L)

Check for
updates

pyribs: A Bare-Bones Python Library for
Quality Diversity Optimization

Bryon Tjanaka
tjanaka@usc.edu
University of Southern California
Los Angeles, California, USA

Yulun Zhang
yulunzhang@cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Sujay S. Garlanka
garlanka@usc.edu
University of Southern California
Los Angeles, California, USA

ABSTRACT

Recent years have seen a rise in the popularity of quality diversity
(QOD) optimization, a branch of optimization that seeks to find a col-
lection of diverse, high-performing solutions to a given problem. To
grow further, we believe the QD community faces two challenges:
developing a framework to represent the field’s growing array of
algorithms, and implementing that framework in software that
supports a range of researchers and practitioners. To address these
challenges, we have developed pyribs, a library built on a highly
modular conceptual QD framework. By replacing components in
the conceptual framework, and hence in pyribs, users can compose
algorithms from across the QD literature; equally important, they
can identify unexplored algorithm variations. Furthermore, pyribs
makes this framework simple, flexible, and accessible, with a user-
friendly API supported by extensive documentation and tutorials.
This paper overviews the creation of pyribs, focusing on the con-
ceptual framework that it implements and the design principles
that have guided the library’s development. Pyribs is available at
https://pyribs.org

CCS CONCEPTS

+ Computing methodologies — Search methodologies; » Soft-
ware and its engineering — Software libraries and reposito-
ries.

KEYWORDS

quality diversity, framework, software library

This work is licensed under a Creative Commons Attribution International 4.0 License.
GECCO 23, July 15-19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590374

220

Matthew C. Fontaine
mfontain@usc.edu
University of Southern California
Los Angeles, California, USA

Nivedit Reddy Balam
nbalam@usc.edu
University of Southern California
Los Angeles, California, USA

Nikitas Dimitri Klapsis
nklapsis@usc.edu
University of Southern California
Los Angeles, California, USA

David H. Lee
dhlee@usc.edu
University of Southern California
Los Angeles, California, USA

Nathaniel Dennler
dennler@usc.edu
University of Southern California
Los Angeles, California, USA

Stefanos Nikolaidis
stefanosnikolaidis@gmail.com
University of Southern California
Los Angeles, California, USA

ACM Reference Format:

Bryon Tjanaka, Matthew C. Fontaine, David H. Lee, Yulun Zhang, Nivedit
Reddy Balam, Nathaniel Dennler, Sujay S. Garlanka, Nikitas Dimitri Klap-
sis, and Stefanos Nikolaidis. 2023. pyribs: A Bare-Bones Python Library
for Quality Diversity Optimization. In Genetic and Evolutionary Computa-
tion Conference (GECCO °23), July 15-19, 2023, Lisbon, Portugal. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3583131.3590374

ask() tell()
for solutions evaluations

ask() tell() return add()
for solutions results add() info solutions

Emitters Archive

Figure 1: Pyribs implements the RIBS framework for QD op-
timization. The user first ask()’s for solutions from a sched-
uler. The scheduler selects emitters to ask() for solutions
and returns the solutions to the user. After evaluating the
solutions, the user tell()’s the results to the scheduler. The
scheduler add()’s the solutions to the archive and receives
information that it tell()’s to the emitters, enabling the
emitters to update their internal search state.

1 INTRODUCTION

Many research problems decompose into highly contextual com-
ponents that prevent one solution from working well across all
possible situations. In such cases, developing a set of solutions

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Tjanaka et al.

Table 1: By selecting different components in the RIBS framework, we can compose a variety of recent algorithms from the
QD literature and test them in pyribs. Furthermore, we can identify combinations of components which may lead to new
algorithms. Refer to Sec. 3.2 for more details on the archives, emitters, and schedulers shown here.

Archive

Emitters Scheduler

Sliding

Grid Boundaries

CVT

Unstructured ~ Gaussian

Gradient
Arborescence

Genetic

Iso+LineDD CMA-ES Algorithm

Basic Bandit

MAP-Elites [55] X
CVT-MAP-Elites [69]

Iso+LineDD MAP-Elites [70]

MESB [27] X

NSLC [50] X
CMA-ME [32]
CMA-MAE [30]
ME-MAP-Elites [14]
CMA-MEGA [29]
CMA-MAEGA [30]

X X

XX XXX

rather than a single solution enables researchers to account for a
range of contexts. For instance, a roboticist may develop diverse
walking gaits so that their robot can adapt to different morphologi-
cal considerations [15], while a video game designer may generate
multiple video game levels so that players can experience various
levels of difficulty [22, 28], and a chemist may create multiple viable
drug candidates which exhibit unique properties [71].

Quality diversity (QD) optimization [8] addresses such problems
by searching for collections of diverse, high-performing solutions.
Originating in neuroevolution with Novelty Search [49, 50] and
MAP-Elites [55], QD has grown to become a general-purpose opti-
mization paradigm with applications in a number of areas. As of
writing, there are at least 167 papers on the topic [12], spanning
areas as diverse as reinforcement learning [10, 11, 59, 62, 67, 68],
robot manipulation [53, 54], human-robot interaction [25, 26, 31],
video game level generation [22, 28], agent testing [5], generative
modeling [29], urban planning [37], design [34], internet congestion
control [23], and drug discovery [71]. QD has also moved outside
of publications and into more popular forms of media like blog
posts [2, 24, 33, 44, 52, 72, 74] and conference tutorials [9, 17-19].

To grow further, we believe the QD community must overcome
two challenges. The first challenge is to develop a conceptual frame-
work capable of implementing the wide and growing range of QD
algorithms. Many QD algorithms contain interchangeable compo-
nents, and a unified framework allows for mixing several state-of-
the-art components into new algorithms as the field advances. To
this end, previous work has proposed the Unifying Modular Frame-
work (UMF) [16] to connect the two main families of QD algorithms,
Novelty Search and MAP-Elites. However, UMF was primarily de-
signed for QD algorithms based on genetic operators [20], which
limits its applicability to recently developed QD algorithms that
have a strong optimization component, such as algorithms which
incorporate Evolution Strategies (ES) [10, 11, 32, 67, 68], gradient
ascent [29, 30], or Bayesian Optimization [45].

The second challenge is to implement this framework in soft-
ware which can support a wide range of users, ranging from be-
ginners entering the field to experienced researchers seeking to
develop new algorithms. Historically, the conception of flexible,
well-documented software libraries has been quintessential to the
blooming of popular research areas. For instance, PyTorch [61] and
TensorFlow [1] have catalyzed the development and deployment of

221

X X X
X
XX XXXXXXX

countless deep learning algorithms in academia and industry [43],
and pycma [41] has popularized the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) as one of the standard tools of
evolutionary computation. Such libraries have profound effects on
their respective fields because not only do they provide powerful
features concealed with an expressive, user-friendly application
programming interface (API), but they also make these features
accessible through comprehensive documentation and tutorials,
enabling new practitioners to incorporate the latest algorithms
into their projects. Thus far, the QD community has introduced a
number of its own libraries. While these libraries have successfully
spurred research, they are targeted towards researchers within the
QD community, offering them high performance [51, 56], reference
implementations [57], or a rich end-to-end experience [7].

