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ABSTRACT
Reliable prediction for crop yield is crucial for economic planning, food security monitoring, and agricultural
risk management. This study aims to develop a crop yield forecasting model at large spatial scales using
meteorological variables closely related to crop growth. The in!uence of climate patterns on agricultural
productivity can be spatially inhomogeneous due to local soil and environmental conditions. We propose a
Bayesian spatially varying functional model (BSVFM) to predict county-level corn yield for "ve Midwestern
states, based on annual precipitation and daily maximum and minimum temperature trajectories modeled
as multivariate functional predictors. The proposed model accommodates spatial correlation and measure-
ment errors of functional predictors, and respects the spatially heterogeneous relationship between the
response and associated predictors by allowing the functional coe#cients to vary over space. The model
also incorporates a Bayesian variable selection device to further expand its capacity to accommodate spatial
heterogeneity. The proposed method is demonstrated to outperform other highly competitive methods
in corn yield prediction, owing to the !exibility of allowing spatial heterogeneity with spatially varying
coe#cients in our model. Our study provides further insights into understanding the impact of climate
change on crop yield. Supplementary materials for this article are available online.
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1. Introduction

Crop yield prediction is a fundamental problem in Agriculture
and Economics. In the United States, agriculture is a major
industry by contributing 136.1 billion dollars to the national
gross domestic product (GDP) and providing 11% of total
employment in 2019 (USDA 2020b). The United States is
also a vital contributor to global food security as a leading
international producer of agricultural products. The American
Midwest is especially one of the world’s largest crop production
areas with over 127 million acres of agricultural land and
produces 85% of U.S. corn and soybean (USDA 2020a).
Speci!cally, corn is a primary grain crop globally, widely
used for human food, livestock feed, and biofuel (ethanol
production). Timely and accurate crop yield prediction in the
Midwest is crucial for policy-makers and planners to create
appropriate strategies for the storage, distribution, and trade of
products for agricultural risk management.

We aim to develop a crop yield forecasting model at large
spatial scales to predict the corn yield for !ve Midwestern states.
In this region, where the well-known “Corn Belt” lies, soils are
deep, fertile, and rich in organic material and nitrogen, and the
land is relatively level. The warm nights, hot days, and well-
distributed rainfall of the region during the growing season are
ideal conditions for raising corn. It is well known that climate
variables, particularly temperature and precipitation, have a
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signi!cant impact on all stages of plant growth and hence a"ects
agricultural productivity. Ray et al. (2015) estimated that 60% of
corn yield variability and 36% of the soybean yield variability
in the American Midwest can be explained by climate vari-
ability. Various predictive models have been developed by crop
scientists for production monitoring, including process-based
simulation models under comprehensive mechanism processes
(Guan et al. 2017; Jones et al. 2017; Peng et al. 2018), empirical
statistical crop models based on historical climate observations
and yield measurements (Prasad et al. 2006; Gornott and Wech-
sung 2016; Kern et al. 2018), and machine learning methods in
recent studies (Kang et al. 2020; van Klompenburg, Kassahun,
and Catal 2020). These approaches typically use a summary
of climate information, such as annual or monthly aggregated
climate data, rather than the complete trajectories of meteoro-
logical variables in their prediction models.

Since measurements of meteorological variables, such as
maximum and minimum temperatures, are available on a
daily basis and their e"ects on crop yield vary at a di"erent
growing stage of the crop, it is natural to treat the trajectories
of these variables as functional data in the predictive model
for crop yield. Indeed, recent studies have shown that more
accurate crop yield prediction can be obtained by using the
complete temperature trajectories as functional predictors
(Wong, Li, and Zhu 2019). On the other hand, estimating the
potential impacts of weather patterns on crop productivity is of
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widespread interest to agriculture and the economy as climate
change becomes an imminent challenge for humanity (Lobell
and Burke 2010; Holzkämper, Calanca, and Fuhrer 2012). Both
aspects suggest investigating the relationship between crop yield
and meteorology trajectories, for which functional regression
models are a suitable tool.

The most widely used regression models for scalar responses
against functional covariates are the functional linear models
(Müller and Stadtmüller 2005; James, Wang, and Zhu 2009; Li,
Wang, and Carroll 2010; Goldsmith et al. 2011; Zhao, Chen, and
Ogden 2015). There has been some recent work on nonlinear
regression models for independent functional data, including
the functional additive models (Müller and Yao 2008; Zhu,
Yao, and Zhang 2014; Fan, James, and Radchenko 2015), the
functional generalized additive models (McLean et al. 2014),
and the partially linear functional additive model (Wong, Li,
and Zhu 2019; Cui, Lin, and Lian 2020). In addition, mixed
models have been developed to accommodate the dependency
of functional covariates collected in groups or repeatedly over
time (Crainiceanu, Staicu, and Di 2009; Goldsmith et al. 2012).
See Reiss et al. (2017) for a thorough review for scalar-on-
function regression methods.

