Q fkwdx},

w

w=0o0ndQ,

) (3.3)

(3.4)

with f = R(uk) |uk 2 which can be derived from the first-order variational principle; see [30, 39].
Note that if (Ava, u*) is a solution to equation (1.2), (Ama, u™) is also a solution for any o > 0
(assuming that we are looking for convex eigenfunctions). To make the solution of equation
(1.2) unique, we restrict our attention to looking for the eigenfunction u* satisfying ||u*||, = 1.
Therefore it is natural to add the constraint ||w|, = 1 to equation (3.4). However, usually
a constrained optimization problem is more challenging to solve than an unconstrained one.
Therefore, to remove the constraint while enforcing ||w||, = 1, we utilize an indicator function.
Define the set

S ={w:wis smooth, ||w|, =1}

0 ifwes,
Is(w) :{

and its indicator function

+oo  otherwise.

Equation (3.4) with constraint ||w||; = 1 can be rewritten as

min {/Q(cof(Dzw)Vw) -dex—|—6/gfkwdx+lg(w)] ,

w

w=0o0ndQ.

(3.5)

We follow [30] to introduce a matrix-valued auxiliary variable p to decouple the nonlinearity
in equation (3.5). Then solving equation (3.5) is equivalent to solving

min [/ (cof(p)Vw) -dex+6/ fkwdx+lg(w)] ,
w,p Q Q
w=0 on dQ, (3.6)

p=D’w inQ.
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After computing the Euler-Lagrange equation, if (v, p) is a solution to equation (3.6), we have
V- (cof(p)Vv) —2f5+dIs(v) 20 inQ,
v=0 on dQ, (3.7)
p=D%, in Q
where dIs denotes the sub-differential of .
We associate equation (3.7) with the following initial value problem (in the flavor of gradient
flow)
P4V ((eI+cof(p)) Vv) —2f*+dLs(v) 20 in Qx (0,+oo),
v=0 on dQ x (0,4o0),
L 1Lyp-D)=0 inQx(0,+e),
V(O) =0, p(o) = Po;
where I is the identity matrix, 0 is the zero matrix, and € > 0 is a small constant. The term €l is
a regularization term in order to handle the case that infycq f*(x) = 0. Then u**! is the steady
state of v.

In equation (3.8), ¥ controls the evolution speed of p. A natural choice is to let p evolve with
a similar speed as that of v, leading to

(3.8)

Y=BA

with Ag being the smallest eigenvalue of —V? and 8 > 0 being some constant.

4. AN OPERATOR SPLITTING METHOD TO SOLVE EQUATION (3.8)

4.1. The operator splitting strategy. The structure of equation (3.8) is well-suited to be time-
discretized by the operator splitting method. Among many possible discretization schemes, we
choose the simplest Lie scheme.

Let 7 > 0 denote the time step and denote " = nt. We time-discretize equation (3.8) as
follows:
Initialization:

W' =vo, P’ =po. (4.1)

For n > 0, update (vn7pn) N (vn+l/3’pn+l/3> N (vn+2/3,pn+2/3> N (vn—O—l’pn-‘rl) as:
Step 1: Solve

D4V (el +cof(p) Vv) =24 =0 inQx ("),

v=0 on dQ x (t",1"+1), 42)
®—0 inQx ("), '
v(") =v", p(t") = p",
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and set v+1/3 = v(tn—O—l)’ pn+l/3 — p(tn_H).