To address these challenges, we have developed the pyribs library,
which implements a conceptual framework that we call RIBS.! As
shown in Fig. 1, a QD algorithm in RIBS is comprised of three
components: (1) an archive to store solutions generated by the QD
algorithm, (2) one or more emitters to generate new solutions, and
(3) a scheduler to manage the interaction of the archive and emitters.

RIBS is highly modular: As Table 1 shows, many existing QD
algorithms can be composed by replacing individual components of
the framework. The table also highlights unexplored gaps that could
be filled by combining different components, indicating potentially
promising areas for future research. Yet, the modular design does
not sacrifice simplicity, a key feature in attracting new practitioners.

Moreover, the software implementation of RIBS in pyribs en-
ables seamlessly translating these compositions into code for ex-
perimentation and engineering. We achieve this functionality by
constructing the library around the following design principles:

Simple: Centered only on components that are absolutely nec-
essary to run a QD algorithm, allowing users to combine the
framework with other software frameworks.

Flexible: Capable of representing a wide range of current and
future QD algorithms, allowing users to easily create or
modify components.

! The name “RIBS” stems from the title of Fontaine et al. [32], “Covariance Matrix Adap-
tation for the Rapid Illumination of Behavior Space,” which introduced the concepts
of emitters and schedulers. The name “pyribs” is thus a combination of “Python” and
“RIBS” The proper spelling of pyribs is all-lowercase, similar to pycma [41], except at
the beginning of sentences, when it is capitalized as Pyribs.

pyribs: A Bare-Bones Python Library for Quality Diversity Optimization

Accessible: Easy to install and learn, particularly for beginners
with limited computational resources.

Pyribs offers modular components that can be assembled into
a QD algorithm and controlled with an API inspired by pycma’s
ask-tell interface [41]. It also features extensive documentation,
including tutorials (Fig. 3) demonstrating its usage.? Since its incep-
tion in 2021, pyribs has grown to support the research of at least a
dozen groups across academia and industry worldwide. As of writ-
ing, it has been applied to image generation [29, 30], video game
level generation [22], environment generation [5], reinforcement
learning [67, 68], hyperparameter optimization [65], architecture
design [36], and internet congestion control [23].

2 BACKGROUND

2.1 Quality Diversity

2.1.1 Focus. The pyribs library focuses on continuous optimiza-
tion problems over the search space R”", the same class of problems
targeted by the pycma [41] library. By focusing only on continuous
optimization, the library becomes less abstract as search vectors
become explicitly defined. Yet, continuous optimization contains an
expressive class of problems that the QD community cares about.

2.1.2 Definition. We define the continuous QD problem. We as-
sume an objective function f : R® — R and k measure functions®
m; : R" — R, represented jointly as m : R" — RK. We let
S = m(R") be the measure space formed by the range of m.

The QD objective is to find, for each s € S, a solution 6 € R"
such that m(60) = s and f(0) is maximized:

max f(6)

m(0) =s @

subject to VseS

However, since S is continuous, this objective would require infinite
memory to solve, so we relax the QD objective to finding an archive
(i.e., a finite set) of representative solutions © C R".

A special case of the QD problem is the differentiable quality
diversity (DQD) [29] problem, where the objective and measure
functions are first-order differentiable with gradients Vf and Vm.

2.1.3 Algorithms. We consider two alternatives of what consti-
tutes a representative solution in the QD problem definition (Eq. 1),
resulting in two families of algorithms.

Algorithms based on MAP-Elites [55] tessellate the measure
space S into M cells, and © is constrained such that each of its
solutions falls into a different cell of the tessellation based on its
measure values. The vanilla MAP-Elites [55] mutates randomly
sampled solutions in the archive with a genetic operator; generated
solutions are added to the archive if their objective value exceeds
that of the solution currently occupying their corresponding archive
cell. Since its inception, MAP-Elites extensions have included new
genetic operators, such as the Iso+LineDD operator inspired by
crossover [70], as well as new methods for tessellating the measure
space to create the archive. For example, MAP-Elites with Sliding

2Website: https://pyribs.org

Source Code: https://github.com/icaros-usc/pyribs

Documentation and Tutorials: https://docs.pyribs.org

3Prior work refers to measure function outputs as “behavior characteristics,” “behavior
descriptors,” or “feature descriptors” We use the “measures” terminology in pyribs.

222

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Boundaries (MESB) adapts the size of grid cells online to reflect the
distribution of solutions in measure space [27], while CVT-MAP-
Elites [69] precomputes a centroidal Voronoi tessellation (CVT) [21]
of the measure space that defines the archive cells.

Algorithms based on Novelty Search [49, 50] maintain an un-
structured archive where each solution must be novel by being
a certain distance away from its nearest neighbors in measure
space. A genetic algorithm then optimizes a population of solu-
tions to achieve further novelty. While Novelty Search itself is a
purely diversity-driven approach, many of its successors are de-
signed for QD; for instance, Novelty Search with Local Competition
(NSLC) [50] balances between optimizing for the objective and
novelty via multi-objective evolutionary algorithms.

QD algorithms have started to incorporate modern optimization
algorithms. For example, Covariance Matrix Adaptation MAP-Elites
(CMA-ME) [32] directly optimizes for the QD objective with CMA-
ES [40]. In QD optimization, it is efficient to search multiple regions
of the measure space simultaneously, while balancing the explo-
ration of each region. Therefore, CMA-ME introduced the concepts
of emitters and schedulers. Each emitter maintains a separate CMA-
ES instance, while the scheduler balances how emitters explore
each measure space region. Emitters and schedulers became core
components of the RIBS framework (Sec. 3). Subsequent works
building on CMA-ME include Covariance Matrix Adaptation MAP-
Annealing (CMA-MAE) [30], which adds an archive learning rate
to the MAP-Elites grid archive. The learning rate regulates how
quickly a non-stationary discount function changes, resulting in a
soft archive that balances the tradeoff between pure optimization
and exploration. In addition, CMA-MEGA and CMA-MAEGA (CMA-
ME / CMA-MAE via a Gradient Arborescence) [29, 30] address DQD
problems with similar principles as CMA-ME and CMA-MAE.

Finally, Multi-Emitter MAP-Elites (ME-MAP-Elites) [14] intro-
duced a new scheduler by modifying the method for selecting
emitters. While the scheduler in CMA-ME maintains several CMA-
ES emitters and a round-robin emitter scheduler, ME-MAP-Elites
maintains an emitter pool consisting of emitters from CMA-ME
and emitters that apply the Iso+LineDD operator [70]. Every itera-
tion, the scheduler uses a multi-armed bandit selector from prior
work [35] to select emitters which are likely to improve the archive.

2.2 The Unifying Modular Framework

The Unifying Modular Framework (UMF) [16], an early concep-
tual QD framework, proposed to unite the components of the two
pioneering algorithms in QD optimization: MAP-Elites and NSLC.
In UMF, QD algorithms consist of a container — equivalent to a
RIBS archive — and a selector. On each iteration of a QD algorithm
in UMF, the selector generates solutions that are passed through
random variation (e.g., mutation or crossover), evaluated, and then
inserted into the container. Containers include the MAP-Elites grid
and NSLC unstructured archive, and selection mechanisms include
choosing solutions uniformly at random from the container, as in
vanilla MAP-Elites, or selecting from a population as in NSLC.
UMEF unified under one framework the two major families of QD
algorithms: MAP-Elites and NSLC. However, UMF was proposed
when all QD algorithms were based on genetic algorithms, and
the framework is not expressive enough to represent modern QD

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

algorithms based on other optimization methods. Specifically, UMF
incorporates a selector, which chooses solutions as inputs to ge-
netic operators. While selectors can retain a population of solutions,
they are not suitable for optimization algorithms that require an
internal state, e.g., an evolution path in CMA-ES [40] or momentum
in Adam [47]. Drawing from the architecture of CMA-ME [32], our
proposed RIBS framework incorporates emitters, which were de-
signed to encapsulate any optimization algorithm used to generate
solutions.