Although di"erent approaches have been proposed to
analyze functional data observed over a spatial domain and
model the spatial correlation between curves (Zhou et al.
2010; Staicu, Crainiceanu, and Carroll 2010; Zhang et al. 2016;
Kuenzer, Hörmann, and Kokoszka 2021), to our best knowledge,
spatial correlation of functional covariates is rarely considered
in functional regression models. This limits the applicability
of functional regression models to prediction problems where
the functional covariates are collected over a spatial domain.
As detailed in Section 2, our functional covariates for corn
yield prediction consist of county-level temperature trajectories
which are known to be spatially correlated (North, Wang, and
Genton 2011; Di Cecco and Gouhier 2018). Furthermore, it is no
longer realistic to assume a homogeneous relationship between
response variables and predictors when data are observed over
a large spatial domain. In our study of corn yield prediction
using meteorological variables for !ve Midwest states, the e"ect
of temperatures on crop yield may vary across di"erent regions
depending on the local environmental conditions, such as soil
moisture, soil PH, solar radiation, and wind velocity. Since
continuously monitoring all confounding factors in a large
spatial region is not feasible, it is essential for the crop yield
model to allow for spatial heterogeneity.

We propose a spatially varying functional regression model
to incorporate spatial correlation between functional covariates
and also allow the functional coe#cients to vary over space.
Our model can be considered an extension of the spatially
varying coe#cient model of Gelfand et al. (2003) to functional
regressions. There are two main statistical challenges for this
extension: low-rank representation of spatially dependent func-
tional predictors and regularization to avoid over-!tting while
respecting the heterogeneous relationship between crop yield
and meteorological variables. To address the !rst challenge,
we develop a fully Bayesian functional principal component
analysis (FPCA) framework for spatially dependent functional
data. The within-curve dependence is captured by a low-rank
FPC representation based on nonparametric basis functions.

Some existing FPCA methods such as James, Hastie, and Sugar
(2000), Zhou, Huang, and Carroll (2008), Zhou et al. (2010), and
Huang, Li, and Guan (2014) used reduced rank basis function
representations !tted via Expectation-Maximization algorithms
under frequentist paradigms. In contrast, we propose to embed
FPCA estimation into a fully Bayesian hierarchical model to
ensure uncertainties associated with FPCA estimation propa-
gate into crop yield prediction. We accommodate the between-
curve spatial dependence by allowing FPC scores to be spa-
tially correlated. Over-parameterization of our model is likely to
occur if insigni!cant FPC scores are used in the regression. To
remedy this potential issue while respecting the possible spatial
heterogeneity, we introduce a build-in Bayesian spatially varying
variable selection device to ensure model parsimony. We also
govern all spatially varying parameters by correlated processes
to further reduce the risk of over-!tting.

The rest of the article is organized as follows. We introduce
the corn yield and meteorology data in Section 2 which also
includes a preliminary analysis to explore the heterogeneous
relationship between the corn yield and the functional meteo-
rology predictors. We describe the proposed spatially varying
coe#cient functional regression model with a fully Bayesian
hierarchical structure in Section 3 and conduct simulations
to examine its prediction performance in Section 4. We
present a comprehensive study of the corn yield prediction
in Section 5 and conclude the article with discussions in
Section 6. Detailed MCMC algorithm, convergence diagnostics,
additional simulation and data analysis results are relegated to
the supplementary materials.

2. Crop and Weather Data

We obtain the county-level annual crop yield data (measured
in bushels per acre) together with the size of harvested land
(acre) of Illinois, Indiana, Iowa, Kansas, and Missouri between
1999 and 2020 from the National Agricultural Statistics Agency
(https://quickstats.nass.usda.gov/). We will focus on the corn
yield, which is the most important crop in this region. The corn
yield data availability at each county varies over time. A total
of 403 counties, including 79 in Illinois, 66 in Indiana, 93 in
Iowa, 92 in Kansas, and 73 in Missouri, have data available for at
least !ve years between 1999 and 2020, among the 102, 92, 99,
105, and 114 counties from their respective states. The median
number of years of available corn yield record for those 403
counties is 17 out of 22, and our analysis will be performed on
those counties. The harvest land size also varies over the years
and is collected from the annual Agricultural Survey. In our
data, the harvest land size ranges from 200 to 394,000 acres with
a median size of 70,300 acres.

The meteorology measurements for each county, includ-
ing annual precipitation, daily maximum and minimum tem-
perature are obtained from the National Climatic Data Cen-
ter (NCDC, https://www.ncdc.noaa.gov/data-access). Figure 1
shows temperature trajectories collected from counties in Iowa
and Kansas as examples. Di"erent temperature characteristics
are observed in di"erent regions. We model the annual precip-
itation as a scalar covariate and the daily maximum and min-
imum temperature trajectories as spatially dependent bivari-
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Figure 1. Daily maximum and minimum temperature trajectories collected from counties in (a) Iowa and (b) Kansas in the year 2018. Highlighted trajectories in each panel
are from a randomly selected county from each state.

Figure 2. Spatial maps of estimated linear regression coe!cients from the (a) "rst PC scores and the (b) second PC scores from counties in Illinois, Indiana, Iowa, Kansas,
and Missouri. Counties with missing data are colored gray.

ate functional predictors. While the county-level agricultural
data tend to have missing values on their historical records,
the daily county-level temperature is available from the early
1900s for most areas of the United States from the NCDC. The
long climate records allow us to reliably assess the long-term
temperature pattern in each county.