Step 2: Solve
P=0 inQx ("),
v=0 ondQx (" "),

(4.3)
P4 y(p-D)=0 inQx ("),
v(tn) — vn+1/3’ p(tn> — pn+1/3,
Step 3: Solve
{% FAL(v) 30  inQx ("),
v=0 on 9Q x (¢, "),
3 ( ) (4.4)

L=0 inQx(", M),
V(l‘n) — Vn+2/3, p<tn) — pn—i-2/37

and set V"1 = y(¢"*1), pt = p(enth).
The scheme (4.1)—(4.4) is only semi-constructive since one still needs to solve the subprob-
lems in equations (4.2)—(4.4). For equation (4.3), we have the explicit solution for p"+2/ 3,

pn+2/3 _ efyrpn + (1 _efyf)D2vn+1/3‘

Since the solution of equation (1.2) is a convex function, the Hessian D2uis a semi-positive
definite matrix. Since p is an auxiliary variable estimating D?v, we project it onto the space of
semi-positive definite symmetric matrices once p"+2/ 3 is computed. We denote the projection
operator by P, ; see more details in Section 5.4.

For other subproblems, we adopt the one-step backward Euler scheme (the Markchuk-Yanenko
type). Our updating formulas are summarized as follows:

vn+1/T3_VVL Ly ((sl+cof(p”))VV"+1/3> 2k =0 inQ, .5)
Vitl/3 — on dQ, .
pn+1 — P+ (efyrpn + (l _ e*Y‘r)Dzvn+1/3> , (4.6)
SEE Lo 50 inQ, @)
N on dQ. .

Remark 4.1. Equation (3.8) is very similar to problem (36) in [28], except that in our current
scheme the constraint is ||u||; = 1 and that in [28] it is ||u|[3 = 1. Despite similar formula-
tions, the numerical treatments are very different. In equations (4.5)-(4.7), f* and the indicator
function dIg are separately distributed into two sub-steps. Equation (4.7) simply results in a
projection to the unit sphere; see Section 4.2 for details.

In [28], A dulu| with d being the spatial dimension plays the role of f* and the constraint
plays the role of dIs, and both terms are arranged in the same sub-step (problem (50b) in [28]):

W23 /3 — 3,C/ln+lun—|—2/3’un+2/3|’

4.8
/’un+2/3‘3dle (4.8)
Q
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The constraint ||u||3 = 1 cannot be replaced by ||u||, = 1 since equation (4.8) was considered as
an optimality condition of a Lagrangian functional and TA"*! is the Lagrange multiplier. As a
result, u"2/3 solves

1

W3 ¢ argmin {—/ |v|2dx—/ u”+1/3vdx}. 4.9)
vifo Mdx=1 L2 /@ Q

Unlike (4.7), the solution to problem (4.9) does not have an explicit expression, so that an

iterative method (such as sequential quadratic programming) was used in [28] to solve problem

(4.9).

Remark 4.2. Compared to the algorithm (2.3) proposed in [1], our scheme has an additional
term related to the constraint ||u||; = 1, and such a constraint leads to the projection step (4.7)
which helps stabilize our numerical algorithm.

Remark 4.3. Scheme (4.2)—(4.4) is an approximation of the gradient flow of the functional
in (3.6). The convergence of scheme (4.2)—(4.4) is closely related to that of the gradient flow
together with an approximation error. It has been shown that when there is only one variable and
the operator in each step has sufficient regularity, the approximation error is of O(7) (see [13]
and [27, Chapter 6]). However, the terms in (3.6) are non—trivial and non—smooth, traditional
analysis techniques are not applicable in this scenario. As the splitting error is closely related to
the time step 7, we expect the approximation error reduces (and thus the convergence of scheme
(4.2)—(4.4) follows that of the gradient flow) as 7 goes to 0.

4.2. On the solution to equation (4.7). In the scheme above, problems (4.5) and (4.6) are easy
to solve. In equation (4.7), Vi1 solves

min [%/Q lw—v" 13| 3dx+ Is(w) |

w=0o0n JdQ.

(4.10)

Since Is(w) is the indicator function of S in which ||w||; = 1, the exact solution of equation
(4.10) reads as
Vn-i—l/ 3

n+1

v (4.11)

- ”vn+1/3H2'

4.3. On the initial condition. We next discuss the initial condition uq in the outer iteration
and (vo,po) in the inner iteration. The convergence theorem for the scheme (2.3), Theorem
2.3, requires the initial condition to be convex and smooth. A simple choice is to set ug as the
solution to

detD?up=1 inQ
{e 10 s 4.12)

up =10 on dQ.

