886 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Breaking the Computational Bottleneck:
Probabilistic Optimization of High-Memory
Spatially-Coupled Codes

Siyi Yang™', Member, IEEE, Ahmed Hareedy"™, Member, IEEE, Robert Calderbank™, Life Fellow, IEEE,
and Lara Dolecek™, Senior Member, IEEE

Abstract— Spatially-coupled (SC) codes, known for their
threshold saturation phenomenon and low-latency windowed
decoding algorithms, are ideal for streaming applications and
data storage systems. SC codes are constructed by partitioning
an underlying block code, followed by rearranging and concate-
nating the partitioned components in a convolutional manner.
The number of partitioned components determines the memory
of SC codes. In this paper, we investigate the relation between
the performance of SC codes and the density distribution of
partitioning matrices. While adopting higher memories results
in improved SC code performance, obtaining finite-length, high-
performance SC codes with high memory is known to be compu-
tationally challenging. We break this computational bottleneck by
developing a novel probabilistic framework that obtains (locally)
optimal density distributions via gradient descent. Starting from
random partitioning matrices abiding by the obtained distrib-
ution, we perform low-complexity optimization algorithms that
minimize the number of detrimental objects to construct high-
memory, high-performance quasi-cyclic SC codes. We apply our
framework to various objects of interest, from the simplest short
cycles, to more sophisticated objects such as concatenated cycles
aiming at finer-grained optimization. Simulation results show that
codes obtained through our proposed method notably outperform
state-of-the-art SC codes with the same constraint length and
optimized SC codes with uniform partitioning. The performance
gain is shown to be universal over a variety of channels, from

Manuscript received 18 September 2021; revised 17 July 2022;
accepted 5 September 2022. Date of publication 16 September 2022; date
of current version 20 January 2023. This work was supported in part by the
University of California, Los Angeles (UCLA) Dissertation Year Fellowship,
in part by the Air Force Office of Scientific Research (AFOSR) under Grant
FA 9550-20-1-0266, and in part by the National Science Foundation (NSF)
under Grant CCF-FET 2008728 and Grant CCF 2106213. An earlier version
of this paper was presented at the 2021 IEEE International Symposium on
Information Theory (ISIT) [DOI: 10.1109/1S1T45174.2021.9517931]. (Corre-
sponding author: Siyi Yang.)

Siyi Yang was with the University of California at Los Angeles,
Los Angeles, CA 90095 USA. She is now with the Department of Electrical
and Computer Engineering, Duke University, Durham, NC 27708 USA
(e-mail: siyi.yang@duke.edu).

Ahmed Hareedy is with the Department of Electrical and Electronics
Engineering, Middle East Technical University (METU), 06800 Ankara,
Turkey (e-mail: ahareedy @metu.edu.tr).

Robert Calderbank is with the Department of Electrical and Com-
puter Engineering, Duke University, Durham, NC 27708 USA (e-mail:
robert.calderbank @duke.edu).

Lara Dolecek is with the Department of Electrical and Computer Engineer-
ing, University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: dolecek@ee.ucla.edu).

Communicated by D. Mitchell, Associate Editor for Coding Theory.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/T1T.2022.3207321.

Digital Object Identifier 10.1109/T1T.2022.3207321

canonical channels such as additive white Gaussian noise and
binary symmetric channels, to practical channels underlying flash
memory and magnetic recording systems.

Index Terms—LDPC codes, spatially-coupled codes, absorb-
ing sets, edge distribution, gradient descent, near-optimal par-
titioning, data storage, flash memories, magnetic recording,
communications.

I. INTRODUCTION

PATIALLY-COUPLED (SC) codes, also known as low-

density parity-check (LDPC) codes with convolutional
structures, are an ideal choice for streaming applications and
data storage devices thanks to their threshold saturation phe-
nomenon [2], [3], [4], [5], [6] and amenability to low-latency
windowed decoding [7]. SC codes are constructed by parti-
tioning the parity-check matrix of an underlying block code,
followed by rearranging the component matrices in a convolu-
tional manner. In particular, component matrices are vertically
concatenated into a replica, and then multiple replicas are
horizontally placed together, resulting in a coupled code. The
number of component matrices minus one is referred to as the
memory of the SC code [8], [9], [10], [11].

It is known that the performance of an SC code improves
as its memory increases. This is a byproduct of improved
node expansion and additional degrees of freedom that can be
utilized to decrease the number of short cycles and detrimental
objects [9], [10], [12], [13], [14]. Mitchell and Rosnes demon-
strated that SC codes designed using non-contiguous partition-
ing outperform codes designed using contiguous partitioning
in [15], which was also demonstrated in [16]. A plethora of
existing works [9], [10], [13], [17], [18], [19], [20] focus on
minimizing the number of short cycles in the graph of the
SC code. Although the optimization problem of designing SC
codes with memory less than 4 has been efficiently solved [9],
[10], there is still an absence of efficient algorithms that
construct good enough SC codes with high memories sys-
tematically. Esfahanizadeh et al. [9] proposed a combinatorial
framework to develop optimal quasi-cyclic (QC) SC codes,
comprising so-called optimal overlap (OO) to search for the
optimal partitioning matrices, and lifting optimization (CPO)
to optimize the lifting parameters, which was extended by
Hareedy et al. [10]. However, this method is hard to execute
in practice for high-memory codes due to the increasing
computational complexity. Efficient algorithms designing SC

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7512-1913
https://orcid.org/0000-0002-8523-6754
https://orcid.org/0000-0003-2084-9717
https://orcid.org/0000-0003-3736-4345

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 887

codes with high memories have been investigated in [13], [17],
[18], and [20]. Naseri. et al. [13] and Battaglioni et al. [17]
presented lower bounds for the constraint lengths that enable
SC codes free of small cycles. Beemer et al. [20] considered
both partitioning (edge spreading in the paper) and lifting in
tail-biting SC codes, which lead to QC-SC codes and allow
the enumeration and elimination of small cycles efficiently,
starting from small base matrices. Mo et al. [18] proposed
to perform optimization over partitioning and lifting in a two-
stage fashion, yielding a greater flexibility in designing QC-SC
codes with a large girth. Codes designed in the aforementioned
literature are typically based on enumeration of detrimental
objects of interest followed by algorithmic optimization that
eliminates these objects, e.g., exhaustive search and integer
programming in [17] that removes short cycles, and a limited
exhaustive search with iterative backtracking in [20] that
enumerate (3, 3)-absorbing sets in regular VN degree 3 codes.
A more advanced technique based on the parent/child relation-
ship between trapping sets (TSs) that efficiently enumerates
TSs by expanding short cycles and successively removes the
most harmful ones was devised in [13]. Exclusive focus on
algorithmic optimization, i.e., lack of theoretical guidance,
in the design of SC codes in existing works can lead to
search spaces that are away from the optimal solution; several
of the codes produced by these works can be outperformed
by optimally designed QC-SC codes with lower memories
under the same constraint length [18]. We therefore establish
a theoretically supported step that systematically targets an
optimal search space for the algorithmic elimination step com-
ing afterwards, universally reducing the expected number of
different objects of interest and leading to better performance.
Inspired by the excellent performance and the low com-
putational complexity offered by approaches comprising the-
oretical analysis guiding heuristic methods, such as degree
distribution optimization followed by progressive edge-growth
(PEG) algorithms in designing irregular codes, we propose
a two-step hybrid optimization framework that has these
advantages. The framework first specifies a search subspace
that is theoretically proved to be locally optimal, followed
by a semi-greedy algorithm within this targeted search space.
By analogy with threshold optimization approaches that search
for LDPC ensembles with the optimal degree distribution, our
first step is to obtain an SC ensemble with the optimal edge
distribution (i.e., density distribution of component matrices).
The associated metric is the expected number of targeted detri-
mental objects in the protograph of the code. Having reached
a locally optimal edge distribution through gradient descent,
we then apply a semi-greedy algorithm to search for a locally
optimal partitioning matrix that satisfies this edge distribution.
Our probabilistic framework is referred to as gradient-descent
distributor, algorithmic optimizer (GRADE-AQO).
Preliminary version of this work was presented in [1],
where we focused only on the minimization of the number of
short cycles. In this work, we develop a broadly applicable
framework that handles more sophisticated objects. While
cycles are detrimental in codes with low variable node (VN)
degrees, such as regular codes with VN degree 2 or 3, objects
that dominate the error profiles in higher-degree codes and

irregular codes are typically more advanced. In particular,
we focus on the concatenation of two short cycles in this
paper. These concatenated cycles are common subgraphs of
the detrimental objects, which are absorbing sets (ASs) [12],
that govern the performance of LDPC codes with VN degree
> 3 in error floor region. These detrimental objects are also the
major source of undesirable dependencies that undermine the
performance in the waterfall region. While focusing on cycles
for simplicity, which is the case for the majority of existing
works, unnecessary degrees of freedom could be exhausted
on isolated cycles that are much less problematic. Prior work
aiming at eliminating objects instead of cycles in binary codes,
which is important for a variety of applications including
storage systems, includes [14] by Naseri and Banihashemi
along with [21] by Hareedy er al.. While [14] adopts a greedy
algorithm to remove the TSs and [21] focuses on a different
class of codes, the multi-dimensional LDPC codes, our frame-
work offers additional mathematical guidance and leads to sys-
tematic design of high-performance SC codes that do not floor
over the storage channels. Hareedy et al. [22], [23] proposed
the so-called weight consistency matrix (WCM) framework to
search for edge-weight assignments that minimize the number
of ASs in non-binary (NB) LDPC codes with a given under-
lying topology, and demonstrated performance gains in data
storage systems. Simulation results show that our framework
leads to codes with excellent performance in flash memory
and magnetic recording systems. The proposed GRADE-AO
framework not only opens a door to fine-grained optimization
over detrimental objects in SC codes, but also can be applied
in optimizing the unweighted graphs of non-binary (NB)
SC codes, which can lead to excellent NB-SC codes when
combined with the WCM framework. Because of the improved
threshold and waterfall performance, GRADE-AO has poten-
tial to produce SC codes for communication systems as well.
In this paper, we propose a probabilistic framework that
efficiently searches for near-optimal SC codes with high
memories. In Section II, we introduce preliminaries of SC
codes and the performance-related metrics. In Section III,
we develop the theoretical basis of GRADE, which derives
an edge distribution that determines a locally optimal SC
ensemble. In Section IV, we introduce the theoretical details
of how GRADE is generalized to more sophisticated objects.
The distribution obtained through GRADE leads to effective
initialization and specifies the search space of the semi-greedy
algorithm adopted in AO afterwards. In Section V, we intro-
duce two examples of GRADE-AO that result in near-optimal
SC codes: the so-called gradient-descent (GD) codes and
topologically-coupled (TC) codes. In summary, we generalize
GRADE to a rich class of relevant objects and present exam-
ples of GRADE-AO that focus on concatenated cycles. Our
proposed framework is supported in Section VI by simulation
results of seven groups of codes, with the best code in each
obtained from GRADE-AO. Finally, we make concluding
remarks and introduce possible future work in Section VIIL.

II. PRELIMINARIES

In this section, we recall the typical construction of SC
codes with quasi-cyclic (QC) structure. Any QC code with a

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

888 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

0
H9 :
A1
)
P
.l].o
Lam P
g-pen #i5
it :
J' 4
-
Fig. 1. Cycle candidates in the protograph (right panel) and their corre-

sponding cycle candidates in the partitioning matrices (left panel).

parity-check matrix H is obtained by replacing each nonzero
(zero) entry of some binary matrix HY with a circulant (zero)
matrix of size z, z € N. The matrix H? and z are referred to as
the protograph and the circulant size of the code, respectively.
In particular, the protograph HE. of an SC code has a
convolutional structure composed of L replicas, as presented
in Fig. 1. Each replica is obtained by stacking the disjoint
component matrices {HY}™ ,, where m is the memory and
IT=H)+HY +-- -+ HP, is the protograph of the underlying
block code.

In this paper, we constrain IT to be an all-one matrix of size
v X K, v,k € N. An SC code is then uniquely represented
by its partitioning matrix P and lifting matrix L, where P
and L are all v x x matrices. The matrix P has (P); ; =
a if (HP);; = 1. The matrix L is determined by replacing
each circulant matrix by its associated exponent. Here, this
exponent represents the power to which the matrix o defined
by (0)iit1 = 1 is raised, where (), .41 = (0).1. The
number of replicas is referred to as the coupling length and
denoted by L. Under this notation, the parameters of an SC
code are described by (v, k,m, z, L).

The performance of finite-length LDPC codes is strongly
affected by the number of detrimental objects that are sub-
graphs with certain structures in the Tanner graphs of those
codes. Two major classes of detrimental objects are trapping
sets and absorbing sets. Since enumerating and minimizing the
number of detrimental objects is complicated, existing work
typically focuses on common substructures of these objects:
the short cycles [9], [10], [17]. A cycle-2g candidate in H}s)c
(II) is a path of traversing a structure to generate cycles of
length 2¢ after lifting (partitioning) [10]. In an SC code, each
cycle in the Tanner graph corresponds to a cycle candidate
in the protograph HEf., and each cycle candidate in HE-
corresponds to a cycle candidate C' in the base matrix II.
Lemma 1 specifies a necessary and sufficient condition for
a cycle candidate in IT to become a cycle candidate in the
protograph and then a cycle in the final Tanner graph.

Lemma 1: Let C be a cycle-2¢g candidate in the base matrix,
where g € N, g > 2. Denote C' by (j1,%1, 72,92, -, 7g:%g)s
where (ix, jx), (i, Jk+1), 1 < k < g, jg+1 = j1, are nodes of
C in II, P, and L. Then C becomes a cycle candidate in the

protograph if and only if the following condition follows [17]:

g o g o

Zk:l P(ig, ji) = ZkzlP(Zk7]k+1)' ey
This cycle candidate becomes a cycle in the Tanner graph if
and only if [24]:

9 . g L
Zk:l L(ik, jr) = Zk:l L(ig, jk+1) mod z. (2)

As shown in Fig. 1, a cycle-6 candidate and a cycle-
8 candidate in the partitioning matrix with assignments satis-
fying condition (1), and their corresponding cycle candidates
in the protograph are marked by red and blue, respectively.
An optimization of a QC-SC code is typically divided into
two major steps: optimizing P to minimize the number of
cycle candidates in the protograph, and optimizing L to further
reduce that number in the Tanner graph given the optimized
P [9], [10]. The latter goal has been achieved in [9] and [10],
using an algorithmic method called lifting optimization (CPO),
while the former goal is yet to be achieved for large m.
We note that the step separation highlighted above notably
reduces the overall optimization complexity.

In the remainder of this paper, we first focus on QC-SC
codes for the additive white Gaussian noise (AWGN) chan-
nel, where the most detrimental objects are the low weight
absorbing sets (ASs) [9]. The ASs are defined in Definition 1.

Definition 1 (Absorbing Sets): Consider a subgraph
induced by a subset VV of VNs in the Tanner graph of a
code. The set V is said to be an (a,b) absorbing set (AS)
over GF(q) if the size of V is a, the number of unsatisfied
neighboring CNs of V is b, and each VN in V is connected
to strictly more satisfied than unsatisfied neighboring CNs,
for some set of VN values in GF(g) \ {0}, assuming that the
values of all other VNs in the Tanner graph are zeros.

An (a,b) elementary AS V over GF(q) is an (a,b)
AS with the additional property that all the satisfied (resp.,
unsatisfied (if any)) neighboring CNs of V have degree 2
(resp., degree 1); otherwise the AS is referred to as an (a, b)
non-elementary AS.

Consider a subgraph induced by a subset } of VNs in the
Tanner graph of a binary code. The set V is said to be an (a, b)
binary AS if the size of V is a, the number of odd-degree
neighboring CNs of V is b, and each VN in V is connected to
strictly more even-degree than odd-degree neighboring CNs.

Observe that the unlabeled configuration (all edge weights
set to 1) underlying an (a,b) non-binary elementary AS is
itself an (a, b) binary elementary AS.

Consequently, a simplified optimization focuses on cycle
candidates of lengths 4, 6, and 8 [9], [10]. Existing liter-
ature, e.g., [9], that searches for the optimal P for an SC
code with m < 2 typically assumes balanced (uniform)
edge distribution among component matrices for reducing the
complexity. However, in the remaining sections, we show that
the edge distribution for optimal SC codes with large m is
not uniform, and we propose the GRADE-AO framework that
explores a locally optimal solution. With the success in cycle
optimization, we step forward to a finer-grained optimization
over more advanced objects, which can be applied in higher
degree codes and irregular codes. While GRADE can be

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 889

generalized for arbitrary objects, we present constructions
obtained though GRADE-AO focusing on concatenated cycles.
Simulation results show that our proposed codes have excellent
performance on practical channel models derived from flash
memories and magnetic recording (MR), in both the waterfall
and error floor regions.

