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Abstract

A catalog containing details of the highest-energy cosmic rays recorded through the detection of extensive air
showers at the Pierre Auger Observatory is presented with the aim of opening the data to detailed examination.
Descriptions of the 100 showers created by the highest-energy particles recorded between 2004 January 1 and 2020
December 31 are given for cosmic rays that have energies in the range 78–166 EeV. Details are also given on a
further nine very energetic events that have been used in the calibration procedure adopted to determine the energy
of each primary. A sky plot of the arrival directions of the most energetic particles is shown. No interpretations of
the data are offered.

Unified Astronomy Thesaurus concepts: Ultra-high-energy cosmic radiation (1733); Cosmic ray showers (327);
Experimental data (2371); Catalogs (205)

1. Introduction

The energy spectrum of cosmic rays extends to beyond

100 EeV. Where and how these particles, predominantly the

nuclei of the common elements up to iron, are accelerated is

one of the major puzzles of astroparticle physics. The flux

above 50 EeV is about 0.5 particles per square kilometer per

century, so that measuring their properties requires the

detection of the cascades or air showers that the particles

create in the atmosphere. In this paper, the methods used by the

Pierre Auger Collaboration to obtain the arrival directions and

energies of the 100 highest-energy particles in the range

78–166 EeV are outlined, and details of the main features of the

air showers produced by the cosmic rays are presented. Phase I

of operation of the observatory ended on 2020 December 31. It

is thus timely to release a catalog to demonstrate the quality of

the data that lie behind measurements of the energy spectrum,

the distribution of arrival directions, and the mass of the

highest-energy cosmic rays that have been reported elsewhere

(Aab et al. 2014a, 2014b, 2017a, 2020a). The events discussed

here are included in the data set recently used in a discussion of

the arrival directions of events above 32 eV (Abreu et al.

2022).103 No interpretations of the data are offered in this

paper. Recent reviews, together with some interpretations, of
data on high-energy cosmic rays can be found in Mollerach &
Roulet (2018) and Alves Batista et al. (2019). A discussion of
present data on the highest-energy cosmic rays is included in
the US Community Study on the Future of Particle Physics
2021 (Coleman et al. 2023).
The structure of the paper is as follows. In Section 2, after a

brief outline of the methods used to detect the highest-energy

cosmic rays, the instrumentation of the Auger Observatory

relevant to this paper is described. In Section 3, brief accounts

of the techniques developed by the collaboration are given,

including that used to assign the energy of the primary particle

100
Also at University of Bucharest, Physics Department, Bucharest, Romania.

101
Now at Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany.

102
Now at Graduate School of Science, Osaka Metropolitan University,

Osaka, Japan.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

103
Two events with energies close to 100 EeV, used in a recent study of mass

composition (Yushkov 2019), are not included here, or in Abreu et al. (2022),
as different selection criteria were adopted.
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that initiates each air shower, or event. In Section 4, the catalog
is described and some events within it are discussed in detail.
These descriptions have been prepared to aid scrutiny of the
complete sample publicly available at https://opendata.auger.
org/catalog/. In Section 5, a sky map of the arrival directions
of the events is shown.

2. The Detection of High-energy Cosmic Rays and the
Pierre Auger Observatory

2.1. The Detection of High-energy Cosmic Rays

Above an energy of about 100 TeV, the flux of cosmic rays
is so low that the size of detectors flown using balloons, or
deployed in space, is insufficient for detecting useful numbers
of primary particles directly. At higher energies, the particles
create cascades, largely of electrons, positrons, photons, and
muons, that propagate through the atmosphere as extensive air
showers. Such showers can be detected through the charged
particles and photons that reach ground level, and by observing
light emitted from the atmosphere. Properties of the primary
cosmic rays are inferred from studies of these showers.

If the incoming particle is a proton or an atomic nucleus,
then, in the first interaction with a nucleus in the atmosphere
(usually nitrogen or oxygen), hundreds of pions are created.
The neutral pions decay rapidly into photons that initiate
electromagnetic cascades through pair production, with the
electrons and positrons subsequently producing bremsstrahlung
radiation. The electromagnetic cascade grows until the rates of
energy loss through these two processes are exceeded by the
rate of energy loss by ionization. Charged pions interact with
nuclei to produce additional pions that further enrich the
cascade until their energy falls below ∼300 GeV when
charged-pion decay becomes more probable than interaction
with nuclei. The nucleons of the incoming primary lose, on
average, about 50% of their energy in the first interaction, and
in further similar interactions, thus enhancing the number of
secondary particles in the shower. The charged particles and
the accompanying photons spread out laterally because of
scattering, and because of the transverse momentum of the
particles produced in the collisions.

The shower of secondary particles can be detected in several
ways. One method is to spread a number of detectors over the
ground—currently scintillation counters or water Cherenkov
detectors (WCDs) are the most widely adopted. At ∼1 PeV, the
footprint of the shower is about 104m2, while, for the energies
of interest here, the equivalent scale is many square kilometers.
The number of detectors deployed in any shower array is, of
necessity, a compromise dictated by cost.

The particles of the shower can be thought of as traveling at
close to the speed of light in a slightly curved, disklike
configuration similar to a giant dinner plate, with the density of
particles falling off rapidly from the center of the disk. The
falloff is described by a lateral distribution function (LDF),
knowledge of which is important for the reconstruction of
events. The zenith angle of a shower is determined with an
accuracy of ∼1° from the times of arrival of the first particles in
the shower disk at the detectors.

