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E F F I C I E N T  A L G O R I T H M S  F O R  B A Y E S I A N  I N V E R S E  P R O B L E M S
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A b s t r a c t .  This paper tackles eficient methods for Bayesian inverse problems with priors based
on Whittle--Mat\e'rn Gaussian random fields. The Whittle--Mat\e'rn prior is characterized by a mean
function and a covariance operator that is taken as a negative power of an elliptic differential operator.
This approach is flexible in that it can incorporate a wide range of prior information including
nonstationary effects, but it is currently computationally advantageous only for integer values of
the exponent. In this paper, we derive an eficient method for handling all admissible noninteger
values of the exponent. The method first discretizes the covariance operator using finite elements and
quadrature, and uses preconditioned Krylov subspace solvers for shifted linear systems to eficiently
apply the resulting covariance matrix to a vector. This approach can be used for generating samples
from the distribution in two different ways: by solving a stochastic partial differential equation, and by
using a truncated Karhunen--Lo\ève expansion. We show how to incorporate this prior representation
into the infinite-dimensional Bayesian formulation, and show how to eficiently compute the maximum
a posteriori estimate, and approximate the posterior variance. Although the focus of this paper
is on Bayesian inverse problems, the techniques developed here are applicable to solving systems
with fractional Laplacians and Gaussian random fields. Numerical experiments demonstrate the
performance and scalability of the solvers and their applicability to model and real-data inverse
problems in tomography and a time-dependent heat equation.

K e y  words .  Bayesian inverse problems, Gaussian priors, Krylov subspace methods, noninteger
powers

M S C  codes. 65M60, 65F50, 65F10, 65N21

D O I .  10.1137/22M1494397

1. Motivation and introduction. Inverse problems involve the use of exper-
imental data or measurements to make inferences about parameters (e.g., initial or
boundary conditions), governing the model. Inverse problems have a wide range of
applications such as in material science, geophysics, and medicine. The Bayesian
approach to inverse problems is prevalent because of its ability to incorporate prior
knowledge of the parameters and its ability to quantify the uncertainty associated
with the parameter reconstructions. However, many computational challenges persist
in the implementation of the Bayesian approach to large-scale inverse problems.

Stuart [30] advocated the use of Gaussian priors within Bayesian inverse problems
with covariance operators of the form C =  A -  a , where A is an elliptic differential op-
erator, the exponent a >  d/2, and d is the spatial dimension. This choice ensures that
the covariance operator is trace-class and under appropriate conditions on the like-
lihood, the resulting inverse problem is well-posed. A  computational framework for

* Received by the editors May 10, 2022; accepted for publication (in revised form) January 9, 2023;
published electronically July  19, 2023.

https://doi.org/10.1137/22M1494397
Fu n d i n g :  The first author is partially supported by National Science Foundation ( N S F )  grants

DMS-2110263, DMS-1913004 and the Air  Force Of ice  of Scientific Research under Award FA9550-22-
1-0248. The second author is partially supported by N S F  DMS-1745644 and DMS-2026830.

r 
Department of Mathematical Sciences and the Center for Mathematics and Artificial Intelligence

(CMAI) ,  George Mason University, Fairfax, VA  22030 U S A  (hantil@gmu.edu).
r 

Department of Mathematics, North Carolina State University, Raleigh, N C  27695 U S A
(asaibab@ncsu.edu).

S176

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/22M1494397
mailto:hantil@gmu.edu
mailto:asaibab@ncsu.edu


\'

D
ow

nl
oa

de
d 

07
/2

3/
23

 to
 1

52
.1

4.
13

6.
32

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

tt
ps

:/
/e

pu
bs

.s
ia

m
.o

rg
/t

er
m

s-
pr

iv
ac

y

E F F I C I E N T  A L G O R I T H M S  F O R  W H I T T L E - - M AT E R N  P R I O R S S177

infinite-dimensional Bayes inverse problems based on Stuart's framework was devel-
oped in [11]. For computational convenience, the authors used the covariance operator C
=  A -  2 since it satisfies the requirement a >  d/2 for up to three spatial dimensions. This
choice has two advantages: first, it is integer valued and, second, it is easy to obtain a
factored form of the covariance operator. For these reasons, this approach is attractive
from a computational standpoint, and has since become popular and has resulted in
scalable software implementations [31, 21]. A  similar approach can also be found in [25],
in which the authors also used the Whittle--Mat\e'rn priors for Bayesian inverse
problems. However, the choice of a =  2 for computational convenience makes it
restrictive in practice, and in many instances, it can lead to oversmoothing of re-
constructions. It is, therefore, desirable to have an eficient computational method for
handling exponents a >  d/2 that allows the user to choose the appropriate prior co-
variance based on prior knowledge or estimate it from data in a hierarchical Bayesian
setting.

The use of Whittle--Mat\e'rn priors in Bayesian inverse problems has close connec-
tions with the developments in Gaussian random fields in spatial and computational
statistics. In [24], the authors considered the stochastic partial differential equation
( S P D E )  approach to Gaussian random fields. They showed an explicit connection
between Gaussian and Gauss--Markov random fields based on the Mat\e'rn covariance
family and provide explicit expressions for the precision operator for integer values of
a . Based on this connection, they provided extensions beyond the Mat\e'rn model and
showed how the S P D E  approach can be applied on manifolds, for nonstationary ran-
dom fields. In a review paper [23], 10 years after the publication of [24], the authors
trace the recent developments in the S P D E  approach to Gaussian and non-Gaussian
random fields. Recent work (e.g., [7, 8]) allows for noninteger values of the exponent;
see the discussion in section 2.4.

Goals and main contributions. In this paper, we want to develop an eficient
method for representing and computing with Whittle--Mat\e'rn Gaussian random pri-
ors in which the covariance operator is of the form C =  A -  a     and a >  d/2. Further-
more, we also want to incorporate this eficient representation of covariance operators
while solving Bayesian inverse problems. The novel and noteworthy features of our
contributions are the following:

1. We consider a quadrature based approach for the approximation of the co-
variance operator for fractional powers. The resulting approximation has the
form of a rational function. The action of the covariance operator on a vector
can be written as a sequence of shifted linear systems, which we accelerate
using Krylov subspace methods. As a result, we have a method for eficiently
applying the covariance operator for any exponent a >  d/2. The method
is scalable to large problems and the cost is nearly the same for values of
a between consecutive integers. This approach is applicable for stationary
(including isotropic and anisotropic) and nonstationary random fields.

2. We leverage the fast method for covariance matrices to eficiently generate
samples in two different ways: by solving the underlying S P D E  that defines
the prior covariance and by eficiently computing the truncated Karhunen--
Lo\e've approximation.

3. We show how to use this eficient representation of the prior covariance op-
erator in an infinite-dimensional Bayesian problem formulation. We perform
careful discretization of all the relevant quantities and leverage the fast ap-
plications of the covariance operator to compute the maximum a posteriori
(MAP)  estimate and approximate posterior variance.

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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4. Although the focus of this paper is on Bayesian inverse problems, the com-
putational techniques developed here are applicable to solving systems with
fractional Laplacians [9, 32] and Gaussian random fields.