However, solving equation (4.12) is not trivial. Since ug is only the initial condition and the
iterates generated by the inverse iteration are eventually smooth as shown in [37], we do not
need to solve equation (4.12) exactly. An operator splitting method is proposed in [30] to solve
equation (4.12). To make the initialization simpler, we will choose ug as the initial condition
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according to a strategy used in [30]. Specifically, u is the solution to the Poisson problem

Vup=2n inQ,
(4.13)
uyg =0 on dQ,

where 1 > 0 is of O(1).
For the initial condition (vg, pg) in the k + 1-th outer iteration, we simply set

vo = ¥, po = D?vy. (4.14)

Our algorithm is summarized in Algorithm 1.

Algorithm 1: An operator-splitting method for solving problem (1.2)

Input: Parameters v, 7,€,N.
Initialization: Set k = 0. Initialize u
while not converge do
Step 1. Compute f* = R(u¥)|u*|? according to equation (3.3).
Step 2. Set n = 0. Initialize (!, p°) according to equation (4.14).
while not converge do
Step 3.1. Solve equation (4.5) for v**+1/3.
Step 3.2. Solve equation (4.6) for p"*!.
Step 3.3. Solve equation (4.7) for v 1.
Step 3.4. Setn =n+1.
end while
Step 4. Set ! as the converged v*.
Step 5. Setk=k+ 1.
end while
Output: The converged eigenfunction u* and eigenvalue Apa.

0 according to equation (4.13).

5. A FINITE ELEMENT IMPLEMENTATION OF SCHEME (4.5)-(4.7)

5.1. Generalities. Let Q C R? be an open bounded convex polygonal domain (or it has been
approximated by such a domain). Let .7}, be a triangulation of Q, where 4 denotes the length of
the longest edge of triangles in .7},. Define the following two piecewise linear function spaces

Vi ={9 € C’(Q): ¢r € P, for VT € G},
Vo =19 € Vi : 9|90 = 0},

where P is the space of polynomials of two variables with degree no larger than 1. Let H'(Q)
be the Sobolev space of order 1 and H& (Q) be the collection of functions in H'(Q) with van-
ishing trace on dQ. Then V}, and Vy, are approximations of H!(Q) and H} (Q), respectively.

Denote the set of vertices of .7}, by X;,. We further denote the interior vertices of .7}, by
Zon = Lp\ (X, N IQ). We use N, and Ny, to denote the cardinality of X and Xy, respectively.
We have

dith = Nh and dil’nV()h = NOh-

We order the vertices of 7, so that Xy, = {Q; }?]:0”1 , where Q;’s denote the vertices. For any

1 <1 <N, we use o to denote the union of triangles in .7, that have Q; as a common vertex.
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Denote the area of w; by |@y|. For each vertex Q;, we define the hat function ¢; so that

¢ €V, 0;(Q;) =1 and ¢;(Qy,) = 0 for m # 1.

We have that ¢y is supported on @;. For any function f € H'(Q), its finite element approxima-
tion f;, € Vj, can be written as

Ny
fi=Y. Q)
i=1

We further equip Vj, with the inner product (fj,,gx)5 : Vi X Vi — R defined by

1M
(fhr80)n = 3 Y ol fi(Q)gn(Q1), Y fis 81 € Vir-
I=1
The induced norm is defined as
Sl =/ (fs S)-

Because of the eventual smoothness of solutions to the inverse iteration (2.3) as shown in [37],
our mixed finite-element method uses the space V, to approximate both the solution u and its
second-order partial derivatives du/dx;dx; for i, j = 1,2. In the rest of this section, we denote
the finite-element approximation of v and p by v, € Vg, and py, € (V;,)>*2, respectively.