Other methods of shower detection make use of the
fluorescence radiation that results from the excitation of
molecules of atmospheric nitrogen by charged particles in the
shower and of the Cherenkov light created as these particles
cross the atmosphere. Fluorescence radiation is emitted

isotropically and can be observed at large distances from the
shower. Detection is technically demanding as only about
5.6 photons are emitted in the 300–400 nm band for each MeV
of energy deposited (Ave et al. 2013). The challenge of
detecting such light from a shower produced by a particle of
∼3 EeV at 15 km is akin to trying to observe a 5 W light bulb
moving at the speed of light at this distance. By contrast,
Cherenkov radiation is much brighter with around 30 photons
emitted between 400 and 700 nm per meter of track (Galbraith
1958), with the light concentrated along the direction of travel
of the shower and with a lateral spread dictated by that of the
electrons. In the events described below, scattered Cherenkov
light is a background that must be accounted for when
reconstructing the properties of showers with fluorescence
detectors (FDs).
Other aspects of shower detection specific to the Auger

Observatory are discussed in Section 2.2.

2.2. The Pierre Auger Observatory

The Pierre Auger Observatory is the largest cosmic-ray
detector ever constructed. It was designed to explore the
properties of the highest-energy cosmic rays with unprece-
dented statistical precision and this objective has been
achieved. The primary experimental targets were the determi-
nation of the energy spectrum, the distribution of arrival
directions, and the mass composition of cosmic rays above
∼1 EeV. Studies of lower-energy cosmic rays, of particle
physics, and of geophysical phenomena now form important
additions to the scope of the project.
The observatory is located near the city of Malargüe,

Mendoza Province, Argentina, between latitudes 35.0°S and
35.3°S and longitudes 69.0°W and 69.4°W. The mean altitude
of the site is about 1400 m above sea level, corresponding to an
atmospheric overburden of about 875 g cm–2. The observatory
comprises an installation of about 1600 WCDs, separated by
1500 m, laid out on a triangular grid over an area of 3000 km2

(the surface detector, SD), and overlooked by an FD
comprising four stations, each containing six telescopes, each
with 440 photomultipliers and a 13 m2 mirror. A map of the site
showing the features relevant to this paper is presented in
Figure 1. A detailed description of the instrumentation can be
found in Aab et al. (2015a).
The WCDs (each 10 m2× 1.2 m) are used to measure the

energy flow at the ground level carried by the flux of muons,
electrons, positrons, and photons in the air showers generated
by the primary particles. In near-vertical events, there are 10
times as many photons as electrons and positrons. There are, in
turn, 10 times as many electrons as muons in these events. The
average energy of the muons in a near-vertical shower is ∼1
GeV, while the mean energy of the entities of the electro-
magnetic component is ∼10MeV. Thus, the electromagnetic
radiation is largely absorbed in the 3.2 radiation lengths of the
1.2 m depth of the WCDs, whereas most of the muons pass
straight through, losing energy only through ionization. The
energy deposited in the water by the shower components is
expressed in terms of the signal, measured using three 9 inch
photomultipliers, from a muon traversing vertically and in
terms of vertical-equivalent muons, or VEM, and corresponds
to an energy deposit of ∼250MeV. In a vertical shower
produced by a particle of 10 EeV, the signal, S(1000), at
1000 m from the densest region of the shower, called the core,
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is ∼40 VEM, and is roughly a 50/50 mixture of signals from
muons and the electromagnetic component.

The times of arrival of particles at the WCDs are measured
using GPS signals that are also exploited to locate the position
of each detector to 20 and 50 cm in the horizontal and vertical
directions, respectively. At the highest energies, the incoming
direction can be determined to better than 0°.4 (Aab et al.
2020b).

The thickness of the shower disk (in nanoseconds) is defined
as the time that it takes for the signal amplitude to grow from
10% to 50% (this time, t1/2, is referred to as the risetime). In
events that arrive nearly vertically, risetimes vary from a few
nanoseconds close to the core to ∼300 ns at distances of
∼1 km, and decrease as the zenith angle increases.

The time profiles of the signals recorded with the WCDs
have been used in several studies. It is possible to build
observables that allow inferences to be made about the mass
composition, and to probe hadronic interactions above the
energies attained at the Large Hadron Collider, with a statistical
sample of ∼81,000 events (Aab et al. 2017b). Additionally,
searches for photons and neutrinos in the cosmic particle flux
have been made (Aab et al. 2017c, 2019a). Above 60°, the
risetimes of the signals are too fast to measure accurately with
the electronics currently in use.

Measurements of the fluorescence light make possible a
calorimetric estimate of the energy of the primary particle (Aab
et al. 2020a) and provide a key tool used in the determination
of the mass of the primary particles (Aab et al. 2014b). For
such studies, it is essential to monitor the atmosphere and this is
done using steerable lasers located at the positions marked CLF
and XLF in Figure 1 (Abreu et al. 2012). These lasers are also

used to make independent checks on the accuracy of the
reconstruction of the arrival directions possible (Mostafá 2005).
Data taking began on 2004 January 1 with 154 WCDs and

two fluorescence stations partly operational. Observations with
the instrumentation of Figure 1 started in 2008 June and have
been in progress ever since. The SD is operated almost
continuously, while observations with the FD are restricted to
clear dark nights. Phase I of the project was completed on 2020
December 31. Instrumentation used in other Phase I studies is
described in Aab et al. (2015a). It is thus timely to release a
catalog giving details of the extensive air showers produced by
the highest-energy cosmic rays observed thus far. In addition to
the detailed information on the 100 events of the highest energy
recorded between 2004 January 1 and 2020 December 31,
which are part of the set of events discussed by Abreu et al.
(2022), nine events of slightly lower energy, used for energy
calibration, have been included to increase the number of
fluorescence events presented.

3. Reconstruction of Shower Parameters

The properties that can be determined most directly are the
arrival direction and the energy of the primary particle that
initiates each air shower. Estimating the mass of the incoming
particle is more complex as it requires assumptions to be made
about the hadronic physics associated with interactions of
nucleons and pions and, at present, it is not possible to identify
the mass of the primaries except on an average basis (e.g., Aab
et al. 2014b). No discussion of measurements relating to mass
determination is included in this paper. In the following
sections, brief descriptions of the methods used to find the
arrival directions and the energies are given.