Through numerical experiments, we demonstrate the computational performance of
the solvers including an m 40X speedup over na\i"}ve approaches. We also demonstrate
the feasibility of the approach on model and real-data problems from seismic and
X-ray tomography and an application to a 2-dimensional (2D) PDE-based inverse
diffusion equation.

2. Background.  In section 2.1, we review the S P D E  approach to Gaussian
random fields which form the basis for the prior distributions in Bayesian inverse
problems. In section 2.2, we review the appropriate definitions of fractional elliptic
operators and show how to discretize them in section 2.3. Finally, section 2.4 focuses on
the related work.

2.1. S P D E  approach to Whittle--Mat\e'rn Gaussian random fields. We
follow the Whittle--Mat\e'rn random field approach, which models the random fields as
stationary Gaussian random fields with the covariance kernel

1- u

c(x, y) : =  a     
a (u )  

(a | x  - y| 2) Ku  (a | x  - y| 2) , x , y  n R d,

where u >  0 is the smoothness parameter, the integer value of which controls the
mean-square differentiability of the process, Ku  is the modified Bessel function of the
second kind of order u , and a is a scaling parameter that governs the length scale.
When u =  1/2, this corresponds to the exponential covariance function, and as u w y ,
this corresponds to the Gaussian kernel. On R d, samples from the random field with
the covariance function correspond to the solution of the S P D E

(2.1) (a 2 -  a )(u + d / 2 ) / 2 u(x) =  W (x), x  n R d,

where W is a spatial Gaussian white noise process with unit variance on R d, and the
marginal variance is

2 a (u )
(4i )d/2a (u +  d/2)

However, to implement this on a bounded region a t R d, we need to impose ad-
ditional boundary conditions.     The choice of boundary conditions may affect the
correlation near the boundaries. To  mitigate this effect, one may solve the S P D E  on a
slightly larger domain that encloses a . Alternative approaches include the use of
Robin boundary conditions with optimized Robin coeficient and pointwise rescaling of
the covariance operators [25, 15]. The covariance operator corresponding to the
covariance kernel c(x, y) is (a 2 -  a ) -  (u +d / 2) .  In this paper, work with covariance
operators of the form C a ,

(2.2) C a : =  (a 2 -  a ) -  a ,

and a : =  u + d/2 with corresponding zero Neumann boundary conditions. The defini-
tion     ensures     that     the     covariance     operator     C is     a     self-adjoint, trace-class
operator [30].
Furthermore, since it is more convenient to work with integer values of the expo-nent

a , the constraint a >  d/2 forces us to choose a =  1 for one spatial dimension and

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.



\'

2
y y

k k

y
s

D
ow

nl
oa

de
d 

07
/2

3/
23

 to
 1

52
.1

4.
13

6.
32

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

tt
ps

:/
/e

pu
bs

.s
ia

m
.o

rg
/t

er
m

s-
pr

iv
ac

y

E F F I C I E N T  A L G O R I T H M S  F O R  W H I T T L E - - M AT E R N  P R I O R S S179

a =  2 for two or three spatial dimensions. However, in the context of Bayesian inverse
problems this choice of a can result in oversmoothing of the solution and poor edge-
preserving behavior of the solution. Furthermore, it is common to use parameters
such as u =  1/2, 3/2, 5/2, etc.; for example, u =  1/2 corresponds to the well-known
exponential covariance kernel. However, when d =  2, a =  3/2 and A -  a     cannot be
computed using standard approaches. It is desirable to develop a numerical approach
that can exploit the full power of these parameterized priors, without the constraints
of integer powers. This motivates the use of fractional operators which we discuss in
section 2.2.

Following [24, section 3.2] and [23, section 2.6], It is also straightforward to model
nonstationary effects by considering the S P D E

(2.3) (a 2 (x) - a t (a (x)a ))a /2u =  u (x)W, x  n R d,

where a 2 (x), u (x),  and a (x )  are now spatially varying functions and W is a spatial
Gaussian white noise process with unit variance. Assuming that u =  1, the corre-
sponding covariance operator (with zero Neumann boundary conditions) is

(2.4) Ca : =  (a 2 (x) - a t (a (x)a )) -  a .

Note that this assumes (2.2) as a special case.

2.2. Fractional Laplacian. For a 2 >  0, let us use the notation a 2 -  a to denote
the realization in L2 (a ) of a 2 -  a with zero Neumann boundary conditions. Then
there exists a sequence of eigenvalues { a k} kq 1 satisfying 0 <  a 1 q a 2 q t t t q a k  q t t t
with limkw y  a k  =  y . The corresponding eigenfunctions { i  k } kq 1 t H 1(a ). It is well
known that { i  k} kq 1 forms the orthonormal basis of L2 (a ). Towards, this end, for
any s q 0, we can define the fractional order Sobolev space H s (a )  as

H s (a )  : =  

{  

u =  
m 

uk i k  : | u| H s ( a  )  : =  
m 

a s u2 <  y 

}  

.
k = 1 k = 1

We are now ready to define the fractional powers of a 2 -  a , see [3, section 8].

Def ini t ion 2.1. Let u n C y  (a )  with n  t a u =  0 on l a , where n  is the outward
normal vector. Then the fractional power of a 2 -  a is given by

(a 2 -  a )s u : =  
m 

a k uk i k
k = 1

t
with     uk =  ui k .

a

Notice that (a 2 -  a ) s  can be extended to an operator mapping from H s (a )  to
H -  s(a ), where H -  s(a )  is the dual of H s (a ). We further emphasize that the condition
a 2 >  0 can be dropped in the above definition; see [3, Def. 2.2]. We also refer to [3],
for extensions to nonzero Neumann conditions.

Finally, we can extend the above definition to (a 2 (x) -  a t (a (x)a ))  in (2.3). In
this case, we need to assume a 2 n L y  (a )  and a to be symmetric, bounded in L y  (a ),
and elliptic.

2.3. Discretization. We show how to discretize the appropriate quantities in a
finite-dimensional space. The discussion here closely mimics the derivation in [11].

Finite-dimensional parameter space. Let i 1, . . . , i n  be a basis for the finite-
dimensional space V h  t L2 (a ) with N h  =  dim(V h ), where the subscript h refers

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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to a mesh discretization parameter. Assume that the basis functions correspond-
ing to the nodal points { x j }  N h         satisfy i j ( x i )  =  a i j  for 1 q i , j  q Nh . We can
then approximate the inversion parameter within this finite-dimensional subspace
as mh = j = 1  mh, j i  j ,  and we denote the vector of coeficients in the expansion
m =  mh,1 . . .     mh , N n R N h  .

For two functions u, v n L2 (a ), the L 2  inner product can be approximated as
(u, v)L2 (a  )  x e u, ve M  =  up M v ,  where M  is the mass matrix with entries

(2.5) M i j  =  i i ( x ) i  j (x)dx, 1 q i , j  q Nh .
a

We denote R N h  to be the vector space R N h  with the inner product e t ,t e M ,  to distin-
guish from the usual Euclidean space.

Let B : L2 (a )  w L2 (a ). Then the matrix approximation of B h  : V h  w V h , denoted
B  : R M  w R M  , is obtained as follows. First, we construct a matrix S  with entries

S i j  =  i i (x)B i j ( x ) dx  =  e ei, Bej e M , 1 q i , j  q Nh .
a

Here i i  are the finite-dimensional basis vectors and ei is the canonical basis vector for
R N h  corresponding to the basis function i i . This gives us the matrix representation
B  =  M -  1 S. The matrix transpose of B ,  denoted B T  , has entries [ B T  ] i j  =  bj i ,  but
the adjoint of B  : R     h  w R     h  , denoted B t  , satisfies B t  =  M -  1 B T  M.