5.2. Finite element approximation of the three second-order partial derivatives. In equa-
tion (4.6), one needs to compute p2yntl/ 3 the Hessian of ytl/ 3 which will be numerically
computed, and we adopt to our current setting the double regularization method introduced in
[30].
The double regularization method is a two-step process to get a smooth approximation of
D2u. In the first step, one solves
2 )
—Slvzﬂij‘Fﬂij:i,—ab;j in Q, 5.1)
Tij = 0 on BQ, .

in which & = O(h?) is a constant, ;; is a regularized approximation of 9%u/dx;dx; with zero

boundary condition. Although 7;; is a smooth approximation, the zero boundary condition will

have a disastrous influence to the solution u of our scheme, as mentioned in [30]. To mitigate

the influence, the second step is a correction step which solves
212 2 .

-V D;u+Dru=m; inQ

{ VR ’ (5.2)

oD%u
L A
= =0 on dQ,

where n denotes the outward normal direction of dQ. The resulting Dizju is the doubly regular-
ized approximation of d%u/dx;x;.
From the divergence theorem, one has

Vi, j=1,2, Vv € H*(Q),
e 220w, 20 0w
aniaxj'w n 2 Q 8x,~8xj 8xj8x,-

Vw € H} (Q).

dx, (5.3)
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Based on equation (5.3), the discrete analogues of equations (5.1)-(5.2) read as:

Tijn € Vo,
CT)e:wl 7] Vﬂ”h Vdx + 5 |601|7Tuh(Q1) ; o, BZ? gfj[ + (;Zf gfﬁ (5.4
hici
and
Djyyutp € Vi,
cTeZw, T| VD,jhuh Vodx + —\wlel,huh(Ql) ’wl\ﬂijh(Qz), 5.5)
VI=1,...Np,

where ¢ = O(1) is a constant.

5.3. On the finite-element approximation of problem (4.5). We first rewrite equation (4.5)
in the variational form

/ VB ydx+ 1 / (el + cof(p")) Vv /3. Vydx =2 / frwx, (5.6)
Q Q Q
\V/l// € Von.

If p” is semi—positive definite, then problem (5.6) admits a unique solution. Denote M = €l +
cof(p}). The discrete analogue of equation (5.6) reads as

n-H 3
/ € Von,

o 01+ X (o |
VI=1,...No.

Solving problem (5.7) is equivalent to solving a sparse linear system, for which many efficient
solvers, such as the Cholesky decomposition, can be used.

MV¢m'V¢ldX) _alfQ), )

Ny,

5.4. On the finite element approximation of problem (4.6). We first define the projection
operator P, that projects 2 X 2 real symmetric matrices to the set of real symmetric semi-positive
definite matrices. Let A be a 2 x 2 real symmetric matrix. By spectral decomposition, there
exists a 2 x 2 orthogonal matrix S so that A = SAS!, where

M0
A‘{o )Lz]

with A1, A, being eigenvalues of A. If A is semi—positive definite, one has A;,A, > 0. Therefore

we define P, as

Pr(A) =8 [maX((;h’O) maX&z,O)] 57,



12 H. LIU, S. LEUNG, J. QIAN

In equation (4.6), we compute

n+1/3 n+1/3

+1 _ —YT AN —vT
pZ —P+<€ ph+<1_e ) 2 2
D3y v, D3y,

5 . n+l/3 2 n+l/3
Dipvy Diyyvy,
)

+1/3

where the entries D%jhvz are computed using equations (5.4)-(5.5).

5.5. On the finite element approximation of problem (4.7). According to equation (4.11),
we compute VZ+1 as

n+1/3
vn—H _ vh

h 1/2°

Noy,
(X ol (5" (@))

5.6. On the finite element approximation of equation (3.3). For any u;, € H(} (Q), the discrete
analogue of equation (3.3) reads as

Nop,
X uh(Qn)un(Q) /w  (cof(D}s(Qn)) V) Vidx
R(uh> = Non — )
X 3ol (—us(Qn)

where D%uh is the finite-element approximation of D?x computed using equations (5.4) and
(5.5).