3.1. Recording of the Data

Data from the SDs to be used in reconstruction are derived
from a relatively complex triggering procedure described in
Abraham et al. (2010a). Briefly, triggers from each station,
tagged with the GPS time, are sent at a rate of ∼20 Hz to a
computer located at the campus in Malargüe (Figure 1) via a
purpose-built link for communications. The computer is used to
search for spatial and temporal coincidences between triggers
from the detectors. When a coincidence is found between at
least three stations, the data from the triggered detectors are
downloaded (Abraham et al. 2010a). In addition to the trigger
time, the data include readouts from flash analog-to-digital
converters (FADCs) associated with each of the three
photomultipliers in the WCDs. The GPS time stamps have a
precision of 12 ns, while the FADCs are 10 bit running at
40MHz. From the FADC information, the amplitude and time
structure of each signal are obtained.
Data from the FDs are recorded in a different manner

(Abraham et al. 2010b). The telescopes at each of the four
fluorescence stations are operated remotely from the Malargüe
Campus or, since 2017, additionally from various locations
around the world. The camera of each telescope contains 440
photomultipliers (pixels). The recording of signals and time
stamps is completely independent of that used for the SDs. A
very loose criterion of a localized pattern of four pulses in
consecutive time order is adopted as the trigger at each
fluorescence telescope. Those triggers where a shower track
can be found are transmitted to the central computer, together
with information on the geometry of the shower candidate.

Figure 1. The layout of the Pierre Auger Observatory covering 3000 km2. Each
small dot corresponds to a WCD. FDs are located at Los Leones, Coihueco,
Loma Amarilla, and Los Morados. The 30° azimuthal fields of view of the six
telescopes at each site are shown by the radial lines emanating from them: the
vertical reach of the telescopes extends to an elevation of 28°. 6. Data are
transmitted to the central laboratory, located at a campus in Malargüe, using a
purpose-built communication network. The dashed lines show roads. Gaps in
the layout of the array are due to difficulties with landowners. Steerable lasers
(see text) are located at positions CLF and XLF.
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From this information, the time of impact of the shower at a
ground position in the region of the SDs is computed, so that all
FADC traces in the region, arriving within 20 μs, are also
centrally recorded. After each night of operation, data from the
fluorescence triggers are then merged with those data collected
with the SDs: these form the hybrid data set. For high-level
analyses, several quality cuts are applied to the fluorescence
events, including those relating to cloud cover and atmospheric
aerosols. Further cuts are made to ensure that the selection of
events is unbiased with respect to the primary particle mass
(Aab et al. 2014a). The overall efficiency of these cuts is such
that approximately 25% of SD events with energies above
10 EeV registered during FD operation have an accompanying
good-quality and unbiased FD shower profile.

3.2. Reconstruction of the Arrival Direction and Energy of
Showers

3.2.1. Introduction

While the reconstruction of the arrival direction of an air
shower is relatively straightforward, as outlined in
Section 3.2.2, the determination of the parameter of the shower
to be adopted as a surrogate for the primary energy is more
difficult. This is because, as the zenith angle increases, the
shower loses the near-perfect circular symmetry found in an
event generated by a cosmic ray entering the atmosphere at 0°.
The loss of symmetry of the distribution of the signal size in the
plane perpendicular to the arrival direction of a shower arises
for several reasons: geometrical effects associated with the
angles at which high-energy particles are emitted in early
interactions, geometrical effects relating to the direction of
travel of particles entering the detectors, attenuation—particu-
larly of the electromagnetic component—as the shower crosses
the array, and the effect of the geomagnetic field. The most
direct experimental evidence of asymmetry is found in studies
of the risetime of signals from the WCDs (Aab et al. 2016).

The consequences of asymmetries of the signal sizes have
been studied in some detail using simulations. Luce et al.
(2022) examined the impact on the electromagnetic comp-
onent. At 1000 m from the shower axis, the amplitude of the
asymmetry of the signal size is ∼50% in a shower produced by
a primary of 10 EeV at a zenith angle of 45°. However,

estimates of the parameter used to define the shower size (the
signal size at 1000 m from the shower axis, S(1000)—see
below) are changed by less than 10%. This is largely because
the contribution of muons to the total signal in a detector rises
with an increasing zenith angle.
At relatively small zenith angles, simulation studies have

also been used to show that the effect of the geomagnetic field
changes estimates of S(1000) by only a few percent for angles
around 45° (Abreu et al. 2011). However, as the zenith angle
increases, the effect of this field becomes more evident because
of the increasingly long path length of the muons as they cross
the atmosphere. In Figure 2 the densities of muons reaching the
ground, again estimated through simulation, are shown for
three zenith angles.
It is evident that the asymmetry of the radial distribution of

the muons in the shower increases with the zenith angle,
becoming particularly apparent above 70°. At such angles, the
electromagnetic part of the shower, arising predominantly from
the decay of neutral pions, is largely absorbed as the
atmospheric thickness exceeds 2440 g cm–2. However, an
electromagnetic component arising from muon bremsstrahlung,
knock-on processes, and muon decay is present and is time-
synchronous with the muons, so that the time spread of the
signals is small, as will be seen in the events discussed in
Section 4.
Novel methods have been developed to analyze events of

large zenith angles (Ave et al. 2000; Aab et al. 2014c) as
discussed in Section 3.2.3. There is, of course, no sharp
transition between the zenith angle range in which atmospheric
absorption dominates and that in which geomagnetic effects
assume greater importance. Above ∼60° the accuracy of
reconstruction of both the direction and energy is increasingly
improved using the new techniques (Schmidt 2010), and
accordingly different approaches are adopted above and below
this zenith angle.