A preliminary data exploration demonstrates heterogeneous
relationships between corn yield and temperature trajectories.
We treat the daily maximum and minimum temperature curves
as multivariate functional data, conduct a multivariate FPCA
(Wong, Li, and Zhu 2019), and !t a linear regression model on
corn yield with the !rst and second FPC scores for each county
independently, using di"erent years as replicates. Figure 2 shows
the estimated coe#cients for all counties and coe#cients exhibit
a spatially clustered pattern. We then examine the spatial cor-
relation of the coe#cients by performing a Moran’s I test to
test the null hypothesis of no spatial correlation versus a one-
sided alternative of positive spatial correlation. The resulting
p-values < 0.001 for the regression coe#cients on both the
!rst and second FPC scores provide strong evidence of spatial
correlation.

3. Bayesian Spatially Varying Functional Model

For ease of exposition, we present the model based on single-
year data. Our analysis treats data from multiple years as con-
ditionally independent replicates, with rationals detailed in Sec-
tion 5.1. Let Y(s) denote the scalar response at location s ∈ D
for a spatial region D ⊂ R2, X(s; t) = {X1(s; t) . . . , Xq(s; t)}T

de!ned for t ∈ T denote q functional predictors, and Z(s) =

{Z1(s), . . . , Zh(s)}T denote d scalar predictors associated with
Y(s). In our data, Y(s) is the average corn yield per acre for the
county located at s, D is the spatial region of the !ve Midwestern
states, and the time domain T is a year. We also have q = 2
and h = 1 with X1(s; t) and X2(s; t) being daily maximum
and minimum temperature trajectories and Z(s) the annual
precipitation collected from county s. Without loss of gener-
ality, we rescale the time domain to a unit interval and thus
T = [0, 1]. We consider spatially varying relationship between
the scalar responses and associated predictors, and propose a
general framework for spatially varying functional model:

Y(s) = η0(s) + ZT(s)α(s) +
∫

T
XT(s; t)η(s; t)dt + e(s), (1)

where η0(s) is a location-speci!c intercept, α(s) = {α1(s),
. . . , αh(s)}T is a vector of coe#cients for the scalar predictors,
and η(s; t) = {η1(s; t), . . . , ηq(s; t)}T denotes a vector of func-
tional coe#cients over t ∈ T modeling the e"ect of functional
trajectories on scalar response at s. As a special case, when scalar
and functional coe#cients are spatially invariant, that is, α(s) =
α and η(s; t) = η(t), we obtain a partial functional linear
model (Shin 2009). Because the spatially varying coe#cients
are $exible and expected to capture the spatial variability in
Y(s), imposing additional spatial correlation structure on the
error e(s) will cause identi!ability issues to the model. Follow-
ing Gelfand et al. (2003), we assume that e(s) are zero-mean
independent Gaussian errors. Since Y(s) is the average crop
yield per acre obtained from an agricultural survey, we assume
var{e(s)} = σ 2

e /ω(s) following standard practice for survey data
(USDA 2012), where σ 2

e is an unknown variance parameter and
ω(s) is the size of the harvest land.
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The direct estimation of model (1) su"ers from the curse of
dimensionality, we thus need a low-dimensional representation
of spatially dependent multivariate functional predictors. This
dimension reduction in the functional model should ful!ll the
purposes of preserving the within-curve temporal correlation
as well as the spatial correlation across s. To accomplish this,
we !rst de!ne the mean function of the multivariate functional
predictors as µ(s; t) = E{X(s; t)} = {µ1(s; t), . . . , µq(s; t)}T ,
where µl(s; t) = E{Xl(s; t)}. Then, with a set of p principal
component (PC) functions, f r = (fr1, . . . , frq)T , satisfying

∫
T

f T
r (t) f r′(t)dt = I(r = r′), we expand X(s; t) as

X(s; t) = µ(s; t) +
p∑

r=1
ξr(s)f r(t),

where ξr(s) =
∫
T {X(s; t) − µ(s; t)}T f r(t)dt represent FPC

scores that are spatially correlated. Here, p determines the rank
of FPC representation and will be determined by data-driven
methods. Using the same PC functions, the spatially varying
functional coe#cient in (1) can be expanded as η(s; t) =∑p

r=1 βr(s)f r(t), where βr(s) =
∫
T ηT(s; t)f r(t)dt. Then model

(1) can be written as

Y(s) = α0(s) +
h∑

j=1
Zj(s)αj(s) +

p∑

r=1
ξr(s)βr(s) + e(s). (2)

3.1. Spatial Functional Predictors with Measurement
Errors

In practice, X(s; t) is o%en not directly observable, and instead,
we only observe its surrogate containing measurement errors.
It is well known that climate data products, especially the
high-resolution data, are error prone for various reasons (e.g.,
Matthews, Mannshardt, and Gremaud 2013; Merchant et al.
2017). Since our functional covariates are daily maximum and
minimum temperatures, they are likely contaminated with
errors. The error prone functional predictors may lead to
biased inference when directly used in the prediction model,
we therefore should take into account measurement errors
in the derivation of the low-dimensional representation of
multivariate functional predictors. We then de!ne W(s; t) =
{W1(s; t), . . . , Wq(s; t)}T to represent the functional covariates
containing additive measure errors,

