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ABSTRACT
Recent years have seen a rise in the popularity of quality diversity

(QD) optimization, a branch of optimization that seeks to find a col-

lection of diverse, high-performing solutions to a given problem. To

grow further, we believe the QD community faces two challenges:

developing a framework to represent the field’s growing array of

algorithms, and implementing that framework in software that

supports a range of researchers and practitioners. To address these

challenges, we have developed pyribs, a library built on a highly

modular conceptual QD framework. By replacing components in

the conceptual framework, and hence in pyribs, users can compose

algorithms from across the QD literature; equally important, they

can identify unexplored algorithm variations. Furthermore, pyribs

makes this framework simple, flexible, and accessible, with a user-

friendly API supported by extensive documentation and tutorials.

This paper overviews the creation of pyribs, focusing on the con-

ceptual framework that it implements and the design principles

that have guided the library’s development. Pyribs is available at

https://pyribs.org

CCS CONCEPTS
•Computingmethodologies→ Searchmethodologies; • Soft-
ware and its engineering→ Software libraries and reposito-
ries.
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Figure 1: Pyribs implements the RIBS framework for QD op-
timization. The user first ask()’s for solutions from a sched-
uler. The scheduler selects emitters to ask() for solutions
and returns the solutions to the user. After evaluating the
solutions, the user tell()’s the results to the scheduler. The
scheduler add()’s the solutions to the archive and receives
information that it tell()’s to the emitters, enabling the
emitters to update their internal search state.

1 INTRODUCTION
Many research problems decompose into highly contextual com-

ponents that prevent one solution from working well across all

possible situations. In such cases, developing a set of solutions
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Table 1: By selecting different components in the RIBS framework, we can compose a variety of recent algorithms from the
QD literature and test them in pyribs. Furthermore, we can identify combinations of components which may lead to new
algorithms. Refer to Sec. 3.2 for more details on the archives, emitters, and schedulers shown here.

Archive Emitters Scheduler

Grid CVT

Sliding

Boundaries

Unstructured Gaussian Iso+LineDD CMA-ES

Genetic

Algorithm

Gradient

Arborescence

Basic Bandit

MAP-Elites [55] ✕ ✕ ✕
CVT-MAP-Elites [69] ✕ ✕ ✕
Iso+LineDD MAP-Elites [70] ✕ ✕ ✕
MESB [27] ✕ ✕ ✕
NSLC [50] ✕ ✕ ✕
CMA-ME [32] ✕ ✕ ✕
CMA-MAE [30] ✕ ✕ ✕
ME-MAP-Elites [14] ✕ ✕ ✕ ✕
CMA-MEGA [29] ✕ ✕ ✕
CMA-MAEGA [30] ✕ ✕ ✕

rather than a single solution enables researchers to account for a

range of contexts. For instance, a roboticist may develop diverse

walking gaits so that their robot can adapt to different morphologi-

cal considerations [15], while a video game designer may generate

multiple video game levels so that players can experience various

levels of difficulty [22, 28], and a chemist may create multiple viable

drug candidates which exhibit unique properties [71].

Quality diversity (QD) optimization [8] addresses such problems

by searching for collections of diverse, high-performing solutions.

Originating in neuroevolution with Novelty Search [49, 50] and

MAP-Elites [55], QD has grown to become a general-purpose opti-

mization paradigm with applications in a number of areas. As of

writing, there are at least 167 papers on the topic [12], spanning

areas as diverse as reinforcement learning [10, 11, 59, 62, 67, 68],

robot manipulation [53, 54], human-robot interaction [25, 26, 31],

video game level generation [22, 28], agent testing [5], generative

modeling [29], urban planning [37], design [34], internet congestion

control [23], and drug discovery [71]. QD has also moved outside

of publications and into more popular forms of media like blog

posts [2, 24, 33, 44, 52, 72, 74] and conference tutorials [9, 17–19].

To grow further, we believe the QD community must overcome

two challenges. The first challenge is to develop a conceptual frame-

work capable of implementing the wide and growing range of QD

algorithms. Many QD algorithms contain interchangeable compo-

nents, and a unified framework allows for mixing several state-of-

the-art components into new algorithms as the field advances. To

this end, previous work has proposed the Unifying Modular Frame-

work (UMF) [16] to connect the twomain families of QD algorithms,

Novelty Search and MAP-Elites. However, UMF was primarily de-

signed for QD algorithms based on genetic operators [20], which

limits its applicability to recently developed QD algorithms that

have a strong optimization component, such as algorithms which

incorporate Evolution Strategies (ES) [10, 11, 32, 67, 68], gradient

ascent [29, 30], or Bayesian Optimization [45].

The second challenge is to implement this framework in soft-

ware which can support a wide range of users, ranging from be-

ginners entering the field to experienced researchers seeking to

develop new algorithms. Historically, the conception of flexible,

well-documented software libraries has been quintessential to the

blooming of popular research areas. For instance, PyTorch [61] and

TensorFlow [1] have catalyzed the development and deployment of

countless deep learning algorithms in academia and industry [43],

and pycma [41] has popularized the Covariance Matrix Adapta-

tion Evolution Strategy (CMA-ES) as one of the standard tools of

evolutionary computation. Such libraries have profound effects on

their respective fields because not only do they provide powerful

features concealed with an expressive, user-friendly application

programming interface (API), but they also make these features

accessible through comprehensive documentation and tutorials,

enabling new practitioners to incorporate the latest algorithms

into their projects. Thus far, the QD community has introduced a

number of its own libraries. While these libraries have successfully

spurred research, they are targeted towards researchers within the

QD community, offering them high performance [51, 56], reference

implementations [57], or a rich end-to-end experience [7].