Discretization of the covariance operator. In the following discussion, we first
assume that 0 <  s <  1 and A : =  a 2 -  a t (a (x)a ), with zero Neumann boundary
conditions. To  apply the fractional operator u =  A -  s f ,  we use sinc quadrature to
approximate the integral [9]. Let zh , j  n V h  solve

t t
(a a zh , j )  t a vh +  (a 2 +  eja )zh, j vh     dx = f vh dx     l vh n V h , - M- q j  q M+ ,

a                                                                                                                        a

and compute the approximation to u as

uh =  
a sin(si )  m +

e(1- s)j a zh,j ,
j = -  M -

where M +  =  l i  2
2  l , M-     =  l i  2         

2  l , and a =  1/ log(1/h). The number of terms
in the expansion was chosen to balance the errors in the quadrature with the finite
element discretization error. Alternatively, in matrix notation, we can write

u  =      
m 

+ w j ( K  +  z j M ) -  1 Mf ,
j = -  M -

where K  is the stiffness matrix with entries
t

[ K ] i j  =  (a a i i )  t a i j  +  a 2i i i  j dx, 1 q i , j  q N h
a

and M  is the mass matrix with entries given in (2.5). The quadrature weights and
nodes are

(2.6) wj  =  
a sin(a i

 
)

e(1- s)j a , z j  =  eja , -  M- q j  q M+ .

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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Based on the preceding discussion, the matrix representation of the discretized version
of D =  A -  s  is

D  : =      
m 

+ w j ( K  +  z j M ) -  1 M.
j = -  M -

Let N denote the set of natural numbers (excluding zero). Now consider the covariance
operator C a =  A -  a , where a >  d/2 and a n/ N . We write a =  r  +  s, where r  =  r a r is
the integer part of a and 0 <  s <  1 is the fractional part. Following [8, Remark 3.6],
the discretized representation of the covariance operator C a =  A -  (u + d / 2 )  is

(2.7) C a  : =  
M

+ w j ( K  +  z j M ) -  1 M
[ 
K -  1M

] r  .
j = -  M -

Note that we can interchange the order of the fractional and the integer part since
terms like ( K  +  z j M ) -  1 M  and K -  1 M  commute. Furthermore, the matrix C a      is
self-adjoint, i.e., C t  =  C a  . An important point to note here is that C a  is not formed
explicitly. The application of the matrix to a vector can be obtained by M- + M +  + 1
independent linear system solves which can be readily parallelized. However, we will
show how to compute the action of C a  eficiently using Krylov subspace methods for
shifted linear systems (see section 3.2).

2.4. Related work. As mentioned earlier, in Bayesian inverse problems, the
exponent is typically chosen to be a =  2. To  our knowledge, in Bayesian inverse
problems, the problem of eficient computations with covariance operators for non-
integer values of a is still an outstanding challenge. The fractional Laplacian with 0
<  a <  1 has been used as a regularization operator in a non-Bayesian setting [1, 2].
Notice that, [1] uses the Fourier approach which is limited to periodic settings and
[2] uses an eigendecomposition of the Laplacian that is not scalable to large
problems.

There are some techniques in computational and spatial statistics that are rele-
vant to this discussion; however, for a detailed review, see [23]. In [28], a method was
proposed for sampling from generalized Mat\e'rn fields on compact Riemannian mani-
folds using the so-called matrix transfer technique. In this method, after discretizing
the differential operator, the samples are obtained by applying the matrix function
( f (x )  =  x -  a )  on a random vector. The application of the matrix function is accom-
plished using contour integral and Krylov subspace methods similar to ours. But
our approach differs in how we approximate the fractional operator and also in the
choice of Krylov subspace methods. Recent work in [7, 8] developed eficient meth-
ods for sampling from the S P D E  for certain fractional exponents (in our notation,
d/4 <  a /2 <  1); these references also use the same quadrature scheme for the integral
representation of the fractional inverse as ours. However, our approach generalizes it to
all exponents a >  d/2 and the use of Krylov subspace solvers substantially speeds up
the solution of the S P D E.  In a follow-up work [6], the authors developed the ra-tional
S P D E  approach in which they use a rational approximation of the form (in our
notation) A -  a x p(A )q(A ) -  1, where p, q are polynomials. When the degrees of the
polynomials are small, the discretized representations retain the computational ben-
efits of the integer versions. However, the error analysis in [6, Remark 3.4] suggests in
order to balance the errors due to the spatial discretization and the error in the
rational approximation, the degrees of the polynomials p, q may be large, which leads to
a loss in computational eficiency. The paper in [18] also works in a similar setting as
ours in bounded domains but solves the linear systems in parallel using multilevel

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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preconditioned iterative solvers with linear complexity in the degrees of freedom; ad-
ditionally, their approach is also applicable to compact metric spaces. Also relevant to
this discussion are [22, 20] which deal with sampling from random fields on compact
Riemannian manifolds. Our eficient approach for representing covariance matrices
and sampling from the random field may be applicable to that setting as well. To
our knowledge, these techniques have not been used within the context of Bayesian
inverse problems, which is the primary focus of this paper.

3. E f i c i e nt  computations with the covariance operator. In this section,
we review the multipreconditioned G M R E S  method for shifted linear systems [4]
(MPGMRES-Sh) for solving sequences for shifted linear systems (section 3.1). We
use this solver to accelerate the computations with the covariance operator C a      and
for generating samples from the S P D E  (section 3.2). Finally, in section 3.3, we also
describe how to eficiently compute the truncated Karhunen--Lo\ève expansion.

3.1. K r y l o v  methods for shifted systems. The dominant cost of applying
the fractional operator is the solution of a system of shifted linear equations. We first
briefly review the MPGMRES-Sh approach [4]. This is an eficient method for solving
shifted linear systems of the form

( A 1  +  a j A 2 ) x j  =  d, 1 q j  q Na ,

where A 1 , A 2  n R ns n  and { a j } N a are a set of shifts. This solver can be used in
multiple ways to accelerate computations involving Gaussian random fields.

In the MPGMRES-Sh approach, we select a set of shifts { u j } p          that determine
the preconditioners P j  =  ( A 1  +  u j A 2 ) .  The method uses multiple preconditioners to
build a basis Z m  n R ns m n p  that we will use to define a search space for all the shifted
systems. In the discussion below, for simplicity, we drop the index on a . At the kth
iteration, given the matrix V ( k )  n R ns n k -  1  

the method builds the matrix Z ( k )  as

Z ( k )  =  
[ 
P -  1 vk . . .     P -  1vk

] 
n R ns n p  , v k  =  V ( k ) e n p  .

The method is initialized with V ( 1 )  =  d/| d| 2. We define the matrices that collect
the columns V ( k )  and Z ( k )  as V m  =  V ( 1 ) . . .     V ( m )      and Z m  =  Z ( 1 ) . . .     Z ( m )  .
Using these relationships we can derive the multipreconditioned Arnoldi relationship
for a shift a :

( [ ] )
(3.1) ( A 1  +  a A 2 ) Z m  =  V m

m      +  Hm (a I  -  T m )      =  V m + 1 H m ( a  ; T m ) .