W(s; t) = X(s; t) + u(s; t), t ∈ T ,

where u(s; t) = {u1(s; t), . . . , uq(s; t)}T is a vector of white noise
with variance parameter σ 2

ul for the lth element.
Our meteorology records have a much longer history than

the crop yield measurement. This allows us to estimate the local
long-term temperature pattern µ(s; t) using historical records
dated half a century back. The estimation errors in mean func-
tions are negligible compared with the year-to-year variations.
We therefore center each temperature curve by its long-term
mean and expand the centered W(s; t) as

W(s; t) =
p∑

r=1
ξr(s)f r(t) + u(s; t); u(s; t) ∼ N(0, V),

where V = diag(σ 2
u1, . . . , σ 2

uq). We assume that u(s; t) and e(s)
in (1) are independent.

Let s1, . . . , sn be the observed locations and ξ r = {ξr(s1),
. . . .ξr(sn)}T be the n-dimensional vector of the rth order FPC
scores. To model spatial dependency among functional predic-
tors, we assume ξ r ∼ N{0n, σ 2

ξr
$(θ ξr )}, r = 1, . . . , p, where

$(θ ξr ) denotes an n×n correlation matrix parameterized by θξr .
This regularization on ξ r helps preserve the spatial continuity
of functional predictors, and more details on its correlation
structure are elaborated in Section 3.3. We also assume that ξ r
are independent across r.

In the classic functional linear model literature, the PC func-
tions, f r(t), are o%en estimated by spectral decomposition of
the empirical covariance function and held as if known in the
regression analysis. Such an approach ignores the estimation
error of the empirical principal components, and can lead to
underestimated model variation and spurious statistical infer-
ence. We instead propose to combine FPC estimation and func-
tional regression in a uni!ed Bayesian framework. Speci!cally,
we represent f r by a penalized spline expansion similar to Zhou,
Huang, and Carroll (2008), Zhou et al. (2010), and Huang, Li,
and Guan (2014), and impose a Bayesian FPCA model similar
to Kowal, Matteson, and Ruppert (2017). We !rst express each
f r as

f r(t) = {Iq ⊗ ψT
B(t)}dB

r ,

where Iq is a q × q identity matrix, ⊗ is the Kronecker prod-
uct, ψB(t) = {ψB,1(t), . . ., ψB,L(t)}T is a set of L spline basis
functions, and dB

r = {(dB
r1)

T , . . . , (dB
rq)

T}T is a vector of length
Lq with dB

rl being the vector of L unknown coe#cients for
frl(t). We choose cubic B-splines with equally spaced interior
knots for ψB(t) in our application but other basis functions
can also be employed. To penalize the roughness of f r(t), a
penalty function P as the L2-norm of the second derivative
of f r is constructed, that is, P(dr) = ∑q

l=1
∫
{f̈rl(t)}2dt =∑q

l=1(dB
rl)

T'ψ dB
rl, where f̈rl(t) is the second derivative of frl and

'ψ =
∫
T ψ̈B(t)ψ̈T

B(t)dt. Under the Bayesian spline approach,
roughness penalty is imposed by constructing a prior on dB

rl
based on P . Following Wand and Ormerod (2008), we use a
reparameterized dB

rl, denoted by drl, to make the penalty matrix
diagonal for convenient computation. Speci!cally, let 'ψ =
U(D(UT

( be the singular value decomposition of 'ψ . We
reparameterize the basis into ψ(t) = {1, t, ψT

B(t)U(,PD−1/2
(,P }T ,

where D(,P denotes the (L − 2) dimensional diagonal matrix of
positive entries on D( and U(,P is the corresponding L×(L−2)

submatrix of U(. Now it satis!es frl(t) = ψT
B(t)dB

rl = ψT(t)drl
and the roughness penalty for drl can be written as a diagonal
matrix with smoothing parameter λr > 0. We constrain λ1 >

λ2 > · · · > λp > 0 following Kowal, Matteson, and Rup-
pert (2017) to order f 1(t), . . . , f p(t) by decreasing smoothness.
Then we construct a prior drl ∼ N{0L, diag(c, c, λ−1

r , . . . , λ−1
r )}

with a su#ciently large constant c > 0, and also introduce
orthogonal constraints, dT

rlJψ dr′l = 0, for r (= r′, where Jψ =∫
ψ(t)ψT(t)dt. The expansion of W(s; t) and the Bayesian spa-

tial FPCA to estimate f r(t) will be integrated into the full hier-
archical models in Section 3.4.
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3.2. Spatial Variable Selection

The model selection in the functional regression model is typi-
cally performed via truncation, which !rst determines a p based
on how much total variation in X or W can be explained by its
truncated expansion and then uses the same !rst p FPC scores
in the regression model for all observations (Morris 2015).
This selection procedure may not be ideal for data observed
over a large spatial domain with a heterogeneous relationship
between the response and functional covariates. For example, a
speci!c rth FPC score may have nonzero coe#cients at some
locations while having zero coe#cients elsewhere, depending
on their local geological or ecological attributes. A more $exible
model selection scheme that allows heterogeneous sets of FPC
scores to be selected at di"erent locations while preserving
spatial continuity is desirable for our data. We, therefore, pro-
pose a Bayesian spatial variable selection method that can make
location-speci!c decisions.