Note that if u is an eigenfunction of the Monge—Ampere equation (1.2), by Theorem 2.2,
one can compute the eigenvalue as Apja = inf,c » R(u). Therefore, for every time step, we can
compute the approximate ‘eigenvalue’ corresponding to ufl as

Ay = R(uj)
and monitor the evolution of )»,’f, which will monotonically converge to Aya as shown in [37].

5.7. On the finite element approximation of the initial condition. Denote the finite element
of ug and (vo,po) by ug, and (vop, por ), respectively. The discrete analogue of the initial condi-
tion (4.13) reads as

uon € Von,

Non

Y MOh(Qm)/
m=1 [0)]
Vi=1,...,Nop.

2
Vo - Vodx = —-nlayl,
Ny, 3
For (th,pOh), we set
Voh = u/;“ Pon = D%VOI’!?
where D% is the double regularization approximation using equations (5.4)-(5.5).
6. NUMERICAL EXPERIMENTS

We demonstrate the efficiency of scheme (4.5)-(4.7) by several numerical experiments. We
set the stopping criterion as Hul,‘l+1 — ulleh < & for some small & > 0. Without specification, in
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FIGURE 1. The triangulation of domains used in the examples. (a) The unit
disk domain (6.1) with 7 = 1/20. (b) The smoothed square domain (6.3) with

h=1/20. (c) The ellipse domain (6.4) with & = 1/20. (d) The eye-shape domain
(6.5) with h = 1/40.

all of our experiments, we set & = 107°, € = 2h?%, and ¢ = 2, where € and c¢ are regularization
parameters in equation (3.8) and scheme (5.4)-(5.5), respectively.

When the exact solution, denoted by u;, is given, we define the L2 error and L* error of uy, as

lun —upllnand  max|uy(Qm) — ()l
respectively.

Algorithm 1 consists of two iterations: the outer iteration for u# and the inner iteration for v
and p. Since both u and v are estimates of the solution of equation (1.2), it is not necessary
to solve every inner iteration until steady state. Instead, one can just solve the inner iteration
for a few steps. In our experiments, we observe that just 1 iteration step for the inner iteration

is sufficient for our algorithm to converge. Thus in all of our experiments, we solve the inner
iteration for only 1 step in each outer iteration.

6.1. Example 1. In the first example, we test our algorithm on the unit disk

Q= {(x1,x) : 27 +x3 < 1}.
The triangulation of the domain with 2 = 1/20 is visualized in Figure 1(a).

In this case, equation (1.2) has a radial solution. Let r =

6.1)

x2+x3. For a radial function
g(r), one has detD?g = #. Therefore, we write the solution to equation (1.2) as u(r), which
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satisfies
(1 <0, A >0,
W' =—Aru? in (0,1),
W'(0) =0, u(1) =0, (6.2)
27r/1 u)* rdr=1.
\ 0

Using a shooting method, we can solve the ODE problem (6.2) very accurately. The exact
solution verifies u(0) ~ —1.0628 and A ~ 7.4897. On the domain (6.1), we test our algorithm
with A = 1/20,1/40,1/80 and 1/160. In Figure 2(a)—(d), we show results with 4 = 1/80. Our
numerical result is visualized in Figure 2(a). The contour of Figure 2(a) is shown in Figure
2(b). Our result is a smooth radial function, whose contour consists of several circles with the
same center. The convergence histories of the error ||u’;l+1 — uk ||, and the computed eigenvalue
are shown in Figure 2(c) and Figure 2(d), respectively. Linear convergence is observed for the
error ||u§‘;rl - u’,‘l ||z, and the convergence rate is approximately 0.47. The computed eigenvalue
converges with just 5 iterations. In Figure 2(e), we show the cross sections of the results with
various 4 along x; = 0. As h goes to 0, our computed solution converges to the exact solution.
For better visualization, the zoomed bottom region of Figure 2(e) is shown in Figure 2(f).