To address these challenges, we have developed the pyribs library,

which implements a conceptual framework that we call RIBS.
1
As

shown in Fig. 1, a QD algorithm in RIBS is comprised of three

components: (1) an archive to store solutions generated by the QD

algorithm, (2) one or more emitters to generate new solutions, and

(3) a scheduler to manage the interaction of the archive and emitters.

RIBS is highly modular: As Table 1 shows, many existing QD
algorithms can be composed by replacing individual components of
the framework. The table also highlights unexplored gaps that could
be filled by combining different components, indicating potentially

promising areas for future research. Yet, the modular design does

not sacrifice simplicity, a key feature in attracting new practitioners.

Moreover, the software implementation of RIBS in pyribs en-

ables seamlessly translating these compositions into code for ex-

perimentation and engineering. We achieve this functionality by

constructing the library around the following design principles:

Simple: Centered only on components that are absolutely nec-

essary to run a QD algorithm, allowing users to combine the

framework with other software frameworks.

Flexible: Capable of representing a wide range of current and

future QD algorithms, allowing users to easily create or

modify components.

1
The name “RIBS” stems from the title of Fontaine et al. [32], “Covariance Matrix Adap-

tation for the Rapid Illumination of Behavior Space,” which introduced the concepts

of emitters and schedulers. The name “pyribs” is thus a combination of “Python” and

“RIBS.” The proper spelling of pyribs is all-lowercase, similar to pycma [41], except at

the beginning of sentences, when it is capitalized as Pyribs.
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Accessible: Easy to install and learn, particularly for beginners
with limited computational resources.

Pyribs offers modular components that can be assembled into

a QD algorithm and controlled with an API inspired by pycma’s

ask-tell interface [41]. It also features extensive documentation,

including tutorials (Fig. 3) demonstrating its usage.
2
Since its incep-

tion in 2021, pyribs has grown to support the research of at least a

dozen groups across academia and industry worldwide. As of writ-

ing, it has been applied to image generation [29, 30], video game

level generation [22], environment generation [5], reinforcement

learning [67, 68], hyperparameter optimization [65], architecture

design [36], and internet congestion control [23].

2 BACKGROUND
2.1 Quality Diversity
2.1.1 Focus. The pyribs library focuses on continuous optimiza-

tion problems over the search space R𝑛 , the same class of problems

targeted by the pycma [41] library. By focusing only on continuous

optimization, the library becomes less abstract as search vectors

become explicitly defined. Yet, continuous optimization contains an

expressive class of problems that the QD community cares about.

2.1.2 Definition. We define the continuous QD problem. We as-

sume an objective function 𝑓 : R𝑛 → R and 𝑘 measure functions3

𝑚𝑖 : R𝑛 → R, represented jointly as 𝒎 : R𝑛 → R𝑘 . We let

𝑆 = 𝒎(R𝑛) be the measure space formed by the range of 𝒎.

The QD objective is to find, for each 𝒔 ∈ 𝑆 , a solution 𝜽 ∈ R𝑛
such that 𝒎(𝜽 ) = 𝒔 and 𝑓 (𝜽 ) is maximized:

max 𝑓 (𝜽 )
subject to 𝒎(𝜽 ) = 𝒔 ∀𝒔 ∈ 𝑆 (1)

However, since 𝑆 is continuous, this objective would require infinite

memory to solve, so we relax the QD objective to finding an archive
(i.e., a finite set) of representative solutions Θ ⊆ R𝑛 .

A special case of the QD problem is the differentiable quality
diversity (DQD) [29] problem, where the objective and measure

functions are first-order differentiable with gradients ∇𝑓 and ∇𝒎.

2.1.3 Algorithms. We consider two alternatives of what consti-

tutes a representative solution in the QD problem definition (Eq. 1),

resulting in two families of algorithms.

Algorithms based on MAP-Elites [55] tessellate the measure

space 𝑆 into 𝑀 cells, and Θ is constrained such that each of its

solutions falls into a different cell of the tessellation based on its

measure values. The vanilla MAP-Elites [55] mutates randomly

sampled solutions in the archive with a genetic operator; generated

solutions are added to the archive if their objective value exceeds

that of the solution currently occupying their corresponding archive

cell. Since its inception, MAP-Elites extensions have included new

genetic operators, such as the Iso+LineDD operator inspired by

crossover [70], as well as new methods for tessellating the measure

space to create the archive. For example, MAP-Elites with Sliding

2
Website: https://pyribs.org

Source Code: https://github.com/icaros-usc/pyribs

Documentation and Tutorials: https://docs.pyribs.org

3
Prior work refers to measure function outputs as “behavior characteristics,” “behavior

descriptors,” or “feature descriptors.” We use the “measures” terminology in pyribs.

Boundaries (MESB) adapts the size of grid cells online to reflect the

distribution of solutions in measure space [27], while CVT-MAP-

Elites [69] precomputes a centroidal Voronoi tessellation (CVT) [21]

of the measure space that defines the archive cells.