Here the matrices T m  and E m  are defined as follows. Let s denote the Kronecker
product and define

T ( k )  =  blkdiag(Ink -  1  s u 1 , . . . , Ink -  1  s u n p  )  n R n p s  n p

and E ( k )  =  ep      s I  k -  1      for 1 q k q m. Here blkdiag means a block diagonal ma-trix
composed of the given subblocks. With these definitions in place, then T m  =
blkdiag(T(1) , . . . , T(m) ) and E m  =  blkdiag(E(1) , . . . , E(m) ). The matrix H m  is block
upper-Hessenberg. The importance of (3.1) is that the basis Z m  is applicable across all
the shifts and need not be derived from scratch for each new shifted system that needs
to be solved. This is a consequence of the shift-invariant property of MPGMRES-Sh.
Furthermore, the growth in the number of columns in the search space is linear in the
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number of preconditioners rather than exponential; see [4], in particular Theorem 3.6
and the discussion in section 3.2 of that paper.

The main point here is that the solution for each shifted system corresponding to
shift a is obtained as xm (a )  =  Zm ym (a ), where ym (a )  n R m n p  minimizes the residual
and is obtained by solving the least squares problem

yn R 
in 

p  
| rm(a )| 2 =  | | d| 2e1 -  Hm (a ; Tm )y| 2.

The details of this algorithm as well as the implementation details are given
in [4, Algorithm 2].

Computational cost. We do assume that the cost of matrix-vector products
(matvecs) involving A 1  and A 2  is Tmatvec and the cost of applying the precondi-
tioner is Tprec. If km iterations of the MPGMRES-Sh are performed, then the total
cost is

Tcost =  kmnp(Tmatvec +  Tprec) +  O (Na nkmnp) +  O (Na kmnp) >  flops.

As we shall see in the numerical experiments, the number of iterations km is low
(typically q 50).     Note that the cost of building the basis is independent of the
number of shifted systems, whereas the cost of the projected system depends on the
number of shifted systems Na .

3.2. A p p l y i n g  the covariance operator. We now show how to compute the
application of the covariance operator C a      to a vector f . Let the matrices K  and M  be
as defined in section 2.3.

Let a n R +  be a positive number. If a n N , then it is straightforward to compute
an application of the covariance operator which requires a sequential applications of
solves involving K .  Henceforth, we assume that a n R +  s N . Let r  be the integer part
of a and let s n (0, 1) be the fractional part. We can apply the covariance operator
to a vector f ; this can be computed as )

(3.2) C a  f =  
m 

+
wj  ( 

M  +  z- 1 K
)  -  1 M

[ 
K -  1M

] r  f .
j = -  M -            

j

In writing this expression, we have replaced the weights with wj z - 1. This form is
completely equivalent to (2.7) but makes it easier to precondition. To  turn this expres-
sion into an eficient algorithm, we perform the following steps. In the ofline phase,
we determine the quadrature weights { wj } -  M and nodes { zj } -  M      , preconditioner
shifts { u j } j = 1 .  Furthermore, we compute factorizations of K  and the precondition-ers
{ P j  =  M  +  u j K }  p       . In the online stage, we compute the action of K M  on
f r  times to obtain c =  [ K -  1 M]r f . We then apply MPGMRES-Sh with A 1  =  M,
A 2  =  K ,  d  =  Mc,  and shifts a j  =  1/zj  for -  M-     q j  q M +  to obtain the solu-tions {
x j } +        . Finally, we compute C a  f = + w j x j .  The details are given in
Algorithm 3.1.

When the integer part r  is large, the number of solves with K  can become ex-
pensive; however, in practice, a value of r  >  3 is typically not used since the resulting
field is extremely smooth. If an application requires the use of a large value of r,
techniques from [19, section 4.1] may be used.
Alternative approaches. In the expression for the application of the covariance de-fined

in (3.2), we used a slight reformulation for the fractional part, which is obtained
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Algor i thm 3.1 Applying the covariance operator C a  f .
Require:     matrices K  and M,  vector f , scalar a n/ N , preconditioner shifts { u j } p

1:     { Ofline stage: precomputation}
2: Split a =  r  +  s, where s n (0, 1) and r  n N
3: Determine quadrature weights wj  and nodes zj  for M- q j  q M
4: Factorize P j  =  M  +  u j K  for 1 q j  q np and K
5: { Online stage: solve}
6: Apply the integer part: c =  [ K -  1 M]r f
7: Solve the sequence ( M  +  z- 1 K ) x j  =  M c  and compute u  = j = M     

 w j x j .
8: return Return u  =  C a  f

by factoring out zj  in each summand. We also investigated two other formulations
for computing D b .  The first is perhaps the more natural version,

D b  =      
m 

+ wj  ( z j M  +  K ) -  1 M b.
j = -  M -

While mathematically equivalent to the approach used in (3.2), we found that it was
easier to precondition the formulation in (3.2). The second approach is to decompose

D b  =      
m

w j (z j M +  K ) -  1 M b  +  
m 

+

 wj  ( 
M  +  z- 1 K

)  -  1 M b.
j = -  M -                                                                                             j = 1       j

The advantage of this approach is that in this instance both the sets of weights, wj
and wj /zj , are at most one in their respective intervals -  M-     q j  q 0 and 1 q j  q
M+ ; similarly, the nodes zj  and z are also at most 1 in their respective intervals.
However, the downside is that to apply the fractional operator, we need two solves
with MPGMRES-Sh. For this reason, we prefer the formulation in (3.2).

In the ofline stage Algorithm 3.1, we factorize the preconditioners. However,
this may not be feasible for very large-scale problems, especially in three spatial
dimensions. In such cases, we can apply the preconditioners using iterative solvers.
See [4, section 4.2.2].

3.2.1. Generating samples from the S P D E .  We can adapt the eficient ap-
proach in Algorithm 3.1 to generate samples from the S P D E,

(3.3) (a 2 (x) - a t (a (x)a ))(u + d / 2 ) / 2 u(x) =  W (x), x  n a ,

with zero Neumann boundary conditions. We follow the approach in [7] to solve the
S P D E.  Let L L T  =  M  be the Cholesky factorization of M  and let w m N (0, I). For
0 <  a /2 <  1, we can compute a solution to the S P D E  as

u  : =  
2a sin(i a /2)  m +

e(1- a /2)a j ( K  +  eja M ) -  1 Lw,
j = -  M -

where a =  1/ log(1/h), and the number of shifted systems Na =  M- +  M +  +  1, where

M +  =  l i 2/(2a a 2)l and     M- =  l i 2/(2(2 - a )a 2)l .
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We can readily modify Algorithm 3.1 to eficiently solve this problem. In particular,
we can leverage the use of the MPGMRES-Sh approach to accelerate the solution to
the S P D E.  If we instead use zero Dirichlet boundary conditions for u, the error
analysis in [7, Theorem 2.1] applies directly. If the Cholesky factorization of M  is
expensive to compute, we can instead use the square root of M  applied to w using
the MPGMRES-Sh technique; see [4, section 5].

