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where D2u denotes the Hessian of u. The Monge-Ampère equation originates from differential

geometry in which it describes a surface with prescribed Gaussian curvature [3, 35]. The ex-

istence, uniqueness and regularity of the solution has been extensively studied [3, 26, 44], and

related applications can be found in optimal transport [4, 23], seismology [17], image process-

ing [33], finance [45], and geostrophic flows [21].

Due to its broad applications, in the past decade, a lot of efforts have been devoted to devel-

oping numerical methods for the Monge-Ampère equation. One line of research is to develop

wide-stencil based finite-difference schemes [24, 25] for equation (1.1) with Dirichlet bound-

ary conditions. Such a class of methods utilizes the fact that detD2u equals the product of

the eigenvalues of D2u, so that these methods use wide-stencils to estimate the eigenvalues.

Later on, such methods were extended to accommodate transport boundary conditions in [23].

Another line of research is to design finite-element based methods. In [20, 22], the authors

proposed the vanishing moment method, which approximates a fully nonlinear second-order

PDE by a fourth-order PDE. In [9, 10, 14, 15], the authors formulate equation (1.1) as an opti-

mization problem. Fast augmented Lagrangian algorithms are then designed to solve the new

problems. Recently, operator–splitting methods have been proposed in [30, 39]. Taking ad-

vantage of the divergence form of detD2u, the authors of [30, 39] decouple the nonlinearity

of equation (1.1) by introducing an auxiliary variable so that solving equation (1.1) is reduced

to finding the steady-state solution of an initial value problem, which is time-discretized by an

operator–splitting method and space-discretized by a mixed finite-element method. Other nu-

merical methods for equation (1.1) include [2, 5, 6, 11, 12, 19]; see the survey [18] for more

related works.

Existing works discussed above target equation (1.1) with various boundary conditions. An-

other interesting problem of the Monge–Ampère type is the eigenvalue problem, reading as
{

det(D2u) = λ |u|d in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω ⊂ R
d (d ≥ 2) is an open bounded convex domain, and λ = λ [Ω] is the unknown

eigenvalue of the Monge–Ampère operator on Ω. Problem (1.2) was first studied by Lions in

[38] and later by Tso in [46]. They proved the existence, uniqueness and regularity of the so-

lution on an open, bounded, smooth, uniformly convex domain. The result was then extended

by Le in [36] to general bounded convex domains. Theoretically, to find the solution of equa-

tion (1.2), a variational formulation was proposed in [46], and a convergent Rayleigh quotient

inverse iterative formulation was proposed in [1] which was further improved in [37]. Since,

during each Rayleigh quotient iteration, the algorithm in [1] requires solving a Monge–Ampère

type equation, how to efficiently implement this formulation numerically has not been studied.

The only work on the numerical solution of equation (1.2) we are aware of is [28], in which

the authors proposed operator–splitting methods for a class of Monge-Ampère eigenvalue prob-

lem. In [28], taking advantage of the divergence form, the authors takes equation (1.2) as the

optimality condition of a constrained optimization problem, in which λ is considered as the

Lagrange multiplier, and an operator–splitting method was proposed to solve the new problem.

Similar to equation (1.1), the eigenvalue problem (1.2) is a fully nonlinear second-order PDE.

One effective way to solve such PDEs is the operator–splitting method, which decomposes
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complicated problems into several easy–to–solve subproblems by introducing auxiliary vari-

ables. Then the new problem will be formulated as solving an initial value problem, which is

then time discretized using operator–splittings. All variables will be updated in an alternative

fashion, where each subproblem either has an explicit solution or can be solved efficiently. The

operator–splitting method has been applied to numerically solving PDEs [30, 39], image pro-

cessing [16, 40, 41, 42], surface reconstruction [34], inverse problems [29], obstacle problems

[43], and computational fluid dynamics [7, 8]. We refer readers to monographs [31, 32] for

detailed discussions on operator–splitting methods.

In this work, we propose an efficient numerical implementation of the formulation proposed

in [1] to compute the eigenvalue and eigenfunction of the Monge–Ampère operator on an open,

bounded, convex domain Ω. Since each Rayleigh quotient inverse iteration of the formula-

tion in [1] requires solving a Monge–Ampère equation, we first use the divergence form of

the Monge–Ampère operator to rewrite the problem as an optimization problem. To stabilize

our formulation, we consider a constrained version of the optimization problem by forcing the

eigenfunction u to have unit L2-norm: ‖u‖2 = 1. The constrained problem is converted to an

unconstrained problem by utilizing an indicator function of the constraint set. Then we decou-

ple the nonlinearity of the functional by introducing an auxiliary variable, and we associate it

with an initial value problem in the flavor of gradient flow. The initial value problem is time dis-

cretized by an operator-splitting method and space discretized by a mixed finite-element method

in the space of piecewise-linear continuous functions. The efficiency of the proposed method is

demonstrated by several numerical experiments.

We organize the rest of this article as follows: We introduce the background and summarize

the convergent formulation of [1] for equation (1.2) in Section 2. Our new operator-splitting

approach for implementing this convergent formulation is presented in Section 3. Our operator-

splitting scheme is time discretized in Section 4 and space discretized in Section 5. We demon-

strate the efficiency of the proposed method by several numerical experiments in Section 6 and

conclude this article in Section 7.