To quantify the convergence of the proposed algorithm, we present in Table 1 the number of
iterations needed for convergence, [*- and L*-errors, computed eigenvalues and the minimal
value of the computed solution with various /. For all resolutions of mesh, 13 iterations are
sufficient for the algorithm to converge. As & goes to zero, the convergence rate of the L>- and
L>-error goes to 1, and the computed eigenvalue and the minimal value converge to the exact
solutions. The eigenvalue A;, converges linearly to the exact eigenvalue with an error of O(h).

We next compare Algorithm 1 with the method proposed in [28]. For the method from [28],
we have to use small time steps to make sure that the method does converge. In the numerical
experiment, we set the time step as /2/2 and stopping criterion as 107°. Note that the method
from [28] finds the solution of equation (1.2) with ||u,||3 = 1. When computing the L- and L™-
errors, we first normalize the solution so that ||uy||2 = 1 and we then compute the errors. The
comparisons are shown in Table 2. For both [%- and L™- errors, both algorithms have errors with
similar magnitudes. We compare the computational efficiency between the two algorithms in
Table 3. The number of iterations used by Algorithm 1 is independent of the mesh resolution,
while the number of iterations used by [28] grows approximately linearly with 1/h. For the
CPU time, Algorithm (1) is also much faster than the method in [28]. Note that in Algorithm
(1), the constraint ||uy||2 = 1 is enforced by the projection step (4.7). In [28], the constraint is
||\un||3 = 1, which was enforced by a sequential quadratic programming algorithm, which in turn
uses around 15 iterations in each outer iteration.

6.2. Example 2. In the second example, we consider the convex smoothed square domain
= {(xl,xz) 25 S < 1}. 6.3)

The triangulation of the domain with 42 = 1/20 is visualized in Figure 1(b), which has a shape
between the unit disk and a square. We test our algorithm with 4 varying from 4 = 1/20
to h = 1/160. Similar to our settings in the previous example, we set the stopping criterion
& = 107°. The time step is set as T = 1/2. Our results with 4 = 1/80 are visualized in Figure
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FIGURE 2. The unit disk domain (6.1). (a) The computed result with 2 = 1/80.
(b) The contour of (a). (¢) The history of the error Huffl — u];l|| n with h = 1/80.
(d) The history of the computed eigenvalue l/; with 2 = 1/80. (e) Comparison
of the cross sections along x, = 0 of the computed solution with various 4. (f)
Zoomed plot of the bottom region of (e).

TABLE 1. The unit disk domain (6.1). Variations with 4 of the number of itera-
tions necessary to achieve convergence (2nd column), of the L? and L* approx-
imation errors and of the associated convergence rates (columns 4, 5, 6 and 7),
of the computed eigenvalue (8th column) and of the minimal value of uj;, over
Q (that is u,(0)) (9th column). The exact eigenvalue is around 7.4897. The
minimal value of the exact solution is around —1.0628.

k+1

h |#lter. | luy,™ —ub||,| L?-error |rate | L™-error |rate | A

minuy,

1/20 13

2.13x1077

491 x 1072

429 % 102

5.9716

-1.0189

1/40 13

2.91x10~7

3.36 x 1072

0.54

3.04x 1072

0.50

6.6656

-1.0362

1/80 13

3.56x1077

1.94 x 1072

0.79

1.86 x 102

0.71

7.0655

-1.0484

17160 | 13

4.04x1077

1.01 x 1072

0.94

1.03 x 1072

0.85

7.2816

-1.0556

3(a)—(d). Our computed solution is shown in Figure 3(a), whose contour is shown in Figure
3(b). Again, our solution is very smooth. The convergence histories of the error |juf ™ — uf||,
and the computed eigenvalues ),,’l‘ are shown in Figure 3(c) and Figure 3(d), respectively. The
error Hu’;l“ — M];,Hh converges linearly with a rate of 0.38. In this numerical experiment, the
stopping criterion is satisfied after 16 iterations. The computed eigenvalue achieves its steady
state with about 5 iterations. With various 4, the comparison of cross sections of our results
along x, = 0 is shown in Figure 3(e)—(f). As & goes to 0, the convergence of the solution along
cross sections is observed.
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TABLE 2. The unit disk domain (6.1). Variations with / of the number of itera-
tions necessary to achieve convergence (2nd column), of the L? and L™ approx-
imation errors and of the associated convergence rates (columns 4, 5, 6 and 7),
of the computed eigenvalue (8th column) and of the minimal value of u; over
Q (that is u,(0)) (9th column). The exact eigenvalue is around 7.4897. The
minimal value of the exact solution is around —1.0628.