In addition, UMF is not designed to manage multiple populations
simultaneously. However, algorithms like CMA-ME and ME-MAP-
Elites require this feature to maintain multiple CMA-ES instances.
The RIBS framework overcomes this design limitation by incorpo-
rating a scheduler, which manages multiple emitters.

2.3 Existing QD Libraries

Here we review libraries developed by the QD community, includ-
ing their goals, features, and relation to pyribs.

2.3.1 Sferesyy. Sferesyy [56] is a C++ framework for evolution-
ary computation that also supports QD algorithms. Sferes,; is pri-
marily designed for high performance, leveraging template-based
meta-programming to provide an efficient object-oriented interface
and offering multi-core parallel execution through Intel TBB and
MPI. While the template-based structure results in significant per-
formance benefits, it limits accessibility for non-expert users. In
comparison, pyribs focuses solely on QD algorithms rather than
on general evolutionary computation. It is a Python-based library
that emphasizes accessibility over performance (Sec. 4.1.3).

2.3.2 QDpy. QDpy [7] is designed to be a feature-rich Python
library for QD optimization. Besides supporting ready-to-go imple-
mentations of algorithms such as MAP-Elites and CMA-ME, QDpy
provides building blocks that can be assembled into new algorithms.
To run a QD algorithm, a QDpy user instantiates a container (i.e., an
archive) and passes it to an algorithm object. The user then defines
an evaluation function and passes the function to the QDpy system
to optimize. QDpy also provides logging and plotting utilities and
tools to run the evaluation function on distributed computation.

QDpy’s flexibility is limited by the requirement that users pass in
an evaluation function. While passing in this function allows users
to leverage QDpy’s various utilities, this requirement also makes it
difficult for users to integrate their own utilities. In contrast, pyribs
provides an ask-tell interface where users handle evaluations on
their own (Sec. 4.2.4). Essentially, pyribs focuses on components
necessary for running QD algorithms, allowing users to integrate
tools and frameworks with which they are already familiar.

2.3.3 pymap_elites. pymap_elites [57] provides customizable ref-
erence implementations of MAP-Elites and its variants CVT-MAP-
Elites [69], MAP-Elites with the Iso+LineDD operator [70], and
Multi-task MAP-Elites [58]. Unlike pymap_elites, pyribs offers a
larger selection of algorithms under one framework.

2.3.4 QDax. QDax [51] is a recent library that was developed af-
ter the initial release of pyribs. The library focuses on efficient
QD, reinforcement learning (RL), and evolutionary algorithm im-
plementations for hardware accelerators such as GPUs and TPUs,

223

Tjanaka et al.

taking advantage of the parallel nature of these methods. QDax
specializes in reinforcement learning and robotics domains, where
evaluation remains an expensive bottleneck. Many experiments
that took hours or days on a CPU cluster take only minutes with
GPU acceleration in QDax. To leverage accelerators in both func-
tion evaluation and algorithm implementation, QDax builds on the
JAX library [6] and provides a JAX-based APIL

While pyribs incorporates batch operations like those found
in QDax to ensure a reasonable level of performance (Sec. 4.2.5),
pyribs only runs single-threaded on a single CPU (Sec. 4.2.3). In
addition, pyribs is not based on specialized libraries, which makes it
accessible to a more general audience, such as beginners who have
only basic Python knowledge and limited computational resources.
Finally, while QDax extends beyond QD by providing baseline
algorithms from RL and multi-objective optimization, pyribs focuses
on general-purpose QD algorithms under the RIBS framework.

3 THE RIBS FRAMEWORK

Pyribs implements the conceptual RIBS framework that consists of
three core components: (1) an archive storing solutions generated by
the QD algorithm, (2) emitters generating solutions for evaluation,
and (3) a scheduler managing the interaction of the archive and
emitters and providing the primary ask-tell [41] interface to the
user. Algorithm 1 shows the standard execution loop for combining
these components. As we show in Sec. 3.2.2, this execution loop is
flexible and not limited to a single call to the ask-tell interface.

3.1 Components

3.1.1 Archive. The archive is a data structure which stores solu-
tions generated by the QD algorithm, along with any information
relevant to solutions, such as objective and measure values. The
primary archive method is add(), which takes in multiple solu-
tions with their objective and measure values, attempts to add them
to the collection of solutions, and returns information about the
addition. Examples of such information include “status” (whether
the solution found a new cell in the archive, improved an existing
cell, or was not added at all), “novelty” (the average distance in
measure space from the solution to its k-nearest neighbors in the
archive [49]), and “improvement value” (the difference between
the solution’s objective value and that of the solution which it re-
placed [30]). Archives may support additional functionality, such
as methods for sampling solutions and retrieving solutions with
given measure values.

An important choice in the implementation of add() is the order
of inserting solutions. The simplest choice is to insert solutions
sequentially, i.e., one after another. Pyribs offers sequential addition
but defaults to the alternative of inserting all solutions simultane-
ously as a batch.

Batching has the following benefits. First, some metrics depend
on the order in which solutions are inserted. For example, if two
solutions 6, and 6}, have similar measures, then 6, may be inserted
with high novelty, while 6}, is subsequently inserted with low nov-
elty because 6, is already in the archive. Batching overcomes this
issue by “freezing” the archive, then computing the metrics of all so-
lutions with respect to the frozen archive. Second, batching enables

pyribs: A Bare-Bones Python Library for Quality Diversity Optimization

enhanced performance, as libraries like NumPy (used in pyribs)
and JAX (used in QDax) are designed to operate on batches of data.

3.1.2 Emitters. QD algorithms in RIBS instantiate one or more
emitters. Emitters are algorithms that generate solutions and adapt
to objective, measure, and archive insertion feedback. Emitters in
RIBS provide two methods. The ask () method queries the emitter’s
algorithm for candidate solutions. The tell() method updates the
internal algorithm state based on the objective and measure values
of the generated solutions and any information gained from adding
the solutions to the archive.

One example of a RIBS emitter is the CMA-ES emitter from CMA-
ME [32]. Here, calling ask() samples solutions from the Gaussian
distribution maintained by CMA-ES, while calling tell() updates
the Gaussian distribution and internal CMA-ES parameters [40].

It is also possible that emitters in RIBS do not require any in-
ternal state. For instance, when ask() is called, one variation of
MAP-Elites generates new solutions by sampling existing archive
solutions and perturbing them with fixed-variance Gaussian noise.
Since there are no parameters to update for this Gaussian noise
mutation, the tell() method does not perform any operation.

3.1.3 Scheduler. The scheduler performs two roles in the RIBS
framework. First, the scheduler facilitates the interaction between
the archive and the population of emitters. The scheduler adds solu-
tions generated by emitters to the archive and passes the results of
evaluation and archive insertion to the emitters. Second, schedulers
select which emitters generate new solutions on each iteration of
the algorithm. Schedulers make decisions on active emitters based
on how well each emitter performs in previous iterations.