2. A CONVERGENT INVERSE ITERATION FOR THE EIGENVALUE PROBLEM

Let Ω ⊂R
d be an open bounded convex domain. In equation (1.2), if u is a convex function,

one has u ≤ 0 and |u|=−u. The existence and uniqueness of the eigen-pair was studied in [38]:

Theorem 2.1. Assume that Ω⊂R
d is a smooth, bounded, uniformly convex domain. There exist

a unique positive constant λMA and a unique (up to positive multiplicative constants) nonzero

convex function u ∈C1,1(Ω̄)∩C∞(Ω) solving the eigenvalue problem (1.2). The constant λMA

is called the Monge-Ampère eigenvalue of Ω and u is called a Monge-Ampère eigenfunction of

Ω.

Define the Rayleigh quotient of a function u for the Monge-Ampère operator as

R(u) =

∫

Ω−udet(D2u)dx
∫

Ω(−u)d+1dx
, (2.1)

and the function space K as

K =
{

u ∈C0,1(Ω̄)∩C∞(Ω) : u is convex and nonzero in Ω, u = 0 on ∂Ω
}

.

Tso [46] showed that λMA can be written as the infimum of Rayleigh quotients:
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Theorem 2.2. Assume that Ω ⊂R
d is a smooth, bounded and uniformly convex domain. Then

λMA = inf
u∈K

R(u). (2.2)

Based on the property (2.2), the following inverse iterative scheme for the eigenvalue problem

(1.2) was proposed by Abedin and Kitagawa in [1]:










u0 = u0,

det(D2uk+1) = R(uk)|uk|d in Ω,

uk+1 = 0 on ∂Ω,

(2.3)

where u0 is a given initial condition, and they further proved the convergence of the inverse

iteration:

Theorem 2.3. Assume that Ω ⊂R
d is an open bounded convex domain. Let u0 ∈C(Ω̄) satisfy

the following:

(i) u0 is convex and u0 ≤ 0 on ∂Ω;

(ii) R(u0)< ∞;

(iii) det(D2u0)≥ c0 in Ω, where c0 is some positive constant.

Then, for k > 0, uk in equation (2.3) converges uniformly on Ω̄ to a nonzero Monge-Ampère

eigenfunction, and R(uk) converges to λMA.

Theorem 2.3 was improved in [37] so that conditions (i) and (iii) are removed; consequently,

the inverse iteration converges for all convex initial data having finite and nonzero Rayleigh

quotient to a nonzero Monge-Ampère eigenfunction of Ω.

3. A MODIFIED FORMULATION OF THE INVERSE ITERATION

Given an initial convex function u0 with bounded nonzero Rayleigh quotient, the inverse iter-

ation (2.3) generates the sequence {(R(uk),uk)} which is guaranteed to converge to the solution

of the eigenvalue problem (1.2). When updating uk+1 from uk, one needs to solve a Monge-

Ampère equation with the Dirichlet boundary condition, which is a nonlinear problem. It has

not been studied yet how to implement the inverse iteration efficiently to produce numerical

approximations to the eigenvalue problem of the Monge-Ampère operator. Therefore, we are

motivated to develop an efficient algorithm to implement this inverse iterative method.

To achieve this purpose, we adopt a recently developed operator-splitting method (see [28,

30, 39]) to solve equation (2.3) numerically. We focus on the case d = 2. Our method can be

easily extended to higher dimensional problems.

We first reformulate equation (2.3) using the following identity:

det(D2u) =
1

2
∇ · (cof(D2u)∇u), (3.1)

where cof(D2u) =





∂ 2u

∂x2
1

− ∂ 2u
∂x1∂x2

− ∂ 2u
∂x1∂x2

∂ 2u

∂x2
2



 is the cofactor matrix of D2u.
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Incorporating equation (3.1) into equations (2.3) and (2.1) gives rise to










u0 = u0,

∇ · (cof(D2uk+1)∇uk+1) = 2 R(uk)|uk|d in Ω,

uk+1 = 0 on ∂Ω,

(3.2)

with

R(u) =

∫

Ω
(cof(D2u)∇u) ·∇udx

2

∫

Ω
(−u)3dx

, (3.3)

where we used integration by parts when deriving equation (3.3).

From equation (3.2), updating uk+1 from uk is equivalent to solving the optimization problem






min
w

[

∫

Ω
(cof(D2w)∇w) ·∇wdx+6

∫

Ω
f kwdx

]

,

w = 0 on ∂Ω,
(3.4)

with f =R(uk)|uk|2, which can be derived from the first-order variational principle; see [30, 39].

Note that if (λMA,u
∗) is a solution to equation (1.2), (λMA,αu∗) is also a solution for any α > 0

(assuming that we are looking for convex eigenfunctions). To make the solution of equation

(1.2) unique, we restrict our attention to looking for the eigenfunction u∗ satisfying ‖u∗‖2 = 1.
Therefore it is natural to add the constraint ‖w‖2 = 1 to equation (3.4). However, usually

a constrained optimization problem is more challenging to solve than an unconstrained one.

Therefore, to remove the constraint while enforcing ‖w‖2 = 1, we utilize an indicator function.

Define the set

S = {w : w is smooth,‖w‖2 = 1}

and its indicator function

IS(w) =

{

0 if w ∈ S,

+∞ otherwise.

Equation (3.4) with constraint ‖w‖2 = 1 can be rewritten as






min
w

[

∫

Ω
(cof(D2w)∇w) ·∇wdx+6

∫

Ω
f k wdx+ IS(w)

]

,

w = 0 on ∂Ω.
(3.5)

We follow [30] to introduce a matrix-valued auxiliary variable p to decouple the nonlinearity

in equation (3.5). Then solving equation (3.5) is equivalent to solving


















min
w,p

[

∫

Ω
(cof(p)∇w) ·∇wdx+6

∫

Ω
f k wdx+ IS(w)

]

,

w = 0 on ∂Ω,

p = D2w in Ω.