To facilitate the spatial variable selection, we introduce a
binary indicator variable γr(s) such that βr(s) = 0 if γr(s) = 0,
and βr(s) (= 0 if γr(s) = 1. Following Mendoza (2018), we then
introduce a spatially correlated latent process vr(s) to ensure
spatial continuity of γr(s) by having

γr(s)| vr(s) =
{

1, if vr(s) ! 0,
0, if vr(s) < 0. (3)

The choice of p associated with our Bayesian spatial variable
selection will be discussed in Section 3.4. A similar variable
selection scheme can be easily made for Z(s) when h is high,
but it is not considered in our analysis as h = 1 in our data.

3.3. Regularization of Spatially Varying Coe!cients

Our proposed model employs spatially varying parameters to
accommodate the spatially heterogeneous data structure. The
varying coe#cients βr(s) and αj(s) model the location speci!c
relationship between the crop yield and predictors, the FPC
scores ξr(s) represent the individual functional predictors for
each location, and the binary coe#cients γr(s) further allows
idiosyncratic response-predictor relationships for di"erent loca-
tions. Allowing the coe#cients to vary with no constraint could
potentially lead to over-!tting or algorithm failure. Following
Gelfand et al. (2003), we regularize all the spatially varying
parameters by Gaussian random processes. The imposed spatial
correlation in the Gaussian process priors can force neighboring
coe#cients to behave similarly, and hence mitigate over-!tting.

Speci!cally, we model the spatial coe#cients βr(s) and αj(s)
as spatially correlated Gaussian processes, where the correlation
decays as the locations become further apart. For example, we
assume cov{βr(si), βr(si′)} = σ 2

βr
ρ{‖si − si′ ‖, θβr }, where ρ(·)

is a correlation function de!ned on the distance between loca-
tions, ‖si−si′ ‖, and a parameter vector θβr . Di"erent correlation
functions can be employed for di"erent spatial coe#cients. Sim-
ilarly, we assume the latent variable ξr(s) and the latent process
vr(s) for γr(s) all governed by Gaussian processes with their own
covariance structures.

Although our data are aggregated at the county level so
the conditional autoregressive (CAR) model traditionally con-
structed for lattice data may apply, we argue a covariance func-

tion for continuous geostatistical data is a reasonable approx-
imation for modeling the dependency structure for the crop
yield and climate data. The CAR model usually treats regional
observations sharing a border as neighbors and then assumes
a certain correlation structure for neighbors. This aligns well
with the inherent characteristics of certain datasets, such as the
epidemiology data for which the spread of disease is o%en due
to the interaction of humans or animals of adjacent regions
sharing a border. However, the dependency of the crop yield
data mainly comes from similar soil properties, weather, and
environmental conditions when the two observations are close
in geographic distance, rather than two counties sharing bound-
aries. Therefore, we choose a covariance function that depends
on the distance to model the correlation. Our model aligns
with arguments in Oyebamiji et al. (2015) and Park, Brorsen,
and Harri (2018) who chose geostatistical covariance models
to quantify the spatial dependency of areal crop yield data.
The speci!c choice of covariance function for our data will be
discussed in Section 5.1.

3.4. Bayesian Hierarchical Model

Due to the hierarchical nature of our model con!guration, we
resort to the Bayesian hierarchical model (BHM) for model
!tting and statistical inference. The BHM typically consists of
three stages. The data stage contains the likelihood of data given
the unknown parameters and processes, while the process stage
models the latent processes. The third level closes the hierarchy
by specifying the priors of the unknown parameters. Below we
summarize the !rst two stages of our model and defer the priors
to the supplementary materials.
(i) Data stage:

Y(si) = α0(si) +
h∑

j=1
Zj(si)αj(si) +

p∑

r=1
ξr(si){βr(si)γr(si)} + e(si),

e(si) ∼ N{0, σ 2
e /ω(si)}, i = 1, . . . , n, (4)

W(si; t) = ∑p
r=1 ξr(si){Iq ⊗ ψT(t)}dr + u(si; t),

u(si; t) iid∼ N{0, diag(σ 2
u1, . . . , σ 2

uq)}, i = 1, . . . , n,
(5)

where e(si) and u(si; t) are independent, and γr(si) is de!ned
in (3). The positive weight ω(si) is known at si. The ψ(t) and
dr are reparameterized basis functions and their corresponding
coe#cients for the expansion of f r , as described in Section 3.1.
(ii) Process stage:

αj ∼ N{µαj 1n, σ 2
αj$(θαj)}, j = 0, . . . , h,

βr ∼ N{µβr 1n, σ 2
βr

$(θβr )}, r = 1, . . . , p,
ξ r ∼ N{0n, σ 2

ξr
$(θ ξr )}, r = 1, . . . , p,

vr ∼ N{µvr 1n, σ 2
vr$(θvr )}, r = 1, . . . , p,

dr ∼ N(0qL, Iq ⊗ Dr), where
Dr = diag (c, c, λ−1

r , . . . , λ−1
r ), r = 1, . . . , p.