III. A PROBABILISTIC OPTIMIZATION FRAMEWORK

In this section, we present a probabilistic framework that
searches for a locally optimal edge distribution for the par-
titioning matrices of SC codes with given memories through
the gradient-descent algorithm.

Definition 2: Let v, k,m, my S N and a =
(ag,a1,...,am,), where 0 = ag < a1 < -+ < ap, = M.
A (v,k) SC code with memory m is said to have
coupling pattern a if and only if HY # 07*% for all
i € {ag,ai,...,am,}, and HY = 07 otherwise. The value
my is called the pseudo-memory of the SC code.

A. Probabilistic Metric

In this subsection, we define metrics relating the edge
distribution to the expected number of cycle candidates in the
protograph in Theorem 1 and Theorem 2. While Schmalen
et al. have shown in [25] that nonuniform coupling (nonuni-
form edge distribution in our paper) yields an improved
threshold, our work differs in two areas: 1) Explicit opti-
mal coupling graphs were exhaustively searched and were
restricted to small memories in [25], whereas our method pro-
duces near-optimal SC protographs for arbitrary memories. 2)
Work [25] focused on the asymptotic analysis for the threshold
region, while our framework is dedicated to the finite-length
construction and has additional demonstrable gains in the error
floor region.

Definition 3: Let m,m; € N and a = (ag,a1,...,am,),
where 0 = a9 < a1 < < Qm, = m. Let p =
(Po,p1 -+, Pm,), where 0 < p; <1, po+p1+---+pm, =1

each p; specifies the probability of a ‘1’ in II going to the
component matrix Hgi, thus p is referred to as edge distri-
bution under random partition later on. Then, the following
f(X;a,p), which is abbreviated to f(X) when the context is
clear, is called the coupling polynomial of an SC code with
coupling pattern a, associated with probability distribution p:

. L Y @i
[(Xap) &y pX 3)

Theorem 1: Let [-], denote the coefficient of X' of a
polynomial. Denote by Fs(a,p) the probability of a cycle-
6 candidate in the base matrix becoming a cycle-6 candidate
in the protograph under random partitioning with edge distri-
bution p. Then,

Ps(a,p) = [f2(X)fP(X7H],.)

Proof: According to Lemma 1, suppose the cycle-6 candi-
date in the base matrix is represented by C'(j1, i1, jo, i2, js, i3).

Then,

Ps(a,p) =P [Zd P (i, jr) = 22:1 P(ikvjk+1):|

k=1

S I

SrTe=2 g Yk k=1

= Z Pz PzyPrsPy Py2Pys
Zg:1 zk:Zizl Yk

_ E T1+T2+T3—Yy1—Y2—
— pmlpmzpm3py1py2py3X 1 2 3=Y1—Y2—-Y3
@iykEvals(a) 0

=[],

where vals(a) is the set {ag, a1, ..., am, }. Thus, the theorem
is proved. []

(ik, Jr) = Try P ik, Jrr1) = yrl

A similar approach of adopting generating functions to
assist deriving the probability of breaking a cycle-6 was also
presented the [26, Theorem 3.4.1], for the special case of a
uniform edge distribution.

Example 1: Consider SC codes with full memories and
uniform partition, i.e., a = (0,1,...,m) and p = ﬁlrrwl-
When m = 2, Ps(a,p) = 0.1934; when m = 4, Fs(a,p) =
0.1121.

Example 2: First, consider SC codes with m = m; = 2.
Let a; = (0,1,2) and p; = (2/5,1/5,2/5). According to
Theorem 1, f(X) = (24 X +2X?2)/5, f3(X)f3(X 71! =
0.0041(X°% + X~6) + 0.0123(X® + X°) + 0.0399(X* +
X 40.0717(X 34+ X ~3)4+0.1267(X 2+ X ~2)4+0.1544 (X +
X ~1)+0.1818. Therefore, Ps(a;, p1) = 0.1818. Second, con-
sider SC codes with m = m; = 4. Let ap = (0,1,2,3,4) and
p2 = (0.31,0.13,0.12,0.13,0.31). According to Theorem 1,
Ps(az, p2) = 0.0986.

After we have derived the metric for cycle-6 candidates in
the protograph, we now turn to the case of cycle-8 candidates.
As shown in Fig. 2, cycle candidates in the base matrix
that result in cycle-8 candidates in the protograph can be
categorized into 6 different structures, labeled Si,...,Sg.
Different cases are differentiated by the number of rows and
columns (without order) the structures span in the partitioning
matrix [10]. Specifically, Si, ..., S¢ denote the structures that
span submatrices of size 2 X 2,2 x 3or3 x 2,3 x 3,2 x 4 or
4 x2,3x4o0r4 x 3,and 4 x 4, respectively. Any structure
that belongs to So, Sy, S5 has multiple cycle-8 candidates, and
these distinct candidates are marked by blue in Fig. 2.

Lemma 2: Let Pg.i(a,p), 1 <i < 6, denote the probability
of a cycle-8 candidate of structure .S; in the base matrix
becoming a cycle-8 candidate in the protograph, under random
partition with edge distribution p. Then,

Psa(a,p) = [f*()}07
Psa(a,p) = [f(X PP)]
Pys(a,p) = [f(X (X !

)]g» an
)=

Ps.a(a,p) = Ps;5(a,) P86(aap If ()f4(X71)}0-

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023
SO IO IO e
L] i i [~ i ~
[Th ; muillll A M L [
IS8 5 O | O S o J
Ss) ! i !
3 e inrmsl sl i sl I Nss==l]
Se)17 ! I | i Y =
= : : A
T e e A A
I o IL o L L) 2T |
Fig. 2. Structures and cycle candidates for cycle-8. Note that structures S;, ¢ € {2,4, 5}, also include the transpose of each cycle candidate shown in the

figure, which are omitted for simplicity. Permutations of rows and/or columns give equivalent arrangements.

Proof: For structures where the nodes of the cycle-8 candi-
dates are pairwise different, namely, Sy, S5, Sg, the result can
be derived by following the logic in the proof of Theorem 1.

For S, suppose the indices of the rows and columns are
i1,12, and ji,jo, respectively. Then, the cycle condition in
Lemma 1 is P(il,jl) + P(ig,jg) = P(il,jg) + P(ig,jl).

For S5, suppose the indices of the rows and columns are
i1, 12, and j1, j2, J3, respectively. Then, the cycle condition in
Lemma 1 is 2P(’L'1,j1) — QP(iQ,jl) + P(ig,jg) +P(Zg,j3) —
P(i1, j2) — P(i1,j3) = 0.

For S, suppose the indices of the rows and columns are
i1, 192,13, and j1, ja, J3, respectively. Then, the cycle condition

in Lemma 1 is 2P(7/1).71)+P(7’25j2)+P(7/35j3)_P(llaJQ)_
P(iz, j1) — P(i1, j3) — P(is,j1) = 0.

Following the logic in the proof of Theorem 1, the case for
S1, 59,55 can be proved. [|

Theorem 2: Denote Ng(a,p) as the expectation of the
number of cycle-8 candidates in the protograph. Then,

Ns(a,p) =w [f3(X)f3(X)],
+ws [f(X2) (XXX,
+ ws [f(2) 2()f 4(X71)}0
+ wy [f4)]0’ ®)
where w1 = (3)(5), = @ (3) +3(3)(5), ws =
iié m w4—6(8(4)+6(D) F36() () +36() (5) +

Proof: Provided the results in Lemma 2, we just need
to prove that the numbers of cycle candidates of structures
S1,85,...,5 in ay x k base matrix are (3) (%), 3(3)(5) +
3()(5), 18 (5)- 6()(5) +6G) (5), 36(3) () + 36 (1) (),
and 24(7) (%), respectively.

Take ¢ = 5 as an example. We first count the number
of cycle candidates of structure S5 in any 3 x 4 (4 x 3)
matrix. We first choose the only row (column) that contains
four edges of S5, which has 3 ways ina 3 x 4 (4 x 3) matrix.
Then, we choose the edge combination of the other two rows
(columns), which has (3) ways. There are 2 different ways to
connect the four edges in the remaining row. Therefore, the
number is 3 - (;) -2 = 36. The total number of 3 x 4 or
4 x 3 matrices in a v x x base matrix is (3) () + (3) (5)-
Therefore, the total number of cycle candidates of structure
S5 is 36(3) (5) +36(7) (5)- By a similar logic, we can prove
the result for the remaining structures. []

Remark 1: Note that each cycle candidate satisfying the
cycle condition in the partitioning matrix can result in multiple

cycle candidates in the protograph; the multiplicative factor
is determined by its width, i.e., the number of replicas each
resultant cycle candidate spans in the protograph. We ignore
the number of replicas a cycle candidate spans in HE..
This is because L > m typically holds (for small rate
loss), which means that the multiplicative factor of each
cycle-6 and each cycles-8 are in the ranges [L —m, L] and
[L —2m, L], respectively. Therefore, the deviation of the
number of cycles derived while ignoring the multiplicative
factor from the accurate number is upper bounded by a
fraction of O (%) which approaches zero when L > m,
and its effect is negligible on the constructions obtained from
our optimization framework. We address this number in the
CPO stage.

B. Gradient-Descent Distributor

By contrasting Examples 1 and 2 it is clear that for a
given coupling pattern, an optimal edge distribution is not
necessarily reached by a uniform partition. In this subsection,
we develop an algorithm that obtains a locally optimal distri-
bution by gradient descent.

Lemma 3: Given my € N and a = (ag,a1,...,am,),
a necessary condition for Pg(a,p) to reach its mini-
mum value is that the following equation holds for some
co € R:

[P, =co Vi,0<i<m. (6)

Proof: Our objective is to minimize Ps(a, p), under the
constraint po+p1+- - -+ pm, = 1. Therefore, we consider the

Lagrangian Lg(a,p) = Ps(a,p) +c(1—po—p1—++—Pm,)
and compute its gradient.

VpLes(a,p)
=Vp (Ps(a,p) +c(1—po—p1— " —Pm,))

p [P FXH]) =l 1

= [Vp (FP(X) (X)) — Lt
=3 [FA(X) XX Ve f(XTY],

+3 LX) XX VR (X)]) = L, 41
=6 [f2(X) XN (X%, X7 X)) =l g

(7

When Pgs(a, p) reaches its minimum, Vy, [Lg(a, p)] = Oy, 41,
which is equivalent to (6) by defining ¢y = ¢/6. |

Lemma 4: Given 7,k,m; € N and a = (ag,a1,...,am,),

a necessary condition for Ng(a, p) to reach its minimum value

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION

is that the following equation holds for some ¢y € R:
[412(X) F(X)]s + 2 [2F(X3) (X)) (X Y],

s [Af(XP) (X)X F(XTH],

+wg [f2(X)fUX Y], +ws [2F (X2 F(X) fH(X)]

+ws [4f (X)X FA(XTH],,

+wg [8FHX) (XY, = o, Vi, 0 < i <my,

where wo = v+ Kk — 4, wg = 2(y — 2)(k — 2), and wy =

—a;

3 [(V=2(=3)+ (v =2)(k =)]+ (=2)(k=2) (v + K —
6)+ 4~ 2)(y = 3)(s ~ 2)(s ~ 3).
Proof: Consider the gradient of Lg(a,p) = Ng(a,p) +
c(1—=po—p1— "'—pm,)
VpLs(a,p)=Vp (Ns(a,p)+c(l —po —p1 — -+ = pm,))
=wi [Vp (F(X) (X)),
+ws [Vp (X)X (XX,
+ws [Vp (F(X°) (X)X,
+wa [vp (f4(X)f4()} — L, 11
=wi{[4f*(X) F(XTH(X 70, X7, X))
+wy [2f(X?) fA(X) (XN (X 2%, LX)
g [4f (X2 F(XT2) PEOF(XHX %, X))
+ w3 [f2(X) fHX (X0, X2, X))
+ w3 [2f(X?) F(X)fHX (X%, X4, X))
+ws [4F(X°) 20O XA, X0 X
+wa [8FHX) (XX, X4, X))
clm, 1 (®)
When Ps(a, p) reaches its minimum, Vy, [Lg(a, p)] = Oy, 41,
which is equivalent to (8) by defining ¢y = ¢/w. []

Based on Lemma 3 and Lemma 4, we adopt the
gradient-descent algorithm to obtain a locally optimal edge
distribution for SC codes with coupling pattern a, starting from
the uniform distribution inside P as presented in Algorithm 1.
Note that conv(-) and flip(-) refer to convolution and reverse
of vectors, respectively. The weight 1 of cycles-8 is a normal-
ized weight, while we let w to be the weight of cycles-6. Say if
cycles-8 and cycles-6 are of weights wg and wg, respectively,
then it is equivalent to the case where their weights are 1 and
w = we/ws, respectively. Typically, cycles of shorter lengths
are more problematic than cycles of larger lengths, thus we
always choose w > 1 in the optimization algorithm.

The total number of cycle-6 candidates in the base matrix
is 6(3) (%), thus the expected number of cycle-6 candidates
in the protograph is Ng(a,p) = w1 (6(3) (5) Ps(a, p)). Our
objective is to minimize the weighted sum wNg(a,p) +
Ne(ap) = wi (6(3) (AP N p) -

w (3 (y - 2)(r - 2)Ps(a,p) + - Ns(a,p)).
we let the following equation be the objective function of the
gradient-descent algorithm:

Therefore,

2?11)(7 —2)(k —2)Ps(a,p) + wile(aa p)
=2 (-2 (s-2) [FEOLE], + [PEOLE],

891

Algorithm 1 Gradient-Descent Distributor (GRADE) for
Cycle Optimization

Inputs and Parameters:

v, k, my, m, a: parameters of the SC code;

w: weight of each cycle-6 candidate assuming that of a
cycle-8 is 1;

€, a: accuracy and step size of gradient descent;

Outputs and Intermediate Variables:

6: q «— wiconv(f, £, f, £, f),
S a3

11:
12:

13:
14:

15:
16:

D W —

. 1
‘p(_mf,-i-l
:f[ao,...7

61,3,

t Uprev =

p: a locally optimal edge distribution over vals(a)

Upreuvs Ueur: the value of the objective function in (9) at the
previous and the current iterations;

g: the gradient of the objective function;

28 (y — 2)(k — 2), obtain {w;}i_, in Lemma 4;

: Uprev = 1; Veur = 1;

Li+1, 8 < Omyq1, £,F — Oy, 5,6 —
021415 -

am,] — p, £ — flip(f); //f, flip(f): the coeffi-
cients of f(X), f(X 1)

2m + 1] « f, fy « flip(fa); //f2, flip(fa): the
coefficients of f(X?), f(X~2)

/IThe coefficients of the product of polynomials can be
computed as the convolution of the coefficients of all the
polynomials. In MATLAB, a convolution is performed by
using the “conv(-)” command

/IWe classify each term in the characteristic polynomials
and their gradients by a degree pair (d;,d_), where d,
d_ refer to the degree of the positive component (product
of f’s and f5’s) and the negative component (product of
f’s and f5’s), respectively

//Compute and update the value of the objective function.
The sum of all terms with d being 3m, 2m, and 4m in
the objective function is represented by qi, qo, and qs,
respectively.

qo « conv(f, f, £, f);
— woconv (fy, fo, £, £, £, f) +
wsconv(fy, £, £, f, £, f) + wyconv(f, f, f, f f' f' f,f);
Veurs Vcur = q1 [3m] + Q2 [Qm] + Qa3 [4m],
//Compute and update the gradient of the objective func-
tion. The sum of all terms of degree pairs (3m, —2m),
(2m, —m), (4m,—3m), and (4m, —2m) in the gradient is
represented by g1, go, 83, and g4, respectively.