3.3. Karhunen--Lo\è ve expansions. In this section, we discuss an approach to
generate samples from the Gaussian measure N (u ,C )  on a Hilbert space H , where
u n H is the mean function and C is a self-adjoint, positive semidefinite covariance
operator. This approach is based on the Karhunen--Lo\ève ( K L )  expansion of the
stochastic process. In this approach we consider an orthonormal set of eigenpairs (a
j , i  j )  for 1 q j  q y , where the eigenvalues are arranged in decreasing order as a 1 q a 2
q t t t . Furthermore, let { i j } y be an independent and identically distributed
sequence of random variables with i 1 m N (0, 1). Then by [30, Theorem 6.19], the
sample u defined by the K L  expansion

u : =  u +  
m }  

a
 
j i  j i  j ,

k = 1

is distributed according to N (u ,C ). In practice, for certain applications, the eigen-
values exhibit rapid decay and, therefore, the expansion can be approximated by the
truncated representation uN  : =  u + N a j i  j i  j .  In the context of Bayesian in-
verse problems, rather than estimating the field, one can estimate the coeficients
{ i j } N       of the K L  expansion. This can be computationally beneficial because of the
input dimensionality reduction.

Galerkin approximation. In this discussion, we will derive the expressions for the
truncated K L  expansion for the Gaussian measure N (0,C ). We will then discuss
implementation details for computing the truncated K L  expansion for the Gaussian
measure N (0,C a ). Consider a finite-dimensional subspace V h  t L2 (a )  with N h  =
dim(V h )  and let { i j } h       be a basis for the subspace. The eigenvalue problem C i  =  a i
is then replaced by the finite-dimensional eigenvalue problem C h i  h  =  a h i  h , where
i  h  n V h  and C h  : V h  w V h . We seek a solution i  h  = h      i  h , j i  j  by considering the
Galerkin projection

m h  

i  h , j ( i  i,C h i  j ) L 2 ( a  )  =  
m h  

i  h , j ( i  i , i j ) L 2 ( a  ) , 1 q i  q Nh .
j = 1 j = 1

Following the discussion in section 2.3, we can write (i  i , i j ) L 2 ( a  )  =  e ei, eje M  and
(i i,C h i  j ) L 2 ( a  )  =  e ei , Cej e M ,  where C  is the discretized covariance matrix. Therefore,
we now have the generalized Hermitian eigenvalue problem (GHEP)

(3.4) M C i  h  =  a h M i  h ,

where i =  
[ 
i  h,1 . . .     i  h , N  

] T  n R N h      is the generalized eigenvector. Let a h,1 q
t t t q a h , N  be the generalized eigenvalues and let i be the corresponding eigenvec-
tors. Then a sample from the process can be generated as

(3.5) u h , N  =  
m }  

a
 
h, j i  j i  h , j .

j = 1

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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Eficient implementation. We want to compute the truncated K L  for the mea-
sure N (0,C a ). The G H E P  (3.4) can be solved using any standard Krylov-based eigen-
solver (e.g., Lanczos) that does not form the matrix C a      or M C a      explicitly but in-
stead relies on forming the matvecs involving the matrices. The matvecs involving
C a      can be eficiently computed using the MPGMRES-Sh approach as described in
Algorithm 3.1.

An alternative approach to computing the truncated K L  expansion is to work with
the eigenpairs of the operator A , which is attractive at first glance since it avoids the
complications with computing the fractional part. However, the approach based on
the covariance operator C a directly is advantageous for two reasons. First, to compute
the truncated K L  expansion, we need to target the eigenpairs of C a corresponding to
the largest eigenvalues, which corresponds to the eigenpairs of A corresponding to the
smallest eigenvalues, which is typically much harder. Second, for a >  1 the operator
A -  a     acts as a spectral transformation that enhances the eigenvalue gaps.

4. Appl icat ion to Bayesian inverse problems. In this section, we show how
to leverage the eficient representation of the covariance operator. In section 4.1, we
review the necessary background for Bayesian inverse problems. In section 4.2, we
derive the discretized posterior distribution that uses the covariance matrix in (2.7)
as the prior covariance and in section 4.3, we show how to adapt generalized hybrid
iterative methods (GenHyBR) appropriately to eficiently compute the MAP estimate.
The material in sections 4.1 and 4.2 follow the discussions in [30, 11].

4.1. Bayesian inverse problems. Let m n L2 (a )  be the inversion parameter
that we wish to recover from the measurements y  n R N y  , which are related through
the measurement equation

(4.1) y  =  F (m) +  a ,

where F : L2 (a )  w     R N y       is the parameter-to-observable map or the measurement
operator, and a is the measurement noise which is assumed to be Gaussian with zero
mean and covariance a noise, which we write as N (0, a noise). Therefore, the likelihood
probability density function takes the form )

i (y| m) o exp - | y  - F (m)| 2 
-  1 .

We assume that m is endowed with a Gaussian prior
o

with mean function m and
covariance operator a -  2C pr, i.e., m m N (mpr, a -  2C pr). Here a 2 acts as a regularization
parameter that may be known, or can be estimated as part of the inversion process
(this is what we do in this paper). For the operator C pr we take it to be C a as defined
in section 2.1.

By the choice of the likelihood and the prior distribution, using the infinite-
dimensional Bayes formula, the Radon--Nikodym derivative of the posterior probabil-
ity measure u post with respect to the prior measure u pr =  N (mpr, a -  2C pr), takes the
form

du post =  
1 

exp - 
1

| y  - F (m)| 2 
-  1 ,

pr n}o}i}s}e}

where Z  =  i (y| m)du pr is a normalization constant. The MAP estimator maximizes
the posterior distribution and can be obtained by the solution to the optimization
problem

min
1

| y  - F (m)| 2 +   C | m - m | 2 .
mn L 2 ( a  ) n}o}i}s}e} p}r}
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If F is a linear operator, then the posterior distribution is Gaussian; we exploit this
fact in this paper.

4.2. Discretized posterior distribution. The covariance matrix C p r  after
discretization takes the same form as in (2.7). It is easy to verify that the resulting
matrix C p r  is self-adjoint; i.e., C t       =  C p r  and C p r M -  1 is symmetric with respect to
the standard Euclidean inner product and positive definite. This gives us a discretized
representation of the prior distribution m m N (mpr, a -  2 C p r M -  1), i.e.,

( )
i pr (m) o exp -  C e m - mpr , C-  1(m - mpr)e M       .

For completeness, we give expressions for the posterior distribution and the MAP
estimate, for the discretized problem. This uses the components developed in section
2.3. The posterior probability density function takes the form

i (m| y )  o exp
( 

- 
1

| f (m) - y| 2 - 
a 

2 
| m - m | 2

) 
.

n}o}i}s}e} p}r}

The MAP estimator can be obtained by solving the optimization problem

min 
1

| f (m) - y| 2 
-  1          +   C | m - mprior| 2 -  1  .

h n}o}i}s}e}

If the forward operator is linear f (m) =  Fm, then the posterior distribution is Gauss-
ian with m| y  m N (mpost , Cpost M- 1), where

(4.2)
Cp ost  :=(Fp  a noise F +  a 2 C -  1 )-  1,

mpost :=Cp ost (Fp  a noisey +  a 2 C -  1mpr),

and Fp : R N y  w R N h      is the adjoint operator of F ,  and takes the form Fp =  M -  1 F T  .
Note that Cp ost  is self-adjoint with respect to the e t ,t e M  inner product, so that
Cp o s t M -  1 is symmetric positive definite.