Algorithm (1) Method from [28]
h L*-error rate L”-error rate L*-error rate L”-error rate
1/20 [ 491 x 1072 429 x 1072 4.01 x 1072 8.40 x 1072

1/40 [3.36 x 1072 [0.54 [ 3.04 x 1072 [0.50 || 2.33 x 1072 [ 0.78 | 4.00 x 10~2 | 1.07
1/80 | 1.94%x107210.79]1.86x 1072 [0.71 | 1.37x1072]0.76 | 2.05 x 10~2 | 0.96
1/160 | 1.01 x 1072 0.94 [ 1.03x102]0.85 || 7.55x 1073 [ 0.86 | 1.08 x 10~2 | 0.92

TABLE 3. The unit disk domain (6.1). Comparison of the number of iterations
and the CPU time needed by Algorithm 1 and the method in [28] for conver-
gence.

Algorithm (1) Method from [28]
h # Iter. | CPU time || # Iter. | CPU time
1/20 13 1.44 62 3.55
1/40 13 4.58 101 22.39
1/80 13 18.35 151 138.47
1/160 | 13 83.95 263 1206.96

TABLE 4. The smoothed square domain (6.3). Variations with 4 of the number
of iterations necessary to achieve convergence (2nd column), of the computed
eigenvalue (4th column) and of the minimal value of u;, over Q (that is u;(0))
(5th column).

h | #Tter. Hu’,‘lH—MﬁHh An | minuy,
120 | 14 | 6.05x10~7 [5.17]-0.9833
1/40 | 14 | 8.00x10~7 [5.72]-0.9982
1/80 | 16 | 2.08x10~7 [6.05|-1.0094
17160 | 18 | 7.77x10~7 [6.22]-1.0159

We then report the computational cost and convergence behavior of the computed eigenvalue
and minimal value with various 4 in Table 4. The convergence of the eigenvalue is similar to that
in [28]: the eigenvalue A;, converges to A uniformly in the rate A;, ~ A — ch with A ~ 6.4, ¢ = 26.
In terms of the computational cost, Algorithm 1 is very efficient since all experiments used less
than 20 iterations to satisfy the stopping criterion.

6.3. Example 3. In the third example, we consider an ellipse domain defined by
Q= {(x1,x) :x{+2x3 < 1}. (6.4)

A triangulation of the domain with & = 1/20 is visualized in Figure 1(c). In this set of experi-
ments, we set stopping criterion & = 10~ and time step T = 1/2. The results with 4 = 1/80 are
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FIGURE 3. The smoothed square domain (6.3). (a) The computed result with
h = 1/80. (b) The contour of (a). (c) The convergence history of the errors
||u§‘;rl — k|| (d) The history of the computed eigenvalue Af. (¢) Comparison
of the cross sections along x, = 0 of the computed solution with various 4. (f)

Zoomed plot of the bottom region of (e).