(6)
The L × L roughness penalty matrix Dr in (6), placed on dr ,

controls the smoothness of basis functions with a su#ciently
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large constant c and smoothing parameters λ1 > · · · > λp.
Ordered smoothing parameters are estimated through MCMC
implementation and details can be found in the supplemen-
tary materials. The n × n correlation matrices $(θαj), $(θβr ),
$(θ ξr ), and $(θvr ) govern the dependency of each process, and
are calculated for n spatial locations based on their correspond-
ing correlation functions, as discussed in Section 3.3.

Most location and variance parameters are sampled through
Gibbs due to their explicit posterior distributions, while the rest
parameters, including parameters in correlation functions and
latent indicator processes vr(s) are sampled through Metropolis-
Hastings (M-H). The full conditional distributions of unknown
parameters and the entire sampling algorithm are also deferred
to the supplementary materials. Whenever the M-H algorithm is
used, the acceptance rate is tuned to be between 25% and 50% to
secure adequate mixing of posterior samples. Both simulations
and data analysis results show that the results are robust against
the choice of initial values.

The algorithm requires a speci!cation of the truncation
parameter p in the FPC expansion. We determine the optimal
p via the Deviance Information Criterion (DIC) (Spiegelhalter
et al. 2002), which is a generalization of the Akaike’s Information
Criterion (AIC) for hierarchical models. This requires to !rst
measure the goodness of !t of the model, D(,), based on the
deviance statistic given parameters ,. For our model, we de!ne
D(,) = −2 ln{f (Y|ξ r , ,1)f (W|ξ r , ,2)}, where , = {,1, ,2},
Y = {Y(s1), . . . , Y(sn)}T , f (·) denotes the likelihood function,
and ,1 and ,2 denote parameters associated with the spatial
functional regression and FPCA expansion, respectively. Next,
the model complexity is measured to trade o" model !t against
the number of free parameters. Since the number of parameters
is not clearly de!ned in complex hierarchical models, the
penalty term measuring the model complexity is de!ned
through PD, known as the “e"ective number of parameters”
in Spiegelhalter et al. (2002). It can be approximated as the
di"erence between the posterior mean of the deviance and the
deviance at the posterior estimates of the parameters. Based on
this approximation, DIC is calculated as DIC = 2D̄ − D(,̄),
where D̄ denotes the posterior mean of D(,) and ,̄ the
posterior estimates of ,. We then choose the optimal p as the
value that minimizes the DIC.

3.5. Prediction

Given the hierarchical models, we simultaneously estimate
model parameters, perform the spatial variable selection, and
make predictions for new observations. To carry out such
analysis, we incorporating new functional and scalar predictors,
Wnew, Znew, and unknown response variables, Ynew, into the
BHM. The model treats Ynew as unknown variables and draws
samples from a full conditional distribution at each iteration of
the MCMC algorithm. By doing so, the new data participate in
the estimation of PC functions and spatial variable selection.
Finally, the prediction, Ŷnew, and their corresponding posterior
100(1 − α)% credible intervals are obtained from the posterior
means, and the 100(α/2)th and 100(1 − α/2)th percentiles of
the posterior samples, respectively.

4. Monte Carlo Experiments

4.1. Data Generation and Implementation

We conduct simulations to evaluate the numerical performance
of our method in terms of model !tting and prediction and
make comparisons with competing methods. We adopt the
spatial locations of the 403 counties across !ve states in our
real data as the spatial domain. The distances between those
counties range from 16 to 1530 km, with an average of 516 km.
We set the number of years as !ve, which represents a more
challenging scenario in terms of estimation accuracy than the
real data analysis due to the smaller sample size. We assume
data at di"erent years are conditionally independent given the
predictors (see Section 5.1) and generate !ve replicates of spatial
responses based on the following model:

Yk(si) = Zk(si)α(si) +
2∑

r=1
ξkr(si){βr(si)γr(si)} + ek(si), (7)

where k and i are indices for years and counties, respectively,
Zk(si)

iid∼ unif(0, 3), and all the other vectors of spatially varying
predictors and coe#cients are generated from a Gaussian pro-
cess with their own mean and covariance matrix parameterized
by φ. Speci!cally, α ∼ N{1n, $(φ)}, ξ k1 ∼ N{0n, 9$(φ)}, ξ k2 ∼
N{0n, 4$(φ)}, β1 ∼ N{1n, 9$(φ)}, β2 ∼ N{−1n, 4$(φ)}.
The binary indicator variable γr , de!ned in (3), is generated by
v1 ∼ N{0n, $(φ)}, and v2 ∼ N{0n, $(φ)}. The errors ek(si)

iid∼
N(0, 22). The correlation matrix $(φ) is governed by a Matérn
correlation function ρ(.) = {/(κ)2κ−1}−1(./φ)κKκ(./φ),
where . is the distance between two observations, κ is the
smoothness parameter, φ the range parameter, and Kκ(·) is the
modi!ed Bessel function of the second kind (Stein 1999). The
parameter φ controls the rate of decay, with larger values of φ

corresponding to a slower decay and thus stronger correlation.
To investigate the e"ect of spatial correlation on prediction, we
consider three values of φ: 50, 200, and 350, which correspond
to low, moderate and high correlation of our simulated data. We
set the smoothness parameter κ = 1. These settings are similar
to Staicu, Crainiceanu, and Carroll (2010).