4.3. G e n H y B R  for computing the M A P  estimate. We now derive an al-
ternate expression for the MAP estimate (4.2). Multiplying both sides of (4.2) with
Cpost , we get

(Fp a noise F +  a 2 C -  1)mpost =  Fp a noisey +  a 2 C -  1mpr.

We use Fp =  M -  1 F T  , and the change of variables mpost =  M C -  1(mpost -  mpr).
Then to obtain the MAP estimate, we solve the linear system for mpost,

(4.3) ( F T  a n o i s e FCp r M-  1 +  a 2 I)mpost =  F T  a noise(y -  Fmpr ),

and then compute mpost =  mpr +  C p r M -  1mpost. This form of the MAP estimator
will be the basis for our computationally eficient procedure. Note that C p r M -  1 is
a symmetric positive definite matrix with respect to the Euclidean inner product; we
denote this by Q  =  C p r M -  1 for convenience. The application of Q  to a vector can
be performed eficiently, using a slight modification of Algorithm 3.1. Furthermore,
note that F T  a -  1     F Q  is symmetric with respect to the e t ,t e Q  inner product.

We can reformulate the equations in such a way that we can use the generalized
Golub--Kahan bidiagonalization (gen-GK) approach [13] for eficiently estimating the
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MAP estimate. We initialize the iterations with b  =  y  -  F m  , a     =  | b| -  1        , u =

y1/a 1, and a 1v1 =  F T  a noiseb. At step k in this approach,
n}o}i}s}e}

a k + 1 u k + 1  = F Q v k  -  a k uk ,
a k + 1 v k + 1  = F T  a noise uk+1 -  a k + 1 v k ,

where a i,a i  q 0 are chosen such that | ui| a -  1            =  | vi| Q  =  1 for 1 q i  q k +  1.
These iterates can be collected to form the matrices U k + 1  : =  u1       . . .     u k + 1  , V k  : =
v1 . . .     v k  , and the bidiagonal matrix

[ ]
1

a 1 a 2

B k  : = a 2  
. . . n R ( k + 1 ) s  k .
. . .       a k

a k + 1

This can be rearranged to obtain the relations, which are typically accurate up to
machine precision,

F Q V k  = U k + 1 B k ,
F T  a noise Uk +1 = V k B k  +  a k + 1 v k + 1 e k + 1 ,

and the orthogonality relations U k + 1 a  noise Uk +1 =  I k + 1  and V k  Q V k  =  I k .  The
columns of V k  form a basis for the Krylov subspace K k ( F  a F Q , F  a b),
where the Krylov subspace is defined as K k ( J , d )  : =  span{ d, Jd, . . . , Jk -  1d} . To  obtain
the approximate solution, we search for linear combinations of the columns V k ,  i.e.,
mk,a =  Vk zk , a  that solve the optimization problem

min 
2

| B k + 1 z  -  a 1e1| 2 +  
a 
2

 | z| 2.

To  estimate the regularization parameter a C , we minimize the projected generalized
cross validation ( G C V ) .  Other choices for estimating the regularization parameter are
possible (e.g., discrepancy principle, unbiased predictive risk estimate), but we do not
pursue them here. We refer the reader to [13] for additional details. To  terminate
the iterations we use a stopping criterion similar to [12, section 5.5]. Suppose the
iterations terminate at step k, then the solution to the MAP estimate can be obtained
by undoing the change of variables; that is, we compute the approximate solution
m(k )      : =  mpr +  C p r M -  1mk,a .

It is worth mentioning that each iteration of gen-GK requires two matvecs with
Q, one with F ,  and one with F T  . There is an additional cost of O (k3) for solving
the projected least-squares problem and estimating the regularization parameter a 2 ,
and an additional O (k(m + n)) for orthogonalization. The additional cost of the extra
matvec with Q  is offset by the fact that we can eficiently estimate the regularization
parameter during the iterative scheme.

4.4. Posterior variance. Methods to compute the approximate posterior vari-
ance have been developed in several references [16, 11, 31, 29, 26]. However, these are
not directly applicable here and have to be suitably modified. We follow the approach
in [26], that reutilizes the Gen-GK basis vectors computed during the computation of
the MAP estimate, but we need to modify it in two different ways: first, since we are

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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approximating infinite-dimensional quantities, we have to work with additional mass
matrices and, second, we no longer have ready access to the diagonals of Q.

The variance field corresponding to a covariance operator C can be obtained using
the discussion in [11]. Once again suppose that we are given a basis { i j } N h  . Given
the discretized representation C  of the covariance operator C , then the discretized
covariance function

ch (x, y ) =  [ i  (x) ] T  C M -  1 i  (y),

where i  ( x )  =  
[ 
i 1(x), . . . , i N  (x)

] T  is a vector containing the finite element basis
functions. To  visualize the covariance function, we consider the discretized covariance
function evaluated at the nodal points { x j }  N h  . Therefore, it is suficient to consider
the diagonals of the matrix C M -  1. For the posterior variance, therefore, we have to
compute the diagonals of Cp o s t M -  1; that is, we need to compute the diagonals of

Cp o s t M -  1 =  (Fp a noise F +  a 2 Cp r  ) -  1 M -  1 =  ( F T  a noise F +  a 2 Q-  1 )-  1.

This can be eficiently estimated using the intermediate computations in the Gen-GK
process [14, 26]. More precisely, we can approximate

Q F T  a noise FQ x Q V k B k  B k V T  Q  =  Z k i  k Z k  ,

where B T  B k  =  W k i  k W T  is the eigendecomposition of B T  B k  and Z k  =  Q V k W k .
Then we have the following approximation to the posterior covariance:

Cp ost  x Cp ost  : =  Q ( Z k i  k Z k  +  a C Q ) -  1 QM.

Applying the Woodbury identity, we get

Cp ost  =  a -  2 Q M  - Z k a  k Z k  M,

where a k  n R ks k  is a diagonal matrix with the ith diagonal a -  2 i i / ( i  i  +  a 2 ) for
1 q i  q k. Finally, we can get the approximate posterior variance from the diagonals of

Cp o s t M -  1 =  a -  2 Q - Z k a  k Z T  .

Since Z k a  k Z T  is low rank, its diagonals can be easily computed. Finally, since in
floating point arithmetic, the vectors V k  lose orthogonality, we use full reorthogonal-
ization which adds additional cost; see [14, 26]. To  estimate the diagonals of Q  we
follow the D i a g + +  approach in [5, Algorithm 1]. This is a Monte Carlo-based ap-
proach that only uses matvecs with Q  (see Algorithm 3.1) to estimate the diagonals.

5. Numerical experiments. We present a suite of numerical experiments that
demonstrate the performance of the proposed methods. The timing results are re-
ported on a Mac Mini (M1, 2020) with 16 G B  memory and running macOS Big Sur
11.2.3 and M AT L A B  2021A.