3.2.2. Reconstruction of Events with Zenith Angle <60°

The methods used to reconstruct events with zenith angles
θ< 60° recorded by the WCDs are described in detail by Aab
et al. (2020b). The zenith angle is measured from the zenith
while the azimuth angle, f, is measured counterclockwise from

Figure 2. Parameterized densities of muons for a 10 EeV proton shower at zenith angles of 60°, 70°, and 80° arriving from an azimuth f = 0°. Radial units are in
kilometers. The coordinate system is defined in the plane perpendicular to the shower direction with the y-axis parallel to the projection of the Earthʼs magnetic field,
Bproj, on that plane. The magnitudes of the muon densities are indicated (32, 16, 8, ... per square meter).

6

The Astrophysical Journal Supplement Series, 264:50 (24pp), 2023 February Abdul Halim et al.



east. For showers as large as those described here, all arrival
directions are determined to better than 0°.4. Accordingly, as
deflections by the Galactic magnetic field of protons exceed
this number, even for the energies discussed here, no
uncertainties are given. An uncertainty of 0°.4 in the zenith
angle leads to an uncertainty in energy of <0.2%.

The positions of the detectors with respect to the core of the
shower are found by fitting the observed signals to an LDF.104

In general, because of the wide spacing of the detectors, it is
not possible to determine this function for every event.
Accordingly, an empirical description, based on the pioneering
studies of Greisen (1956, 1960) and Kamata & Nishimura
(1958), is adopted:
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with rs fixed at 700 m. The slope factor, β, is negative,

changing from about −2.6 at θ= 0° to about −1.9 at 60°. The

flattening of the LDF with an increasing angle is largely due to

the increasing dominance of the muon component.
The quantity ropt relates to the spacing of the detectors and is

the distance at which uncertainties in the reconstructed signal
size, arising from lack of knowledge of the LDF, are minimized
(Hillas et al. 1971; Hillas 1977). For the detectors of the Auger
Observatory, whose spacing is 1500 m, ropt has been shown to
be close to 1000 m (Newton et al. 2007). The signal size at this
distance, S(1000), is used to estimate the primary energy.

The average statistical uncertainty in the determination of S
(1000) at the highest energies is 8% (Aab et al. 2020b). The
uncertainty on the impact point is ∼50 m. S(1000) is influenced
by changes in atmospheric conditions that affect the develop-
ment of showers (Aab et al. 2017d), and by the geomagnetic
field, which impacts the signal sizes in the shower (Abreu et al.
2011). Therefore, before the shower size estimator is used in
the calibration procedure (Section 3.3), corrections of ∼2% and
∼1% are made for atmospheric and geomagnetic effects,
respectively.

3.2.3. Reconstruction of Events with Zenith Angles >60°

The analysis of events with zenith angles >60° is important
as extending measurements to these angles enhances the
exposure of the observatory by 30%, and extends sky coverage
to regions that would otherwise be inaccessible. However, as
explained above, techniques different from those used to
reconstruct showers arriving at smaller zenith angles must be
adopted. Showers with zenith angles estimated to be as great as
∼90° have been recorded, but because the distance between
detectors as seen by the shower is substantially shortened, the
accuracy of reconstruction of the direction is badly degraded,

and we restrict selection to those with θ< 80°, where the
directional uncertainties are <1°. The procedures developed to
analyze these events are discussed in detail in Aab et al.
(2014c).
Above 70° most of the particles at the detector level are

energetic muons accompanied by an electromagnetic comp-
onent in equilibrium with the muons arising from bremsstrah-
lung, knock-on electrons, and muon decay processes, which
makes up 25% of the signal beyond ∼1 km from the core and
around 30% within 1 km. Except at extreme distances,
approximately 80% of the signal arrives within about 200 ns
(see Figures 9 and 15 in Section 4 below). The muons travel
tens to hundreds of kilometers before detection and are
deflected significantly by the geomagnetic field. Thus, at
ground level, the near-cylindrical symmetry associated with
near-vertical events is lost, as shown in Figure 2.
For showers with an inclination between 60° and 70°, and in

particular at distances closer than 1 km to the shower core,
there is still a significant contribution from the electromagnetic
component, 67% at 60° and 100 m, and accordingly this is
included in the reconstruction (Valiño et al. 2010).
The number of stations satisfying the trigger conditions

above 60° increases with sec q so that at 30 EeV the average
number is ∼25 at 60°, while at 80° it is ∼45. The method used
for reconstruction is based on fitting the signal pattern recorded
to what is predicted from modeling the shower development.
The muon signal scales with energy as ρμ(r)∝ E

α with α in the
range 0.90–0.95. The expected density of muons at the ground
is given by ρμ(r)=N19ρμ,19(r, θ, f), where N19, chosen by
convention, is a measure of shower size using a reference
shower model and comparing the signals to those expected
from simulated showers of 10 EeV with the same arrival
direction. Simulations have shown that ρμ,19(r, θ, f), at fixed
zenith and azimuth angles, varies by only about 5% for changes
in the energy and mass of the primary particle (Dembinski et al.
2010).
The absolute value of N19 depends on the choice of mass

composition and hadronic model used in the simulation for the
reference model, but the dependence is constant with energy
and between the primaries (Aab et al. 2015b). This uncertainty
does not impact the estimate of the primary energy because the
constant shift is absorbed by the method used to determine the
energy scale, as outlined in Section 3.3.

3.2.4. Reconstruction of Events Recorded with the FDs

The FDs provide calibration information from which the
energies of the more abundant events obtained with the WCDs
alone can be derived. Measurements of the fluorescence
emission also give details on the longitudinal development of
air showers in the atmosphere, including the determination of
the depth at which the deposition of energy is greatest, that is,
the shower maximum. This is a key measurement for mass
estimation. Details of the reconstruction methods are discussed
in Abraham et al. (2010b) and Aab et al. (2014a) with only a
brief description given here.
The 440 pixels in each camera, illuminated by light from

the air shower, are used to reconstruct a plane that includes
the axis of the shower and the location of the telescope.
Within this plane, a 3D reconstruction of the arrival direction
is obtained by determining the geometry from the arrival
times of the shower light at each pixel, and from the time of
arrival of the shower particles at the WCD closest to the core