Schedulers implement an ask-tell interface as shown in Algo-
rithm 1. When ask() is called (line 11), the scheduler selects one or
more emitters and calls each emitter’s ask () method to generate
solutions. When tell() is called (line 18), the scheduler takes in
the objective and measure function evaluations of these solutions
and add()’s the solutions to the archive. Then, the scheduler passes
the solutions, evaluations, and archive addition information to the
emitters via each emitter’s tell() method.

In the original emitter implementation [32], emitters directly
called add() to insert solutions into the archive. However, allowing
emitters to modify the archive meant that feedback from add () de-
pended on the order in which emitters were called, similar to adding
solutions sequentially in archives as discussed in Sec. 3.1.1. Now,
although the emitters may read data from the archive (e.g., when
sampling solutions), only the scheduler calls add() and passes the
returned information to the emitters through their tell () method.

Ultimately, the scheduler provides the primary user interface in
the RIBS framework. As shown in Algorithm 1, users directly call
ask(), evaluate solutions, and pass the results to tell().

3.2 Composing Algorithms in RIBS

Algorithm 1 shows a standard execution loop in RIBS. First, the user
configures the core components. Then, in the main loop (line 6), the
user calls the scheduler’s ask-tell interface and evaluates solutions
in between the calls. Importantly, the RIBS components (archive,
emitters, and scheduler) in this loop are interchangeable, and the
execution loop can be customized to support new QD algorithms.

224

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Algorithm 1: Standard Execution Loop in RIBS
1 QD Algorithm (ne, nj;):
Input: Number of emitters n., number of iterations nj;,
parameters for Archive, Emitters, and Scheduler
Result: Generates solutions to optimize the QD
objective, stored in an Archive

2 Archive « init_archive()

3 [Emittery..Emittery,] < init_emitters(Archive)

4 Scheduler « init_scheduler(Archive,

5 [Emittery..Emittery,])
6 for itr « 1..n;; do

7 L « Scheduler.ask()

8 User computes Evals = [f(0), m(0) for 0 in L]
9 Scheduler.tell(Evals)

return Archive
cheduler.ask ():
Result: Returns a list of solutions L generated by the
emitters.
L1l
fori « 1..n. do
if Emitter; should generate solutions then
L; <« Emitter;.ask()
L« LL;
return L
18 Scheduler.tell (Evals):
Input: Objective and measure function evaluations of
the list of solutions L.
Result: Inserts solutions into Archive and updates
Emitters.
add_info « Archive.add(L, Evals)
for i « 1..n, do
if Emitter; generated solutions then
Retrieve solutions L; generated by Emitter;

10

d

11

12 // Empty list
13
14
15
16 // Concatenate L; to L

17

19
20
21
22
23 Retrieve Evals; corresponding to L;
24 Retrieve add_info; corresponding to L;

Emitter;.tell(L;, Evals;, add_info;)

25

We show how replacing components or modifying the execution
loop enables RIBS to support a variety of QD algorithms.

3.2.1 Integrating Different Components. First, we consider algo-
rithms which replace components of RIBS without modifying the
standard execution loop of Algorithm 1. Table 1 summarizes the
components required for each algorithm. Throughout this section,
we italicize the components listed in Table 1 as we introduce them.

We begin with MAP-Elites [55], which has a grid archive that
tessellates the measure space into a grid. MAP-Elites incorporates
a single emitter that randomly selects solutions from the archive
and applies mutations. One kind of mutation is to add Gaussian
noise; in this case, we call the emitter the Gaussian emitter. As is
common in many versions of MAP-Elites, the Gaussian emitter can
also sample directly in the solution space on initial calls to ask().
Since this emitter has no adaptive components, its tell() method
does nothing. Finally, MAP-Elites has a basic scheduler that simply
selects this emitter on every iteration.

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Replacing components creates different MAP-Elites variants. Sub-
stituting the Gaussian emitter with the Iso+LineDD emitter, which
applies the Iso+LineDD operation [70], results in Iso+LineDD MAP-
Elites.* We can replace the archive with a CVT archive or sliding
boundaries archive to obtain CVT-MAP-Elites [69] and MESB [27].

We can also consider methods based on Novelty Search like
NSLC [50]. Here, the unstructured archive adds solutions if they are
far away from their k nearest neighbors in the archive. Meanwhile,
the genetic algorithm emitter contains a genetic algorithm such as
NEAT [66] that manages a population of solutions. In contrast to
the Gaussian and Iso+LineDD emitters, the genetic algorithm emit-
ter’s tell() method updates its internal population. The scheduler
remains the same as in MAP-Elites.

CMA-ME [32] and CMA-MAE [30] are more complicated because
they require managing multiple instances of CMA-ES in parallel. In
this case, we create multiple CMA-ES emitters, each with their own
CMA-ES instance. Calling ask () on each emitter samples solutions
from CMA-ES’s multivariate Gaussian distribution, and calling
tell() updates the distribution parameters and the internal CMA-
ES parameters. We combine these emitters with the grid archive
and basic scheduler from MAP-Elites.

Multi-Emitter MAP-Elites (ME-MAP-Elites) [14] provides an
example of an algorithm that requires a different scheduler. The
default ME-MAP-Elites includes CMA-ES and Iso+LineDD emitters.
Its bandit scheduler applies a multi-armed bandit algorithm to select
a subset of these emitters based on whether they have previously
generated solutions that were inserted into the archive.

3.2.2 Modifying the execution loop. Besides algorithms that re-
place components of RIBS, we also consider those that modify the
RIBS execution loop. In this regard, CMA-MEGA [29] and CMA-
MAEGA [30] both require a gradient arborescence emitter, which
constructs solutions by branching from a solution point based on
the objective and measure gradients. This branching requires call-
ing ask() and tell() twice: once to collect the solution point
and return its evaluations and gradients, and once to handle the
branched solutions. Compared to Algorithm 1, we add another set
of calls to ask () and tell() in the loop on line 6, with appropriate
arguments to handle passing gradients back to tell().

In addition, a number of recent works [5, 34, 45, 73] integrate
surrogate models with QD algorithms in domains where evalua-
tions are expensive. Surrogate-assisted QD algorithms construct an
archive based on evaluations predicted by a surrogate model and
then select candidate solutions for ground-truth evaluations.

Algorithm 2 shows a general layout for such an algorithm. This
algorithm maintains a ground-truth archive for storing solutions
which have been evaluated by the user (line 2). Then, during an
outer loop (line 5), it performs three phases. First, it constructs
a surrogate archive in an inner loop (line 11) based on solutions
evaluated by the model (line 13). Second, the user evaluates the
candidate solutions from the surrogate archive, and the evaluated
solutions are added into the ground-truth archive (line 18). Finally,
the algorithm trains the model to improve its predictions (line 21).

4The original Iso+LineDD MAP-Elites [70] uses a CVT archive, but the authors noted
that a grid archive would also work with their algorithm.

225

Tjanaka et al.