Algorithms based on Novelty Search [49, 50] maintain an un-

structured archive where each solution must be novel by being

a certain distance away from its nearest neighbors in measure

space. A genetic algorithm then optimizes a population of solu-

tions to achieve further novelty. While Novelty Search itself is a

purely diversity-driven approach, many of its successors are de-

signed for QD; for instance, Novelty Search with Local Competition

(NSLC) [50] balances between optimizing for the objective and

novelty via multi-objective evolutionary algorithms.

QD algorithms have started to incorporate modern optimization

algorithms. For example, CovarianceMatrix AdaptationMAP-Elites

(CMA-ME) [32] directly optimizes for the QD objective with CMA-

ES [40]. In QD optimization, it is efficient to searchmultiple regions
of the measure space simultaneously, while balancing the explo-

ration of each region. Therefore, CMA-ME introduced the concepts

of emitters and schedulers. Each emitter maintains a separate CMA-

ES instance, while the scheduler balances how emitters explore

each measure space region. Emitters and schedulers became core

components of the RIBS framework (Sec. 3). Subsequent works

building on CMA-ME include Covariance Matrix Adaptation MAP-

Annealing (CMA-MAE) [30], which adds an archive learning rate
to the MAP-Elites grid archive. The learning rate regulates how

quickly a non-stationary discount function changes, resulting in a

soft archive that balances the tradeoff between pure optimization

and exploration. In addition, CMA-MEGA andCMA-MAEGA (CMA-

ME / CMA-MAE via a Gradient Arborescence) [29, 30] address DQD

problems with similar principles as CMA-ME and CMA-MAE.

Finally, Multi-Emitter MAP-Elites (ME-MAP-Elites) [14] intro-

duced a new scheduler by modifying the method for selecting

emitters. While the scheduler in CMA-ME maintains several CMA-

ES emitters and a round-robin emitter scheduler, ME-MAP-Elites

maintains an emitter pool consisting of emitters from CMA-ME

and emitters that apply the Iso+LineDD operator [70]. Every itera-

tion, the scheduler uses a multi-armed bandit selector from prior

work [35] to select emitters which are likely to improve the archive.

2.2 The Unifying Modular Framework
The Unifying Modular Framework (UMF) [16], an early concep-

tual QD framework, proposed to unite the components of the two

pioneering algorithms in QD optimization: MAP-Elites and NSLC.

In UMF, QD algorithms consist of a container — equivalent to a

RIBS archive — and a selector. On each iteration of a QD algorithm

in UMF, the selector generates solutions that are passed through

random variation (e.g., mutation or crossover), evaluated, and then

inserted into the container. Containers include the MAP-Elites grid

and NSLC unstructured archive, and selection mechanisms include

choosing solutions uniformly at random from the container, as in

vanilla MAP-Elites, or selecting from a population as in NSLC.

UMF unified under one framework the two major families of QD

algorithms: MAP-Elites and NSLC. However, UMF was proposed

when all QD algorithms were based on genetic algorithms, and

the framework is not expressive enough to represent modern QD
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algorithms based on other optimization methods. Specifically, UMF

incorporates a selector, which chooses solutions as inputs to ge-

netic operators. While selectors can retain a population of solutions,

they are not suitable for optimization algorithms that require an

internal state, e.g., an evolution path in CMA-ES [40] or momentum

in Adam [47]. Drawing from the architecture of CMA-ME [32], our

proposed RIBS framework incorporates emitters, which were de-

signed to encapsulate any optimization algorithm used to generate

solutions.

In addition, UMF is not designed to manage multiple populations

simultaneously. However, algorithms like CMA-ME and ME-MAP-

Elites require this feature to maintain multiple CMA-ES instances.

The RIBS framework overcomes this design limitation by incorpo-

rating a scheduler, which manages multiple emitters.

2.3 Existing QD Libraries
Here we review libraries developed by the QD community, includ-

ing their goals, features, and relation to pyribs.

2.3.1 Sferes𝑣2. Sferes𝑣2 [56] is a C++ framework for evolution-

ary computation that also supports QD algorithms. Sferes𝑣2 is pri-

marily designed for high performance, leveraging template-based

meta-programming to provide an efficient object-oriented interface

and offering multi-core parallel execution through Intel TBB and

MPI. While the template-based structure results in significant per-

formance benefits, it limits accessibility for non-expert users. In

comparison, pyribs focuses solely on QD algorithms rather than

on general evolutionary computation. It is a Python-based library

that emphasizes accessibility over performance (Sec. 4.1.3).

2.3.2 QDpy. QDpy [7] is designed to be a feature-rich Python

library for QD optimization. Besides supporting ready-to-go imple-

mentations of algorithms such as MAP-Elites and CMA-ME, QDpy

provides building blocks that can be assembled into new algorithms.

To run a QD algorithm, a QDpy user instantiates a container (i.e., an
archive) and passes it to an algorithm object. The user then defines

an evaluation function and passes the function to the QDpy system

to optimize. QDpy also provides logging and plotting utilities and

tools to run the evaluation function on distributed computation.

QDpy’s flexibility is limited by the requirement that users pass in

an evaluation function. While passing in this function allows users

to leverage QDpy’s various utilities, this requirement also makes it

difficult for users to integrate their own utilities. In contrast, pyribs

provides an ask-tell interface where users handle evaluations on

their own (Sec. 4.2.4). Essentially, pyribs focuses on components

necessary for running QD algorithms, allowing users to integrate

tools and frameworks with which they are already familiar.