TABLE 5. The ellipse domain (6.4). Variations with £ of the number of iterations
necessary to achieve convergence (2nd column), of the computed eigenvalue (4th
column) and of the minimal value of u;, over Q (that is u;,(0)) (5th column).

h | # Iter. ||u];;rl —uflln| A | minu,
120 | 16 | 6.80x1077 [21.55|-1.4277
1/40 16 9.68x10~7 |25.18 | -1.4525
1/80 17 6.44x1077 | 27.41|-1.4734
17160 | 17 7.00x10~7 | 28.67 | -1.4875

shown in Figure 4(a)—(d). Similar to the results in the previous examples, the computed solution
is smooth, and its contour consists of several ellipses with the same center, as shown in Figure
4(a) and Figure 4(b), respectively. In Figure 4(c), linear convergence is observed for the error
Hu’ffl — u’;l n» and the convergence rate is about 0.34. The computed eigenvalue l,i‘ attains its
steady state with 6 iterations. With various /4, we compare in Figure 4(e)—(f) the cross sections
of the computed results along x, = 0. Convergence is observed as & goes to 0.

With various /4, the computational cost, the computed eigenvalue and minimal value of the
computed solution are presented in Table 5. The eigenvalue A;, converges to A uniformly in the
rate A, =~ A — ch with A = 29.5,¢ =~ 161. In terms of the computational cost, all experiments

used less than 20 iterations to satisfy the stopping criterion.
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FIGURE 4. The ellipse domain (6.4). (a) The computed result with 2 = 1/80. (b)
The contour of (a). (¢) The history of the error Hu’}‘;rl — uﬁ”h (d) The history of
the computed eigenvalue l}'f . () Comparison of the cross sections along x; =0

of the computed solution with various 4. (f) Zoomed plot of the bottom region
of (e).

6.4. Example 4. We conclude this section by considering an open convex domain with a non-
smooth boundary:

Q={(x1,x2): —x1(1—x1) <xp<x1(1—x1), 0<x; <1}. (6.5)

The domain described in the set (6.5) has an eye shape, and its triangulation with 2 = 1/40 is
visualized in Figure 1(d). Since the domain is not smooth, in our experiments we use a smaller
time step T = 1/8 and larger regularization parameters € = 4h”> and ¢ = 4. We set stopping
criterion & = 1076, The results with 4 = 1 /160 are shown in Figure 5(a)—(d). The computed
solution is smooth, and its level curves have the same center, as shown in Figure 5(a) and Figure
5(b), respectively. In Figure 5(c), linear convergence is observed for the error || u’,‘;rl — u’;l ||n- The
computed eigenvalue Mf attains its steady state with 7 iterations. With various 4, we compare in
Figure 5(e)—(f) the cross sections of the computed results along x, = 0. Convergence is observed
as h goes to 0.

With various 4, the computational cost, the computed eigenvalue, and the minimal value of
the computed solution are presented in Table 6. The eigenvalue A;, converges to A uniformly
in the rate A, &~ A —ch with A =~ 618,c ~ 7792.3. In terms of the computational cost, all
experiments used no more than 30 iterations to satisfy the stopping criterion.
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TABLE 6. The eye—shape domain (6.5). Variations with / of the number of iter-
ations necessary to achieve convergence (2nd column), of the computed eigen-
value (4th column) and of the minimal value of u;, over Q (that is u;(0)) (5th
column).

ho | #lter | lub™ —ufln| A | minw,
140 | 15 | 7.80x10~7 [425.51 |-3.1091
1/80 | 20 | 7.53x10~7 [516.57 | -3.1256
1/160 | 27 | 835x10~7 |568.47|-3.1617
1320 30 | 7.87x10~7 [597.39 | -3.1913

7. CONCLUSION

We proposed an efficient operator—splitting method to solve the eigenvalue problem of the
Monge—Ampere equation. The backbone of our method relies on a convergent algorithm pro-
posed in [1]. In each iteration, we solve a constrained optimization problem whose optimality
condition is of the Monge—Ampere type. We remove the constraint by including an indicator
function and decouple the nonlinearity by introducing an auxiliary variable. The resulting prob-
lem is then converted to finding the steady state solution of an initial value problem which is
time discretized by an operator—splitting method. The efficiency and effectiveness of the pro-
posed method is demonstrated with several numerical experiments. In our experiments, we can
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choose a large constant time step. On smooth convex domains, our algorithm converges with a
few iterations and is much faster than existing methods.
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