Algorithm 2: QD Algorithm with Surrogate Model in RIBS

1 QD Algorithm with Surrogate Model (ne, ninner, Nouter):
Input: Number of emitters n,, inner loop iterations
Ninner, outer loop iterations nyyter, parameters
for Archive, Emitters, Scheduler, and Model
Result: Generates solutions to optimize the QD
objective, stored in an Archive

2 Archive « init_archive()

3 Model « init_surrogate_model()

4 D —{} // Dataset of evaluated solutions
5 for itr « 1..ngyter do

6 // Construct surrogate archive.

7 Archive’ « init_archive()

8 [Emitter]..Emitter,] < init_emitters(Archive’)

9 Scheduler’ < init_scheduler(Archive’,

10 [Emitter;..Emitter;,])

1 for iter « 1..njpner do

L « Scheduler’.ask()
Evals” « [Model.f(0), Model.m(0) for 6 in L]
Scheduler’ tell(Evals”)

// Record true evaluations of solutions.

12
13
14
15
L « all solutions in Archive’

User computes Evals = [f(0),m(6) for 6 in L]
Archive.add(L, Evals)

// Update model.

D «— DU (L, Evals)

Train Model on data in D

return Archive

16

17

18

19

20

21

22

4 DESIGNING PYRIBS

To realize the RIBS framework, we created the pyribs library and
released it in 2021. The structure of the library closely follows the
framework, with subpackages for archives, emitters, and schedulers.
We describe the principles that have guided our implementation
decisions and notable features that highlight these principles.

4.1 Principles

4.1.1 Simple. We designed pyribs to be “bare-bones” and maintain
only the core components required for a QD algorithm optimizing
a continuous search space. The simplicity of the design makes the
library easier for new users to adopt, while the focus on continuous
optimization problems reduces implementation complexity and
makes the defined search space less abstract.

4.1.2 Flexible. Pyribs is also “bare-bones” in the sense that the core
components of the library — archives, emitters, and schedulers —
are all exposed to the user. This allows users to easily exchange com-
ponents of the QD algorithm, and the design provides a foundation
to implement future QD algorithms discovered by researchers.

4.1.3 Accessible. Pyribs is accessible to a wide audience, ranging
from beginners to experienced researchers, by having readable
source code, being easy to install, and having full documentation
defining its usage. Our dependency choices ensure that beginners

pyribs: A Bare-Bones Python Library for Quality Diversity Optimization GECCO ’23, July 15-19, 2023, Lisbon, Portugal

GridArchive CVTArchive SlidingBoundariesArchive Parallel Axes Plot

Figure 2: Pyribs visualization tools. We show example 2D heatmaps, where the axes correspond to the measure values, and the
color of each archive cell indicates its objective value. In SlidingBoundariesArchive, the points show the locations of solutions
in measure space, and the lines show the grid boundaries. We also show a parallel axes plot which can visualize an archive of
any dimensionality. In this plot, a single solution’s measures are plotted as a line connecting the measures m; ... my, and the
line is colored according to the solution’s objective value.

with limited computational resources or basic hardware can install solution encoding, such structures are often domain-specific, and
pyribs and study the tutorials. The library also supports experienced including them would increase the complexity of pyribs.

researchers by being amenable to modifications.
Y & 4.2.3 Single CPU. To be simple and accessible, pyribs runs single-

threaded on a single CPU. Thus, pyribs can run on hardware rang-
ing from laptops to high-performance clusters. While being single-
These features demonstrate how our implementation choices align threaded may limit the performance of pyribs, the runtime in many
with the design principles of section 4.1. QD problems is dominated by the user’s evaluation of solutions,
rather than by the execution of the QD algorithm in pyribs. More-
over, the need for high-performance algorithm implementations
is already fulfilled by libraries like Sferesyy [56] and QDax [51].
However, if internal algorithm runtime grows to be a bottleneck
in QD problems, we could redesign pyribs to optionally parallelize
execution by putting each emitter on a separate thread. Note that
while pyribs itself runs on a single CPU, evaluations are left to the
user and may be parallelized as described in the next section.

4.2 Implementation Features

4.2.1 Choice of Python. Python offers many desirable features.
Beyond being a beginner-friendly language, it has a flourishing
ecosystem, with package repositories like the Python Package In-
dex (PyPI) [64] and Anaconda [3] providing easy access to many
useful libraries. While Python itself is slower than lower-level lan-
guages like C++, libraries like NumPy [42] compensate for this lim-
itation by providing access to efficient numerical computation rou-
tines. Python can also integrate with other programming languages

through various packages; for instance, PyJNIus [48] enables run- 4.2.4 Evaluations are left to the user. Since evaluations are often
ning Python-based QD algorithms [5, 28] with the Mario Al Frame- the bottleneck in QD, we considered providing utilities for running
work [46], a benchmark implemented in Java. Furthermore, Python evaluations of solutions in parallel, as is done in QDpy [7]. We
has become the de facto language of machine learning, and with decided against doing so since many evaluation functions require
the influx of QD applications to machine learning [28, 29, 59, 73], specific dependencies and hardware configurations that are diffi-
it is important to support QD researchers from that area. Thus, im- cult to support in a general-purpose library. In short, we maintain
plementing the RIBS framework in Python and distributing pyribs simplicity by leaving evaluations to the user. Nevertheless, our doc-
on PyPI and Anaconda makes pyribs accessible, as users can easily umentation includes basic examples of how to integrate parallelism
install and learn to use the library. into pyribs workflows. For instance, our tutorial “Using CMA-ME to

Land a Lunar Lander Like a Space Shuttle” parallelizes evaluations

4.2.2 Focus on continuous optimization. To maintain simplicity, in only two lines of code with Python’s multiprocessing module.

pyribs only supports continuous optimization problems with a

fixed number of parameters. Such problems are ubiquitous in a 4.2.5 Batch operations. The initial version of pyribs implemented
variety of fields, including machine learning, and continuous fixed- many operations sequentially, including the archives’ add() meth-
length solutions are readily represented in software as arrays that ods (Sec. 3.1.1). To compensate for the reduced performance, we
can be efficiently manipulated by libraries like NumPy. added the just-in-time compiler Numba [4] to many of these func-

There are many other solution encodings that a QD library could tions. However, multiple users indicated that doing so decreased
support. For instance, discrete solutions (e.g., a list of integers) can accessibility by making the library difficult to modify and debug.
be implemented with the same arrays used in pyribs, but recent re- Hence, in the most recent version of pyribs (0.5.0), we have re-
search in QD has focused on continuous domains [8]. Alternatively, implemented these methods as batch operations without Numba.
a QD library could support objects such as solutions of variable For instance, instead of adding one solution to the archive at a time,
length, graphs [71], or neural network structure encodings from pyribs now leverages NumPy array operations to add a batch of so-
NEAT [66]. Although the RIBS framework is not limited to any one lutions simultaneously. These operations improve code readability

226

GECCO ’23, July 15-19, 2023, Lisbon, Portugal Tjanaka et al.

Using CMA-ME to Land Upgrading CMA-ME to Generating Tom Cruise Illuminating the Learning a Repertoire Generating Images
a Lunar Lander Like CMA-MAE on the Images with Differentiable Latent Space of Robot Arm to Fool an
a Space Shuttle Sphere Benchmark Quality Diversity of an MNIST GAN Configurations MNIST Classifier

Figure 3: Tutorials enable pyribs users to quickly learn about the library and experiment with problems from the QD literature.

and performance over the sequential implementations while still matches results from prior work. These practices ensure that future
operating on a single CPU. For instance, on the 20D sphere linear changes in pyribs do not affect existing functionality.

projection benchmark, the runtime of CMA-ME decreased from

140s with sequential+Numba to 60s with batch implementations. 5 CONCLUSION

This paper details the design of the conceptual RIBS framework
and its implementation in the pyribs library. We show how RIBS
supports a wide range of QD algorithms by interchanging core
components, and we highlight the design principles of the library
— simplicity, flexibility, and accessibility.