104
When the core of a shower falls close to a detector, the signal can be so

large that the electronic recording channels may saturate. This usually occurs
for detectors within about 500 m of the core, where the signal is greater than
1000 VEM. An algorithm is used to estimate the true magnitude of the signal
from the amplitude of the undershoot, which is introduced capacitatively.
Moreover, for signals larger than 2000 VEM, the photomultiplier tube (PMT)
response is highly nonlinear so that only timing information is used and the
signal is treated in the LDF fit only as a lower limit to the actual size of the
signal. Note that the estimated true signal value is used in the LDF fit for
saturated signals smaller than 2000 VEM. For 50% of the events contained in
the full data set, the signal in one station is saturated; three of the events
discussed below have two saturated stations. Examples of saturated signals can
be found in Section 4, and in the larger database.
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of the shower. This hybrid technique, implemented for the

first time at the Auger Observatory, enhances the precision

with which the shower geometry is determined: the direction

is known to ∼0°.6 (Bonifazi 2009). The signal from each

pixel is recorded in 100 ns intervals and the time and

amplitude data are used to delineate the profile of the shower

development using the techniques described by Unger et al.

(2008). This method allows differentiation between the

various sources of detected light, namely the fluorescence

light, direct Cherenkov light, and light scattered from the

Cherenkov beam into the fluorescence telescope from air
molecules and aerosols.
For each 100 ns interval, the energy deposited in the slant

depth interval corresponding to the measured light flux is
estimated. These individual estimates are fitted using the
universal shower profile function described in Andringa et al.
(2011),
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Figure 3. Features of the most energetic event (PAO191110, #1) recorded with the SD of the Pierre Auger Observatory. See text for details.
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where f (X) is the energy deposit in the slant depth X and

( )dE dX max is the energy deposit at shower maximum. Xmax is

the slant depth of the maximum of the energy deposit, while R

and L are the shape parameters loosely constrained in the fit to

the average of the measured values (Dawson 2020). The

universal shower profile function is a recasting of the Gaisser–

Hillas functional form (Gaisser & Hillas 1977): its adoption

diminishes correlations between shape parameters.

The energy of each event (EFD) is determined by integration
under the area defined by the longitudinal profile, f (X), that
defines the rise and fall of the deposition of energy by the
shower in the atmosphere, with the addition of 20% at 0.1 EeV
and 12% at 100 EeV, respectively. This augmentation accounts
for energy that is not deposited in the atmosphere but is carried
into the ground largely by muons and neutrinos. The model-
independent methods of determining this factor are discussed in
Aab et al. (2019b). Above 10 EeV, the energy is determined

Figure 4. Features of a vertical event with a reconstructed energy of 155 EeV (PAO141021, #4). See text for details.
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with a statistical precision of 8% and with a systematic
uncertainty of ∼14% (Dawson 2020).

3.3. Determination of the Energy of the Primary Particles

The methods by which data from the SDs are calibrated to
obtain the energies of the primaries are detailed in Aab et al.
(2020a). Use is made of hybrid events, both for showers with
θ < 60° (referred to as “vertical events”) and for events of
larger zenith angles (“inclined events”).

For vertical events, the measure of S(1000) is first adjusted to

the value that a shower would have if it arrived at 38° from the

vertical, S38, as this is the median zenith angle for the vertical

sample. Using the 3338 hybrid events that are available, the

calibration relationship is E A S BFD 38= , with A= (0.186±
0.003) EeV and B= 1.031± 0.004. The calibration constants

A and B are then used to estimate the energy for all SD events,

ESD. The statistical uncertainty of ESD, obtained by propagating

the errors on A and B, is 1% at the energies considered in this

Figure 5. Features of an event (PAO171228, #8) recorded with WCDs located at one of the boundaries of the SD. See text for details. Note that in detector #1346
only two of the three photomultipliers were operational. Reality dictates that it is impossible to keep all three photomultipliers operational 100% of the time. Failures
of two, or even all three, photomultipliers inevitably occur. Typically 98% of all stations are active at any time, sending triggers at 20 Hz to the central station
(Section 3.1).
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paper. The energy resolution, obtained from the spread of ESD

values at a given EFD in the calibration events, is ∼8% at the
highest energies (Aab et al. 2020a).

A similar calibration procedure is adopted for events with
θ> 60°. Here the calibration is made using N19 as a surrogate
for the shower size. The value of N19 is then adjusted to the
value (N19,68) for a shower arriving with 68°, the median zenith
angle of the sample. The calibration is made with 389 events
and the values of A and B are A= (5.32± 0.07) EeV and
B= 1.05± 0.02, where N19 replaces S38. The smaller number
of events available for evaluation of the energy of the more

inclined events arises from the higher energy threshold required
(4 EeV against 3 EeV), and from a requirement that the shower
maximum be in the field of view of the FD telescopes. For
inclined events the maximum is very distant from the impact
point, effectively placing an upper limit on the zenith angle of
∼73° for both to be observable. For these events, the energy
resolution is estimated to be 12%, at the highest energies, from
a comparison of N19 with EFD (Pierre Auger Collaboration, in
preparation).
For hybrid events, two estimates of the energy are available,

namely that from the one or more fluorescence measurements,

Figure 6. Features of an event (PAO110127, #15) in which one of the WCDs is saturated. See text for details.
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and that from the determination of S(1000) and the use of the

calibration data. For consistency, the latter value is quoted in all

cases as it is available for all events. Average uncertainties in

energy of 8% for vertical events and 12% for inclined events

are given. The systematic uncertainty in the energy estimates

coming from S(1000) depends on the distance spread of the

signals in an event and on the presence, or otherwise, of

saturated stations. The dominant systematic uncertainty in the

energy estimates of 14% comes from the FD measurements.