. g1 « 6wiconv(f, T, f, £ f), go « 4conv(f, f, f);
10:

g3 «— 4wgconv(f2,f‘2,f,f7 f) + 2w3conv(f2,f,f,f,f,f) +
dawsconv(fy, £, £, £, £, f) + 8wyconv(f, £, f, £ £, f, f);

g4 « 2woconv(fy, f, £, f,f) + wzconv(f, f, £, f, f, f);

g «— gi2m+al + g2[m+a] + g3[3m+al +
g4 [2m + 2a], g — g — mean(g);

if |Uprev — Veur| > € then

| p—p- amEs

‘ goto step 4;

return p;

+wy [f(X?)F(X) A(X) (X Y],
+ws [f(X?) (X)X, +wa [AX) XY,
©)

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

892

X2
X
) C1 Cc2
.
V4 N, v3 V4
-1
X Xi
() c3|l] [
p. X!
c3
V3 T v2 U3
- C4 C2
X!
X4
v1
v1 V2 U3 V4 V1 V2 v3 V4
=7 —
Xl Xi X5 X2 1
C1 C1
—1
c -1 c:
2 X1 Xl 2 X2 X)
X1 X
Cc3 c3 X;] X5
Cc4 —1 Cq
X5 X,
Fig. 3.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Xz
Cc1 Cc2
V4 E
-1
X3
Co c3]
X
C3
v3 (-
C4 c
—1
X3
U1
U1 v2 U3 Vg v1 v2 U3 V4
Cc1 C1
X1 | X3 Xa Xz;l X4 X4—1
Cc2 Cc2
— X4 x;!
c3 | Xa x5! c3 4
ca X! Xa cq
3 X;l X

The cycle basis of a typical (6,0) ((6,6))-AS in SC codes with v = 3 (y = 4) and their corresponding cycle candidates while pulled back to

the base matrix. The cycle basis has 4 fundamental cycles as shown in the top 4 panels; each cycle decides a cycle candidate in the base matrix and an
independent variable in the characteristic polynomial, as shown in the bottom panels.

IV. GENERALIZATION OF GRADE

We have explained the basic idea of GRADE in optimizing
the edge distribution of SC code ensembles with respect to
the expected number of cycles. Cycles have been studied
extensively in related literature (see e.g., [27], [28], [29]) due
to their simplicity and presence in problematic objects. How-
ever, cycles alone do not always account for typical decoding
failures; for example, isolated cycles are not as harmful as
concentrated cycles in codes with VN degree 4 since single
cycles on their own do not lead to decoding failures (as
captured by e.g., ASs [10]), rather concatenated cycles do.
An excessive focus on the removal of isolated cycles can lead
to remarkably fewer degrees of freedom for the removal of
dominant problematic objects. In this section, we therefore
extend the theory of GRADE to arbitrary subgraphs.

A. Probabilistic Metric

In this subsection, we generalize the results presented in
Section III-A to obtain closed-form representations of the
expected number of objects with arbitrary topologies. The key
idea is that the dependency among nodes within each object
can be fully described by a minimal set of fundamental cycles
(or basic cycles), which is referred to as the cycle basis of the
object (see Definition 4) [21], [30], [31].

Definition 4: (Cycle Basis) A cycle basis of an object is
a minimum-cardinality set of cycles using disjunctive unions'

IDisjunctive union of cycles refers to the subgraph consisting of all the
edges contained in an odd number of cycles along with their neighboring
vertices (VNs and CNs).

of which, each cycle in the object can be obtained; we call
the cycles in this set fundamental cycles.’

In the remainder of this paper, we define a prototype of
an object, for simplicity, as an assignment of the indices of
its variable nodes (VNs) and its check nodes (CNs) in the
base matrix. Prototype is a natural extension of pattern, i.e.,
a prototype of an object is exactly a pattern (discussed in [10])
when the object is a cycle. According to [21], we call a
prototype active if all the fundamental cycles satisfy the cycle
condition simultaneously, which means the detrimental object
will be created in the protograph after partitioning the base
matrix. The probability of a prototype becoming active under
a random partition is proved to be represented by the constant
term of a multi-variate polynomial, where each variable is
associated with a cycle in the cycle basis: we refer to this
polynomial as the characteristic polynomial of the object
associated with fixed prototype. The overall characteristic
polynomial of the object without specifying the prototype is
then obtained as an average over the characteristic polynomials
associated with all possible prototypes.

We start with a motivating example.

Example 3: Take the object (AS) with the node assignment
shown in the top panel of Fig. 3 as an example.® Consider the
cycle basis consisting of the 4 cycles highlighted in Fig. 3 and

2While it is always possible to find a cycle basis for an object, some
non-elementary configurations could possibly require different processing
in order to enumerate the number of and specify the fundamental cycles,
as explained in [21, Section VI]J.

3Note that we only keep nodes with intrinsic connections, i.e., we ignored
the degree 1 CNs as they are not involved in any cycles and thus do not affect
the probability of a prototype becoming active.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 893

vy v U3 Uy
XX XX
€1 I I
1 1
XaX3'! XaX7' X0 X3! ;{_,
co E' X4_1X3 | IX] 1
;l ||
-
RN 1JX1 pIx?
AT L) L
“ XqX XX x|
. ::___. - X,
. | ibsdos o
Xax; X3 XaX!

Fig. 4. The matrix representation of the characteristic polynomial of the AS in Fig. 3. The monomial in each entry corresponds to a factor in the characteristic

polynomial in (10).

their associated variables X;, 1 <7 < 4. We refer to the cycle
associated with X;, 1 <+ < 4, as cycle ¢. In the bottom panel
of Fig. 3, the labels X; and X~ ! are placed alternately on the
cycle candidate corresponding to cycle ¢ in the base matrix.

We next briefly and intuitively explain how the characteristic
polynomial of the object is specified as follows:

h(X) =f(X; ' XEXT D F(XXo X5 1) f(X1 X5 Xy)

FIXT X3 X0) F(X0 X5) F(X T XR) £2 (X1 X)
FOXHF(X XD (X X F(XY)
(

F(X2) f(X5h), (10)

where f(-) is the coupling polynomial of a cycle as specified
in Definition 3.

As shown in Fig. 4, we place the labels on all the cycle
candidates (see Fig. 3) altogether in the base matrix. Then,
each entry of the matrix becomes associated with the product
of all the labels contained in it. Take the entry at the inter-
section of row c3 and column vy as an example. This entry is
labeled with X, X3 1, X, on the cycle candidates for cycles
1, 3, and 4, respectively. Therefore, the entry is associated
with X X5 1X4. Each product is the monomial corresponding
to the matrix entry. The characteristic polynomial in (10) is
exactly the product of all the factors obtained by replacing
the variable in the coupling polynomial by the monomials
corresponding to each entry.

In a way similar to the process described in the proof of The-
orem 1, expanding the right-hand side (RHS) of (10) results
in terms of the form ¢; X' X532 X ¥ X ¥ for each, where ¢; is
the probability of a unique assignment to edges, i.e., matrix
entries, on the prototype of the AS such that the alternating
sum of entries on cycle ¢ associated with X; in the cycle basis
is k;, 1 < i < 4. Therefore, the constant term is exactly the
sum of the probabilities of all possible assignments (of the
partitioning matrix) such that the cycle candidates of all the
fundamental cycles satisfy their cycle conditions (all k;’s are
zeros). In other words, the constant term is exactly the prob-
ability of the prototype becoming active in the Tanner graph.

In Example 3, we have briefly introduced the idea of how
we define the characteristic polynomial of an object associated
with a fixed prototype. However, as shown in the case of

cycle-8 candidates, an object is typically associated with
multiple prototypes (referred to as cycle candidates when the
object is a cycle). We next present an efficient method to obtain
the expected number of all possible prototypes corresponding
to an object.

The major idea is described as follows. Each prototype of
an object leads to an equivalence relation on the CNs and
VNs of the object, in which nodes with identical indices are
regarded as being equivalent. The set consisting of all the
prototypes describing the same equivalence relation is referred
to as a prototype class. The characteristic polynomials of the
prototypes belonging to the same prototype class are identical,
and the cardinality of each prototype class is determined
by their associated equivalence relation. Therefore, the key
steps to obtain the characteristic polynomial of an object are:
1) to enumerate all the possible prototype classes of (or non-
isomorphic equivalence relations on) a given object, and then
2) to obtain their associated characteristic polynomials and
cardinalities.

For example, consider the prototype class described by the
graph in the left panel of Fig. 5. Throughout this paper, we use
[n] to represent the set {1,2,...,n} for any n € N. Any
assignment of c¢1,co,c3,¢4 € [v] and v1,v9,v3,v4 € K]
such that ¢y, c2, c3, ¢4 are mutually different, vy, ve, vs, v4 are
also mutually different belongs to a unique prototype in
the prototype class described by the graph. Note that the
uniqueness follows from the fact that the automorphism
group of the prototype class has only the identity element,
thus the cardinality of this prototype class is 4!(7)4!(’f). The
automorphism group of a prototype is defined later in Def-
inition 6; however, the aforementioned cardinality intuitively
implies that each row/column permutation results in a unique
prototype. We then move on to obtain the characteristic poly-
nomial directly through the prototype class. The equivalence
relation on CNs and VNs induces an equivalence relation
on edges, in which edges with VNs and CNs all from the
same equivalence class are referred to as being equivalent.
As shown in Fig. 5, edges from the same equivalence class
are highlighted by identical markers.

Note that each equivalence class on edges corresponds to
a unique entry in the base matrix. Recall that each entry
is associated with the product of all labels contained in it,

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

894 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

1

Fig. 5.

The graph representation of the characteristic polynomial of the AS in Fig. 3. Edges in the same equivalence class are labeled with identical marks.

The product of monomials at all the edges belonging to each equivalence class corresponds to a factor in the characteristic polynomial in (10).

which corresponds to a separate factor in the characteristic
polynomial. In a similar way, if we represent each equivalence
class by the product of all labels on all edges contained
in it, the resultant product will be exactly the monomial
associated with the entry corresponding to this equivalence
class. Therefore, each factor of the characteristic polynomial
in (10) is associated with an equivalence class on edges. For
example, in Fig. 5, the two edges highlighted by red triangles
belong to the same equivalence class and are labeled with
X and Xo X5 ! respectively; and they altogether correspond
to the factor f(X;X>X; ") in the characteristic polynomial.

In the remaining text, we represent the equivalence relation
by ~.

Definition 5 (Prototype Class): Let v,k € N. Consider an
object represented by the bipartite graph G(V,C, E), where
V and C denote the set of VNs and CNs, respectively. The
set E is the set of all edges, where each edge is represented
by e; ;, for some i € V, j € C, connecting nodes ¢ and j. Let
V), C represent equivalence classes on V' and C, respectively.
A prototype is an assignment P = (f, g), where f : V — [x],
g : C — [v] such that:

1) Foranyc e Candvi,vp € V suchthat ey, ¢, €y, € F,

f(v1) # f(v2);

2) Foranyv € V and ¢1,cp € C such thate, ,, ey, € E,

g(c1) # g(ca).

The set consisting of all the prototypes P = (f,g) that
satisfy the following conditions is referred to as the prototype
class associated with (V,C), denoted by P(V,C):

1) For any vi,ve € V, f(v1) = f(va) iff. v1 ~ vg in V

(same column in the matrix);
2) For any c1,co € C, g(c1) = g(co) iff. ¢4 ~ ¢co in C
(same row in the matrix).

Denote the equivalence class induced by the relation:
€u1,e1 ™ Cus,eo I U1 ~ Vg and ¢1 ~ ¢, for all v1,vo € V and
c1,c2 € C, by E(V,C), which is referred to as the equivalence
class induced by V and C.

Lemma 5: (Characteristic Polynomial of Prototypes)
Consider the bipartite graph G(V, C, E) of an object and the
prototype class P(V,C). Suppose £(V,C) is the equivalence
class on edges induced by V and C.

Let S denote the cycle basis of G. Define o
E x S — {-1,0,1} as follows: for any s € S, s =
(v1,¢1,02,€2,...,0g,¢q), and € € E, §o s = 1 if € = ey, ¢,
for some i € [g], de.s = —1 if € = ey, , for some i € [g],
otherwise 6. s = 0.

Define h(X;G|V,C) as a polynomial of G associated with
P(V,C) and given by:

MX;Gv,0)=]
ecE(v,C
Then, the constant term of h(X;G|V,C) is the probability
that a prototype belonging to the class P(V,C) is active in
the Tanner graph after partitioning.

)f <H H X5> .

eceses

Proof: For simplicity, we write £ instead of £(V,C) in
the proof. Any assignment on the set of edges E can be
represented by x € (x1,22,...,2g) € vals(a)lZl (vals(a)
is defined in Theorem 1 as the set {ag,az,...,am,}), where
z. denotes the assignment on edge e for any e € E. Consider
that all the edges belonging to the same equivalence class
in £ correspond to the same entry in the base matrix (and
the partitioning matrix); these edges need to be assigned with
an identical number in the partitioning matrix. Therefore, the
assignment on the set of edges is essentially an assignment on
the equivalence classes. Let i € {0,1,...,m;}/¢| denote an
assignment on the equivalence classes £, where each element
of i is represented by iz for some € € &; all the edges in the
equivalence class e are assigned with a;_ in the partitioning
matrix, for any € € .

We know that

hX; GV, C)

I/ (T

ect ecesesS

3 11 [pie 111 Xge,ﬁaw]

i€{0,1,...,m; }I€l €& ecesesS

2 <H pie> TTTT I

ie{0,1,...,m }I€l \e€& ecfecescsS

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 895

&

Cc2

c3

Cq

Fig. 6.

ie{0,1,...,m¢ }I€l \e€& ses

-y <Hm> I X,

ic{0,1,...,m}I€l \e€& seS

where [5(1) = D ce @i Doecees = Docesece Oesiz 18
exactly the alternating sum of the assignment i on cycle s.

Denote by Z(G) the set of assignments of the prototype in
the partitioning matrix such that this prototype becomes active
in the Tanner graph of the code after partitioning. Then,

(X5 GV, C)ly

= D [

i€{0,1,...,m}I€l:l5(1)=0,VseS €&

- F

i€{0,1,...,m } €l (i)=0,VseS

12)

Plze =a;.,Ve € & e <€ g

=PZ(G)], (13)
which indicates that the constant term of h(X; G|V, C) is the
probability we are seeking. [|

In fact, the coefficients of other terms of h(X;G|V,C)
also specify the probabilities of partitioning assignments other
than Z(G). Consequently, h(X; G|V, C) in (11) represents the
characteristic polynomial of G associated with P(V,C).

While elementary objects (absorbing sets in particular)
dominate the error floor of binary LDPC codes and NB-LDPC
codes over the AWGN channel, non-elementary objects are
observed to notably contribute to the error floor of NB-LDPC
codes over non-canonical channels, e.g., practical magnetic
recording and Flash channels [22], [23], [32].

Remark 2: [Non-Elementary Objects] Note that Lemma 5
extends beyond elementary objects. Fig. 6 shows a proto-
type of a non-elementary object. This prototype can still
be described by a set of 3 elementary cycles, as shown in
Fig. 6 via colors. According to Lemma 5, the characteristic
polynomial of the prototype is:

hX;GV,C)
= (X1 X3) (X f(Xs X f(X01 X3) f(X ' X)
PO XD FX)FXT (X)) F(X3) f(Xs) F(X57)
(14)

A matrix representation (left panel) of the characteristic polynomial of the AS (right panel) in Remark 2.

In combination with the WCM framework proposed in [23]
that optimizes the edge weights of NB-LDPC codes on fixed
unweighted graphs, our method can open a door to system-
atically optimizing NB-SC codes with high memories, which
have potential to be adopted in storage systems among other
applications.

After obtaining the characteristic polynomial of any object
associated with a fixed prototype class, we proceed to obtain
the expectation of the number of active prototypes over all
prototype classes. The essential step here is to calculate the
cardinality of each prototype class. A natural property here
is that each prototype from a specific class corresponds to
assigning non-repeated elements with order from [x]| and [7]
to the equivalence classes in V' and C, respectively. However,
specific permutations of values assigned to the nodes can
lead to some other assignments that are isomorphic to each
other because of the intrinsic symmetry of the prototypes. For
example, in Fig. 7(a), the assignment that exchanges values
v1 and vy while keeping values on remaining VNs as they are
is equivalent to the original assignment. We call this exchange
operation an automorphism over G under P(V, C) and denote
it by (v1v2). The automorphisms over G under each prototype
class form a group, which is defined in Definition 6.

Definition 6 (Automorphism Group of an Object Under
a Prototype Class): For any object represented by a bipar-
tite graph G(V,C, E), let P(V,C) be a prototype class of
G. An automorphism over G under P(V,C) is a pair of
bijections (my,m¢) written as mywe, where my @ V. — V
and m¢ : C — C' are bijections such that

1) YweV,ceC, €y,c € FE iff. Cry(v),mo(c) € FE;
2) Vi, vg €V, vy ~ vg iff. my(v1) ~ 7wy (v2);
3) Vey,eo € C, g ~ eq iff. me(er) ~ me(ez).