We further generate multivariate functional predictors
Wk(si; t) as follows,

Wk(si; t) =
2∑

r=1
ξkr(si)f r(t) + uk(si; t),

where f r(t) = {fr1(t), fr2(t)}T , with fr1(t) = cos(2rπ t),
fr2(t) = sin(2rπ t), t ∈ [0, 1], for r = 1, 2, satisfying∫ 1

0 f T
r (t)f r(t) = I(r = r′), and measurement errors uk(si; t) =

{uk1(si; t), uk2(si; t)}T are generated from ukl(si; t) iid∼ N(0, 12),
for l = 1, 2. Functional trajectories are generated on a regular
grid of 100 points in [0, 1].

The simulation is repeated 100 times. Each time we ran-
domly selected 20% of observations as the testing data and the
rest as training data. Although our data are generated from a
Matérn covariance structure, we choose to use an exponential
covariance function in our model !tting for simplicity, which
corresponds to a Matérn with κ = 0.5. This can also evaluate
the robustness of prediction using a misspeci!ed exponential
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Figure 3. Boxplots of Mean Squared Prediction Errors (MSPE) from the proposed BSVFM and the competing models, PLFAM, FGAM, and FLM, under (a) φ = 50, (b) φ = 200,
and (c) φ = 350, based on 100 simulation runs.

covariance function, which has advantages in computation and
estimation. More discussions on the choice of covariance func-
tion will be provided in Section 5.1. Each simulation samples
5000 times with its !rst 2500 as burn-in. In addition to making a
prediction using our own Bayesian Spatially Varying Functional
Model (BSVFM), we also try the following three models for
comparison. All three comparison models include the paramet-
ric e"ect of a scalar covariate but employ di"erent approaches to
incorporate the e"ect of bivariate functional predictors.
1. PLFAM: Partially Linear Functional Additive Models (Wong,
Li, and Zhu 2019) based on additive nonparametric e"ects of
multivariate FPCA (mFPCA) scores.
2. FGAM: Functional Generalized Additive Models (McLean
et al. 2014) based on the direct use of functional predictors via
tensor-product B-splines with roughness penalties.
3. FLM: Functional Linear Model based on parametric e"ects of
mFPCA scores.

To !t PLFAM and FLM, mFPCA scores are calculated based
on the estimated cross-covariance function of bivariate func-
tional trajectories by applying the algorithm in Wong, Li, and
Zhu (2019). We !x p = 2, the actual value of p, for all FPCA-
based methods including ours, FLM and PLFAM in the simu-
lation. On average, the top two empirical FPCs explain 99.3%
of the total variation in the functional predictors. We have
also investigated the PLFAM and FLM using the FPCs that
capture 99.9% of the total variation, which leads to p = 11 on
average. We found no advantage of using a more extensive set of
FPCs in those models, and thus only defer those results to the
supplementary materials. For FGAM, the model is !tted using
the R package “refund,” where the tuning parameter is deter-
mined by a built-in generalized cross-validation procedure. To
!t our proposed model, we employ 20 cubic B-splines bases to
represent the PC functions.

4.2. Evaluation of Prediction

We use Mean Squared Prediction Errors (MSPE) calculated
from the testing set to measure the prediction performance of
di"erent methods. Figure 3(a)–(c) display the prediction results
associated with the three values of the range parameter φ. Note
that we observe much larger MSPE compared to the noise level
of σ 2

e = 4 in our data generation model (7). This is because

Table 1. Rejection rate (%) for no spatial correlation of residuals using Moran’s I test
(α = 0.05) under φ = 50, 200, and 350 for the proposed BSVFM and the competing
models of PLFAM, FGAM, and FLM, based on 100 simulation runs.

BSVFM PLFAM FGAM FLM

φ = 50 9.7 11.4 11.3 11.7
φ = 200 17.9 33.7 31.9 36.0
φ = 350 13.6 23.3 21.4 26.1

the spatially varying coe#cients add a substantial amount of
variability to the responses so the total variation in Y is much
larger than 4. In our simulation, the average marginal variances
of the responses are 55.2, 51.3, and 46.8, for φ = 50, 200,
and 350, respectively. A stronger correlation associated with a
larger φ leads to less variability in responses. The challenge of
estimating spatially varying coe#cients increases the predic-
tion error. The measurement errors in the functional covariates
additionally contribute to the uncertainty of the estimation and
prediction.

For all three levels of spatial correlation, our proposed
BSVFM consistently outperforms the competing models with
a lower MSPE. When φ is small, the spatial correlation of the
varying parameters is weak. This leaves the parameters more
degrees of freedom to vary and thus more volatile to estimate.
We therefore observe relatively higher MSPEs of all methods
for a smaller φ. In all scenarios, our BSVFM demonstrates
a signi!cant advantage over other methods by allowing for
spatially heterogeneous parameters. Furthermore, our BSVFM
naturally provides prediction intervals which is challenging for
the other three models. We then examine the accuracy of the
prediction intervals derived from the BSVFM model. Based on
the 100 simulation runs, the empirical coverage probabilities
for the 95 % credible intervals under φ = 50, 200, and 350 are
98.10%, 98.34%, and 98.38%, respectively, which are close to,
albeit slightly larger than, the nominal level.