(3.6)
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After computing the Euler-Lagrange equation, if (v,p) is a solution to equation (3.6), we have










∇ · (cof(p)∇v)−2 f k +∂ IS(v) ∋ 0 in Ω,

v = 0 on ∂Ω,

p = D2v, in Ω,

(3.7)

where ∂ IS denotes the sub-differential of IS.

We associate equation (3.7) with the following initial value problem (in the flavor of gradient

flow)






















{

∂v
∂ t
+∇ · ((εI+ cof(p))∇v)−2 f k +∂ IS(v) ∋ 0 in Ω× (0,+∞),

v = 0 on ∂Ω× (0,+∞),
∂p
∂ t

+ γ(p−D2v) = 0 in Ω× (0,+∞),

v(0) = v0, p(0) = p0,

(3.8)

where I is the identity matrix, 0 is the zero matrix, and ε > 0 is a small constant. The term εI is

a regularization term in order to handle the case that infx∈Ω f k(x) = 0. Then uk+1 is the steady

state of v.

In equation (3.8), γ controls the evolution speed of p. A natural choice is to let p evolve with

a similar speed as that of v, leading to

γ = βλ0

with λ0 being the smallest eigenvalue of −∇2 and β > 0 being some constant.

4. AN OPERATOR SPLITTING METHOD TO SOLVE EQUATION (3.8)

4.1. The operator splitting strategy. The structure of equation (3.8) is well–suited to be time-

discretized by the operator splitting method. Among many possible discretization schemes, we

choose the simplest Lie scheme.

Let τ > 0 denote the time step and denote tn = nτ . We time-discretize equation (3.8) as

follows:

Initialization:

v0 = v0, p0 = p0. (4.1)

For n > 0, update (vn,pn)→ (vn+1/3,pn+1/3)→ (vn+2/3,pn+2/3)→ (vn+1,pn+1) as:

Step 1: Solve






















{

∂v
∂ t
+∇ · ((εI+ cof(p))∇v)−2 f k = 0 in Ω× (tn, tn+1),

v = 0 on ∂Ω× (tn, tn+1),
∂p
∂ t

= 0 in Ω× (tn, tn+1),

v(tn) = vn, p(tn) = pn,

(4.2)
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and set vn+1/3 = v(tn+1), pn+1/3 = p(tn+1).
Step 2: Solve























{

∂v
∂ t

= 0 in Ω× (tn, tn+1),

v = 0 on ∂Ω× (tn, tn+1),
∂p
∂ t

+ γ(p−D2v) = 0 in Ω× (tn, tn+1),

v(tn) = vn+1/3, p(tn) = pn+1/3,

(4.3)

and set vn+2/3 = v(tn+1), pn+2/3 = p(tn+1).
Step 3: Solve























{

∂v
∂ t
+∂ IS(v) ∋ 0 in Ω× (tn, tn+1),

v = 0 on ∂Ω× (tn, tn+1),
∂p
∂ t

= 0 in Ω× (tn, tn+1),

v(tn) = vn+2/3, p(tn) = pn+2/3,

(4.4)

and set vn+1 = v(tn+1), pn+1 = p(tn+1).
The scheme (4.1)–(4.4) is only semi-constructive since one still needs to solve the subprob-

lems in equations (4.2)–(4.4). For equation (4.3), we have the explicit solution for pn+2/3:

pn+2/3 = e−γτpn +(1− e−γτ)D2vn+1/3.

Since the solution of equation (1.2) is a convex function, the Hessian D2u is a semi-positive

definite matrix. Since p is an auxiliary variable estimating D2v, we project it onto the space of

semi-positive definite symmetric matrices once pn+2/3 is computed. We denote the projection

operator by P+; see more details in Section 5.4.

For other subproblems, we adopt the one-step backward Euler scheme (the Markchuk-Yanenko

type). Our updating formulas are summarized as follows:
{

vn+1/3−vn

τ +∇ ·
(

(εI+ cof(pn))∇vn+1/3
)

−2 f k = 0 in Ω,

vn+1/3 = 0 on ∂Ω,
(4.5)

pn+1 = P+

(

e−γτpn +(1− e−γτ)D2vn+1/3
)

, (4.6)
{

vn+1−vn+1/3

τ +∂ IS(v
n+1) ∋ 0 in Ω,

vn+1 = 0 on ∂Ω.
(4.7)

Remark 4.1. Equation (3.8) is very similar to problem (36) in [28], except that in our current

scheme the constraint is ‖u‖2 = 1 and that in [28] it is ‖u‖3 = 1. Despite similar formula-

tions, the numerical treatments are very different. In equations (4.5)-(4.7), f k and the indicator

function ∂ IS are separately distributed into two sub-steps. Equation (4.7) simply results in a

projection to the unit sphere; see Section 4.2 for details.

In [28], λ d u|u| with d being the spatial dimension plays the role of f k and the constraint

plays the role of ∂ IS, and both terms are arranged in the same sub-step (problem (50b) in [28]):






un+2/3 −un+1/3 = 3τλ n+1un+2/3|un+2/3|,
∫

Ω
|un+2/3|3dx = 1

(4.8)
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The constraint ‖u‖3 = 1 cannot be replaced by ‖u‖2 = 1 since equation (4.8) was considered as

an optimality condition of a Lagrangian functional and τλ n+1 is the Lagrange multiplier. As a

result, un+2/3 solves

un+2/3 ∈ argmin
v:
∫

Ω |v|3dx=1

[

1

2

∫

Ω
|v|2dx−

∫

Ω
un+1/3vdx

]

. (4.9)

Unlike (4.7), the solution to problem (4.9) does not have an explicit expression, so that an

iterative method (such as sequential quadratic programming) was used in [28] to solve problem

(4.9).