The set containing all automorphisms over G under P(V,C)
is closed under permutation compositions, and is referred to
as the automorphism group of G under P(V,C).

Remark 3: From Definition 6, we know that any automor-
phism over G under P(V,C) is a graph isomorphism that
preserves the equivalence relation specified by (V,C), i.e.,
{mv(0),Yo € V} =V, {nc(¢),Vé € C} = C. Therefore,

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

896 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

2 2

(a) Prototype class 1. (b) Prototype class 2.

Fig. 7.

each automorphism can be simply represented as a pair of
permutations over)V and C.

Lemma 6: Given the bipartite graph G(V,C,E) of an
object, let B(G) denote the set consisting of all prototype
classes of G. Define the characteristic polynomial h(X; Q)
of object G as follows:

o vier [«
hGG)= 3 |Aut<G|vvc>|<|V|> <|C|> (K GIY.C),

P(V,C)eB(Q)
15)

where Aut(G|V,C) denotes the automorphism group of the
bipartite graph G under prototype class P(V,C). Then,
[h(X; Q)] is exactly the expected number of active prototypes
of object G.

Proof: There are |V|'|C|'(M) (\CI) assignments on indices
of nodes in GG in the base matrix that satisfy the equivalence
relation specified by (V,C). Among these assignments, each
one has been counted exactly |Aut(G|V,C)| times. Therefore,
the cardinality of the prototype class P(V,C) is exactly
metvon (v) (4)-

[Au(GIV,O)[\[V])\[C]

For any prototype P of G, define a Bernoulli random vari-
able Xp, where P[Xp = 1] = P[P is active], P[Xp = 0] =
P[P is not active]. Let X =), Xp denote the summation
of Xp over all possible prototypes of GG. Then,

=2 B=)) B

P(V,C)EB(G) PEP(V,C)

- Y Y pe-y
P(V,C)EB(G) PEP(V.C)
= > > XG0,

P(V,C)EB(G) PEP(V,C)

- Ve (mY (o |
= > |Aut(G|V7C)|<|V|><|C|>[h(X,GW,C)]O

PV,C)eB(G)
=[h(X;G)], - (16)

Thus, the lemma is proved. [|

Example 4: Suppose v € {3,4}. Take the graph G of two
concatenated cycles-6 as an example; there are 4 different
possible prototype classes (V;,C;), 1 < i < 4, as shown
in Fig. 7. The automorphism groups corresponding to the
4 prototype classes, denote by Aut(G|V;,C;), 1 < i < 4,

2

(c) Prototype class 3.

(d) Prototype class 4.

The 4 prototype classes of 2 concatenated cycles-6 and their corresponding topologies.

respectively, are:

Aut(GPV1,Cq) = {e,
Aut(G| Vs, C2) = {e,
Aut(G|Vs,C3) = {e,
Aut(G|Vy,Cy) = {e,

v1v2), (c2c3), (v1v2)(c1es)},
U1U2) (6263)7 (U3U4) (0203)7 (U1U2) (U3U4)}7
U1U2)(CQC4)}7

v102)(v304)(C2¢4) },

~ o~~~

a7)

where the element e in these groups is the identity element
(no permutations). Therefore, the cardinality of the automor-
phism groups corresponding to the 4 prototype classes are
|Aut(GV1,Cy)| = (GV2,Co)| = (G|Vs,C3)| =
2, and |Aut(G|V4,Cy)| = 2, respectively. Moreover, the char-
acteristic polynomials for G corresponding to each prototype
class are:

h(X;GlVl,Cl) f

(X1 Xo) F(X X5) (XX,)
FXTIX0)f (Xl)f(Xfl)f(Xz)f(Xz_l),
h(X; G|Vs, Cs) =f (X1 Xa) f(X, ' X5 1)
FXy 1X2)f2(Xl)f(Xfl)f(Xz)fz(Xer),
h(X; G[Vy,Cy) = f(X1 X2) f(X7 ' X5)
P AX) XD a8
According to Lemma 6, when v = 3, the characteristic
polynomial h(X; G) is derived in (19), shown at the bottom
of the next page.

When v = 4, the characteristic polynomial h(X;G) is
derived in (20), shown at the bottom of the next page.

h(X; G|V, Co) =

Remark 4: Observe that in Example 4, the number of
assignments such that all edges are distinct dominates
among all the cases, especially when x is large enough;
we refer to such dominant assignments as the typical
assignments. Therefore, it is normally sufficiently
accurate to optimize over the characteristic polynomial
corresponding to the typical assignments only. Specifically,
for 2 concatenated cycles of length 2¢ and 2j, suppose the
number of edges in common is 2k. Then, the gharacteristic
polynomial can be well approximated by h(X;G) =
CfF (X0 Xa) fE (X Xy) (X0 f R (X)) 7 (X)
fi7#(X5 ") for some constant C' € N.

B. Gradient-Descent Distributor

Theorem 3: Given the bipartite graph G(V,C,E) of an
object and the prototype class P(V,C). Suppose E(V,C) is
the equivalence class induced by V and C. Let (v); be the ¢-th

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 897

entry of the vector v. Following the notation in Lemma 5,
the gradient of [h(X; G|V, C)], with respect to p is given by:

(vp [h(X; G|V, C)]O)t

emes ()

ect sesS e'eg\{e} ece’ seS 0

21

Proof: We obtain the gradient with respect to p as follows:
(Vph(X; G|V, C)),

S (wor(Ime)) 10 s(e)

eee eceses p e’cE\{e} \ece seS
-3 (v (T)) T s (T
ec& s€Sece ¢ e’eE\{e} \ece scS
()] 1 ()
ece seSs t eeg\{e} ece’ s€S
=>"1] X O Deee e II ¢ (H 11 X;Sw) : (22)
ecE ses e'cE\{e} \ece' seS
Therefore,

(Vo [h(X: G|V, C)]p), = [(Vph(X; GV, C)),],

_ Z HthZeeé‘sﬂwS H f (H HX§>

ect ses e'eE\{e} ece’ seS 0

(23)

Provided the explicit expression of h(X;(G) and its gra-
dient, one can easily apply the gradient-descent algorithm to
obtain an edge distribution that locally minimizes the expected

I 1
e T
I Il
L= |

Fig. 8. The targeted object consisting of two concatenated cycle-8 in
Example 5 and Example 6.

number of active prototypes of the object specified by G.
In Example 5 and Example 6, we apply GRADE to two
concatenated cycles-8 as shown in Fig. 8, under any prototype
class P(V,C) such that V and C induce no equivalent edges in
E. Denote by Ps_g(a, p|V,C) the probability that a prototype
of this object becomes active after partitioning in an SC
ensemble with coupling pattern a and edge distribution p.

Example 5: Consider the following three cases of SC
ensembles with m = 6:

1) Full-memory codes with uniform edge distribution:
m; =m = 6,a=(0,1,...,6) and p = %17. Then,
Pg_g(a,p|V,C) = 00049,

2) Full-memory codes with distribution obtained from
GRADE: m; = m = 6, a = (0,1,...,6) and
p = (0.2991,0.0899,0.0749,0.0733,0.0749, 0.0896,
0.2984). Then, Ps_g(a,p|V,C) = 0.0032;

3) Non-full-memory codes with distribution obtained
from GRADE: m; = 3, a = (0,1,4,6)
and p = (0.2604,0.2063,0.2219,0.3114). Then,
Ps_g(a,p|V,C) = 0.0035.

Example 6: Consider the following three cases of SC
ensembles with m = 9:
1) Full-memory codes with uniform edge distribution:
mi=m=9,a=(0,1,...,9) and p = 1—10110. Then,
Pg_g(a, p|V, C) = 00024,

4(k — (v —-3)

T 2(k — 1)

+ ﬁf(Xle)f(Xf1X2‘1)f(X1X{1)f(Xf1X2)f(Xl)f(Xfl)f(Xz)f(erl)>~

P (0X0) FXT Xy) PG) F (X X0) f(X) F(XT) F(X2) (X)
(G Xo) F(X X) P2 (X0) FA(X) £ () F2(X5)

, (f(X1X2>f(Xf1X;1>f2(X1>f2<Xf1>f2<X2>f2(X;1>

19)

Kl
* <4(/@ DI —3) 2=y =)

o (f(X1X2>f(X11X21>f2(X1>f2(X

(k—4)!
2

(X X0) f(X X) F(X X) F(X0) F(X0) F(XT) F(X2) (X5)
1 (X0X0) FXTT X5) F(XT 1 X0) PA(X0) F(XT DS (X) (X5
!> FOX2) f(XT X) P (X) (XD (X) (X5)

(X)X

o F(X0 X0) F(XT X) f(XT X)) f2(X) F(XT) f(Xa) (X5

3(k—3)
1

; —f<X1X2>f(X;1X;1>f<X1X;1>f<X;1X2>f<X1>f<Xf1>f<X2>f<X;1>).

3(k—3)

(20)

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

898 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

2) Full-memory codes with distribution obtained from
GRADE: my = m = 9,a = (0,1,...,9) and p =
(0.2648,0.0803, 0.0509, 0.0526, 0.0519, 0.0519, 0.0525,
0.0508,0.0801,0.2644). Then, Ps_g(a,p|V,C) =
0.0015;

3) Non-full-memory codes with distribution obtained
from GRADE: m; = 4, a = (0,1,4,7,9) and
p = (0.2479,0.1799,0.1262,0.1645,0.2814). Then,
Ps_g(a,p|V,C) = 0.0016.

Remark 5: In contrast to what we have shown regarding
applying GRADE to single cycles, the gains obtained from
applying GRADE to concatenated cycles are much more
evident. As shown in Example 5 and Example 6, for m =
6 and m = 9, the local minima obtained for full memory codes
are quite close to the gains obtained for codes with coupling
patterns (0, 1,4,6) and (0,1,4,7,9), respectively (referred to
as topologically-coupled (TC) codes later on).

Note that some probabilities can approach 0 directly in
the GRADE algorithm without a brute-force search on all
possible coupling patterns if the objective function is modified
by adding a regularization term with some finely tuned J € R,
(>0, n € N* as follows:

ho(X;G) = [A(X; G)]g + 4 (1 + tanh(np;)).

=0

(24)

The corresponding gradient changes as follows:

Vpho(X; G) =V [(X; G
+ nf3 (sech?(npo), sech?(npy), . . ., sech® (npyy,)).
(25)

The term 81", (1 + tanh(np;)) is a differentiable approx-
imation of the truncated gradient proposed in [33], and is
adopted as a regularization term to help constrain the number
of entries that are bounded away from zero.

We show next in Section V and Section VI that TC codes
have close performance to GD codes with full-memories,
where both are obtained from applying GRADE-AO followed
by CPO to concatenated cycles.

Remark 6: Note that although we focus on non-tail-
biting SC codes throughout this paper, this condition is
by no means necessary. To extend our method to tail-
biting codes, one just needs to change the cycle condi-
tion in (1) from “Y7_ P(ig, jx) = Y 5_q Plig, jrt1)” to
S Plin,jr) =39 Plik, jk+1) mod L, as presented
in [20]. If L > m + 1, which is the typical case, the resultant
optimal distribution is still very likely to be nonuniform
because of the asymmetry among components indexed by
{0,1,...,m}. This fact is important since while constructing
non-tail-biting codes with large x and m, a large L is typically
desired due to the notable rate loss resulting from a small L.
However, in certain practical applications, codes are typically
of moderate length, which implies that a moderate L is
desirable. In such situations where « and m are large, tail-
biting codes do not suffer the same rate loss, and they can
offer high error floor performance despite limiting the gain
obtained from threshold saturation.

V. ALGORITHMIC OPTIMIZATION

We have developed the theory and the algorithm to obtain
edge distributions that locally minimize the number of short
cycles in Section III-B and generalized the results from cycles
to more sophisticated objects in Section IV-B. In this section,
we investigate algorithmic optimizers (AO) that search for
excellent partitioning matrices under the guidance of GRADE.
In particular, the edge distribution p,,; obtained through
GRADE confines the search space to only contain matrices
that have edge distributions near po;.

We discuss both heuristic AOs based on semi-greedy algo-
rithms and globally-optimal AOs based on variations of the
OO technique proposed in [9] and [10]. The heuristic AOs
require low computational complexity and are applicable to
a rich set of objects and any code parameters, but are only
locally optimal. The OO-based AOs obtain the globally-
optimal solutions, but currently only work on short cycles in
SC codes with small pseudo-memories; we refer to these codes
as topologically-coupled (TC) codes. The reason behind
the nomenclature “TC codes” is the topological degrees of
freedom they offer the code designer via the selection of the
non-zero component matrices.

A. Heuristic AO

In this subsection, we consider AOs that are based on heuris-
tic methods. In this case, our proposed GRADE algorithm
obtains an edge distribution to guide the AO. Starting from
a random partitioning matrix P with the derived distribution,
one can perform a semi-greedy algorithm that searches for
partitioning matrix near the initial P that locally minimizes
the number of targeted objects. Constraining the search space
to contain P’s that have distributions within small .1 and L,
distances from that of the original P, and adopting the CPO
next, significantly reduces the computational complexity to
find a strong high-memory code. GRADE-guided heuristic AO
has advantages in two aspects: 1) low complexity by reduced
search space, and 2) higher probability of arriving at superior
solution by providing a good enough initialization to AO that
can avoid undesirable local minima.

1) Cycle-Based Optimization: Based on the GRADE spec-
ified in Algorithm 1, we first present in Algorithm 2 a
corresponding AO that focuses on minimizing the weighted
sum of the number of cycles-6 and cycles-8. We refer to
codes obtained from GRADE-AO as gradient-descent (GD)
codes. By replacing the initial distribution p with the uniform
distribution, we obtain the so-called uniform (UNF) codes.
In the special cases where the SC codes are not of full
memory, i.e., the pseudo-memory is not identical with the
memory, we refer to the codes obtained from GRADE-AO
as topologically-coupled (TC) codes. We show in Section VI
by simulation that the distribution obtained by GRADE results
in constructions that are better than those adopting uniform
distribution and in existing literature.

2) Finer-Grained Optimization: We next develop a
finer-grained optimizer in Algorithm 3, in which the targeted
objects are two concatenated cycles where each of them
is a cycle-6 or a cycle-8, as discussed in the examples of
Section IV-B. The critical part of the algorithm is enumerating

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 899

Algorithm 2 Cycle-Based GRADE-A Optimizer (AO)

Inputs and Parameters:
v, k, m, m¢, a: parameters of an SC ensemble;
p: edge distribution obtained from Algorithm 1;
w: weight of each cycle-6 assuming that of a cycle-8 is 1;
di, d2: parameters indicating the size of the search space;
Outputs and Intermediate Variables:
P: a locally optimal partitioning matrix;
1: Obtain the lists L¢ (1, 7). Ls(4, j) of cycles-6 candidates and cycle-
8 candidates in the base matrix that contain node (z,7), 1 <7 <,
1<) <k

2: Obtain u = arg Milye (0.1, x}m+1, x|y =vr ||W%€x —pll2:
3: for i € {0,1,...,m} do

4 | Place u[i 4 1] i’s into P randomly;

5. d «— Ot

6: noptimal < False;

7:for i € {1,2,...,7v}, j€{1,2,...,k} do

8: ne «— |£6(’L,])|, ng «— |[,8(’L,j)|, n «— wneg + Ns;

9: | for v e {0,1,...,m} do

10: d=d,dv+1]—d[v+1]+1,p—P(i,j5);
11: if ||d’|]1 < di and ||d||cc < d2 then

12: P(i,5) «— v;

13: tg — |[,6(’L,])|, tg «— |£s(l,])|, t «— wtg + ts;
14: if t < n then

15: | noptimal < True, n«t, d «d’, P(i,j) < v;

16: if noptimal then
17: | goto step 6;

—
oo

: return P;

all the objects of interest efficiently. Since we focus on con-
catenated cycles of length 6 or 8, the key idea is to characterize
concatenated cycles by the positions of the two degree 3 VNs
and the three paths connecting them. Here, we only consider
objects that are elementary ASs. We call a path P = vq-c;-
vg-++ - -C;-vp41 a type-l path connecting (c1,v1) and (¢, vi41)
and denote it by L(P) = [. Paths of type-1, type-2, and type-
3 are shown in Fig. 9. Each concatenation of two cycles can be
referred to as an ¢-j-k object, where i, j, k are the types of the
three paths connecting the degree 3 nodes in this object. Our
targeted objects, where each of the two cycles is either a cycle-
6 or a cycle-8, can only be 2-1-2, 2-1-3, 2-2-2, or 3-1-3 objects.
Steps 1-5 in Algorithm 3 are aimed at listing the paths of
type 1-3, and all the possible combinations of indices of the
beginning and the ending CNs on each path.