2.3.3 pymap_elites. pymap_elites [57] provides customizable ref-

erence implementations of MAP-Elites and its variants CVT-MAP-

Elites [69], MAP-Elites with the Iso+LineDD operator [70], and

Multi-task MAP-Elites [58]. Unlike pymap_elites, pyribs offers a

larger selection of algorithms under one framework.

2.3.4 QDax. QDax [51] is a recent library that was developed af-

ter the initial release of pyribs. The library focuses on efficient

QD, reinforcement learning (RL), and evolutionary algorithm im-

plementations for hardware accelerators such as GPUs and TPUs,

taking advantage of the parallel nature of these methods. QDax

specializes in reinforcement learning and robotics domains, where

evaluation remains an expensive bottleneck. Many experiments

that took hours or days on a CPU cluster take only minutes with

GPU acceleration in QDax. To leverage accelerators in both func-

tion evaluation and algorithm implementation, QDax builds on the

JAX library [6] and provides a JAX-based API.

While pyribs incorporates batch operations like those found

in QDax to ensure a reasonable level of performance (Sec. 4.2.5),

pyribs only runs single-threaded on a single CPU (Sec. 4.2.3). In

addition, pyribs is not based on specialized libraries, which makes it

accessible to a more general audience, such as beginners who have

only basic Python knowledge and limited computational resources.

Finally, while QDax extends beyond QD by providing baseline

algorithms fromRL andmulti-objective optimization, pyribs focuses

on general-purpose QD algorithms under the RIBS framework.

3 THE RIBS FRAMEWORK
Pyribs implements the conceptual RIBS framework that consists of

three core components: (1) an archive storing solutions generated by
the QD algorithm, (2) emitters generating solutions for evaluation,

and (3) a scheduler managing the interaction of the archive and

emitters and providing the primary ask-tell [41] interface to the

user. Algorithm 1 shows the standard execution loop for combining

these components. As we show in Sec. 3.2.2, this execution loop is

flexible and not limited to a single call to the ask-tell interface.

3.1 Components
3.1.1 Archive. The archive is a data structure which stores solu-

tions generated by the QD algorithm, along with any information

relevant to solutions, such as objective and measure values. The

primary archive method is add(), which takes in multiple solu-

tions with their objective and measure values, attempts to add them

to the collection of solutions, and returns information about the

addition. Examples of such information include “status” (whether

the solution found a new cell in the archive, improved an existing

cell, or was not added at all), “novelty” (the average distance in

measure space from the solution to its 𝑘-nearest neighbors in the

archive [49]), and “improvement value” (the difference between

the solution’s objective value and that of the solution which it re-

placed [30]). Archives may support additional functionality, such

as methods for sampling solutions and retrieving solutions with

given measure values.

An important choice in the implementation of add() is the order
of inserting solutions. The simplest choice is to insert solutions

sequentially, i.e., one after another. Pyribs offers sequential addition
but defaults to the alternative of inserting all solutions simultane-

ously as a batch.
Batching has the following benefits. First, some metrics depend

on the order in which solutions are inserted. For example, if two

solutions 𝜽𝑎 and 𝜽𝑏 have similar measures, then 𝜽𝑎 may be inserted

with high novelty, while 𝜽𝑏 is subsequently inserted with low nov-

elty because 𝜽𝑎 is already in the archive. Batching overcomes this

issue by “freezing” the archive, then computing the metrics of all so-

lutions with respect to the frozen archive. Second, batching enables
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enhanced performance, as libraries like NumPy (used in pyribs)

and JAX (used in QDax) are designed to operate on batches of data.

3.1.2 Emitters. QD algorithms in RIBS instantiate one or more

emitters. Emitters are algorithms that generate solutions and adapt

to objective, measure, and archive insertion feedback. Emitters in

RIBS provide two methods. The ask()method queries the emitter’s

algorithm for candidate solutions. The tell() method updates the

internal algorithm state based on the objective and measure values

of the generated solutions and any information gained from adding

the solutions to the archive.

One example of a RIBS emitter is the CMA-ES emitter from CMA-

ME [32]. Here, calling ask() samples solutions from the Gaussian

distribution maintained by CMA-ES, while calling tell() updates

the Gaussian distribution and internal CMA-ES parameters [40].

It is also possible that emitters in RIBS do not require any in-

ternal state. For instance, when ask() is called, one variation of

MAP-Elites generates new solutions by sampling existing archive

solutions and perturbing them with fixed-variance Gaussian noise.

Since there are no parameters to update for this Gaussian noise

mutation, the tell() method does not perform any operation.

3.1.3 Scheduler. The scheduler performs two roles in the RIBS

framework. First, the scheduler facilitates the interaction between

the archive and the population of emitters. The scheduler adds solu-

tions generated by emitters to the archive and passes the results of

evaluation and archive insertion to the emitters. Second, schedulers

select which emitters generate new solutions on each iteration of

the algorithm. Schedulers make decisions on active emitters based

on how well each emitter performs in previous iterations.

Schedulers implement an ask-tell interface as shown in Algo-

rithm 1. When ask() is called (line 11), the scheduler selects one or
more emitters and calls each emitter’s ask() method to generate

solutions. When tell() is called (line 18), the scheduler takes in

the objective and measure function evaluations of these solutions

and add()’s the solutions to the archive. Then, the scheduler passes
the solutions, evaluations, and archive addition information to the

emitters via each emitter’s tell() method.