Remark 4.2. Compared to the algorithm (2.3) proposed in [1], our scheme has an additional

term related to the constraint ‖u‖2 = 1, and such a constraint leads to the projection step (4.7)

which helps stabilize our numerical algorithm.

Remark 4.3. Scheme (4.2)–(4.4) is an approximation of the gradient flow of the functional

in (3.6). The convergence of scheme (4.2)–(4.4) is closely related to that of the gradient flow

together with an approximation error. It has been shown that when there is only one variable and

the operator in each step has sufficient regularity, the approximation error is of O(τ) (see [13]

and [27, Chapter 6]). However, the terms in (3.6) are non–trivial and non–smooth, traditional

analysis techniques are not applicable in this scenario. As the splitting error is closely related to

the time step τ , we expect the approximation error reduces (and thus the convergence of scheme

(4.2)–(4.4) follows that of the gradient flow) as τ goes to 0.

4.2. On the solution to equation (4.7). In the scheme above, problems (4.5) and (4.6) are easy

to solve. In equation (4.7), vn+1 solves






min
w

[

1
2τ

∫

Ω
‖w− vn+1/3‖2

2dx+ IS(w)

]

,

w = 0 on ∂Ω.
(4.10)

Since IS(w) is the indicator function of S in which ‖w‖2 = 1, the exact solution of equation

(4.10) reads as

vn+1 =
vn+1/3

‖vn+1/3‖2

. (4.11)

4.3. On the initial condition. We next discuss the initial condition u0 in the outer iteration

and (v0,p0) in the inner iteration. The convergence theorem for the scheme (2.3), Theorem

2.3, requires the initial condition to be convex and smooth. A simple choice is to set u0 as the

solution to
{

detD2u0 = 1 in Ω,

u0 = 0 on ∂Ω.
(4.12)

However, solving equation (4.12) is not trivial. Since u0 is only the initial condition and the

iterates generated by the inverse iteration are eventually smooth as shown in [37], we do not

need to solve equation (4.12) exactly. An operator splitting method is proposed in [30] to solve

equation (4.12). To make the initialization simpler, we will choose u0 as the initial condition
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according to a strategy used in [30]. Specifically, u0 is the solution to the Poisson problem
{

∇2u0 = 2η in Ω,

u0 = 0 on ∂Ω,
(4.13)

where η > 0 is of O(1).
For the initial condition (v0,p0) in the k+1-th outer iteration, we simply set

v0 = uk, p0 = D2v0. (4.14)

Our algorithm is summarized in Algorithm 1.

Algorithm 1: An operator-splitting method for solving problem (1.2)

Input: Parameters γ,τ,ε,N.

Initialization: Set k = 0. Initialize u0 according to equation (4.13).

while not converge do

Step 1. Compute f k = R(uk)|uk|2 according to equation (3.3).

Step 2. Set n = 0. Initialize (v0,p0) according to equation (4.14).

while not converge do

Step 3.1. Solve equation (4.5) for vn+1/3.

Step 3.2. Solve equation (4.6) for pn+1.

Step 3.3. Solve equation (4.7) for vn+1.

Step 3.4. Set n = n+1.

end while

Step 4. Set uk+1 as the converged v∗.

Step 5. Set k = k+1.

end while

Output: The converged eigenfunction u∗ and eigenvalue λMA.

5. A FINITE ELEMENT IMPLEMENTATION OF SCHEME (4.5)-(4.7)

5.1. Generalities. Let Ω ⊂ R
2 be an open bounded convex polygonal domain (or it has been

approximated by such a domain). Let Th be a triangulation of Ω, where h denotes the length of

the longest edge of triangles in Th. Define the following two piecewise linear function spaces

Vh = {φ ∈C0(Ω̄) : φT ∈ P1 for ∀T ∈ Th},

V0h = {φ ∈Vh : φ |∂Ω = 0},

where P1 is the space of polynomials of two variables with degree no larger than 1. Let H1(Ω)
be the Sobolev space of order 1 and H1

0 (Ω) be the collection of functions in H1(Ω) with van-

ishing trace on ∂Ω. Then Vh and V0h are approximations of H1(Ω) and H1
0 (Ω), respectively.

Denote the set of vertices of Th by Σh. We further denote the interior vertices of Th by

Σ0h = Σh\(Σh ∩ ∂Ω). We use Nh and N0h to denote the cardinality of Σh and Σ0h, respectively.

We have

dimVh = Nh and dimV0h = N0h.

We order the vertices of Th so that Σ0h = {Ql}
N0h

l=1, where Ql’s denote the vertices. For any

1 ≤ l ≤ Nh, we use ωl to denote the union of triangles in Th that have Ql as a common vertex.
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Denote the area of ωl by |ωl|. For each vertex Ql , we define the hat function φl so that

φl ∈Vh, φl(Ql) = 1 and φl(Qm) = 0 for m 6= l.

We have that φl is supported on ωl . For any function f ∈ H1(Ω), its finite element approxima-

tion fh ∈Vh can be written as

fh =
Nh

∑
l=1

f (Ql)φl.

We further equip Vh with the inner product ( fh,gh)h : Vh ×Vh →R defined by

( fh,gh)h =
1

3

Nh

∑
l=1

|ωl| fh(Ql)gh(Ql),∀ fh,gh ∈Vh.