In the long run, our goal is for pyribs to become a library that
supports a wide range of users in the QD community. On one end
of the spectrum, we seek to support beginners by making pyribs
ever more easy to learn and use. To this end, we will continue to
maintain our documentation and tutorials and incorporate user
feedback in our implementation decisions. Our vision is that pyribs
will become an entry point into QD for many researchers.

On the other end of the spectrum, we aim to serve the needs
of more experienced researchers by further developing the capa-

4.2.6 One-layer hierarchy. 1deally, every pyribs component would
be implemented in a single file with no dependencies. Doing so
would make the source code highly accessible, as a user could
easily read the code for a component and modify it, similar to
pymap_elites [57]. However, since components often share func-
tionality, standalone files would lead to duplicate code and hamper
maintenance. We compromise by introducing a one-layer hierar-
chy, where archives, emitters, and schedulers all inherit from their
respective base classes. For instance, a user can learn about the
implementation of GridArchive by reading the source code for
ArchiveBase and GridArchive. This hierarchy helps make pyribs
flexible, as users who create new components can inherit from these
base classes instead of re-implementing basic functionality.

4.2.7 Visualization tools. Since there are no commonly available bilities of pyribs. A major avenue in this direction is to expand
visualization tools for archives, we added our own to make pyribs the collection of pyribs components. Pyribs currently centers on
accessible. As shown in Fig. 2, pyribs features heatmap visualizations the MAP-Elites family, but potential additions outside this family
for all its archives, as well as a parallel axes plot method that can include the unstructured archive from Novelty Search, the archive
visualize an archive of any dimensionality. with learned measures from AURORA [13], and emitters and sched-

ulers from NS-ES [11] and SERENE [60].

Simultaneously, it is important for pyribs to support integrations
with other fields. For example, many recent QD papers combine QD
with deep learning [5, 28-30, 59]. Given the prevalence of GPUs
in deep learning, it could thus be helpful to add GPU support to
overcome delays incurred by transferring data between CPU and
GPU. However, such advanced features will need to be delicately
balanced against our design principles.

Beyond directly supporting practitioners, we believe that the
lessons learned from the development of pyribs can inform the
design and development of future QD libraries. We are thus excited
about the supporting role that pyribs can play in expanding the QD
community and growing QD into a widely adopted discipline.

4.2.8 Documentation and tutorials. A key feature for increasing
accessibility in pyribs is its extensive documentation and tutorials.
Every pyribs component is documented in detail, and pyribs has
an array of tutorials (Fig. 3). These tutorials teach users about the
library and introduce them to common QD problems, such as latent
space illumination [28], the arm repertoire benchmark [16, 70], and
the sphere linear projection benchmark [32].

4.2.9 Industry standard practices. We draw from industry stan-
dard style guides [38] to promote readability and correctness in
our source code. We automatically format our code with yapf [39]
and check for basic errors with Pylint [63]. Furthermore, we imple-
ment a comprehensive suite of unit tests. Since it is difficult to test
stochastic components like emitters and schedulers, our total code

coverage by unit tests® as of version 0.5.0 is 81%, but on archives, ACKNOWLEDGMENTS

which are nearly deterministic, our coverage is 97%. Finally, when This work was partially supported by the NSF CAREER (#2145077),
implementing new components, we run them on benchmarks such NSF NRI (#2024949), and NSF GRFP (#¥DGE-1842487). We thank
as sphere linear projection [32] to verify that our implementation the anonymous reviewers, Varun Bhatt, Ya-Chuan Hsu, and Robby

Costales for their invaluable feedback.

5Code coverage measures the proportion of library code that is executed in tests.

227

pyribs: A Bare-Bones Python Library for Quality Diversity Optimization

REFERENCES

(1]

(1]

[12]

[13

=
it

(15

[16]

[17]

(18

[19

[20

[21

[22]

[23]

[24

ABADI, M., BArRHAM, P., CHEN,]., CHEN, Z., Davis, A., DEAN, J., DEVIN, M.,
GHEMAWAT, S., IRVING, G., IsarD, M., KUDLUR, M., LEVENBERG, J., MONGA, R.,
MOORE, S., MURRAY, D. G., STEINER, B., TUCKER, P., VASUDEVAN, V., WARDEN,
P., WICKE, M., YU, Y., AND ZHENG, X. Tensorflow: A system for large-scale
machine learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (USA, 2016), OSDI'16, USENIX Association,
p. 265-283.

ALLARD, M. Quality-diversity algorithms. https://maximeallard.lu/2021/03/24/
quality-diversity-algorithms/, 03 2021. Retrieved 2023-01-31.

ANACONDA, INC. Anaconda. https://anaconda.org.

ANAcONDA INc. Numba: A just-in-time compiler for numerical functions in
python. https://numba.pydata.org. Computer software.

BHATT, V., TJANAKA, B., FONTAINE, M., AND NIkoLAIDIS, S. Deep surrogate
assisted generation of environments. In Advances in Neural Information Processing
Systems (2022), S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35, Curran Associates, Inc., pp. 37762-37777.

BRADBURY, J., FROSTIG, R., HAWKINS, P., JoHNSON, M. J., LEARY, C., MACLAURIN,
D., NEcuLA, G., PASZKE, A., VANDERPLAS, J., WANDERMAN-MILNE, S., AND ZHANG,
Q. JAX: composable transformations of Python+NumPy programs. http://github.
com/google/jax, 2018.

CAZENILLE, L. Qdpy: A python framework for quality-diversity. https://gitlab.
com/leo.cazenille/qdpy, 2018.

CHATZILYGEROUDIS, K., CULLY, A., VASSILIADES, V., AND MOURET, J.-B. Quality-
Diversity Optimization: A Novel Branch of Stochastic Optimization. Springer
International Publishing, Cham, 2021, pp. 109-135.

CLUNE, J., LEHMAN, J., AND STANLEY, K. O. Recent advances in population-
based search for deep neural networks. ICML 2019 Tutorials, https://youtu.be/
g6HiuEnbw]E, 2019.

CoLas, C., MADHAVAN, V., HUIZINGA, J., AND CLUNE, J. Scaling map-elites to deep
neuroevolution. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference (New York, NY, USA, 2020), GECCO 20, Association for Computing
Machinery, p. 67-75.

ConTr, E., MADHAVAN, V., PETROSKI SUCH, F., LEHMAN,]., STANLEY, K., AND CLUNE,
J. Improving exploration in evolution strategies for deep reinforcement learning
via a population of novelty-seeking agents. In Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 5027-5038.
Curry, A. Quality-diversity optimisation algorithms. https://quality-diversity.
github.io. Retrieved 2023-01-31.

Cutry, A. Autonomous skill discovery with quality-diversity and unsupervised
descriptors. In Proceedings of the Genetic and Evolutionary Computation Conference
(New York, NY, USA, 2019), GECCO ’19, Association for Computing Machinery,
p. 81-89.