Algorithm 3 Fine-Grained GRADE-A Optimizer (AO)

Inputs and Parameters:
v, k, m, my, a: parameters of an SC code with full memory;
p: edge distribution obtained from Algorithm 1;
w = (w1, wa, ws,wy): the weights of 2-1-2, 2-1-3, 2-2-2,
3-1-3 objects, respectively.
d1, do: parameters indicating the size of the search space;
QOutputs and Intermediate Variables:
P: a locally optimal partitioning matrix;

1: Obtain the lists £1(i,j1,j2), ﬁg(il,ig,jl,jg), and
L3(i3,14,91,72), 1 < j1 < jo <k, 1 <i,i1,12,13,04 < 7,
i1 # ia, where the lists are specified as follows:

a) L£1(i,71,J2): all type-1 paths connecting (7,j1) and
(i, j2) in the base matrix;
b) Lo(i1, 42, J1, j2): all type-2 paths connecting (i1, 71) and

¢) L3(i3,14, j1, j2): all type-3 paths connecting (i3, j1) and
(44, j2) in the base matrix;

2: Obtain the sets Zo19, Zo13, L2292, and Z313 as follows:
a) 2212 — {(i7i17i2ai3;i4) o1 < i7i1a12a137i4 < 7;211 <
03,11 7 Q2,13 7 14};
b) Zoig — {(4,01,12,13,%4) : 1 < i,41,12,13,14 < 7,41 #
ia};
¢) Zogo — {(i1,92,13,14,15,06) : 1 < i1,12,13,%4, 15,16 <
’y,il <ig < i5,i1 7é 2'2,2'3 # i4,i5 7é 2'6};
d) 1-313 — {(1;11;1272.3;214) 01 < i7i17i2a13ai4 < %il <
i3};

3: Obtain u =

: 1
argmilxe(o,1,2,....yx}m+1,||x|li=yx || 55X —
P||2;

4: for i € {0,1,...,m} do

5 ‘ Place u [z + 1] ¢’s into P randomly;

6:d «— Om-i-l;

7: n < M; //M is some very large constant

8: noptimal «— False;

9: for i € {1,2,...,v},7€4{1,2,...,k} do

10: | for v e {0,1,...,m} do

11: d=d dv+l]—dw+1]+1,p—P3j);
12: if ||d’|]1 < d1 and ||d'||sc < d2 then

13: ‘ P(i,j) « v;

//Compute the number v;; of Type-t paths with alternating
sum [in matrix P, where 1 <t <3

||| for 1< i < o < ki 1 < iy, iy isyia < 7,
il 7é ig do
5o || || viitodige) — HPIS(P;P) = 1P €
Ly (io, j1,j2)}, —m <1 <m;
16 | | || vaulin,in i, jo) — {PIS(PiP) = I,P €
ﬁg(il,ig,jl,jg)}l, —-2m S l S 2m;
7| vsilis, ia, j1,j2) — {PIS(P;P) = I,P €
L3(i3, 14,1, J2) H, —m <1 <my
//Compute the number ¢;;;, of prototypes that result in ¢-j-%
objects in the protograph
18: ‘ ‘ £212 < D12y <o <on Doy sizsis in) oz
> m<i<m V1,1 (60:01,02)v2,1 (i1, 92,51,52) V2,1 (43, 44, J1, J2);
19: ‘ ‘ t213 < El§j1<j2§f€ Z(i07i1,i2,i37i4)61213
> m<i<m V1L (G0:01,02)v2,0 (01, 2, 1, J2)v3,0(43,04,01, J2)3
20: ‘ ‘ ta22 — Zl§j1<j2ﬁf€ Z(h,i27i37i4,i5,is)61222
> om<i<am2,101,02,51,72)02,1 (3,14,51,52)v2,1G5,86,51,52);
21: ‘ ‘ ta1z El§j1<j2§f€ Z(i07i1,i2,i37i4)61313
Cm<i<m V1,1(H0, 315 52)vs,1 (i1, 82,1,52)v3,1(i3,4,01, J2);
22: t «— wito12 + walo13 + walaoo + watsis;
23: if ¢ < n then
24: noptimal «— True, n <« t;
25: d—d, P(ij) « v

26: if noptimal then
27: ‘ goto step §;

28: return P;

Based on the aforementioned notations, a prototype of an
i-7-k object consists of three paths of type-¢,j,k, where all
paths connect two entries with column indices ji,j2, 1 <
J1 < j2 < k. Denote by Z;;; the set containing all possible

(72, futhdRzdBRched &N to: The University of Arizona. Downloaded GHUIN2B2GENS .39 Undidom HEMR S PREBERRNaEPy. in i-j-F

900 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

oJ2 71 J2 J1 J2 g2

12 i3 J_‘ i3
J2

iq 2 iy

i3 i3 I: | i3

2 (21 14

Fig. 9. Type 1-3 paths mentioned in Algorithm 3: L1 (%, j1, j2) (bottom left
panel), L2 (1,12, 71, j2) (top left panel), and L3 (i3, 14, j1, j2) (the rightmost
6 panels), 1 < j1 < j2 < K, 1 < d,41,42,13,74 < 7, 41 # 2. A type-k
(1 < k < 3) path is a length 27 path in the base matrix that traverses between
entries from two different columns, which depicts all possible assignments on
the non-overlapping part of each cycle in the prototype of a concatenated-cycle
pair connecting cycles of lengths 6 or 8.

object. The only constraint is that endpoints belonging to the
same column are pairwise different. Take j = 2 as an example,
only 2-2-2 objects are under our discussion. The set Zsoo
has parameters (i1, 42,3, 14, i5, i), where entries (i2;—1,71),
(i2t,72), 1 < t < 3, are the endpoints of the three paths
comprising the object. Fig. 9 indicates that io;—1 # o,
1 S t S 3. Therefore, 1222 = {(il,i27i37i4,i5,i6) o1 S
i1,12,13,14, 15,96 < ¥,101 < i3 < i5,1i1 # 42,193 7 i4,%5 7
ig}. Other cases are specified in Step 2 in Algorithm 3.*

The other major step in Algorithm 3 is to count the total
number t;;;, of prototypes that result in i-j-k objects in the
protograph. Given a partitioning matrix P, denote by S(P;P)
the alternating sum of the entries along the path P. Then,
we are able to count the number of Type-t paths, 1 <t < 3,
with alternating sum [, which is denoted by v;; in Steps 14-
17 in Algorithm 3. Therefore, ;5 is the sum of v; ;v v
over all possible combinations of [, row indices from Z;;p,
and column indices 1 < j; < jo < K, as shown in Steps
18-21 in Algorithm 3.

Remark 7: Note that in the finer-grained optimization, the
condition of a concatenated-cycle pair in the protograph
becoming a pair of concatenated cycles in the Tanner graph
after lifting is that the two cycle candidates contained in this
prototype all satisfy the cycle condition on lifting parame-
ters specified in Lemma 1. Therefore, after applying AO to
minimize the number of concatenated-cycle pairs, instead of
using the original CPO designed for cycle optimization in [9],
we adopt a modified version that is tailored for optimization
over the number of pairs of concatenated cycles accordingly.

In a way similar to what we have done with approaches
eliminating cycles, we define GD codes, UNF codes, and
TC codes here. Moreover, as shown in Section IV-B, the
expected number of concatenated-cycle pairs in GD codes
(with full memories) is close to that of GD-TC codes with
carefully chosen pseudo-memories and coupling patterns.” In
particular, memory 6 GD ensembles can be approximated by

#Note that here we ignored the case where j1 = jo for 2-2-2 objects, which
does not happen when j = 1, and it leads to 3 pairwise concatenated cycle-
4 candidates. Objects resulting from these prototypes will be removed in the
CPO stage by removing cycles-4 when the circulant size is odd.

SWe refer to the prototype of a pair of concatenated cycles as a concatenated-
cycle pair.

GD-TC ensembles with pseudo-memory 3 and coupling pat-
tern (0,1, 4, 6); memory 9 GD ensembles can be approximated
by GD-TC ensembles with pseudo-memory 4 and coupling
pattern (0,1,4,7,9). This leads to the conjecture that the
performance of GD-TC codes and the performance of GD
codes are quite close, which is somewhat surprising provided
that they differ a lot in edge distribution, and the impact of
concatenated cycles on waterfall performance is not strictly
characterized. In Section VI-B, Monte-Carlo simulations sup-
port our conjecture, which enables more possibilities in TC
codes. For example, TC codes can be globally-optimized given
that their pseudo-memories are low; details will be discussed
later on in Section V-B.

Remark 8: Despite that both Algorithm 2 and Algorithm 3
assume all-one base matrices in this paper, while extending to
generalized base matrices, the only part that may increase the
complexity is the enumeration of the cycles and concatenated
cycles in each algorithm.

The complexity is primarily controlled by the degrees of the
nodes rather than the sizes of the base matrices. In particular,
the major strategy of enumerating concatenated cycles is based
on enumerating the type-¢ paths, 1 < 4 < 3, which requires
complexity O(ykd:~'d:), where d, and d. represent the
average VN degree and CN degree, respectively. Moreover,
the individual cycle enumeration can also be performed uti-
lizing the idea of paths adopted in the concatenated-cycles
enumeration. Each cycle-6 candidate is composed of a type-
1 path and a type-2 path. Each cycle-8 of structure S in Fig. 2
is composed of two type-1 paths, while each of the others
is composed of two type-2 paths. Therefore, the complexity
of enumerating the cycles and the concatenated-cycles are
O(vkd,d?) and O(ykd2d3), respectively.

As for the part that calculates the total number of concate-
nated cycles, the number of multiplications performed at each
iteration is shown to be dominated by twice the number of
type-3 paths in the base matrix as presented in (26), shown at
the bottom of the next page.

Therefore, the number of operations at each iteration is also
bounded by O(yxd?d?). While we are not able to estimate the
number of iterations at which the algorithm stops (despite that,
experimentally it is typically small), we can stop the algorithm
when the number of iterations reaches K, for some big
enough K € N.% Under this modification, the complexity of
Algorithm 3 is O(Km~ykd2d?). A similar result can be applied
to estimate the complexity of Algorithm 2 as O(Km~ykd,d?).

Compared with the complexity of the OO technique
described in [10] that is governed by discrete optimization
on ((m+ 1)Y — 1) independent parameters, which also grows
with x, the complexity of the GRADE-AO method grows
much slower with the size of the base matrix and the memory
of the SC code. The GRADE-AO algorithm has been adopted

SNote that specifying a closed form relation between m and the number
of iterations is hard: despite that increasing m can enlarge the search space
in the AO step and thus can increase the number of iterations, it also allows
the algorithm to converge faster thanks to the additional degrees of freedom
and thus can reduce the number of iterations. Having said that, the number of
iterations depends not only on m but also on the initialization of the algorithm.
Since the GRADE step provides a locally-optimal initialization, it leads to
fast convergence and allows us to assume that the number of iterations is
sufficiently small

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION

901

1
1
0
0
0
0
]
0
1] f[a]ofo]ofo]o]n
[T oo o]o]o]
o {10 o]0
0 AR 0o
- o o]ofo o1 1Jofoo]
0 AR T oJofo]1
o A0E ile ofofo[1]0
0 1o ofof1]o0
0 ofo]o HeHlola[oo]0
1olo1]o]o HeH D Li{o]o]o
] ofo]o o]0 o [Lhals o[t o oo]x
2 L Loty o] ofofo oo 1Jolaloolofolo1T0
014 110 o [r{vyo o [] 0 110
1 NI EI A 1 0 o0]o]o o]0 o foft|o[a]o]t]o]0]0
asiKIKIE b o3 I I IO i s s W A
o1]
2[4 2] T NEEEINE 0 ARNDDAD
—— n 1ot o]0 oo ofofolofofoof1 o] 1]ofo]o
0 1[0 ofofolofoloofo]o]o 1]0 0
0 | a1+ o [+ 0 T o I R R A R o1)
I | I 1 oJof1]ofofo]ofofo]ofo]ofo]o of1])]1
1L—10 14——"0 ofof1]ofofo]o]o]ofo oo 0
o[1o]o[aoolo]oTo ofolh]o
2|0 H 4o He
oo 1o oolo o0 0o 0
ofof[1]o]0 0o]
o[1[o]o]n 0o 0
0 2 0 0 4 0 1[ofof1]0 ofo 0
1 4 Py 3 P 2 o1 0
1 i l 1 AR
2 T 1 & 1 TN

Fig. 10. The first 5 replicas of the protograph of a TC code with coupling pattern (0, 1,4) (the right panel), and the first 3 replicas of the protograph of its
corresponding SC code with memomry 2 (the left panel). Three cycle candidates (colored by green, blue, and red, respectively) in the base matrix and their

corresponding paths in the two protographs are marked out.

to construct SC-IRA codes, i.e., SC codes with base matrices
being irregular-repeat-accumulate (IRA) codes in the thesis of
Yang in [34].

B. Globally-Optimal AO

In this subsection, we explore globally-optimal construc-
tions of TC codes with small pseudo-memories. The moti-
vation behind this task is to construct an SC code with
memory m under the same computational complexity needed
to construct a full memory m, code, where m; < m. Given m;
and m, we first find the optimal a, in terms of the minimum
number of prototypes of interest, with length m; + 1 in a
brute-force manner. Taking m = 4 and my 2 as an
example, the optimal coupling pattern with respect to the
number of cycles is a = (0,1,4) and the corresponding
optimal distribution is almost uniform. Moreover, we already
know from Section IV-B that regarding the optimal coupling
pattern with respect to the number of concatenated-cycle pairs,
a=(0,1,4,6) and a = (0,1,4,7,9) are not only the optimal
coupling patterns for (m,m:) = (6,3) and (m,m;) = (9,4),
respectively, but also approximate the optimal full memory
GD ensembles quite closely in terms of performance.

Given the optimal coupling pattern a, we then obtain an
optimal partitioning matrix by the OO method proposed in [9]
and [10]. We extend the OO method for memory mqy SC codes
to any TC code with pseudo-memory m; = mg, which does
not increase the complexity of the approach. Note that despite
the current OO works only on cycles, future steps can be taken
towards the extension of OO into concatenated cycles, which
has potential to lead to TC codes with excellent performance

that is even better than the GD codes with full memories,
provided that it is much harder to obtain globally-optimal
solutions for GD codes with full memories.

Optimal TC codes with pseudo-memory m; have strictly
fewer cycle candidates in their protographs than optimal SC
codes with full memory m = m;. Take m = 4 and m; = 2 as
an example. Suppose the optimal SC code has the partition
IT = HY + HY + HE. Consider the TC code with partition
I = HY + HY + HY such that HY = HY. Then, any
cycle-6 candidate resulting from a cycle candidate in the base
matrix assigned with 0-1-0-1-2-0, 1-2-1-2-2-0, or 0-1-2-1-z-z,
x € {0,1,2}, in P no longer has a counterpart in the TC
code, since by replacing 2’s with 4’s, assignments 0-1-0-1-
4-0, 1-4-1-4-4-0, and 0-1-4-1-z-z, x € {0,1,4}, no longer
satisfy the cycle condition in Lemma 1. Moreover, there exists
a bijection between the remaining candidates in the SC code
and all candidates in the TC code through the replacement of
2’s with 4’s.

Fig. 10 presents part of the protograph of a TC code with
coupling pattern (0, 1,4) and that of its corresponding SC code
with full memory 2. The cycle-6 candidate colored by blue
is assigned with 0-1-2-1-1-1 in the SC code, which satisfies
the cycle condition cycle candidates are generated in the
protograph. However, the assignment becomes 0-1-4-1-1-1 in
the TC code, which no longer satisfies the cycle condition
and no cycle candidates are generated in the protograph. The
cycle-6 candidate colored by green corresponds to one that
results in cycle-6 candidates in both the SC and the TC codes
shown in the figure. We also marked out a cycle-8 candidate
(colored by red) that only leads to cycle candidates in the SC
code.