5.1. Appl icat ion of the covariance operator. We perform some numerical
experiments demonstrating the eficiency of the MPGMRES-Sh solver in computing
the action of the covariance operators. We take the domain to be a =  (0, 1)2 and the
number of grid points to vary from 33 s 33 to 513 s 513. We take C a     =  A -  s ,

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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102                  MPGMRES-Sh
Preconditioners

Direct

101

100

10-1

16

14

12

10

8

6

4

2

10-2

104 105

Number of grid points

0
10-10 10-5  100 105 1010

1/z
j

F i g .  1. (left) Timing results with increasing discretization for computing C a  f , where a =  0.5.
Direct refers to solving the sequence of shifted linear systems individually using a direct solver, Pre-
conditioner refers to the time required to construct the preconditioners { P j }  p      .  (right) The number
of iterations at convergence taken by MP G M R E S - S h  for each shift; note that a single basis was used
across all the systems. The vertical black lines denote the values of u j  used for preconditioners.

where A =  a 2 -  a , a =  s n (0, 1). We also take a 2 =  100 and the Laplacian has
zero Neumann boundary conditions. Although this operator is not trace-class, the
goal here is merely to study the performance of MPGMRES-Sh and the results are
applicable to other values of a >  d/2.

Since the shifts a j  =  1/zj  are on the positive real axis, we use three precondi-
tioners np =  3 with u n { 10- 8, 10- 4, 10- 2} . The preconditioners P j  for j  =  1, . . . , np are
factorized and stored ahead of the MPGMRES-Sh iterations. We stopped the
MPGMRES-Sh iterations when the relative residuals of each shifted system were
smaller than 10- 8. We investigated different numbers of shifts and with different
shifts, but found the present setup to strike a balance between the number of itera-
tions and the cost per iteration.

Varying mesh discretization. In this experiment, we study the effect of mesh
refinement on the performance of the MPGMRES-Sh solver. We vary the grid sizes
from 33 s 33 to 513 s 513. In the largest problem instance, the number of degrees of
freedom was 263169. For the MPGMRES-Sh algorithm, we still used the same three
shifts to determine the preconditioners. We see that even though the number of shifted
systems to be solved increases with mesh refinement, the number of MPGMRES-Sh
iterations only rises by a modest amount. The highest dimension of the basis for
the search space is 22 s 3 =  66. In Figure 1, we compare the timing cost of the
MPGMRES-Sh with other approaches with mesh refinement. The ``Direct"" approach
refers to solving the sequence of shifted systems using a direct solver. We also report
the time taken in factorizing the preconditioners { P j }  p       , labeled ``Preconditioner,""
and the time taken for solving the shifted linear systems with MPGMRES-Sh is labeled
``MPGMRES-Sh."" We see that the cost of MPGMRES-Sh is much smaller than the
direct method and is comparable to the cost of factorizing the preconditioners. For
the largest problem size, there is an m 40X speedup of MPGMRES-Sh compared to
direct. The computational gains are more pronounced as the system size gets larger
since the number of shifted systems grows significantly but the size of the basis only
exhibits mild growth.The number of shifted systems Na and the number of iterations
taken by MPGMRES-Sh with varying mesh discretization is given in Table 1.

Next, we compute the accuracy of the covariance approximation. We follow the
method of manufactured solutions and let f  =  cos(2i x1) cos(2i x2 ), so that u =  C a f  =
(a 2 +  8i 2 )- a cos(2i x1) cos(2i x2 ). We compute the approximation using the formula
in (2.7) computed using the approach in Algorithm 3.1. We then compute the absolute

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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F i g .  2. Accuracy of the covariance approximation for different values of a and mesh discretiza-
tion h.

Ta b l e  1
Effect of the mesh discretization on the number of MP G M R E S - S h  iterations. Also reported are

the number of shifted systems to be solved.

Grid size Na Iters
33 s 33 123                                         9
65 s 65 173                                        10

129 s 129 235 11
257 s 257 305 16
513 s 513 387 22

error in the L2 (a )  norm and plot the error in Figure 2 for different values of a and
different values of h, the mesh discretization parameter. We see that for all the values
of a , the error decreases with decreasing values of h on the order of h2. Furthermore,
the absolute error also decreases with increasing values of a . The error was analyzed for
0 <  a <  1 in [9] for the Dirichlet boundary case. In order to apply such an analysis to our
setting, this analysis needs to be first extended to the Neumann boundary setting
and then to the case a >  1. We leave this as part of future work.

Effect of different values of a . In this experiment, we take the grid size to be
257 s 257 and vary the exponent s from 0.1 to 0.9 in increments of 0.1. The values of
the number of shifted systems and the number of iterations taken by MPGMRES-Sh
are given in Table 2. We see that the number of iterations is relatively small and it
does not depend on the value of s. Furthermore, while the number of shifted systems
can be large for each value of s, the number of iterations is relatively small. Since the
same basis is used across all the shifted systems, the cost is amortized. Furthermore,
the same basis can be used across multiple values of s since the behavior is essentially
independent of s. This can be very advantageous in a multiquery setting, where we
need to apply the covariance operator to the same vector for multiple values of s.

5.2. Samples from the S P D E .  We provide numerical experiments for generat-
ing samples from the Gaussian process defined by the S P D E  (2.1) with zero Neumann
boundary conditions. We take the domain to be a =  (0, 1)2 and set the grid size to
129 s 129. We solve the S P D E  using the approach described in section 3.2 with
MPGMRES-Sh used to accelerate the solutions of the shifted linear systems. We use
the same preconditioners as in the previous experiment.

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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Ta b l e  2
The number of shifted systems and the number of iterations required by MP GMR E S - S h .  Three

preconditioners are used corresponding to the shifts { 10- 8 , 10- 4 , 10- 2 } .

 s 0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9
Na 846 476 364 318 305 318 364 476 846

Iters     16 16 16 16 16 16 16 16 16

F i g .  3. Samples from the S P D E  (3.3) with u n { 4  , 4  , 4  } and a =  u +  d/2.

We choose three different values of u n { 1 , 2 , 3} and take a 2 =  100. Note that for
these choices of u , we have 1/2 <  a /2 <  1. The samples are visualized in Figure 3;
note that we have used the same realization w across all the values of a . It is readily
seen that for larger values of a , the sample realizations appear smoother. The number
of MPGMRES-Sh iterations for each value of a is the same and is 11.

We also compute samples from the S P D E  (3.3) with zero Neumann boundary
conditions, where we take a 2 (x) =  100 and

[ 
cos(a ) sin(a )

] [ 
l 2

] [ 
cos(a )      -  sin(a )

]

-  sin(a )      cos(a )               l 2         sin(a ) cos(a )

We take a =  i /4, l 2 =  10, and l =  1. Note that the corresponding random field
is stationary and anisotropic. As before we pick u n { 1 , 2 , 3} and the grid size is
129 s 129. The samples are plotted in Figure 4; note that we have used the same
realization w across all the values of a . The number of MPGMRES-Sh iterations
taken for each value of a is the same and is 15.

5.3. Comput ing  the truncated K L  expansion. We consider the anisotropic
covariance operator (2.4) where a 2 =  80 and a is defined in (5.1) with l 2 =  4, l 2 =  1,
and a =  - i /4. We compute the truncated K L  expansion for three different values
of a n { 3 , 5 , 7} .     To  compute the approximate eigenpairs, we used the two-pass
randomized algorithm for G H E P  [27, Algorithm 6]. We computed 200 eigenvalues
and used an oversampling parameter of 20. The eigenvalues are plotted in the left
panel of Figure 5; on the right panel, we plot 6 different samples computed using the
truncated K L  expansion with a =  5/2.