In the original emitter implementation [32], emitters directly

called add() to insert solutions into the archive. However, allowing
emitters to modify the archive meant that feedback from add() de-

pended on the order in which emitters were called, similar to adding

solutions sequentially in archives as discussed in Sec. 3.1.1. Now,

although the emitters may read data from the archive (e.g., when

sampling solutions), only the scheduler calls add() and passes the

returned information to the emitters through their tell() method.

Ultimately, the scheduler provides the primary user interface in

the RIBS framework. As shown in Algorithm 1, users directly call

ask(), evaluate solutions, and pass the results to tell().

3.2 Composing Algorithms in RIBS
Algorithm 1 shows a standard execution loop in RIBS. First, the user

configures the core components. Then, in the main loop (line 6), the

user calls the scheduler’s ask-tell interface and evaluates solutions

in between the calls. Importantly, the RIBS components (archive,

emitters, and scheduler) in this loop are interchangeable, and the

execution loop can be customized to support new QD algorithms.

Algorithm 1: Standard Execution Loop in RIBS

1 QD Algorithm (𝑛𝑒 , 𝑛𝑖𝑡 ):
Input: Number of emitters 𝑛𝑒 , number of iterations 𝑛𝑖𝑡 ,

parameters for 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 , 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑠 , and 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟

Result: Generates solutions to optimize the QD

objective, stored in an 𝐴𝑟𝑐ℎ𝑖𝑣𝑒

2 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 ← init_archive()
3 [𝐸𝑚𝑖𝑡𝑡𝑒𝑟1 ..𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑛𝑒 ] ← init_emitters(𝐴𝑟𝑐ℎ𝑖𝑣𝑒)
4 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 ← init_scheduler(𝐴𝑟𝑐ℎ𝑖𝑣𝑒,
5 [𝐸𝑚𝑖𝑡𝑡𝑒𝑟1 ..𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑛𝑒 ])
6 for 𝑖𝑡𝑟 ← 1..𝑛𝑖𝑡 do
7 𝐿 ← 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .ask()
8 𝑈𝑠𝑒𝑟 computes 𝐸𝑣𝑎𝑙𝑠 = [𝑓 (𝜽 ),𝒎(𝜽 ) for 𝜽 in 𝐿]
9 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 .tell(𝐸𝑣𝑎𝑙𝑠)

10 return 𝐴𝑟𝑐ℎ𝑖𝑣𝑒

11 Scheduler.ask ():
Result: Returns a list of solutions 𝐿 generated by the

emitters.

12 𝐿 ← [] // Empty list

13 for 𝑖 ← 1..𝑛𝑒 do
14 if 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑖 should generate solutions then
15 𝐿𝑖 ← 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑖 .ask()
16 𝐿 ← 𝐿𝐿𝑖 // Concatenate 𝐿𝑖 to 𝐿

17 return 𝐿

18 Scheduler.tell (𝐸𝑣𝑎𝑙𝑠):
Input: Objective and measure function evaluations of

the list of solutions 𝐿.

Result: Inserts solutions into 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 and updates

𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑠 .

19 𝑎𝑑𝑑_𝑖𝑛𝑓 𝑜 ← 𝐴𝑟𝑐ℎ𝑖𝑣𝑒.add(𝐿, 𝐸𝑣𝑎𝑙𝑠)
20 for 𝑖 ← 1..𝑛𝑒 do
21 if 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑖 generated solutions then
22 Retrieve solutions 𝐿𝑖 generated by 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑖

23 Retrieve 𝐸𝑣𝑎𝑙𝑠𝑖 corresponding to 𝐿𝑖

24 Retrieve 𝑎𝑑𝑑_𝑖𝑛𝑓 𝑜𝑖 corresponding to 𝐿𝑖

25 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑖 .tell(𝐿𝑖 , 𝐸𝑣𝑎𝑙𝑠𝑖 , 𝑎𝑑𝑑_𝑖𝑛𝑓 𝑜𝑖 )

We show how replacing components or modifying the execution

loop enables RIBS to support a variety of QD algorithms.

3.2.1 Integrating Different Components. First, we consider algo-
rithms which replace components of RIBS without modifying the

standard execution loop of Algorithm 1. Table 1 summarizes the

components required for each algorithm. Throughout this section,

we italicize the components listed in Table 1 as we introduce them.

We begin with MAP-Elites [55], which has a grid archive that
tessellates the measure space into a grid. MAP-Elites incorporates

a single emitter that randomly selects solutions from the archive

and applies mutations. One kind of mutation is to add Gaussian

noise; in this case, we call the emitter the Gaussian emitter. As is
common in many versions of MAP-Elites, the Gaussian emitter can

also sample directly in the solution space on initial calls to ask().
Since this emitter has no adaptive components, its tell() method

does nothing. Finally, MAP-Elites has a basic scheduler that simply

selects this emitter on every iteration.
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Replacing components creates differentMAP-Elites variants. Sub-

stituting the Gaussian emitter with the Iso+LineDD emitter, which
applies the Iso+LineDD operation [70], results in Iso+LineDDMAP-

Elites.
4
We can replace the archive with a CVT archive or sliding

boundaries archive to obtain CVT-MAP-Elites [69] and MESB [27].