The induced norm is defined as

‖ fh‖h =
√

( fh, fh).

Because of the eventual smoothness of solutions to the inverse iteration (2.3) as shown in [37],

our mixed finite-element method uses the space Vh to approximate both the solution u and its

second-order partial derivatives ∂ 2u/∂xi∂x j for i, j = 1,2. In the rest of this section, we denote

the finite-element approximation of v and p by vh ∈V0h and ph ∈ (Vh)
2×2, respectively.

5.2. Finite element approximation of the three second-order partial derivatives. In equa-

tion (4.6), one needs to compute D2vn+1/3, the Hessian of vn+1/3, which will be numerically

computed, and we adopt to our current setting the double regularization method introduced in

[30].

The double regularization method is a two-step process to get a smooth approximation of

D2u. In the first step, one solves
{

−ε1∇2πi j +πi j =
∂ 2u

∂xi∂x j
in Ω,

πi j = 0 on ∂Ω,
(5.1)

in which ε1 = O(h2) is a constant, πi j is a regularized approximation of ∂ 2u/∂xi∂x j with zero

boundary condition. Although πi j is a smooth approximation, the zero boundary condition will

have a disastrous influence to the solution u of our scheme, as mentioned in [30]. To mitigate

the influence, the second step is a correction step which solves
{

−ε1∇2D2
i ju+D2

i ju = πi j in Ω,
∂D2

i ju

∂n
= 0 on ∂Ω,

(5.2)

where n denotes the outward normal direction of ∂Ω. The resulting D2
i ju is the doubly regular-

ized approximation of ∂ 2u/∂xi∂x j.

From the divergence theorem, one has


















∀i, j = 1,2, ∀v ∈ H2(Ω),
∫

Ω

∂ 2v

∂xi∂x j
wdx =−

1

2

∫

Ω

[

∂v

∂xi

∂w

∂x j
+

∂v

∂x j

∂w

∂xi

]

dx,

∀w ∈ H1
0 (Ω).

(5.3)
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Based on equation (5.3), the discrete analogues of equations (5.1)-(5.2) read as:


















πi jh ∈V0h,

c ∑
T∈ωl

|T |
∫

T
∇πi jh ·∇φldx+

1

3
|ωl|πi jh(Ql) =−

1

2

∫

ωl

[

∂uh

∂xi

∂φl

∂x j
+

∂uh

∂x j

∂φl

∂xi

]

dx,

∀l = 1, ...,N0h

(5.4)

and


















D2
i jhuh ∈Vh,

c ∑
T∈ωl

|T |
∫

T
∇D2

i jhuh ·∇φldx+
1

3
|ωl|D

2
i jhuh(Ql) =

1

3
|ωl|πi jh(Ql),

∀l = 1, ...,Nh,

(5.5)

where c = O(1) is a constant.

5.3. On the finite-element approximation of problem (4.5). We first rewrite equation (4.5)

in the variational form














vn+1/3 ∈V0h,
∫

Ω
vn+1/3ψdx+ τ

∫

Ω
(εI+ cof(pn))∇vn+1/3 ·∇ψdx = 2

∫

Ω
f kψdx,

∀ψ ∈V0h.

(5.6)

If pn is semi–positive definite, then problem (5.6) admits a unique solution. Denote M = εI+
cof(pn

h). The discrete analogue of equation (5.6) reads as


















v
n+1/3

h ∈V0h,

1
3
|ωl|v

n+1/3

h (Ql)+ τ
N0h

∑
m=1

(

v
n+1/3

h (Qm)
∫

ωl∩ωm

M∇φm ·∇φldx

)

= 2
3
|ωl| f

k(Ql),

∀l = 1, ...,N0h.

(5.7)

Solving problem (5.7) is equivalent to solving a sparse linear system, for which many efficient

solvers, such as the Cholesky decomposition, can be used.

5.4. On the finite element approximation of problem (4.6). We first define the projection

operator P+ that projects 2×2 real symmetric matrices to the set of real symmetric semi-positive

definite matrices. Let A be a 2× 2 real symmetric matrix. By spectral decomposition, there

exists a 2×2 orthogonal matrix S so that A = SΛΛΛS−1, where

ΛΛΛ =

[

λ1 0

0 λ2

]

with λ1,λ2 being eigenvalues of A. If A is semi–positive definite, one has λ1,λ2 ≥ 0. Therefore

we define P+ as

P+(A) = S

[

max(λ1,0) 0

0 max(λ2,0)

]

S−1.
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In equation (4.6), we compute

pn+1
h = P+

(

e−γτpn
h +(1− e−γτ)

[

D2
11hv

n+1/3

h D2
12hv

n+1/3

h

D2
21hv

n+1/3

h D2
22hv

n+1/3

h

])

,

where the entries D2
i jhv

n+1/3

h are computed using equations (5.4)-(5.5).

5.5. On the finite element approximation of problem (4.7). According to equation (4.11),

we compute vn+1
h as

vn+1
h =

v
n+1/3

h
(

N0h

∑
l=1

1
3
|ωl|

(

v
n+1/3

h (Ql)
)2
)1/2

.

5.6. On the finite element approximation of equation (3.3). For any uh ∈H1
0 (Ω), the discrete

analogue of equation (3.3) reads as

R(uh) =−

N0h

∑
m,l=1

uh(Qm)uh(Ql)
∫

ωl∩ωm

(cof(D2
huh(Qm))∇φm) ·∇φldx

N0h

∑
m=1

2
3
|ωm|(−uh(Qm))3

,

where D2
huh is the finite-element approximation of D2u computed using equations (5.4) and

(5.5).