Zlﬁjl <j2<k Z

(0,01,i2,13,

, > 21 (v1,(d0, j1, j2) > 0) 1 (v3,(ix, 42, 1, j2) > 0) 1 (vs,(ds, 14, j1, j2) > 0)
i4)E€Z313 —m<I<m

<E E E 21 (v3 (41,12, J1,52) > 0
- 1<j1<ja<k (0,%1,92,i3,04)€T313 —m<Il<m (JJ(b 2’117]2))

= Zlﬁj& <j2<k Z(

10,11 ,12,13,14)

2vu3.1(11,12, J1,J2)-
S > i 3,1(11, 42, J1, J2)

(26)

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

902 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

TABLE I
STATISTICS OF THE NUMBER OF CYCLES

(v,) Code Rate | Codeword Length | Constraint Length | Cycles-6 Cycles-8
3,7) GD - - - 0 0
’ UNF - - - 0 6,292
GD 0.8076 11900 70 0 397,880
(3,17) UNF 0.8076 11900 70 0 559,902
Battaglioni et al. [17] 0.8059 11900 71 0 451,337
GD N . - 0 528,000
(4,29) UNF - - - 0 | 1,087,268
TC 0.7459 14450 85 15,436 -
(4,17) | SC (matched constraint length) | 0.7490 14280 84 19,180
SC (matched circulant size) 0.7553 14450 51 74,579
According to the aforementioned discussion, TC codes are 10°¢
better (have less cycles) than SC codes with the same circulant — g’i;;ﬁls)]
size and m = m;. In Section VI, we present simulation results 10 A (3:17)-UNF
of such codes and show that they can also outperform SC 0 ——(3,7)-GD
codes with the same constraint length (larger circulant size) —-(3,7)-UNF
and m = my. . 103
VI. SIMULATION RESULTS g
10° A
In this section, we show the frame error rate/uncorrectable ‘AA
bit error rate (FER/UBER) curves of seven groups of SC codes 10° 214 4
designed by the GRADE-AO methods presented in Section V. <<<“A
We demonstrate that codes constructed by the GRADE-AO 10°¢ %AA
methods offer significant performance gains compared with ,
codes with uniform edge distributions and codes constructed 0 s 2 25 35 4 45 5

through purely algorithmic methods. Note that all the codes
constructed in this paper have no cycles-4.

A. Optimization Over Cycles

In this subsection, we simulate codes constructed based on
optimizing the number of cycles using GRADE-AO specified
in Section III over the AWGN channel. Out of these three
plots, Fig. 11 and Fig. 12 compare GD codes with UNF codes
designed as in Section V-A. Fig. 13 compares a TC code
designed as in Section V-B with optimal SC codes constructed
through the OO-CPO method proposed in [9]. The GD/UNF
codes have parameters (vy,x,m,z,L) = (3,7,5,13,100),
(3,17,9,7,100), and (4, 29, 19,29, 20). We also compare our
(3,17) codes with the code presented by Battaglioni et al.
in [17]. For fair comparison, we choose the partitioning matrix
Pc, in [17], which has memory m = 70 and z = 1
(similar constraint length to our codes). Therefore, we choose
L =700 to let the code have a rate and overall length that are
close to those of our proposed codes. In particular, both codes
have length 11900. The code in [17] has constraint length
(70 +1) x 1 =71 and rate 1 — (1 + 70/700) x (3/17) ~
0.8059, while our codes have constraint length (9+1) x 7 =
70 and rate 1 — (1 +9/100) x (3/17) ~ 0.8076.

The TC code has parameters (v,k,m¢,2,L) =
(4,17,2,17,50) with the coupling pattern a = (0,1,4).
For a fair comparison, we have selected two SC codes: one
with a similar constraint length (m + 1)z and the other with
an identical circulant power z. To ensure that the SC codes
and the TC code have close rates and codelengths, the two
SC codes have parameters (v, k,m, z, L) = (4,17,2,28,30)
and (4,17,2,17,50), respectively. The TC code has
codeword length 17 x 17 x 50 = 14450, constraint length

3
SNR(dB)

Fig. 11. FER curves of GD/UNF codes with v = 3 over the AWGN channel.
The leftmost two FER curves correspond to GD/UNF codes with parameters
(v, kym, 2z, L) = (3,7,5,13,100). The rightmost curves colored with red
and blue correspond to GD/UNF codes with parameters (v, k,m,z, L) =
(3,17,9,7,100). The green curve corresponds to the code with parameters
(v, k,m,z,L) = (3,17,70, 1, 700), the partitioning matrix of which is P ¢,
from [17, Equation (46)].

(441) x 17 = 85, and rate 1 —(144/50) x (4/17) ~ 0.7459.
The SC code with matched constraint length has codeword
length 17 x 28 x 30 = 14280, constraint length
(2+1) x 28 = 84, and rate 1 —(142/30) x (4/17) ~ 0.7490;
the SC code with matched circulant size has codeword length
17 x 17 x 50 = 14450, constraint length (24 1) x 17 = 51,
and rate 1 — (1 + 2/50) x (4/17) ~ 0.7553. The statistics
regarding the number of cycles of each code are presented in
Table 1.

Fig. 11 shows FER curves of our GD/UNF comparisons
with (v, k) = (3,7) and (3, 17). The partitioning matrices and
the lifting matrices of the codes are specified in Appendix A
and Appendix B. When v = 3, cycles-6 are easily removed
by the CPO. Therefore, we perform joint optimization on the
number of cycles-6 and cycles-8 candidates by assigning dif-
ferent weights to cycle candidates in Algorithm 2. We observe
a performance gain for the GD code with respect to the UNF
code in both the waterfall region and the error floor region.
The FER curve of the code [17] is shown to lay between FER
curves of the GD and UNF codes in the waterfall region, and
close to the UNF codes in the error floor region. Moreover,
the number of cycles-8 in the (3,17) GD code is reduced
by 29% and 12% compared with the UNF code and the
code constructed by Battaglioni et al. in [17], respectively.
In addition, the (3,17) GD code has no weight-6 absorbing

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 903
TABLE II
STATISTICS OF THE NUMBER OF CONCATENATED CYCLES
(v, k) Code | Cycles-6 | 2-1-2 Objects | 2-2-2 Objects | 2-1-3 Objects | 3-1-3 Objects
GD 4,794 1,751 807,534 1,162,035 125,869,717
(4,24) (NLM) | TC 4,352 4,301 816,816 1,125,400 | 126,903,436
UNF 11,713 7,293 1,308,762 2,615,297 208,425,933
GD 4,794 1,802 822,120 1,212,100 126,514,918
(4,24) (BSC) TC 4,403 4,097 807,534 1,139,000 126,434,525
UNF | 11,713 7,293 1,308,762 2,615,297 | 208,425,933
GD 2,171 338 178,334 238,160 19,638,372
(4,20) TC 2,665 1,404 178,828 262,509 20,571,499
UNF 2,444 2,860 287,014 540,865 34,362,393
10%
—+—(4,29)-GD —+—(4,17,z=17)-TC
—--(4,29)-UNF 1070 (4,17,2=28)-SC
--(4,17,z=17)-SC
10-2 L
103
& -4 L
210
105
10 ¢
107 ¢
10-7 L L L L L L L L 10-8 L L L L L L L L L
24 26 28 3 32 34 36 38 4 24 26 28 3 32 34 36 38 4
SNR(dB) SNR(dB)
Fig. 13. FER curves of TC/SC codes with (v,xk) = (4,17) over

Fig. 12. FER curves of GD/UNF codes with (v,k,m,z,L)
(4,29,19, 29, 20) over the AWGN channel.

sets (ASs) and 133 weight-7 ASs, whereas the UNF code has
6 weight-6 ASs and 361 weight-7 ASs. As for the (3,7) GD
code, all cycles-6 and cycles-8 are removed, while the (3,7)
UNF code still has 6292 cycles-8. Thus, the gain of the GD
code compared with the UNF code exceeds the gain observed
in the (3,17) codes.

Fig. 12 shows FER curves of the GD/UNF comparison with
(v,k) = (4,29). The partitioning matrices and the lifting
matrices of the codes are specified in Appendix C. Cycles-
6 in the GD code and the UNF code are both removed, and
the number of cycles-8 in the GD code demonstrates a 51.4%
reduction from the count observed in the UNF code. It is worth
mentioning that both codes have no ASs of weights up to 8§,
which is reflected in their FER curves via the sharp waterfall
regions and the non-existing error floor regions. The FER of
the GD/UNF codes decreases with a rate exceeding 12 orders
of magnitude per 0.5 dB signal-to-noise ratio (SNR) increase.
Moreover, the GD code has a significant gain of about 0.25 dB
over the UNF code.

Fig. 13 shows the FER curves of the TC/SC codes with
(v,k) = (4,17). The partitioning matrices and the lifting
matrices of the codes are specified in Appendix D. The number
of cycles-6 in the (4,17) TC code demonstrates a 79% and
a 20% reduction from the counts observed in the SC codes
with a matched constraint length and a matched circulant
size, respectively. Moreover, the TC code has no weight-6 nor
weight-8 ASs. It is shown that the TC code outperforms the
optimal SC code with a matched constraint length, and that
the gain is of greater magnitude when compared with the SC
code of identical circulant size.

the AWGN channel. The red curve corresponds to a TC code with
parameters (v, x,m,z,L) = (4,17,4,17,50) and a = (0,1,4). The
green and blue curves correspond to SC codes with a similar constraint
length ((vy, k,m,2,L) = (4,17,2,28,30)) and an identical circulant size
((n, k,m, 2z, L) = (4,17,2,17,50)), respectively.

Remark 9: Note that although TC codes have higher mem-
ories and thus larger constraint lengths than SC codes of
matched circulant sizes, they possess the same number of
nonzero component matrices, and thus the same degrees of
freedom in construction. This fact makes TC codes even more
promising if we can devise for them windowed decoding
algorithms with window sizes that are comparable to the
corresponding SC codes of matched circulant sizes.

B. Optimization Over Concatenated Cycles

In this subsection, we simulate codes constructed based
on minimizing the number of concatenated-cycle pairs using
the GRADE-AO specified in Section IV and Section V-A.
We compare GD/UNF codes with m 6 in addition to
TC codes with my; 3 and a (0,1,4,6) on the
binary symmetric channel (BSC), Flash channel, and magnetic
recording channel. There are two groups of GD/TC/UNF
codes that have parameters (v, s, m, z, L) = (4,24,6,17,40)
and (4, 20,6, 13, 20), respectively. The statistics regarding the
number of cycles of each code are presented in Table II.

Fig. 14 shows UBER curves of the GD/TC/UNF codes with
(7, %) = (4,24) on a Flash channel.” The Flash channel used
in this section is a practical, asymmetric Flash channel, which
is the normal-Laplace mixture (NLM) Flash channel [37].

"Note that although we only provide simulation results on some typical
channels for brevity in this paper, our approach is generally applicable to many
other channels, such as the ones underlying three-dimensional cross point (3D
XPoint) [35] and two-dimensional magnetic recording (TDMR) [36] systems.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

904 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

—+—(4,24)-GD
(4,24)-TC
.[|=-(4,24)-UNF

UBER

0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.03 0.031
RBER

Fig. 14. UBER curves of GD/TC/UNF codes with (v,k,m,z,L) =
(4,24,6,17,40) over the NLM channel, where the TC code has the coupling
pattern a = (0, 1,4, 6) and the edge distribution obtained in Example 5. The
codes are non-binary codes on GF(4).

In the NLM channel, the threshold voltage distribution of
sub-20nm multi-level cell (MLC) Flash memories is carefully
modeled. The four levels are modeled as different NLM
distributions, incorporating several sources of error due to
wear-out effects, e.g., programming/erasing problems, thereby
resulting in significant asymmetry. Furthermore, the authors
of [37] provided accurate fitting results of their model for
program/erase (P/E) cycles up to 10 times the manufacturer’s
endurance specification (up to 30,000 P/E cycles). We imple-
mented the NLM channel based on the parameters described
in [37]. Here, we use 3 threshold voltage reads, and the sector
size is 512 bytes. For decoding, we use a finite-precision
(FP) fast Fourier transform based g-ary sum-product algorithm
(FFT-QSPA) LDPC decoder [38]. The decoder performs a
maximum of 50 iterations, and it stops if a codeword is reached
sooner.

The partitioning matrices and the lifting matrices of the
codes are specified in Appendix F. The non-binary edge
weights are set as in [39] and [40]. The codes can be further
optimized by applying the more advanced WCM framework
presented in [22] and [23]. The first row of Table II shows the
statistics of unlabeled cycles and concatenated cycles in each
code. The number of objects in GD/TC codes are reduced by
around 40% compared with the UNF code. No error floors
are observed in any one of the UBER curves. The UBER of
the GD/TC codes decreases with a rate exceeding 14 orders
of magnitude per 0.01 RBER decrease. Moreover, the GD/TC
codes have a significant gain of about 2 orders of magnitude
over the UNF code at RBER 0.0235. It is worth mentioning
that the UBER curves of the GD/TC codes nearly overlap,
which is in accordance with the closeness of the statistics of
objects in them.

While NB codes are adopted in the simulations over the
NLM channel, independent coding are more widely applied
in practical Flash solutions in order to preserve high access
speed. Therefore, we next present in Fig. 15 the UBER curves
of the GD/TC/UNF codes with (v, k) = (4, 24) over the BSC,
as a simplified model of single-level cell (SLC) channel with
1 threshold voltage read.

——(4,24)-GD
(4,24)-TC
<||-(4,24)-UNF

UBER

0.016 0.018 0.02 0.022

RBER
Fig. 15. UBER curves of GD/TC/UNF codes with (vy,x,m,z,L) =
(4,24,6,17,40) over the BSC. The partitioning matrices of these codes are

identical with partitioning matrices of GD/TC/UNF codes simulated over the
NLM channel in Fig. 14.

0.012 0.014

—+—(4,20)-GD
(4,20)-TC
-6-(4,20)-UNF

12,5 12.625 12.75 12.875 13 13.125 13.25 13.375 135
SNR(dB)

Fig. 16. FER curves of GD/TC/UNF codes with (vy,x,m,z,L) =
(4,20, 6,13,20) over the MR channel.

The partitioning matrices and the lifting matrices of the
codes are specified in Appendix E. While partitioning matrices
of the (4,24) NB codes constructed for the NLM channels
are adopted as they are here, we have modified the lifting
parameters slightly in order to remove all unlabeled ASs with
weights less than or equal to 7 in the GD/TC codes: this
is achieved by changing one entry in each lifting matrix.
According to Table II, the number of objects in the GD/TC
codes has not changed dramatically, and they still demonstrate
a 40% reduction compared with the count observed in the UNF
code. As shown in Fig. 15, the UBER curves of GD/TC codes
are still close in the early waterfall region like they are over
the NLM channel simulations; however, they start to deviate
at RBER less than 0.014. The TC code has no observed error
floor in its performance curve as expected, and it has a 2 orders
of magnitude gain over the UNF code at RBER 0.013. The
GD code curve surprisingly floors despite that there are no
ASs with weight less than 8 in it: error profile analysis shows
that the error floor at RBER 0.013 results from only 2 different
large weight errors (one of weight 78 and another of weight
168) instead of structured small weight errors.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 905

2/0|5(5|0]0|4 311232 (0|4 |9 1[13|0|3[2]5]5 2/5(6|4|0]3]0

5/5/0(0|1|1]0 512 |4 8 |10 | 12 4102|053 |1 912 (8|11 |5]10 |12

0(2|4|5|5|5]|0 0|8 (311|619 014(2(1(4]2]|1 083 11|11 9
(a) GD code. (b) UNF code.

Fig. 17. Partitioning matrices (left) and lifting matrices (right) of GD/UNF codes with (v, k,m, 2, L) = (3,7,5, 13, 100).
718(0[(9(9(9|7|/0[{0]2[9(9|/0|3|3|7]3 912|19(4(8(8(4(6|0[{3[9(3[1|2|5|8]3
9(15(9|1(0|0|9(6|4|72|24]0|0|9]8 3/9|8(1/0(8(4|0|5|7|7|0(4[9|5|0]|3
1/1(8(0|8(8[0|9(9|6|0(0|919]9|0/|0 5(6(2(9(1|0|7]|2|7|1]2|7|/6|0|8|1]|6
0/6[(0|3(0|6|0|6|6|6|4|2(0[0|6|0/|0 0(3(2(2(2|0(3|0|2|1|0|1|2|0]|0|0]0O
312(2(6(2|3|/4|0|{0|0]|6|1|2|5|0|1]|4 412|461 |1(2|1]|0 1{1(3[3|0|1]4
5(1(/0|3(6|6|6[0|1|2|3|4|5[6|0/|1]2 411(2(1(4|5|(6|0|1|2[3|4|5[6|0/|1]|2

(a) GD code. (b) UNF code.
Fig. 18. Partitioning matrices (top) and lifting matrices (bottom) of GD/UNF codes with (v, k,m, z, L) = (3,17,9,7,100).