4. The Events of the Catalog

The catalog presented in this paper contains details of the
100 highest-energy events recorded using the array of WCDs
of the Pierre Auger Observatory, together with similar data for
a further nine events used in the energy calibration procedures
outlined in Section 3.3. Full details of all 109 events are
available at https://opendata.auger.org/catalog/. A list sum-
marizing the events is also included there. In this section,
features of eight exemplary events are discussed in some detail

Figure 7. Features of the most energetic event (PAO150926, #17) belonging to the set of inclined showers (θ > 60°). See text for details.
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to facilitate appreciation of features in the full set of data. One
of the two hybrid events discussed below has an energy lying
just outside of the range of the top 100.

The events are identified with a catalog number (#N) that
can be used to locate them in the depository, and by a name,
PAOyymmdd, that indicates the year, month, and day of
detection.

4.1. Description of Individual Events

4.1.1. Vertical Events

PAO191110 (#1). Some properties of the most energetic air
shower registered with the SD are shown in Figure 3. The
primary energy is (166± 13) EeV with the shower impacting
the surface array at a zenith angle θ of 58°.6. It has an R.A. α of
128°.9 and a decl. δ of −52°.0. The top middle panel shows the
event footprint on the ground, which spans an area of
approximately (13× 6) km2, with 34 WCDs triggered. Black
dots correspond to stations that are triggered randomly. The
detectors struck are shown in a plane perpendicular to the
direction of arrival in the top right-hand panel, where the red
point corresponds to the position of the shower core. The color
coding (and the blue arrow) shows the direction of propagation
of the air shower, evolving from green for detectors that are
triggered early to red for those that are triggered later. The
radius of each circle is proportional to Slog , where S is the
signal size measured in VEM.

In the left middle panel, the lateral distribution of the
recorded signals, as a function of the distance to the shower
core, is shown. The triggered (blue circles) and nontriggered
stations (orange triangles) are indicated. The event has two
saturated stations (blue open circles) close to the shower core.
Events with two saturated detectors are rare occurrences: only
three events in the full data sample have two detectors that are
saturated simultaneously. The lateral spread of the signals is
described by the modified Nishimura–Kamata–Greisen (NKG)
LDF discussed in Section 3.2.1. The value of the exponent β in
the LDF is given in the top left panel. In the right middle panel,
the time delays with respect to a fit that assumes a plane shower

front are shown for the triggered stations. The delays are
measured in nanoseconds.
In the bottom three panels, the arrival time distributions of

the signals recorded at three detectors (marked 1 to 3 on the
signal map) are displayed. The different colors indicate the
signals from the three photomultipliers in each detector. These
traces exemplify how signal shapes vary with respect to the
distance from the shower core. Here, and below, detectors are
selected that lie close to the distance (1000 m) used to define
the shower size (Section 3.2.2), and at other distances, selected
according to the features being illustrated. It is known from
direct measurements (Linsley & Scarsi 1962) that, except
within a few meters of the shower axis, muons precede the
electromagnetic component. The arrival times of the two
components overlap to some extent, but the electromagnetic
component lags behind the muon signals by an amount that
increases with distance from the shower core. At 1000 m, the
risetime, t1/2(1000), in this event is close to 100 ns
(Section 3.2). The muons that are detected are typically
minimum ionizing particles; as a result their signals show a fast
risetime and a decay time that confines the signals over one to
three 25 ns time bins. As the distance to the shower core
increases, there is more dispersion of the shower particles, with
smaller signals that are spread out in time.
PAO141021 (#4). An event of primary energy (155± 12)

EeV arriving at the ground level at quasi-normal incidence (the
measured zenith angle is 6°.8) is shown in Figure 4. The
footprint of the event is more compact and less elongated than
that of PAO191110 (#1). The top middle panel shows the
footprint on the ground, which spans an area of approximately
(6× 3) km2: 13 WCDs are triggered. The middle panels show
the lateral distribution of the recorded signals as a function of
the distance to the shower core on the left, and on the right, the
time delays with respect to a plane shower front perpendicular
to the incoming direction of the shower.
The signals and arrival times (bottom panels) of the particles

recorded at the three selected detectors are markedly different
from those selected for event PAO191110 (#1). The station
with the largest signal (at 897 m from the core) has above 1000

Figure 8. Left: 2D distribution of measured and expected signals in the shower plane. Station markers are colored according to the signal. The direction of the
magnetic field in the shower plane (Bproj) is indicated by the black arrow. Triangular markers are stations that, as seen from the position of the core, lie within ±45° of
the direction perpendicular to Bproj. That is, these stations are in the direction of the deflection that charged particles experience in the magnetic field. More particles
therefore reach those stations (enhancing the signal) compared to those in stations that are at the same distance to the core but lie along the direction of the magnetic
field (circular markers). The intersection of the shower plane with the ground plane is shown by the dashed line. Right: Projection of the signal distributions as a
function of the distance from the shower core. The markers show the signal measured at the stations, while the curves show the expected signal. Stations in the
direction parallel to the magnetic field are shown on the left, with stations in the direction perpendicular to the magnetic field shown on the right.
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VEM, a factor of 2.6 greater than the value for the signal in

event PAO191110 recorded at a similar distance, 924 m, from

the core. As the distance traveled through the atmosphere is

substantially shorter for this near-vertical event, the particles

suffer less attenuation, resulting in a larger contribution to the

signal from the electromagnetic component. This is reflected in

the slower risetime: t1/2(1000)= (360 ± 10) ns. Likewise, a β

value of −2.6 indicates that the LDF of this event is steeper

than that of event PAO191110, for which β is −2.0.