Note that if u is an eigenfunction of the Monge–Ampère equation (1.2), by Theorem 2.2,

one can compute the eigenvalue as λMA = infu∈K R(u). Therefore, for every time step, we can

compute the approximate ‘eigenvalue’ corresponding to uk
h as

λ k
h = R(uk

h)

and monitor the evolution of λ k
h , which will monotonically converge to λMA as shown in [37].

5.7. On the finite element approximation of the initial condition. Denote the finite element

of u0 and (v0,p0) by u0h and (v0h,p0h), respectively. The discrete analogue of the initial condi-

tion (4.13) reads as


















u0h ∈V0h,
N0h

∑
m=1

u0h(Qm)
∫

ωl∩ωm

∇φm ·∇φldx =−
2

3
η |ωl|,

∀l = 1, ...,N0h.

For (v0h,p0h), we set

v0h = uk
h, p0h = D2

hv0h,

where D2
h is the double regularization approximation using equations (5.4)-(5.5).

6. NUMERICAL EXPERIMENTS

We demonstrate the efficiency of scheme (4.5)-(4.7) by several numerical experiments. We

set the stopping criterion as ‖uk+1
h −uk

h‖h < ξ for some small ξ > 0. Without specification, in
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(a) (b)

(c) (d)

FIGURE 1. The triangulation of domains used in the examples. (a) The unit

disk domain (6.1) with h = 1/20. (b) The smoothed square domain (6.3) with

h= 1/20. (c) The ellipse domain (6.4) with h= 1/20. (d) The eye-shape domain

(6.5) with h = 1/40.

all of our experiments, we set ξ = 10−6, ε = 2h2, and c = 2, where ε and c are regularization

parameters in equation (3.8) and scheme (5.4)-(5.5), respectively.

When the exact solution, denoted by u∗h, is given, we define the L2 error and L∞ error of uh as

‖uh −u∗h‖h and max
m

|uh(Qm)−u∗h(Qm)|,

respectively.

Algorithm 1 consists of two iterations: the outer iteration for u and the inner iteration for v

and p. Since both u and v are estimates of the solution of equation (1.2), it is not necessary

to solve every inner iteration until steady state. Instead, one can just solve the inner iteration

for a few steps. In our experiments, we observe that just 1 iteration step for the inner iteration

is sufficient for our algorithm to converge. Thus in all of our experiments, we solve the inner

iteration for only 1 step in each outer iteration.

6.1. Example 1. In the first example, we test our algorithm on the unit disk

Ω = {(x1,x2) : x2
1 + x2

2 < 1}. (6.1)

The triangulation of the domain with h = 1/20 is visualized in Figure 1(a).

In this case, equation (1.2) has a radial solution. Let r =
√

x2
1 + x2

2. For a radial function

g(r), one has detD2g = g′g′′

r
. Therefore, we write the solution to equation (1.2) as u(r), which
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satisfies


























u ≤ 0, λ > 0,

u′ u′′ =−λ r u2 in (0,1),

u′(0) = 0, u(1) = 0,

2π

∫ 1

0
|u|2 r dr = 1.

(6.2)

Using a shooting method, we can solve the ODE problem (6.2) very accurately. The exact

solution verifies u(0) ≈ −1.0628 and λ ≈ 7.4897. On the domain (6.1), we test our algorithm

with h = 1/20,1/40,1/80 and 1/160. In Figure 2(a)–(d), we show results with h = 1/80. Our

numerical result is visualized in Figure 2(a). The contour of Figure 2(a) is shown in Figure

2(b). Our result is a smooth radial function, whose contour consists of several circles with the

same center. The convergence histories of the error ‖uk+1
h −uk

h‖h and the computed eigenvalue

are shown in Figure 2(c) and Figure 2(d), respectively. Linear convergence is observed for the

error ‖uk+1
h −uk

h‖h, and the convergence rate is approximately 0.47. The computed eigenvalue

converges with just 5 iterations. In Figure 2(e), we show the cross sections of the results with

various h along x2 = 0. As h goes to 0, our computed solution converges to the exact solution.

For better visualization, the zoomed bottom region of Figure 2(e) is shown in Figure 2(f).

To quantify the convergence of the proposed algorithm, we present in Table 1 the number of

iterations needed for convergence, L2- and L∞-errors, computed eigenvalues and the minimal

value of the computed solution with various h. For all resolutions of mesh, 13 iterations are

sufficient for the algorithm to converge. As h goes to zero, the convergence rate of the L2- and

L∞-error goes to 1, and the computed eigenvalue and the minimal value converge to the exact

solutions. The eigenvalue λh converges linearly to the exact eigenvalue with an error of O(h).
We next compare Algorithm 1 with the method proposed in [28]. For the method from [28],

we have to use small time steps to make sure that the method does converge. In the numerical

experiment, we set the time step as h/2 and stopping criterion as 10−6. Note that the method

from [28] finds the solution of equation (1.2) with ‖uh‖3 = 1. When computing the L2- and L∞-

errors, we first normalize the solution so that ‖uh‖2 = 1 and we then compute the errors. The

comparisons are shown in Table 2. For both L2- and L∞- errors, both algorithms have errors with

similar magnitudes. We compare the computational efficiency between the two algorithms in

Table 3. The number of iterations used by Algorithm 1 is independent of the mesh resolution,

while the number of iterations used by [28] grows approximately linearly with 1/h. For the

CPU time, Algorithm (1) is also much faster than the method in [28]. Note that in Algorithm

(1), the constraint ‖uh‖2 = 1 is enforced by the projection step (4.7). In [28], the constraint is

‖uh‖3 = 1, which was enforced by a sequential quadratic programming algorithm, which in turn

uses around 15 iterations in each outer iteration.