Remark 10: While the reason why the large weight errors
observed in the error profile of the GD code are detrimental
over the BSC simulations remains unexplored and is left for
future investigation, the TC code is observed to be robust
against these errors, which is specifically intriguing. Moreover,
the fact that the waterfall performance of GD/TC codes is
remarkably superior to that of UNF codes calls for an asymp-
totic analysis that takes edge distribution into consideration.
The significant gain achieved by TC codes substantiates the
potential of TC codes in Flash memories.

Fig. 16 shows FER curves of the GD/TC/UNF codes
with (v, k) = (4,20) over the MR channel. The MR system
adopts the partial-response (PR) channel presented in [32]
and sequence detection. This PR channel incorporates the
MR channel effects: inter-symbol interference (intrinsic
memory), jitter, and electronic noise. The normalized channel
density [32], [41] is 1.4, and the PR equalization target
is (8,14,2). The filtering units are followed by a Bahl-
Cocke-Jelinek-Raviv (BCJR) detector [42], which is based on
pattern-dependent noise prediction (PDNP) [43], and again
an FP FFT-QSPA (¢ = 2) LDPC decoder [24]. The number
of global (detect-decoder) iterations is 10, and the number
of local (decoder only) iterations is 20. Unless a codeword is
reached, the decoder performs its prescribed number of local
iterations for each global iteration. More details can be found
in [32].

The partitioning matrices and the lifting matrices of the
codes are specified in Appendix G. The number of targeted
objects (concatenated-cycle pairs) observed in the GD code
demonstrates an approximate 40% reduction from the count
observed in the UNF code. The FER of the GD/TC codes
decreases with a rate that is approximately 13 orders of
magnitude per 1 dB SNR increase. Moreover, the GD code
has a significant gain of about one order of magnitude over the
UNF code at SNR 13.375 dB. These results substantiate the
remarkable impact of the GRADE-AO method in constructing
SC codes with superior performance for storage devices,
with potential usage in further applications including wireless
communication systems.

VII. CONCLUSION

Discrete optimization of the constructions of spatially-
coupled (SC) codes with high memories is known to be

computationally expensive. Heuristic algorithms are efficient,
but their lack of theoretical guidance makes it difficult to
guarantee satisfactory performance. In this paper, we proposed
the so-called GRADE-AO method, a probabilistic framework
that efficiently searches for locally optimal QC-SC codes with
arbitrary memories. We obtained a locally optimal edge distri-
bution that minimizes the expected number of the most detri-
mental objects via gradient descent. Starting from a random
partitioning matrix with the derived edge distribution, we then
applied a semi-greedy algorithm to find a locally optimal parti-
tioning matrix near it. While the application of GRADE-AO in
optimizing the number of short cycles has shown noticeable
gains, we focused in this paper on minimizing the number
of more detrimental objects, the concatenated cycles. This
finer-grained optimization avoids unnecessary attention on
individual cycles which are typically not problematic on their
own, especially in codes with high VN degrees and irregular
codes. Simulation results show that our proposed constructions
have a significant performance gain over state-of-the-art codes;
this gain is shown to be universal in both waterfall and error
floor regions, as well as on channels underlying various prac-
tical systems. Future work includes extending the framework
to other classes of underlying block codes.

APPENDIX A
PARTITIONING MATRICES AND LIFTING MATRICES FOR
(3,7) CoDES ON AWGN CHANNEL

See Fig. 17.

APPENDIX B
PARTITIONING MATRICES AND LIFTING MATRICES FOR
(3,17) CODES ON AWGN CHANNEL

See Fig. 18.

APPENDIX C
PARTITIONING MATRICES AND LIFTING MATRICES FOR
(4,29) CODES ON AWGN CHANNEL

See Figs. 19 and 20.

APPENDIX D
PARTITIONING MATRICES AND LIFTING MATRICES FOR
(4,17) CODES ON AWGN CHANNEL

See Fig. 21.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

906 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

010 |0 1917|171 |11]13]5 |18|10]|19] 13
1918|182 |0 | 19195 |3 (199|299
1 114]3 16| 7 1 4 119510011600
6|0 |14 1 |11 |2 |15|2]19|16|18| 0 | 19| 19

6 |19 8 190|190]0]|0]|2/|17]6 /19| 4
13/ 8 18|16 0 |17 |10| 0
101916 |18 | 3 |18 | 15| 3 | 19| 8 | 19| 1 |15
19147 (120 |19 1

~| W —
—_
~
(=)
[=]
S}
—_
[=2)

o
(=}
(=}
wn
—_
(=}
=}
o~

701 |18|21|5|4|17]0| 6 16268 |13|7|5|6|9]|2]0]0|0]0|0|5]0]4|19]0]|0
31151 4 1 |53 (1219102119 3 | 4 |19 |28 1 305 |12 18|11 |10 | 15|17 |19 |21 | 18 | 25| 27
O| 8 |16|24 3|11 |20(20] 6 |14 22| 1 9 |2 2521|127 |28 6 1523 |19 |10]| O 1 4 13|21
0| 18| 7 | 25|13 |21 10|28 |17 | 6 |24 |13 |2 |20] 9 |27 |16| 5 |23 12| 1 |19] 8 |26| 15| 4 |22 11

Fig. 19. Partitioning matrix (top) and lifting matrix (bottom) for GD code with (v, k, m, 2, L) = (4, 29, 19, 29, 20).

0O [17| 3 |13 1 414 124 |15(10] 2 |17 2 [18|11 [17]15]11] 3 |13 |12|13] 6 2 5114|1314
8 0 19119 |18 | 8 5 18|13] 6 11 3 2 4 11 3 9 15116 | 7 7 1211916 4 9 0 13| 3
4] 6 1210|121 171 9 7 5711619 1 [15] 5 |[19] 6 51157 0 2 3]10(15] 9 6 7 111
17 | 14| 0 2 9 18 | 12 1 8 11 4 4 7 10 1 8 14| 8 0 16 | 17 | 16 1 0 10 18 | 18 | 10 | 8
121 1 T 114127 4 126]25] 2 0 6 |15 7 |24 1 1 6 [175 13119 2 0 |11 0[O0 O 1
5 2 14122 8 512311 4 |18 |28 | 1 1917226 3 311479 11]13]15| 3 0 2 |3 (25|27
231 8 | 224 3 7 1 (2716 [1421|129 | 17| 5 |4|12|20 |28 7 7 1312251826 |5] 13|21
28 (18 |7 4 | 14| 3 |21 |10 |28 |17 | 6 |24 | 13| 2 9 [81 26| 5|23 |12 1 19 8 |26 |15 |4 (2211
Fig. 20. Partitioning matrix (top) and lifting matrix (bottom) for UNF code with (v, k, m, z, L) = (4, 29, 19, 29, 20).
212(12(2{2|0/0|0f1]1|2(1|1|1|0|0O]O
1/1|{0(0f0O|1]1|1]|0|0|0|2|2|2]|2|2]|2
ojof1|1j1(2|2(2(2|2(1(0|0f0|1|1]|1
1(1|1|1(1{0|0|0OfO]|O0|0O]|2|2|2|2|2]|2
T AT o o o T T AT I T T o ToT o 5[5[12[1] 7 [16]10][00 [0[14[15] 1 [10] 7 [0]10
TTitototo i ilttotololz 2l alatal1 0215|029 |12|14|16[1 |3 |5 |7 |9 |11]13]15
Olol1l1]1]4]4alal4a4l4al1lololol1[14 18|16 |7|15| 6 |16| 5 |13 |4 |12| 3 (12| 2 |10 | 1 9
111/1]1]1/0l0l0lololol4|4|4|4]|4]4 0|12 3|4 |5 |6 |7 |8 |9|10|11|12|13|14 |15 /|16
67515102][9]21]3 710127 [13]13 21273 |13 1 |5 |27|16|21 |4 |0 |15|26| 2 |11| 8 | O
06| 4]o0]10f10]1214] 9 11127 1]16] 4 |13 15111 (202211 |21|20]| 3 0122|2224 |26]| 0 2 4
1 |8|16| 7 |15 6 |14 | 5 [13 |3 39117 |0 |11 25 13122249 |12 15| 0 |18 |16 |24 (21 |12|20| O 8 | 18
01| 2 3 4 5 6 7 8 191 11|95 4 (15|16 0 18| 8 |26 |16 |17 |24 (14| 1 |22 |12| 2 (11 |10| O |18 | 8
(a) TC code with (z, L) = (4,17,2,17,50) and a = (0, 1,4). (b) SC codes with (z, L) = (17,50) (middle) and (z, L) = (28, 30) (bottom).

Fig. 21. Partitioning matrices (top) and lifting matrices (bottom) for TC/SC codes with (v, k,m¢) = (4,17, 2).

0/6/2(0|6|1]0]1|6|6]6|6|]0|0[0|4|5]4]5/0|0]5|0]1
0oj0|6(2|6|6|6]0|1|1]|5|6|4]6]0|0|1]6]6|0]|6]1|4]0
313|/]6(6(0|6]1[513]0/0|1(2]|]6]6|6|2[]0[]0|6|4]6|0]|6
6/5/1(5(2]0[3|5/0|3]0(0|6|]0]6|3]|]6[2]0|6|0]0|6]4
115|178 |11 |14|1]5|6]16|9 |12] 0 S|13] 1 10|35]|15]0 0 1
9 2 18|68 |10]10|3 |5 |85 5 701219 |14 |15]|0|2 6 8 | 10| 12
0 216|715 12| 4 |5 4| 7 8 11 2 1 1 8 |0 [8|16] 9 15 | 11 5
0 1 2133 5 6 | 714|814 |11 12|13 |14|15|16 |01 2 3 4 11 6
Fig. 22. Partitioning matrix (top) and lifting matrix (bottom) for GD Code with (v, k,m, z, L) = (4, 24, 6,17, 40).
o|j1|{4j6|6|1]0|1|4]|]6|4|6|6|6]0|6|1|1][1|0]|4]0|1]0
116|/0|6(4]6|6|0|1]6|1]|6|0]0[{6|0|0|6|6|4|0|1|0]4
6/6|6/0(0]0|1|4|0|0]6|1|1|4]6|4|]6|4]0]4]6]|6|4|0
410(1]1]1]6|4]6]6[0|0|1|4]4]0|1|6|0|4]|]6|4|4]6]6
13| 4 1 (7 1 11| 3 6 6 |61 121514 5 4 10]121] 0 0 0 00| 0
S| 11| 41913]15|0 1411|178 7 9 9 |12]2] 0 2 4 6 | 14| 4] 16
0 8 16 [1] 15 14| 5 141419 3 11 2 10 1 910 8 131215611
0 9 2 131 4 5 6 2 8 19|84 |12|13|14]|15]0] 9 |15]13] 3 2181 4
Fig. 23. Partitioning matrix (top) and lifting matrix (bottom) for TC code with (v, k, m, z, L) = (4, 24, 6,17, 40).
O|5|6[5(0|6]2|2|5|1]2|6|2|0]6|2|2|3]|2|3|0[3|1]1
5/(4/0(510(2(3[1(0|0|4|0|1|4]3|6|2|4]6|4|6]|6|4]|3
1|1 |5]0|6|4]6|5|1|5]1|4|2|5]03|1]|3]2|1|5]3|4]3
6122|441]|5/6|6[3|1[5]0]0|4|5]1][4|3|]0]0|3]6
8116 7 |7]0 9 6 |14 6 | 14| 1 13| 14| 8 0 0 4 16| 0 0100 3 16
312 6 | 6|13]10]12] 14 |1 3 3 11 7 9 11 7 I5/0113] 4 |41 8 10 | 12
21 8 16| 1|15 6 141 5 132 (12] 3 11 2 |13 1 9 10| 8 166|715 6 14
1 1 2 |3|13] 5 11 7 8 9 1011|1213 14 |15|16]|0] 1 2 13| 4 5 6

Fig. 24. Partitioning matrix (top) and lifting matrix (bottom) for UNF code with (v, k, m, z, L) = (4, 24, 6,17, 40).

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 907

0/6/2(0|6|1]0]1|6|6]6|6|]0|0[0|4|5]/4]|5/0|0]5|0]1
0oj0|6(2|6|6|6]0|1|1|5|/6|4]6]0|0|1]6]6|0]|6]1|4]0
313|/]6(6(0|6]1[513]0[0|1|2]6]6|6|2[]0[]0|6|4]6|0]|6
6(5/1(5/2]0[3|5/0|3]0/0[6|]0]6|3]|]6[2]0|6|0]0|6]4
615|178 |11 |14|1]5|6]16| 9 |12] 0 S| 1311035]|15]0 0 1
9 2 18|68 |10]10|3 |5 |85 5 7011219 [14|15]|0|2 6 8 | 10 | 12
0 216|715 12| 4 |5 417 8 11 2 1 1 8 10 [8|16] 9 15 | 11 5
0 1 2133 5 6 | 7114|814 |11 12|13 |14|15|16 |01 2 3 4 11 6
Fig. 25. Partitioning matrix (top) and lifting matrix (bottom) for GD code with (v, k,m, z, L) = (4,24, 6,17, 40).
o|j1|{4}(6|6|1]0|1|4]|]6|4|6|6|6]0|6|1]|1]1|0]|4]0|1]0
1/16/0|6|4|]6]6]0|1|6]1|6]0]0]|6|0]0]6]6|4]|0]1/|0]4
6/6/6[0/0|0|1]4|0|0]6|1|1|4]6|4]6|4]0|4]|]6]6|4]|0
41011 |1]1|/6|4]6]6|0|0]1|4|4]|]0]1|6|0|4]|6|4|4]6|6
13| 4 11711 11 3 6 6 |61 121514 5 4 10(12] 0 0 0 00| 0
5 1114 (19|13 O |14 |11 |1]7] 8 7 9 9 12120 2 4 6 | 14416
0 8 16 |1 |15 6 | 14| 5 141419 3 11 2 10 1 19| 0 8 12 1156 | 11
0 5 2131 4 5 6 2 8 19|18 4 12 | 13 411510 9 15 3 2181 4
Fig. 26. Partitioning matrix (top) and lifting matrix (bottom) for TC code with (v, k, m, z, L) = (4,24, 6,17, 40).
0O|5|6[5(0|6]2|2|5|1]2|6|2|0]6|2|2|3]|2|3|0[3|1]1
5/(4/0(5(0(2(3[1/0|0|4|0|1|4]3|6|2|4]6|4|6|6|4]|3
1/1|5]0|6|4]6|5|1|5]1|4|2|5]03|1 |3]2|1|5]3|4]3
6122|441]5/6|6]3|1[5]0]0|4]|5]1][4|3|]0]0|3]6
8|16 7 |7]| 0 9 6 |14 6 | 14| 1 13| 14| 8 0 0 4 16| 0 0100 3 16
312 6 |6 |13]10|12]14 10| 3 3 11 7 9 11 7 1510113 4 |41 8 10 | 12
21 8 16 |1]15] 6 14| 5 13|12 |12 3 11 2 |13 1 9 10| 8 16 |7]15] 6 14
1 1 2 |3|13] 5 11 7 8 9 1011|1213]14|15|16]|0] 1 2 13| 4 5 6
Fig. 27. Partitioning matrix (top) and lifting matrix (bottom) for UNF code with (v, k, m, z, L) = (4, 24, 6,17, 40).
003|601]2|2|]0|6|6|0|6|5]|]6]0|6]0|5]6
3/]0({1]0(5]0(6|3|2|]0|6|3|1|6|6|6[0|6|6]5
6|/6/0|1]1|6]1|6|5/0[0|4|5]0|0]4|0]5|2]|3
1/6/6|4]6[4]6|0|6[4|0]6|01/0[0]6]2]0]0
315)| 4 8§ |3 |11]|0| 2 0|10 916[/9]0] 0 2 121 1
7121 6 6 |8 81 1 2 16| 6 416|777 6 8] 5 |10
0|73 |11]0 91 1 12/0(2 [10(5]08] 3 |11 |7]1 9
05110 2 |7]12 4] 11 1 (6|11 |5 8|7 |5]|10] 2 7|12 4
Fig. 28. Partitioning matrix (top) and lifting matrix (bottom) for GD code with (v, x, m, z, L) = (4, 20, 6, 13, 20).
6/0[0|6]0|0|4|6|0|1]|]6]6|6]1|6]6|0]0|1]1
1164|414 |1]1|6|4|6|/0]0|0]6|0]4|6]0|4]6
410|641]6|1]1|4]4|4]6/0|0]1]|]0]1]|6]6|4
0|6[4/0/6|4]6|0|6|0|1]|1|4]4|6]1|6]6|0]0
1] 2 8 5 111] 3 011041 12110] 0 |10]3] 0 6 0 0
81 7 4 11251101213 |5]|]10|10]| 4 8 2 1716|1210 2
0 3 /110 1 9 |4 112 |7 8 4 9 110 8 | 3|11] 2 1 10
0|12 10| 2 7011214191164 10|11 0 51912 7|12
Fig. 29. Partitioning matrix (top) and lifting matrix (bottom) for TC code with (v, k, m, z, L) = (4, 20, 6,13, 20).
0|06 |5|5|1|5|1]|]6|3|3]2|2]3|2 0302
S|S512(1 1 |2(5|2|]03|5|3|5|5|1]6|6]1|2]2
6|01 |5]2|4]1|4|4/0|4]4]6]0|2]0|6[3 |44
040134 |5]1|5]1|6]1 114163]0|6|3|6
6 11 1 1 419 11 0 3 111200 1 0|9 2 10|10 1
10 | 3 4 519] 2 2 3 8 5 7191511210 4 6 | 8|10 12
121 0 301151 9 |12 |12 | 7 4 14511237 |11]6|0 9
9 511012 |7]10] 4 9 1 6 |11 |58 | 5 |5]11]9 |7]|12] 4
Fig. 30. Partitioning matrix (top) and lifting matrix (bottom) for UNF code with (v, k,m, z, L) = (4, 20, 6, 13, 20).
APPENDIX E APPENDIX F
PARTITIONING MATRICES AND LIFTING MATRICES FOR PARTITIONING MATRICES AND LIFTING MATRICES FOR
(4,24) CODES IN SIMULATIONS ON BSC (4,24) CODES IN SIMULATIONS ON NLM CHANNEL

See Figs. 22-24. See Figs. 25-27.
Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

908

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

APPENDIX G

PARTITIONING MATRICES AND LIFTING MATRICES FOR

(4,20) CODES ON MR CHANNEL

See Figs. 28-30.