We can also consider methods based on Novelty Search like

NSLC [50]. Here, the unstructured archive adds solutions if they are

far away from their 𝑘 nearest neighbors in the archive. Meanwhile,

the genetic algorithm emitter contains a genetic algorithm such as

NEAT [66] that manages a population of solutions. In contrast to

the Gaussian and Iso+LineDD emitters, the genetic algorithm emit-

ter’s tell()method updates its internal population. The scheduler

remains the same as in MAP-Elites.

CMA-ME [32] and CMA-MAE [30] aremore complicated because

they require managing multiple instances of CMA-ES in parallel. In

this case, we create multiple CMA-ES emitters, each with their own

CMA-ES instance. Calling ask() on each emitter samples solutions

from CMA-ES’s multivariate Gaussian distribution, and calling

tell() updates the distribution parameters and the internal CMA-

ES parameters. We combine these emitters with the grid archive

and basic scheduler from MAP-Elites.

Multi-Emitter MAP-Elites (ME-MAP-Elites) [14] provides an

example of an algorithm that requires a different scheduler. The

default ME-MAP-Elites includes CMA-ES and Iso+LineDD emitters.

Its bandit scheduler applies a multi-armed bandit algorithm to select

a subset of these emitters based on whether they have previously

generated solutions that were inserted into the archive.

3.2.2 Modifying the execution loop. Besides algorithms that re-

place components of RIBS, we also consider those that modify the

RIBS execution loop. In this regard, CMA-MEGA [29] and CMA-

MAEGA [30] both require a gradient arborescence emitter, which
constructs solutions by branching from a solution point based on

the objective and measure gradients. This branching requires call-

ing ask() and tell() twice: once to collect the solution point

and return its evaluations and gradients, and once to handle the

branched solutions. Compared to Algorithm 1, we add another set

of calls to ask() and tell() in the loop on line 6, with appropriate

arguments to handle passing gradients back to tell().
In addition, a number of recent works [5, 34, 45, 73] integrate

surrogate models with QD algorithms in domains where evalua-

tions are expensive. Surrogate-assisted QD algorithms construct an

archive based on evaluations predicted by a surrogate model and

then select candidate solutions for ground-truth evaluations.

Algorithm 2 shows a general layout for such an algorithm. This

algorithm maintains a ground-truth archive for storing solutions

which have been evaluated by the user (line 2). Then, during an

outer loop (line 5), it performs three phases. First, it constructs

a surrogate archive in an inner loop (line 11) based on solutions

evaluated by the model (line 13). Second, the user evaluates the

candidate solutions from the surrogate archive, and the evaluated

solutions are added into the ground-truth archive (line 18). Finally,

the algorithm trains the model to improve its predictions (line 21).

4
The original Iso+LineDD MAP-Elites [70] uses a CVT archive, but the authors noted

that a grid archive would also work with their algorithm.

Algorithm 2:QDAlgorithm with Surrogate Model in RIBS

1 QDAlgorithmwith SurrogateModel (𝑛𝑒 , 𝑛𝑖𝑛𝑛𝑒𝑟 , 𝑛𝑜𝑢𝑡𝑒𝑟 ):
Input: Number of emitters 𝑛𝑒 , inner loop iterations

𝑛𝑖𝑛𝑛𝑒𝑟 , outer loop iterations 𝑛𝑜𝑢𝑡𝑒𝑟 , parameters

for 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 , 𝐸𝑚𝑖𝑡𝑡𝑒𝑟𝑠 , 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 , and𝑀𝑜𝑑𝑒𝑙

Result: Generates solutions to optimize the QD

objective, stored in an 𝐴𝑟𝑐ℎ𝑖𝑣𝑒

2 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 ← init_archive()
3 𝑀𝑜𝑑𝑒𝑙 ← init_surrogate_model()
4 D ← {} // Dataset of evaluated solutions

5 for 𝑖𝑡𝑟 ← 1..𝑛𝑜𝑢𝑡𝑒𝑟 do
6 // Construct surrogate archive.

7 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 ′ ← init_archive()
8 [𝐸𝑚𝑖𝑡𝑡𝑒𝑟 ′

1
..𝐸𝑚𝑖𝑡𝑡𝑒𝑟 ′𝑛𝑒 ] ← init_emitters(𝐴𝑟𝑐ℎ𝑖𝑣𝑒 ′)

9 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 ′← init_scheduler(𝐴𝑟𝑐ℎ𝑖𝑣𝑒 ′,
10 [𝐸𝑚𝑖𝑡𝑡𝑒𝑟 ′

1
..𝐸𝑚𝑖𝑡𝑡𝑒𝑟 ′𝑛𝑒 ])

11 for 𝑖𝑡𝑒𝑟 ← 1..𝑛𝑖𝑛𝑛𝑒𝑟 do
12 𝐿 ← 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 ′.ask()
13 𝐸𝑣𝑎𝑙𝑠 ′← [𝑀𝑜𝑑𝑒𝑙 .𝑓 (𝜽 ), 𝑀𝑜𝑑𝑒𝑙 .𝒎(𝜽 ) for 𝜽 in 𝐿]
14 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 ′.tell(𝐸𝑣𝑎𝑙𝑠 ′)
15 // Record true evaluations of solutions.