5.4. Tomography examples. We consider a test problem from the IRTo ols
package [17]. The number of grid points is nx s ny . First, we use the PRseismic test
problem with the number of sources l 0.4nxl and the number of receivers l 0.6nxl . In
total, there were 4004 measurements to which we add 2\% Gaussian noise. We take the
prior distribution to be Gaussian with zero mean and the covariance matrix obtained
from the discretization of A -  a     with A =  a 2 -  a . Next, we consider a test problem

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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F i g .  4. Samples from the anisotropic S P D E  with u n { 4  , 4  , 4  } and a =  u +  d/2.

F i g .  5. (left) Eigenvalues of the K L  expansion for a n { 2  , 2  , 2  } ,  (right) 6 samples from the
truncated K L  expansion with a =  2  .

Ta b l e  3
Problem settings for the tomography test problems in section 5.4.

     I m a g e S mo ot h Cheese
Application

m
n x  s n y

a 2

Seismic
4004

128 s 128
80

X-ray
14835

128 s 128
300

with real data from the Finnish Inverse Problems society [10]. In this instance of the
test problem, the number of grid points is 128 s 128 and the number of measurements
is 14835. We use the same prior distribution as before. A  summary of the settings for
the test problems is given in Table 3. In Figure 6, we plot the results for the seismic
test problem. In the top plot, we plot the reconstructions for three different values of
a n { 1.5, 2.5, 3.5} ; since d =  2, these correspond to u =  1/2, 3/2, 5/2. The relative error
for each value of a is given in the title of each image. Since the images have smooth
features, we see that the error has a slight decrease for increasing values of a . In
the bottom plot of the same figure, we plot the iteration history of the relative error
computed using the GenHyBR method. We also highlight, in black, the iteration
at which the algorithm has stopped. However, we plot the relative error until the
maximum number of iterations 100 to show that the relative error has stabilized and
no semiconvergence is seen.
In the next experiment, we consider the seismic tomography problem but investi-gate

the impact of an anisotropic covariance operator. We take the covariance operator

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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0.5
=1.5

0.45                                                                                                      =2.5
=3.5

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05
0 20 40        60 80 100 120

Iterations

F i g .  6. Seismic tomography: (Top)  reconstructions for different values of a ; (bottom) iteration
history of relative error. Black circles denote the stopping criterion.

(2.4) with a 2 =  80 and a defined in (5.1); we take l 1 =  4, l 2 =  1, and a =  - i /4. For
the isotropic covariance, we take a 2 =  80 and a =  I .  For both covariance operators,
we take the value of a to be 2.5. The true image, reconstruction with isotropic co-
variance and anisotropic covariance operators are displayed in Figure 7. The relative
reconstruction errors are given on the titles; for isotropic covariance, GenHyBR took
56 iterations and for the anisotropic covariance, GenHyBR took 125 iterations. It is
clearly seen that by choosing the anisotropic covariance as the prior covariance, we
can reduce the reconstruction error. This suggests that the anisotropic covariance
operators may be beneficial under certain circumstances; however, to pick the correct
parameters one has to use expert knowledge or they have to be estimated from data.

Finally, in Figure 8, we plot the result of the reconstructions corresponding to the
real data problem using X-ray tomography. Since the true image is not available, we
do not plot the relative error history. We choose a n { 1.1, 1.5, 1.9} since, for higher
values of a , we get poor reconstructions. We have used the value of a 2 =  300 and
limited the maximum number of iterations to 150; the number of iterations taken was
150, 83, and 75 for a n { 1.1, 2.1, 3.1} , respectively.

5.5. P D E - b ase d  example. In this application, we consider a forward problem
that is P D E  based. The underlying P D E  is a 2D time-dependent heat equation

(5.2)
l t 

= a  u,

n  t a u = 0,

u(t =  0) =  >  m,

x  n a , t n (0, T ],

x  n l a , t n (0, T ],
x  n a .
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F i g .  7. Seismic test problem: (left) true image, (center) reconstruction using isotropic covari-
ance, (right) reconstruction using anisotropic covariance.

F i g .  8. X-ray tomography: Reconstructions for different values of a .

Here a =  (0, 1)2, T =  0.01, and n  is the outward normal vector. The forward problem
is discretized using Galerkin finite elements and Crank--Nicholson time differences;
we use a grid size of 65 s 65 with 100 time steps. The inverse problem involves
reconstructing the initial conditions from a discrete set of measurements at the final
time point t =  T . We add 2\% Gaussian noise to simulate measurement error. We use
the covariance operator (2.4) with a 2 =  80, a =  I ,  and a =  2.5.

The reconstructions were performed using GenHyBR as described in section 4.3
and the posterior variance was approximated using the technique in section 4.4. The
diagonals of Q  were estimated using the D i a g + +  method [5, Algorithm 1] with 300
samples. GenHyBR converged in 42 iterations and it produced a relative error of 0.15.
However, we used a basis size of k =  75 for the subsequent uncertainty estimates.
Figure 9 displays the true field and the reconstruction (top row). The white marks
indicate the sensor locations at which data are collected. In the bottom row of the
same figure, we plot the prior variance (diagonals of a -  2 Q =  C p r M -  1), the update
Z k a  k Z T  , and the approximate posterior variance, i.e., diagonals of a post M- 1 =  a Q
- Z k a  k Z T  . We see that the prior variance is high at the four corners which shows
artifacts due to the boundary conditions. The (approximate) posterior variance shows
the reduction in the uncertainty, which is especially prominent in and around the
sensor coverage.

6. Conclusions and discussion. In this paper, we presented eficient methods
for Whittle--Mat\e'rn Gaussian priors in the context of Bayesian inverse problems.

Copyright ©  by SIAM. Unauthorized reproduction of this article is prohibited.
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F i g .  9. 2D inverse diffusion. Top row: (left) true image, (right) reconstruction. Bottom row:
(left) prior variance a -  2 Q ,  (center) diagonals of -  Z k a  k Z T  ,  (right) approximate posterior vari-
ance.

However, the techniques developed here may be of interest beyond inverse problems
in fractional P D E s  and Gaussian random fields. Several extensions of our work are
possible. First, while we focused the derivation and numerical experiments on zero
Neumann boundary conditions, this is not a limitation of the framework, and it is easy to
extend the framework to zero Dirichlet and Robin boundary conditions. The latter may
be particularly suitable to mitigate the effects of boundary conditions (see [15]).
Second, the techniques in this paper may be extended to generalized Mat\e'rn fields on
compact Riemannian fields; see [24, 23, 28, 22]. Finally, in Bayesian inverse problems,
it is straightforward to extend the techniques to nonlinear forward problems within a
Newton-based solver for the MAP estimate [31]. Another interesting line of research
is to extend these techniques to dynamic inverse problems, in which the parameters
of interest change in time and we need to use spatiotemporal priors.

Acknowledgments. A.K.S.  would like to thank Daniel Szyld, Daniel Sanz-
Alonso, Georg Stadler, and Alen Alexanderian for helpful discussions.
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