6.2. Example 2. In the second example, we consider the convex smoothed square domain

Ω =
{

(x1,x2) : |x1|
2.5 + |x2|

2.5 < 1
}

. (6.3)

The triangulation of the domain with h = 1/20 is visualized in Figure 1(b), which has a shape

between the unit disk and a square. We test our algorithm with h varying from h = 1/20

to h = 1/160. Similar to our settings in the previous example, we set the stopping criterion

ξ = 10−6. The time step is set as τ = 1/2. Our results with h = 1/80 are visualized in Figure
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FIGURE 2. The unit disk domain (6.1). (a) The computed result with h = 1/80.

(b) The contour of (a). (c) The history of the error ‖uk+1
h −uk

h‖h with h = 1/80.

(d) The history of the computed eigenvalue λ k
h with h = 1/80. (e) Comparison

of the cross sections along x2 = 0 of the computed solution with various h. (f)

Zoomed plot of the bottom region of (e).

TABLE 1. The unit disk domain (6.1). Variations with h of the number of itera-

tions necessary to achieve convergence (2nd column), of the L2 and L∞ approx-

imation errors and of the associated convergence rates (columns 4, 5, 6 and 7),

of the computed eigenvalue (8th column) and of the minimal value of uh over

Ω (that is uh(0)) (9th column). The exact eigenvalue is around 7.4897. The

minimal value of the exact solution is around −1.0628.

h # Iter. ‖uk+1
h −uk

h‖h L2-error rate L∞-error rate λh minuh

1/20 13 2.13×10−7 4.91×10−2 4.29×10−2 5.9716 -1.0189

1/40 13 2.91×10−7 3.36×10−2 0.54 3.04×10−2 0.50 6.6656 -1.0362

1/80 13 3.56×10−7 1.94×10−2 0.79 1.86×10−2 0.71 7.0655 -1.0484

1/160 13 4.04×10−7 1.01×10−2 0.94 1.03×10−2 0.85 7.2816 -1.0556

3(a)–(d). Our computed solution is shown in Figure 3(a), whose contour is shown in Figure

3(b). Again, our solution is very smooth. The convergence histories of the error ‖uk+1
h − uk

h‖h

and the computed eigenvalues λ k
h are shown in Figure 3(c) and Figure 3(d), respectively. The

error ‖uk+1
h − uk

h‖h converges linearly with a rate of 0.38. In this numerical experiment, the

stopping criterion is satisfied after 16 iterations. The computed eigenvalue achieves its steady

state with about 5 iterations. With various h, the comparison of cross sections of our results

along x2 = 0 is shown in Figure 3(e)–(f). As h goes to 0, the convergence of the solution along

cross sections is observed.
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TABLE 2. The unit disk domain (6.1). Variations with h of the number of itera-

tions necessary to achieve convergence (2nd column), of the L2 and L∞ approx-

imation errors and of the associated convergence rates (columns 4, 5, 6 and 7),

of the computed eigenvalue (8th column) and of the minimal value of uh over

Ω (that is uh(0)) (9th column). The exact eigenvalue is around 7.4897. The

minimal value of the exact solution is around −1.0628.

Algorithm (1) Method from [28]

h L2-error rate L∞-error rate L2-error rate L∞-error rate

1/20 4.91×10−2 4.29×10−2 4.01×10−2 8.40×10−2

1/40 3.36×10−2 0.54 3.04×10−2 0.50 2.33×10−2 0.78 4.00×10−2 1.07

1/80 1.94×10−2 0.79 1.86×10−2 0.71 1.37×10−2 0.76 2.05×10−2 0.96

1/160 1.01×10−2 0.94 1.03×10−2 0.85 7.55×10−3 0.86 1.08×10−2 0.92

TABLE 3. The unit disk domain (6.1). Comparison of the number of iterations

and the CPU time needed by Algorithm 1 and the method in [28] for conver-

gence.

Algorithm (1) Method from [28]

h # Iter. CPU time # Iter. CPU time

1/20 13 1.44 62 3.55

1/40 13 4.58 101 22.39

1/80 13 18.35 151 138.47

1/160 13 83.95 263 1206.96

TABLE 4. The smoothed square domain (6.3). Variations with h of the number

of iterations necessary to achieve convergence (2nd column), of the computed

eigenvalue (4th column) and of the minimal value of uh over Ω (that is uh(0))
(5th column).

h # Iter. ‖uk+1
h −uk

h‖h λh minuh

1/20 14 6.05×10−7 5.17 -0.9833

1/40 14 8.00×10−7 5.72 -0.9982

1/80 16 2.08×10−7 6.05 -1.0094

1/160 18 7.77×10−7 6.22 -1.0159

We then report the computational cost and convergence behavior of the computed eigenvalue

and minimal value with various h in Table 4. The convergence of the eigenvalue is similar to that

in [28]: the eigenvalue λh converges to λ uniformly in the rate λh ≈ λ −ch with λ ≈ 6.4,c≈ 26.

In terms of the computational cost, Algorithm 1 is very efficient since all experiments used less

than 20 iterations to satisfy the stopping criterion.