16 𝐿 ← all solutions in 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 ′

17 𝑈𝑠𝑒𝑟 computes 𝐸𝑣𝑎𝑙𝑠 = [𝑓 (𝜽 ),𝒎(𝜽 ) for 𝜽 in 𝐿]
18 𝐴𝑟𝑐ℎ𝑖𝑣𝑒.add(𝐿, 𝐸𝑣𝑎𝑙𝑠)
19 // Update model.

20 D ← D ∪ (𝐿, 𝐸𝑣𝑎𝑙𝑠)
21 Train𝑀𝑜𝑑𝑒𝑙 on data in D
22 return 𝐴𝑟𝑐ℎ𝑖𝑣𝑒

4 DESIGNING PYRIBS
To realize the RIBS framework, we created the pyribs library and

released it in 2021. The structure of the library closely follows the

framework, with subpackages for archives, emitters, and schedulers.

We describe the principles that have guided our implementation

decisions and notable features that highlight these principles.

4.1 Principles
4.1.1 Simple. We designed pyribs to be “bare-bones” and maintain

only the core components required for a QD algorithm optimizing

a continuous search space. The simplicity of the design makes the

library easier for new users to adopt, while the focus on continuous

optimization problems reduces implementation complexity and

makes the defined search space less abstract.

4.1.2 Flexible. Pyribs is also “bare-bones” in the sense that the core
components of the library — archives, emitters, and schedulers —

are all exposed to the user. This allows users to easily exchange com-

ponents of the QD algorithm, and the design provides a foundation

to implement future QD algorithms discovered by researchers.

4.1.3 Accessible. Pyribs is accessible to a wide audience, ranging

from beginners to experienced researchers, by having readable

source code, being easy to install, and having full documentation

defining its usage. Our dependency choices ensure that beginners
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GridArchive CVTArchive SlidingBoundariesArchive Parallel Axes Plot

Figure 2: Pyribs visualization tools. We show example 2D heatmaps, where the axes correspond to the measure values, and the
color of each archive cell indicates its objective value. In SlidingBoundariesArchive, the points show the locations of solutions
in measure space, and the lines show the grid boundaries. We also show a parallel axes plot which can visualize an archive of
any dimensionality. In this plot, a single solution’s measures are plotted as a line connecting the measures𝑚1 . . .𝑚𝑘 , and the
line is colored according to the solution’s objective value.

with limited computational resources or basic hardware can install

pyribs and study the tutorials. The library also supports experienced

researchers by being amenable to modifications.

4.2 Implementation Features
These features demonstrate how our implementation choices align

with the design principles of section 4.1.

4.2.1 Choice of Python. Python offers many desirable features.

Beyond being a beginner-friendly language, it has a flourishing

ecosystem, with package repositories like the Python Package In-

dex (PyPI) [64] and Anaconda [3] providing easy access to many

useful libraries. While Python itself is slower than lower-level lan-

guages like C++, libraries like NumPy [42] compensate for this lim-

itation by providing access to efficient numerical computation rou-

tines. Python can also integrate with other programming languages

through various packages; for instance, PyJNIus [48] enables run-

ning Python-based QD algorithms [5, 28] with the Mario AI Frame-

work [46], a benchmark implemented in Java. Furthermore, Python

has become the de facto language of machine learning, and with

the influx of QD applications to machine learning [28, 29, 59, 73],

it is important to support QD researchers from that area. Thus, im-

plementing the RIBS framework in Python and distributing pyribs

on PyPI and Anaconda makes pyribs accessible, as users can easily

install and learn to use the library.

4.2.2 Focus on continuous optimization. To maintain simplicity,
pyribs only supports continuous optimization problems with a

fixed number of parameters. Such problems are ubiquitous in a

variety of fields, including machine learning, and continuous fixed-

length solutions are readily represented in software as arrays that

can be efficiently manipulated by libraries like NumPy.

There are many other solution encodings that a QD library could

support. For instance, discrete solutions (e.g., a list of integers) can

be implemented with the same arrays used in pyribs, but recent re-

search in QD has focused on continuous domains [8]. Alternatively,

a QD library could support objects such as solutions of variable

length, graphs [71], or neural network structure encodings from

NEAT [66]. Although the RIBS framework is not limited to any one

solution encoding, such structures are often domain-specific, and

including them would increase the complexity of pyribs.

4.2.3 Single CPU. To be simple and accessible, pyribs runs single-
threaded on a single CPU. Thus, pyribs can run on hardware rang-

ing from laptops to high-performance clusters. While being single-

threaded may limit the performance of pyribs, the runtime in many

QD problems is dominated by the user’s evaluation of solutions,

rather than by the execution of the QD algorithm in pyribs. More-

over, the need for high-performance algorithm implementations

is already fulfilled by libraries like Sferes𝑣2 [56] and QDax [51].

However, if internal algorithm runtime grows to be a bottleneck

in QD problems, we could redesign pyribs to optionally parallelize

execution by putting each emitter on a separate thread. Note that

while pyribs itself runs on a single CPU, evaluations are left to the

user and may be parallelized as described in the next section.