PAO171228 (#8). An event with primary energy (132± 11)
EeV arriving with zenith angle θ= 41°.7 is shown in Figure 5.
As can be seen in the top middle panel, only 19 WCDs have
been triggered because the footprint of this event extends
beyond the limits of the array (the dashed gray line marks the
perimeter). Although the event is not fully contained, the
reconstruction of the main observables used in the various
physics analyses (Section 3.2) is of high quality.
In the bottom right panel (station ID #1346) there is a signal

of over 3 VEM at about 6 μs. Such signals are due to a

Figure 9. Features of the second most energetic event (PAO200330, #30) belonging to the set of inclined showers (θ > 60°). See text for details.
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contribution from direct light reaching one photomultiplier and
are likely caused by the passage of a particle close to the
location of the photomultiplier, perhaps moving in an upward
direction, or possibly due to light from an electron produced in
a muon decay where the decay electron has been emitted
toward the photomultiplier. Under these conditions, the
Cherenkov photons are detected directly, and a sharp,
distinctive signal is recorded by a single photomultiplier,
rather than the broader signals produced when the light is
scattered on the inner reflective walls of the WCDs. The
increase in signal size caused by the direct light varies with
distance and is typically about 1% at 1000 m for events arriving
close to the vertical.

PAO110127 (#15). This event (Figure 6) has been selected
to show some singular signals that are relatively rare. In this
event 14 WCDs are triggered and used to measure the energy,
(116± 9) EeV; zenith angle θ, 24°.9; and risetime at 1000 m,
(320± 10) ns. However, the detector closest to the core
(located at just over 500 m) shows a saturated signal (see the
bottom left panel in the figure). In this case, the saturation is
due to the overflow of the finite dynamic range of the readout
electronics. The procedure used to recover the majority of such
signals is discussed in Section 3.2.2 above.

The bottom right panel (station ID #1346) again exempli-
fies, as in Figure 5, a signal of over 10 VEM at about 3.8 μs
that contains a contribution from direct light reaching one
photomultiplier.

4.1.2. Inclined Events

PAO150926 (#17). The inclined event, zenith angle
θ= 77°.2, with the highest energy, (113± 14) EeV, is shown in
Figure 7. The shower triggered 75 WCDs in an elongated
pattern on the ground, over an area close to (35× 6) km2. The
shower particles must traverse long distances to reach the
ground at such inclinations. Thus, electromagnetic particles are
mostly absorbed in the atmosphere and the signals at the
ground are produced almost entirely by muons. In contrast to
those of events with lower inclinations, most of the signal
arrives within a very short time of around 200 ns, indepen-
dently of the location within the shower footprint (see bottom
row in Figure 7). Likewise, the distribution of the integrated
signal on the ground loses the near-rotational symmetry of

more vertical events (Section 3.2.1). Hence, the distribution of
the recorded signals as a function of the distance to the shower
core shown in the left middle panel cannot be described by a
single rotationally symmetric function. In the middle right
panel, the delay of the start of the signal in each triggered WCD
with respect to a plane shower front is presented. The shower is
very asymmetric and cannot be well described by, for example,
a concentrically inflated spherical model.
The reconstruction, using a 2D pattern of muon densities at

the ground (Section 3.2.3) for this event, is presented in
Figure 8. In the left panel, the distribution of the triggered
stations around the shower core in the plane perpendicular to
the shower direction (the shower plane) is shown in polar
coordinates. The coordinate system is such that the y-axis
coincides with the intersection of the ground plane with the
shower plane (dashed line). Polar angles close to zero (along
the positive x-axis) correspond to stations triggering before the
shower core arrives at the ground (so-called “early stations”),
while angles toward 180° correspond to “late stations.” The
colored contour lines indicate the expected signals for the
distribution of muon densities that best fit the observed signals.
The direction of the component of Earthʼs magnetic field in the
shower plane is indicated by the black arrow. Note how
the signal pattern is distorted in the direction perpendicular to
the magnetic field. In addition to the distortion induced by the
geomagnetic field, there is a small difference between the
signals of early (right of dashed line) and late stations (left of
dashed line). This difference arises from the attenuation
of muons, and also from the different angles of incidence of
muons on the detectors. In the right-hand panel slices of the
LDF parallel and perpendicular to the projected magnetic field
are shown.
PAO200313 (#30). This event (Figure 9) is the second-

highest-energy inclined event with an energy of (104±
12) EeV. At a zenith angle of θ= 65°.1, this shower triggered
38 detector stations in an elongated pattern on the ground
within (19× 6) km2. As in the previous case, the shower
pattern at the ground shows some asymmetry. Even at this
inclination, there is a substantial electromagnetic component
and the additional 3 km of atmosphere (the early–late effect)
corresponds to more than five radiation lengths. Thus, the
asymmetry arises predominantly from the difference in the

Figure 10. Left: 2D distribution of measured and expected signals in the shower plane. Right: The projection of the signal distribution onto the distance from the
shower core. Note the slight asymmetry between the left (late stations) and right (early stations) halves of the signal in the shower plane (left panel) and the lack of
asymmetry between stations parallel and perpendicular to the magnetic field (right panel).
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attenuation of the electromagnetic component rather than from
deflections of the muons in the geomagnetic field. The effect is
illustrated in Figure 10.

4.1.3. Hybrid Events

The first of the two events discussed here passes the high-
quality criteria applied to select the subsample of hybrid events
used for energy calibration (Section 3.3) of vertical events. The
second event represents the most energetic shower used in the
calibration of inclined events. The details of the 10 most

energetic hybrid events used for calibration, including those

described below, can be found at https://opendata.auger.org/
catalog/.
PAO100815 (#84). This is the most energetic hybrid event,

arriving at a zenith angle θ= 53°.8. Details of the event are

shown in Figures 11–14. The energy estimate from the

determination of S(1000) is (82± 7) EeV, consistent with the

estimate from the fluorescence measurements of (85± 4) EeV.

There are 22 triggered stations with a footprint of about

(7.5× 6) km2. The lateral distribution of signals is described by

the modified NKG function. The signals registered by the

Figure 11. Features of the most energetic hybrid event, PAO100815, #84. See text for details.
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WCDs are shown in the bottom panels of Figure 11. The light
received at the station about 450 m from the shower core (left
panel) has saturated the dynamic range of the two photo-
multipliers (see Section 3.3 and event PAO110127, #15,
above) that were operational. The amplitude difference
indicates the complexity of the saturation process. For the
two detectors with distances to the core larger than 1000 m, the
FADCs show the typical structure of shower signals, where
the early parts of the FADC traces are dominated by muons and
the tails are populated with broader signals due to photons,
electrons, and positrons. The risetime at 1000 m is (127± 5) ns.