6.3. Example 3. In the third example, we consider an ellipse domain defined by

Ω =
{

(x1,x2) : x2
1 +2x2

2 < 1
}

. (6.4)

A triangulation of the domain with h = 1/20 is visualized in Figure 1(c). In this set of experi-

ments, we set stopping criterion ξ = 10−6 and time step τ = 1/2. The results with h = 1/80 are
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FIGURE 3. The smoothed square domain (6.3). (a) The computed result with

h = 1/80. (b) The contour of (a). (c) The convergence history of the errors

‖uk+1
h − uk

h‖h. (d) The history of the computed eigenvalue λ k
h . (e) Comparison

of the cross sections along x2 = 0 of the computed solution with various h. (f)

Zoomed plot of the bottom region of (e).

TABLE 5. The ellipse domain (6.4). Variations with h of the number of iterations

necessary to achieve convergence (2nd column), of the computed eigenvalue (4th

column) and of the minimal value of uh over Ω (that is uh(0)) (5th column).

h # Iter. ‖uk+1
h −uk

h‖h λh minuh

1/20 16 6.80×10−7 21.55 -1.4277

1/40 16 9.68×10−7 25.18 -1.4525

1/80 17 6.44×10−7 27.41 -1.4734

1/160 17 7.00×10−7 28.67 -1.4875

shown in Figure 4(a)–(d). Similar to the results in the previous examples, the computed solution

is smooth, and its contour consists of several ellipses with the same center, as shown in Figure

4(a) and Figure 4(b), respectively. In Figure 4(c), linear convergence is observed for the error

‖uk+1
h − uk

h‖h, and the convergence rate is about 0.34. The computed eigenvalue λ k
h attains its

steady state with 6 iterations. With various h, we compare in Figure 4(e)–(f) the cross sections

of the computed results along x2 = 0. Convergence is observed as h goes to 0.

With various h, the computational cost, the computed eigenvalue and minimal value of the

computed solution are presented in Table 5. The eigenvalue λh converges to λ uniformly in the

rate λh ≈ λ − ch with λ ≈ 29.5,c ≈ 161. In terms of the computational cost, all experiments

used less than 20 iterations to satisfy the stopping criterion.
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FIGURE 4. The ellipse domain (6.4). (a) The computed result with h= 1/80. (b)

The contour of (a). (c) The history of the error ‖uk+1
h −uk

h‖h. (d) The history of

the computed eigenvalue λ k
h . (e) Comparison of the cross sections along x2 = 0

of the computed solution with various h. (f) Zoomed plot of the bottom region

of (e).

6.4. Example 4. We conclude this section by considering an open convex domain with a non-

smooth boundary:

Ω = {(x1,x2) : −x1(1− x1)< x2 < x1(1− x1), 0 < x1 < 1} . (6.5)

The domain described in the set (6.5) has an eye shape, and its triangulation with h = 1/40 is

visualized in Figure 1(d). Since the domain is not smooth, in our experiments we use a smaller

time step τ = 1/8 and larger regularization parameters ε = 4h2 and c = 4. We set stopping

criterion ξ = 10−6. The results with h = 1/160 are shown in Figure 5(a)–(d). The computed

solution is smooth, and its level curves have the same center, as shown in Figure 5(a) and Figure

5(b), respectively. In Figure 5(c), linear convergence is observed for the error ‖uk+1
h −uk

h‖h. The

computed eigenvalue λ k
h attains its steady state with 7 iterations. With various h, we compare in

Figure 5(e)–(f) the cross sections of the computed results along x2 = 0. Convergence is observed

as h goes to 0.

With various h, the computational cost, the computed eigenvalue, and the minimal value of

the computed solution are presented in Table 6. The eigenvalue λh converges to λ uniformly

in the rate λh ≈ λ − ch with λ ≈ 618,c ≈ 7792.3. In terms of the computational cost, all

experiments used no more than 30 iterations to satisfy the stopping criterion.
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FIGURE 5. The eye–shape domain (6.5). (a) The computed result with h =
1/160. (b) The contour of (a). (c)The history of the error ‖uk+1

h −uk
h‖h. (d) The

history of the computed eigenvalue λ k
h . (e) Comparison of the cross sections

along x2 = 0 of the computed solution with various h. (f) Zoomed plot of the

bottom region of (e).

TABLE 6. The eye–shape domain (6.5). Variations with h of the number of iter-

ations necessary to achieve convergence (2nd column), of the computed eigen-

value (4th column) and of the minimal value of uh over Ω (that is uh(0)) (5th

column).

h # Iter. ‖uk+1
h −uk

h‖h λh minuh

1/40 15 7.80×10−7 425.51 -3.1091

1/80 20 7.53×10−7 516.57 -3.1256

1/160 27 8.35×10−7 568.47 -3.1617

1/320 30 7.87×10−7 597.39 -3.1913

7. CONCLUSION

We proposed an efficient operator–splitting method to solve the eigenvalue problem of the

Monge–Ampère equation. The backbone of our method relies on a convergent algorithm pro-

posed in [1]. In each iteration, we solve a constrained optimization problem whose optimality

condition is of the Monge–Ampère type. We remove the constraint by including an indicator

function and decouple the nonlinearity by introducing an auxiliary variable. The resulting prob-

lem is then converted to finding the steady state solution of an initial value problem which is

time discretized by an operator–splitting method. The efficiency and effectiveness of the pro-

posed method is demonstrated with several numerical experiments. In our experiments, we can
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choose a large constant time step. On smooth convex domains, our algorithm converges with a

few iterations and is much faster than existing methods.
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authors dedicate this work to his memory. Roland’s creativity, generosity, and friendship will

be remembered.
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