ACKNOWLEDGMENT

The authors would like to thank the Associate Edi-

tor

Dr. David Mitchell and the anonymous reviewers for

their careful reading of our manuscript and their insight-
ful comments and suggestions, also would like to thank
Shyam Venkatasubramanian for his assistance in carrying out
part of the simulations in this research, and also would like
to thank Christopher Cannella and Arnab Kar for useful
discussions regarding probabilistic optimization on SC code
constructions while being at Duke University.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Yang, A. Hareedy, S. Venkatasubramanian, R. Calderbank, and
L. Dolecek, “GRADE-AO: Towards near-optimal spatially-coupled
codes with high memories,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2021, pp. 587-592.

S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform
so well over the BEC,” [EEE Trans. Inf. Theory, vol. 57, no. 2,
pp. 803-834, Feb. 2011.

S. Kumar, A. J. Young, N. Macris, and H. D. Pfister, “Threshold
saturation for spatially coupled LDPC and LDGM codes on BMS
channels,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7389-7415,
Dec. 2014.

P. M. Olmos and R. L. Urbanke, “A scaling law to predict the finite-
length performance of spatially-coupled LDPC codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 6, pp. 3164-3184, Jun. 2015.

A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-
binary spatially-coupled codes for flash memories,” in Proc. IEEE Inf.
Theory Workshop (ITW), Nov. 2017, pp. 229-233.

M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274-5289, Oct. 2010.
A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed
decoding of spatially coupled codes,” IEEE Trans. Inf. Theory, vol. 59,
no. 4, pp. 2277-2292, Apr. 2013.

D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled
LDPC codes constructed from protographs,” IEEE Trans. Inf. Theory,
vol. 61, no. 9, pp. 4866-4889, Sep. 2015.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length con-
struction of high performance spatially-coupled codes via optimized
partitioning and lifting,” IEEE Trans. Communications, vol. 67, no. 1,
pp. 3-16, Jan. 2018.

A. Hareedy, R. Wu, and L. Dolecek, “A channel-aware combinatorial
approach to design high performance spatially-coupled codes,” IEEE
Trans. Inf. Theory, vol. 66, no. 8, pp. 48344852, Aug. 2020.

A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello,
“Deriving good LDPC convolutional codes from LDPC block codes,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 835-857, Feb. 2011.

L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181-201,
Jan. 2010.

S. Naseri and A. H. Banihashemi, “Spatially coupled LDPC codes
with small constraint length and low error floor,” IEEE Commun. Lett.,
vol. 24, no. 2, pp. 254-258, Feb. 2020.

S. Naseri and A. H. Banihashemi, “Construction of time invariant
spatially coupled LDPC codes free of small trapping sets,” IEEE Trans.
Commun., vol. 69, no. 6, pp. 3485-3501, Jun. 2021.

D. G. M. Mitchell and E. Rosnes, “Edge spreading design of high
rate array-based SC-LDPC codes,” in Proc. IEEE Int. Symp. Inf. The-
ory (ISIT), Jun. 2017, pp. 2940-2944.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “A novel combinator-
ial framework to construct spatially-coupled codes: Minimum overlap
partitioning,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 1693-1697.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi,
“Design and analysis of time-invariant SC-LDPC convolutional codes
with small constraint length,” IEEE Trans. Commun., vol. 66, no. 3,
pp. 918-931, Mar. 2018.

S. Mo, L. Chen, D. J. Costello, D. G. M. Mitchell, R. Smarandache,
and J. Qiu, “Designing protograph-based quasi-cyclic spatially coupled
LDPC codes with large girth,” IEEE Trans. Commun., vol. 68, no. 9,
pp. 5326-5337, Jun. 2020.

M. Battaglioni, F. Chiaraluce, M. Baldi, and D. G. M. Mitchell,
“Efficient search and elimination of harmful objects for the optimiza-
tion of QC-SC-LDPC codes,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2019, pp. 1-6.

A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A generalized
algebraic approach to optimizing SC-LDPC codes,” in Proc. 55th
Annu. Allerton Conf. Commun., Control, Comput. (Allerton), 2017,
pp. 672-679.

A. Hareedy, R. Kuditipudi, and R. Calderbank, “Minimizing the number
of detrimental objects in multi-dimensional graph-based codes,” IEEE
Trans. Commun., vol. 68, no. 9, pp. 5299-5312, Sep. 2020.

A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary LDPC
code optimization framework suitable for dense flash memory and
magnetic storage,” IEEE J. Sel. Areas Commun., vol. 34, no. 9,
pp. 2402-2415, Sep. 2016.

A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, “A combinatorial
methodology for optimizing non-binary graph-based codes: Theoretical
analysis and applications in data storage,” I[EEE Trans. Inf. Theory,
vol. 65, no. 4, pp. 2128-2154, Apr. 2019.

M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788-1793, Aug. 2004.

L. Schmalen, V. Aref, and F. Jardel, “Non-uniformly coupled LDPC
codes: Better thresholds, smaller rate-loss, and less complexity,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 376-380.

A. Beemer, “Design and analysis of graph-based codes using algebraic
lifts and decoding networks,” Ph.D. dissertation, Dept. Math., Univ.
Nebraska-Lincoln, Lincoln, NE, USA, 2018.

Y. Wang, Y. Wang, J. S. Yedidia, and S. C. Draper, “Construction of
high-girth QC-LDPC codes,” in Proc. 5th Int. Symp. Turbo Codes Rel.
Topics, Sep. 2008, pp. 180-185.

I. E. Bocharova, R. Johannesson, F. Hug, B. D. Kudryashov, and
R. V. Satyukov, “Searching for voltage graph-based LDPC tailbiting
codes with large girth,” IEEE Trans. Inf. Theory, vol. 58, no. 4,
pp. 2265-2279, Apr. 2012.

A. Tasdighi, A. H. Banihashemi, and M. R. Sadeghi, “Efficient search
of girth-optimal QC-LDPC codes,” IEEE Trans. Inf. Theory, vol. 62,
no. 4, pp. 1552-1564, Feb. 2016.

J. Wang, L. Dolecek, and R. D. Wesel, “The cycle consistency matrix
approach to absorbing sets in separable circulant-based LDPC codes,”
IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2293-2314, Apr. 2013.

B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and enumeration
of absorbing sets for non-binary graph-based codes,” IEEE Trans.
Commun., vol. 62, no. 2, pp. 398-409, Feb. 2014.

A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary
LDPC codes for magnetic recording channels: Error floor analysis
and optimized code design,” IEEE Trans. Commun., vol. 64, no. 8,
pp- 3194-3207, Aug. 2016.

J. Langford, L. Li, and T. Zhang, “Sparse online learning via truncated
gradient,” J. Mach. Learn. Res., vol. 10, no. 3, pp. 1-25, 2009.

S. Yang, Application-Driven Coding Techniques: From Cloud Storage
to Quantum Communications. Los Angeles, CA, USA: University of
California, Los Angeles, CA, USA, 2021.

F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3D XPoint technology,” Proc. IEEE, vol. 105, no. 9,
pp- 1822-1833, Sep. 2017.

R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of
magnetic recording at 10 Terabits per square inch on conventional
media,” IEEE Trans. Magn., vol. 45, no. 2, pp. 917-923, Feb. 2009.
T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of
the threshold voltage distributions of sub-20nm NAND flash memory,”
in Proc. IEEE Global Commun. Conf., Dec. 2014, pp. 2351-2356.

D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(q),” IEEE Trans. Commun., vol. 55, no. 4,
pp. 633-643, Apr. 2007.

L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-
based LDPC codes: Enumerators, analysis, and designs,” IEEE Trans.
Inf. Theory, vol. 60, no. 7, pp. 3913-3941, Jul. 2014.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: BREAKING THE COMPUTATIONAL BOTTLENECK: PROBABILISTIC OPTIMIZATION 909

[40] A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-
cyclic LDPC codes by ACE optimization,” in Proc. IEEE Inf. Theory
Workshop (ITW), Sep. 2013, pp. 1-5.

S. G. Srinivasa, Y. Chen, and S. Dahandeh, “A communication-theoretic
framework for 2-D MR channel modeling: Performance evaluation of
coding and signal processing methods,” IEEE Trans. Magn., vol. 50,
no. 3, pp. 612, Mar. 2014.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (Corresp.),” IEEE Trans. Inf.
Theory, vol. IT-20, no. 2, pp. 284-287, Mar. 1974.

J. Moon and J. Park, “Pattern-dependent noise prediction in signal-
dependent noise,” IEEE J. Sel. Areas Commun., vol. 19, no. 4,
pp- 730-743, Apr. 2001.

[41]

[42]

[43]

Siyi Yang (Member, IEEE) received the B.S. degree in electrical engineer-
ing from Tsinghua University, Beijing, China, in 2016, and the M.S. and
Ph.D. degrees in electrical and computer engineering from the University
of California at Los Angeles (UCLA), in 2018 and 2021, respectively. She
is currently a Post-Doctoral Associate with the Electrical and Computer
Engineering Department, Duke University. She is broadly interested in error
correction codes that are tailored for modern storage devices, communication
systems, and quantum computing. She worked at Intel Corporation, Non-
Volatile Memory Solution (NSG) Group, as a System on Chip (SoC) Design
Engineer, in Summer 2020. She won the (2020-2021) Dissertation Year
Fellowship (DYF) at UCLA.

Ahmed Hareedy (Member, IEEE) received the bachelor’s and M.S. degrees
in electronics and communications engineering from Cairo University, Egypt,
in 2006 and 2011, respectively, and the Ph.D. degree in electrical and
computer engineering from the University of California at Los Angeles
(UCLA) in 2018. He is currently an Assistant Professor with the Electrical
and Electronics Engineering Department, Middle East Technical University
(METU), Turkey. He is interested in questions in coding/information theory
that are fundamental to opportunities created by the current, unparalleled
access to data and computing. He was a Post-Doctoral Associate with the
Electrical and Computer Engineering Department, Duke University, between
2018 and 2021. He worked with Mentor Graphics Corporation (currently,
Siemens EDA) between 2006 and 2014. He worked as an Error-Correction
Coding Architect with Intel Corporation in Summer 2015 and Summer 2017.

He was a recipient of the Best Paper Award from the 2015 IEEE Global
Communications Conference (GLOBECOM), Selected Areas in Communica-
tions, Data Storage Track. He won the (2016-2017) Electrical Engineering
Henry Samueli Excellence in Teaching Award for teaching Probability and
Statistics at UCLA, where he won the (2017-2018) Dissertation Year Fel-
lowship (DYF). He won the (2018-2019) Distinguished Ph.D. Dissertation
Award in Signals and Systems from the Electrical and Computer Engineering
Department, UCLA. He was also a recipient of the Memorable Paper Award
from the 2018 Non-Volatile Memories Workshop (NVMW) in the area of
devices, coding, and information theory. He was also a recipient of the
(2018-2019) Best Student Paper Award from the IEEE Data Storage Technical
Committee (DSTC). He has been recently awarded the TUBITAK 2232-B
International Fellowship for Early Stage Researchers in 2022.

Robert Calderbank (Life Fellow, IEEE) received the B.S. degree in mathe-
matics from Warwick University, U.K., in 1975, the M.S. degree in math-
ematics from Oxford University, U.K., in 1976, and the Ph.D. degree in
mathematics from the California Institute of Technology in 1980.

He is currently a Professor in electrical and computer engineering at Duke
University, where he directs the Rhodes Information Initiative at Duke (iiD).
Prior to joining Duke in 2010, he was a Professor in electrical engineering
and mathematics at Princeton University, where he directed the Program in
applied and computational mathematics. Prior to joining Princeton in 2004,
he was the Vice President of Research at AT&T, responsible for directing the
first industrial research laboratory in the world where the primary focus is
data at scale. At the start of his career at the Bell Laboratories, innovations
by him were incorporated in a progression of voiceband modem standards
that moved communications practice close to the Shannon limit. Together
with Peter Shor and colleagues at the AT&T Laboratories, he developed the
mathematical framework for quantum error correction. He is also a co-inventor
of space-time codes for wireless communication, where correlation of signals
across different transmit antennas is the key to reliable transmission.

Dr. Calderbank served as the Editor-in-Chief of the IEEE TRANSACTIONS
ON INFORMATION THEORY from 1995 to 1998 and as an Associate Editor
for Coding Techniques from 1986 to 1989. He was a member of the Board of
Governors of the IEEE Information Theory Society from 1991 to 1996 and
from 2006 to 2008. He was honored by the IEEE Information Theory Prize
Paper Award in 1995 for his work on the Z4 linearity of Kerdock and Preparata
Codes (joint with A. R. Hammons Jr., P. V. Kumar, N. J. A. Sloane, and P.
Sole), and again in 1999 for the invention of space-time codes (joint with
V. Tarokh and N. Seshadri). He has received the 2006 IEEE Donald G. Fink
Prize Paper Award, the IEEE Millennium Medal, the 2013 IEEE Richard W.
Hamming Medal, and the 2015 Shannon Award. He was elected to the U.S.
National Academy of Engineering in 2005.

Lara Dolecek (Senior Member, IEEE) received the B.S. (Hons.), M.S., and
Ph.D. degrees in electrical engineering and computer sciences and the M.A.
degree in statistics from the University of California at Berkeley. She is
currently a Full Professor with the Electrical and Computer Engineering
Department and Mathematics Department (courtesy), University of California
at Los Angeles (UCLA). She received the 2007 David J. Sakrison Memorial
Prize for the Most Outstanding Doctoral Research with the Department
of Electrical Engineering and Computer Sciences, UC Berkeley. Prior to
joining UCLA, she was a Post-Doctoral Researcher with the Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology.
She received IBM Faculty Award (2014), Northrop Grumman Excellence in
Teaching Award (2013), Intel Early Career Faculty Award (2013), University
of California Faculty Development Award (2013), Okawa Research Grant
(2013), NSF Career Award (2012), and Hellman Fellowship Award (2011).
With her research group and collaborators, she received numerous best paper
awards. Her research interests span coding and information theory, graphical
models, statistical methods, and algorithms, with applications to emerging
systems for data storage and computing. She currently serves as an Associate
Editor for IEEE TRANSACTIONS ON INFORMATION THEORY and as the
Secretary of the IEEE Information Theory Society. She is a (2021-2022)
Distinguished Lecturer of the IEEE Information Theory Society. She has
served as a consultant for a number of companies specializing in data
communications and storage.

Authorized licensed use limited to: The University of Arizona. Downloaded on July 23,2023 at 17:25:17 UTC from IEEE Xplore. Restrictions apply.