CulLLy, A. Multi-emitter MAP-elites. In Proceedings of the Genetic and Evolutionary
Computation Conference (jun 2021), ACM.

CuLLy, A., CLUNE, J., TARAPORE, D., AND MOURET, J.-B. Robots that can adapt
like animals. Nature 521 (05 2015), 503-507.

Culwy, A., AND DEMIRIs, Y. Quality and diversity optimization: A unifying
modular framework. IEEE Transactions on Evolutionary Computation 22, 2 (2018),
245-259.

CuLLy, A., MOURET, J.-B., AND DONCIEUX, S. Quality-diversity optimisation.
In Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion (New York, NY, USA, 2020), GECCO ’20, Association for Computing
Machinery, p. 701-723.

Cutry, A., MOURET, J.-B., AND DONCIEUX, S. Quality-diversity optimisation. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(New York, NY, USA, 2021), GECCO 21, Association for Computing Machinery,
p. 715-739.

Culry, A., MOURET, J.-B., AND DONCIEUX, S. Quality-diversity optimisation. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(New York, NY, USA, 2022), GECCO ’22, Association for Computing Machinery,
p. 864-889.

Dk JoNg, K. Evolutionary Computation: A Unified Approach. Bradford Books,
2006.

Du, Q., FABER, V., AND GUNZBURGER, M. Centroidal voronoi tessellations: Appli-
cations and algorithms. SIAM Review 41, 4 (1999), 637-676.

EARLE, S., SNIDER, J., FONTAINE, M. C., NIKOLAIDIS, S., AND TOGELIUS, J. Illumi-
nating diverse neural cellular automata for level generation. In Proceedings of
the Genetic and Evolutionary Computation Conference (New York, NY, USA, 2022),
GECCO ’22, Association for Computing Machinery, p. 68-76.

Enpo, T., ABE, H., AND Oka, M. Toward automatic generation of diverse conges-
tion control algorithms through co-evolution with simulation environments. In
ALIFE 2022: The 2022 Conference on Artificial Life (July 2022).

FLAGEAT, M., AND LM, B. Benchmarking quality-diversity algorithms
on neuroevolution for reinforcement learning. https://aihub.org/2022/
12/14/benchmarking-quality- diversity-algorithms- on-neuroevolution-for-

228

[25

[26

[27

™
&,

[29

[30

(31

[32

[33

(34

[35

[36

w®
=

(43]

[44

[45]

[46

[47

[49

[50

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

reinforcement-learning/, 12 2022. Retrieved 2023-01-31.

FoNTAINE, M., Hsu, Y.-C., ZHANG, Y., TJANAKA, B., AND N1koLAIDIS, S. On the
Importance of Environments in Human-Robot Coordination. In Proceedings of
Robotics: Science and Systems (Virtual, July 2021).

FONTAINE, M., AND NIKOLAIDIS, S. A quality diversity approach to automatically
generating human-robot interaction scenarios in shared autonomy. Robotics:
Science and Systems (2021).

FoNTAINE, M. C., LEE, S., Soros, L. B.,, DE MESENTIER SILVA, F., TOGELIUS,].,
AND HOOVER, A. K. Mapping hearthstone deck spaces through map-elites with
sliding boundaries. In Proceedings of the Genetic and Evolutionary Computation
Conference (New York, NY, USA, 2019), GECCO ’19, Association for Computing
Machinery, p. 161-169.

FonTaINE, M. C,, L1u, R., KHALIFA, A., Mop1, J., TOGELIUS, J., HOOVER, A. K., AND
Nikoralpis, S. Illuminating mario scenes in the latent space of a generative
adversarial network. Proceedings of the AAAI Conference on Artificial Intelligence
35,7 (May 2021), 5922-5930.

FONTAINE, M. C., AND NikoLAIDIs, S. Differentiable quality diversity. Advances
in Neural Information Processing Systems 34 (2021).

FoNTAINE, M. C., AND NikoraIpis, S. Covariance matrix adaptation map-
annealing. arXiv preprint arXiv:2205.10752 (2022).

FONTAINE, M. C., AND NIKOLAIDIS, S. Evaluating human-robot interaction algo-
rithms in shared autonomy via quality diversity scenario generation. J. Hum.-
Robot Interact. 11, 3 (Sep 2022).

FonTaINE, M. C., TOGELI1US,]., NIKOLAIDIS, S., AND HOOVER, A. K. Covariance
matrix adaptation for the rapid illumination of behavior space. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference (New York, NY, USA,
2020), GECCO ’20, Association for Computing Machinery, p. 94-102.

Frans, K. Quality diversity: Evolving ocean creatures. https://kvfrans.com/
quality-diversity-evolving-ocean-creatures/, 12 2020. Retrieved 2023-01-31.
GAIER, A., ASTEROTH, A., AND MOURET,].-B. Data-Efficient Design Exploration
through Surrogate-Assisted Illumination. Evolutionary Computation 26, 3 (09
2018), 381-410.

GAIER, A., ASTEROTH, A., AND MOURET, J.-B. Discovering representations for
black-box optimization. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference (New York, NY, USA, 2020), GECCO ’20, Association for
Computing Machinery, p. 103-111.

GAIER, A., STODDART, J., VILLAGGI, L., AND BENTLEY, P. J. T-domino. In Paral-
lel Problem Solving from Nature — PPSN XVII (Cham, 2022), G. Rudolph, A. V.
Kononova, H. Aguirre, P. Kerschke, G. Ochoa, and T. Tusar, Eds., Springer Inter-
national Publishing, pp. 263-277.

GaLaNos, T., L1APIs, A., YANNAKAKIS, G. N., AND KOENIG, R. Arch-elites: Quality-
diversity for urban design. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion (New York, NY, USA, 2021), GECCO ’21, Association
for Computing Machinery, p. 313-314.

GooGLE. Google python style guide. https://google.github.io/styleguide/pyguide.
html. Retrieved 2023-02-09.

GoOGLE. Yapf: A formatter for python files. https://github.com/google/yapf.
Computer software.

HANSEN, N. The CMA evolution strategy: A tutorial. CoRR abs/1604.00772 (2016).
HANSEN, N., AKIMOTO, Y., AND Baubis, P. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, Feb. 2019.

Hagrris, C. R., MiLLMAN, K. J., VAN DER WALT, S. J., GOMMERS, R., VIRTANEN, P.,
COURNAPEAU, D., WIESER, E., TAYLOR, J., BERG, S., SMITH, N. J., KERN, R., P1CcUS, M.,
HovYER, S., vaN KERkWIJK, M. H., BRETT, M., HALDANE, A., DEL Rio, J. F., WIEBE,
M., PETERSON, P., GERARD-MARCHANT, P., SHEPPARD, K., REDDY, T., WECKESSER,
W., ABBaslI, H., GOHLKE, C., AND OLIPHANT, T. E. Array programming with
NumPy. Nature 585, 7825 (Sept. 2020), 357-362.

He, H. The state of machine learning frameworks in 2019. https:
//thegradient.pub/state- of-ml-frameworks-2019- pytorch- dominates-research-
tensorflow-dominates-industry/, 2019.

INSTITUTE OF DIGITAL GAMEs. Game ai - creative artificial evolution through
quality diversity algorithms. https://www.game.edu.mt/blog/game-ai-creative-
artificial-evolution- through-quality-diversity-algorithms/, 04 2019. Retrieved
2023-01-31.