Fluorescence light is detected at all four FD stations. Each
individual hybrid reconstruction passes the selection criteria.

The reconstructed profiles of the energy deposition in the
atmosphere are shown in the lower part of Figure 12, while the
reconstructed energies (Section 3.3) and depths of shower
maximum (Xmax) are displayed in the upper section of the
figure.
Shower events crossing the field of view of a telescope at

larger distances have lower angular velocities than those that
pass close to the telescope. Additionally, when a shower is
observed to approach the telescope, the signals are registered
more rapidly across the camera than those from showers
moving away from it. These effects result in different angular
velocities of the shower images on the telescope cameras.
Accordingly, the number of points is different in the profiles of

Figure 12. Reconstructed parameters of PAO100815, #84. The FD stations used in the reconstruction are distinguished by different colors. The red lines correspond
to fits to the profiles of the energy deposition using the universal shower profile function (Section 3.2.4). The yellow bands are centered on the combined weighted
average of the measurements of Xmax and the energy at the FD sites. The widths of the bands correspond to the statistical uncertainties of combinations. The
uncertainty in the SD energy is 8% (Section 3.3).
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the energy deposit recorded at the individual stations. The
discrete binning of the energy deposits is a consequence of the
100 ns readout of the photomultipliers of the fluorescence
telescopes.

The uncertainties in the energy and Xmax estimates from the
individual stations of the FD differ mainly because different
amounts of Cherenkov light are detected at them. The relatively
larger fraction of Cherenkov light (12%) at the Los Leones
station results in a larger uncertainty in the longitudinal profile

because Cherenkov emission is strongly beamed around the
shower axis. Thus, a small uncertainty in the shower geometry

translates into a larger uncertainty in this profile when
compared with the estimate from Coihueco, where the
Cherenkov light is only 5% of the integral of the light flux.
The uncertainty is also affected by other effects, such as the
distance of the shower to the FD sites, that result in different

numbers of photons being detected. At the Coihueco site, the
shower image is detected at two telescopes, giving rise to a gap
in the reconstruction of the profile of deposited energy. This
occurs because the times for which the shower image is close to
the border of the field of view of a telescope are rejected as it is

not possible to make an accurate estimate of the light flux.
Overall, the Xmax and energy estimates from the individual FD
stations agree within quoted statistical uncertainties.
In Figure 13, the camera views are shown for all eight

telescopes at the four sites where the event is detected. The

colors assigned to individual pixels represent the centroids of
pulses in the photomultipliers, thus marking the arrival time of
fluorescence and Cherenkov light at the telescopes. Dark gray
pixels indicate pixels that are triggered randomly that do not
match the time fit used to determine the shower geometry

(Section 3.2.4). These random triggers arise from the night-sky
background, which varies for each detected shower and with
the direction in which a telescope is pointing. There are no such
pixels in the telescopes shown for event PAO140131, #101
(Figure 16). The horizontal axes in the camera views

correspond to local azimuth angles, defined counterclockwise
from the back wall of the FD station. The origin points to the
right, looking on to the shower from the position of the station.
The vertical axis is an angular elevation of the viewing
direction of the FD pixels.

Figure 13. The camera views in all four telescopes for event PAO100815, #84. The colors (violet to red) indicate the times (early to late) at which the light reaches
each pixel. Dark pixels are random coincidences and are not used in the reconstruction.

Figure 14. 3D visualization of PAO100815, #84. The lines correspond to the
light rays and point to the telescopes of the FDs. The colors of the light rays
and of the SD stations represent the trigger times of the FD and SD PMTs,
respectively.
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In Figure 14 a 3D view of the event is exhibited.
PAO140131 (#101). This is the second most energetic

hybrid event and belongs to the data set used to calibrate events

with zenith angles above 60°. The zenith angle θ= 60°.8. The
energy reconstructed from the SD signals is (78± 9) EeV,

consistent with the energy from the fluorescence measurement

of (73± 8) EeV. With 30 triggered stations, the footprint is

elongated and covers an area of (14× 6) km2. At 60°, the depth
of the atmosphere is twice the atmospheric vertical depth. Thus

the electromagnetic component of the shower is partially

quenched (see Section 3.2.2). The LDF and the time delay of

the start time signals are barely asymmetric (see Figure 15) and

can thus be described by the modified NKG function used for

the vertical reconstruction.
Fluorescence light is detected at three FD stations (Los

Morados, Coihueco, and Loma Amarilla), but only the

reconstruction for Loma Amarilla passes the selection criteria.

The profile of energy deposition (Figure 16, bottom right) is

obtained from the profile of the detected light (Figure 16,

bottom left). The color bands in the figure of the light flux

Figure 15. The parameters reconstructed using the data from the WCDs for event PAO140131, #101.
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profile show the contributions from different light sources.

Fluorescence light dominates, while Cherenkov light scattered

into the telescope makes up 10% of the integrated signal.
The top panels of Figure 16 show the camera views of the

shower crossing two adjacent telescopes at the Loma Amarilla

site. The photomultipliers are sequentially triggered (top left

panel with colors coding the trigger time). The charges at each

photomultiplier are proportional to the light flux received at the

entrance window of each telescope. The shower image is
detected in two telescopes giving rise to a gap in the
reconstruction of the profile.

5. A Sky Map of the 100 Highest-energy Events

A map showing the R.A. and decl. of the 100 highest-energy
events is displayed in Figure 17.

Figure 16. Data from the fluorescence telescopes in event PAO140131 (#101). The profile of the energy deposits (bottom right) is accompanied by the light flux
profile (bottom left) and the camera views from two telescopes at Loma Amarilla (top). The shower fell far from the telescopes with the closest point to the shower axis
being about 35 km.
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