4.2.4 Evaluations are left to the user. Since evaluations are often
the bottleneck in QD, we considered providing utilities for running

evaluations of solutions in parallel, as is done in QDpy [7]. We

decided against doing so since many evaluation functions require

specific dependencies and hardware configurations that are diffi-

cult to support in a general-purpose library. In short, we maintain

simplicity by leaving evaluations to the user. Nevertheless, our doc-

umentation includes basic examples of how to integrate parallelism

into pyribs workflows. For instance, our tutorial “Using CMA-ME to

Land a Lunar Lander Like a Space Shuttle” parallelizes evaluations

in only two lines of code with Python’s multiprocessing module.

4.2.5 Batch operations. The initial version of pyribs implemented

many operations sequentially, including the archives’ add() meth-

ods (Sec. 3.1.1). To compensate for the reduced performance, we

added the just-in-time compiler Numba [4] to many of these func-

tions. However, multiple users indicated that doing so decreased

accessibility by making the library difficult to modify and debug.

Hence, in the most recent version of pyribs (0.5.0), we have re-

implemented these methods as batch operations without Numba.

For instance, instead of adding one solution to the archive at a time,

pyribs now leverages NumPy array operations to add a batch of so-

lutions simultaneously. These operations improve code readability
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Upgrading CMA-ME to
CMA-MAE on the

Sphere Benchmark

Using CMA-ME to Land
a Lunar Lander Like

a Space Shuttle

Generating Tom Cruise
Images with Differentiable

Quality Diversity

Illuminating the
Latent Space

of an MNIST GAN

Learning a Repertoire
of Robot Arm

Configurations

Generating Images
to Fool an

MNIST Classifier

Figure 3: Tutorials enable pyribs users to quickly learn about the library and experimentwith problems from theQD literature.

and performance over the sequential implementations while still

operating on a single CPU. For instance, on the 20D sphere linear

projection benchmark, the runtime of CMA-ME decreased from

140s with sequential+Numba to 60s with batch implementations.

4.2.6 One-layer hierarchy. Ideally, every pyribs component would

be implemented in a single file with no dependencies. Doing so

would make the source code highly accessible, as a user could

easily read the code for a component and modify it, similar to

pymap_elites [57]. However, since components often share func-

tionality, standalone files would lead to duplicate code and hamper

maintenance. We compromise by introducing a one-layer hierar-

chy, where archives, emitters, and schedulers all inherit from their

respective base classes. For instance, a user can learn about the

implementation of GridArchive by reading the source code for

ArchiveBase and GridArchive. This hierarchy helps make pyribs

flexible, as users who create new components can inherit from these

base classes instead of re-implementing basic functionality.

4.2.7 Visualization tools. Since there are no commonly available

visualization tools for archives, we added our own to make pyribs

accessible. As shown in Fig. 2, pyribs features heatmap visualizations

for all its archives, as well as a parallel axes plot method that can

visualize an archive of any dimensionality.

4.2.8 Documentation and tutorials. A key feature for increasing

accessibility in pyribs is its extensive documentation and tutorials.

Every pyribs component is documented in detail, and pyribs has

an array of tutorials (Fig. 3). These tutorials teach users about the

library and introduce them to common QD problems, such as latent

space illumination [28], the arm repertoire benchmark [16, 70], and

the sphere linear projection benchmark [32].

4.2.9 Industry standard practices. We draw from industry stan-

dard style guides [38] to promote readability and correctness in

our source code. We automatically format our code with yapf [39]

and check for basic errors with Pylint [63]. Furthermore, we imple-

ment a comprehensive suite of unit tests. Since it is difficult to test

stochastic components like emitters and schedulers, our total code

coverage by unit tests
5
as of version 0.5.0 is 81%, but on archives,

which are nearly deterministic, our coverage is 97%. Finally, when

implementing new components, we run them on benchmarks such

as sphere linear projection [32] to verify that our implementation

5
Code coverage measures the proportion of library code that is executed in tests.

matches results from prior work. These practices ensure that future

changes in pyribs do not affect existing functionality.

5 CONCLUSION
This paper details the design of the conceptual RIBS framework

and its implementation in the pyribs library. We show how RIBS

supports a wide range of QD algorithms by interchanging core

components, and we highlight the design principles of the library

— simplicity, flexibility, and accessibility.

In the long run, our goal is for pyribs to become a library that

supports a wide range of users in the QD community. On one end

of the spectrum, we seek to support beginners by making pyribs

ever more easy to learn and use. To this end, we will continue to

maintain our documentation and tutorials and incorporate user

feedback in our implementation decisions. Our vision is that pyribs

will become an entry point into QD for many researchers.

On the other end of the spectrum, we aim to serve the needs

of more experienced researchers by further developing the capa-

bilities of pyribs. A major avenue in this direction is to expand

the collection of pyribs components. Pyribs currently centers on

the MAP-Elites family, but potential additions outside this family

include the unstructured archive from Novelty Search, the archive

with learned measures from AURORA [13], and emitters and sched-

ulers from NS-ES [11] and SERENE [60].

Simultaneously, it is important for pyribs to support integrations

with other fields. For example, many recent QD papers combine QD

with deep learning [5, 28–30, 59]. Given the prevalence of GPUs

in deep learning, it could thus be helpful to add GPU support to

overcome delays incurred by transferring data between CPU and

GPU. However, such advanced features will need to be delicately

balanced against our design principles.

Beyond directly supporting practitioners, we believe that the

lessons learned from the development of pyribs can inform the

design and development of future QD libraries. We are thus excited

about the supporting role that pyribs can play in expanding the QD

community and growing QD into a widely adopted discipline.
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