KENT, P., AND BRANKE, J. Bop-elites, a bayesian optimisation algorithm for
quality-diversity search. arXiv preprint arXiv:2005.04320 (2020).

KHALIFA, A. Mario Al framework. https://github.com/amidos2006/Mario-AI-
Framework, 2019.

KINGMA, D. P., AND Ba, J. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015), Y. Bengio and Y. LeCun,
Eds.

Krvy TeaMm, ET AL. PyJNIus. https://github.com/kivy/pyjnius, 2010.

LEHMAN, J., AND STANLEY, K. O. Abandoning Objectives: Evolution Through the
Search for Novelty Alone. Evolutionary Computation 19, 2 (06 2011), 189-223.
LEHMAN, J., AND STANLEY, K. O. Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation (New York, NY, USA, 2011), GECCO

GECCO ’23, July 15-19, 2023, Lisbon, Portugal Tjanaka et al.

’11, Association for Computing Machinery, p. 211-218.

[51] Lim, B., ALLARD, M., GRILLOTTL L., AND CULLY, A. Accelerated quality-diversity
for robotics through massive parallelism. arXiv preprint arXiv:2202.01258 (2022).

[52] MonameD, O. Quality-diversity algorithms: Map-polar. https:
//towardsdatascience.com/quality-diversity-algorithms-a-new-approach-
based-on-map-elites-applied-to-robot-navigation-f51380deec5d, 03 2021.
Retrieved 2023-01-31.

[53] MoReL, A., KuNimoTo, Y., CONINX, A., AND DONCIEUX, S. Automatic acquisition
of a repertoire of diverse grasping trajectories through behavior shaping and
novelty search. In 2022 International Conference on Robotics and Automation
(ICRA) (2022), pp. 755-761.

[54] MORRIsON, D., CORKE, P., AND LEITNER, J. Egad! an evolved grasping analysis

dataset for diversity and reproducibility in robotic manipulation. IEEE Robotics

and Automation Letters 5, 3 (2020), 4368-4375.

MOURET, J.-B., AND CLUNE, J. lluminating search spaces by mapping elites. arXiv

preprint arXiv:1504.04909 (2015).

[56] MOURET, J.-B., AND DONCIEUX, S. SFERESv2: Evolvin’ in the multi-core world.

In Proc. of Congress on Evolutionary Computation (CEC) (2010), pp. 4079-4086.

MOURET, J.-B., ET AL. Python3 map-elites. https://github.com/resibots/pymap_

elites, 2019.

[58] MOURET, J.-B., AND MAGUIRE, G. Quality diversity for multi-task optimization.

In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (Jun

2020), ACM.

NiLssoN, O., AND CuLLy, A. Policy gradient assisted map-elites. In Proceedings of

the Genetic and Evolutionary Computation Conference (New York, NY, USA, 2021),

GECCO ’21, Association for Computing Machinery, p. 866-875.

[60] Paoro, G., CONINX, A., DONCIEUX, S., AND LAFLAQUIERE, A. Sparse reward
exploration via novelty search and emitters. In Proceedings of the Genetic and
Evolutionary Computation Conference (New York, NY, USA, 2021), GECCO 21,
Association for Computing Machinery, p. 154-162.

[61] Paszke, A., GROsS, S., MAssA, F., LERER, A., BRADBURY, J., CHANAN, G., KILLEEN, T.,

LiN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF, A., YANG, E., DEVITO,

Z., Ra1son, M., TEJANI, A., CHILAMKURTHY, S., STEINER, B., FANG, L., BaL J., AND

CHINTALA, S. Pytorch: An imperative style, high-performance deep learning

library. In Advances in Neural Information Processing Systems (2019), H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32,

Curran Associates, Inc.

PierrOT, T., MACE, V., CHALUMEAU, F., FLAJOLET, A., CIDERON, G., BEGUIR, K.,

CuLLy, A., S1GAUD, O., AND PERRIN-GILBERT, N. Diversity policy gradient for

sample efficient quality-diversity optimization. In Proceedings of the Genetic and

Evolutionary Computation Conference (New York, NY, USA, 2022), GECCO ’22,

Association for Computing Machinery, p. 1075-1083.

PyTHON CODE QUALITY AUTHORITY. pylint. http://pylint.pycqa.org/. Computer

software.

[64] PyTHON SOFTWARE FOUNDATION. Python Package Index. https://pypi.org.

[65] SCHNEIDER, L., PFISTERER, F., THOMAS, J., AND BiscHL, B. A collection of quality
diversity optimization problems derived from hyperparameter optimization of
machine learning models. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion (New York, NY, USA, 2022), GECCO ’22, Association
for Computing Machinery, p. 2136-2142.

[66] StanLEY, K. O., AND MIIKKULAINEN, R. Evolving neural networks through

augmenting topologies. Evolutionary Computation 10, 2 (2002), 99-127.

TJANAKA, B., FONTAINE, M. C., KALKAR, A., AND NIKOLAIDIS, S. Training di-

verse high-dimensional controllers by scaling covariance matrix adaptation map-

annealing. arXiv preprint arXiv:2210.02622 (2022).

TjANAKA, B, FONTAINE, M. C., TOGELIUS, J., AND NIKOLAIDIS, S. Approximating

gradients for differentiable quality diversity in reinforcement learning. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference (New York, NY,

USA, 2022), GECCO ’22, Association for Computing Machinery, p. 1102-1111.

[69] VassILIADES, V., CHATZILYGEROUDIS, K., AND MOURET, J.-B. Using centroidal
voronoi tessellations to scale up the multidimensional archive of phenotypic
elites algorithm. IEEE Transactions on Evolutionary Computation 22, 4 (2018),
623-630.

[70] VASSILIADES, V., AND MOURET, J.-B. Discovering the elite hypervolume by lever-
aging interspecies correlation. In Proceedings of the Genetic and Evolutionary
Computation Conference (New York, NY, USA, 2018), GECCO 18, Association for
Computing Machinery, p. 149-156.

[71] VERHELLEN, J., AND VAN DEN ABEELE, J. Illuminating elite patches of chemical
space. Chem. Sci. 11 (2020), 11485-11491.

[72] Wotz, D. fcmaes - a python-3 derivative-free optimization library. Available at
https://github.com/dietmarwo/fast-cma-es, 2022. Python/C++ source code, with
description and examples.

[73] Znang, Y., FONTAINE, M. C., HOOVER, A. K., AND NIKOLAIDIS, S. Deep surrogate
assisted map-elites for automated hearthstone deckbuilding. In Proceedings of
the Genetic and Evolutionary Computation Conference (New York, NY, USA, 2022),
GECCO ’22, Association for Computing Machinery, p. 158-167.

[74] Znao, S. Cabbagecat’s blogs. https://szhaovas.github.io. Retrieved 2023-01-31.

[55

[57

[59

[62

[63

[67

[68

229

	Abstract
	1 Introduction
	2 Background
	2.1 Quality Diversity
	2.2 The Unifying Modular Framework
	2.3 Existing QD Libraries

	3 The RIBS Framework
	3.1 Components
	3.2 Composing Algorithms in RIBS

	4 Designing pyribs
	4.1 Principles
	4.2 Implementation Features

	5 Conclusion
	Acknowledgments
	References