Ignoring the spatially varying feature of the parameters can
also lead to clustered residuals, which is an indicator for region-
ally biased model !tting and prediction. To illustrate this, we
performed Moran’s I test on residuals from di"erent models, and
Table 1 summarizes the percentages of rejecting the null hypoth-
esis of no spatial correlation. A lower rejection rate implies a
more random pattern of residuals and thus a more appropriate
model with spatial variability properly incorporated. We !nd
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Figure 4. An example of residuals under φ = 200 over the Iowa State calculated from the proposed (a) BSVFM, and the competing models: (b) PLFAM, (c) FGAM, and (d)
FLM. Counties with missing data are colored gray.

a much lower reject rate for our model residuals when data
has moderate to high spatial correlation, that is, φ = 200
and 350. The data with φ = 50 is very weakly correlated,
so all model residuals show relatively small rejection rates. A
uniformly decreasing rejection rate for φ = 350 compared
to φ = 200 is due to the very strong correlation making
the spatial data less varying. Figure 4 illustrates an example of
residuals from four models over Iowa State under φ = 200.
Residuals from our BSVFM show milder clusters compared to
other competing models.

5. Prediction of Corn Yield

5.1. Model Speci"cs

We apply the proposed BSVFM to predict the county-level
averaged corn yield in the Midwest region using the annual
precipitation and daily temperature trajectories as introduced
in Section 2. Let Yk(si) be the average corn yield per acre and
Zk(si) be the annual precipitation at county si and year k, for
i = 1, . . . , 403, and k = 1999, . . . , 2020. Let Wk(si; t) =
{Wk1(si; t), Wk2(si; t)}T , where Wk1(si; t) and Wk2(si; t) are the
centered daily maximum and minimum temperature trajecto-
ries in year k, respectively. The sustained improvements in seed
genetics and biotechnologies have drastically a"ected the year-
to-year independent variation of crop yield in the past several
decades. The periodical land fallow or land rotation additionally
reduces the temporal correlation on corn production. The land
used to grow corn this year is usually used to grow other crops
or le% without sowing to rest the next year. We thus remove
the year e"ect from the corn yield by constructing Y∗

k (si) =
Yk(si) − Ȳk, where Ȳk is the annual average corn yields at year
k over all regions. We then treat Y∗

k (si) over di"erent years
as conditionally independent replicates given meteorological
variables. To verify this assumption, we evaluated the autocorre-
lation function of the residuals from the !tted prediction model.
The results support the conditional independence assumption
and are deferred to the Supplement.

We !t the proposed Bayesian hierarchical model described
in (4)–(6) to the centered response Y∗

k (si) and the centered

meteorology trajectories Wk(si; t). We choose an exponential
correlation function in (6) to model the spatial correlation in
α and βr , and the latent random !elds ξ r and vr . To reduce
the model complexity, we assume a common range parameter
for each type of parameters, that is, a common φβ across βr , a
common φξ for ξ r , and φv for vr , for r = 1, . . . , p. Although
this restriction can be relaxed, it largely improves the model
parsimony and helps to stabilize the estimation. Additionally,
it is reasonable to assume a common decaying rate because
correlations in all model parameters trace back to the correlation
structure of the original data. All range parameters will be
estimated along with other parameters in our model !tting.
Assuming a more general Matérn correlation function does not
seem to have clear advantages for our data analysis. This is
because the smoothness parameter in the Matérn covariance
function is di#cult to estimate unless there is a reasonable
number of observations in proximity (Stein 1999). Our county-
level crop data, however, does not align with such data structure.
Moreover, it is well known that the three parameters in the
Matérn covariance function cannot be all consistently estimated
(Zhang 2004). As seen in simulation studies in Section 4, the
exponential correlation assumption achieves satisfactory pre-
diction accuracy even with the functional data generated from
Matérn spatial correlation functions.

We employ cubic B-splines with 40 equal spaced interior
knots to construct ψ(t) = {ψ1(t), . . . , ψL(t)}T for the esti-
mation of f r , which captures the local variations in daily tem-
perature trajectories. We tried di"erent numbers of knots, and
the experiments showed that the prediction performance is
insensitive to the choice of L, given it is su#ciently large to
capture the features in meteorology trajectories. Using the DIC
measure described in Section 3.4, we choose p = 5 for the
FPC expansion of the temperature trajectories. Based on a total
of 15,000 MCMC samples, a posterior sample of size 2500
was obtained by using the !rst 5000 iterations as burn-in and
thinning the remaining 10,000 by a factor of 4. Similar burn-
in and thinning practices were adopted by Peruzzi, Banerjee,
and Finley (2020). Each MCMC iteration takes, approximately,
25 sec using a PC with a quad-core Intel(R) Core(TM) i-7
processor. Trace plots of the posterior samples and convergence
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diagnostics using the potential scale reduction factor (PSFR;
Gelman and Rubin 1992) are provided in the supplementary
materials to show the convergence of our MCMC algorithm.

5.2. Prediction Assessment

We examine the prediction performance of our model using
a 10-fold cross-validation and compare it with competing sta-
tistical and machine learning methods. The statistical methods
include FLM, PLFAM, and FGAM, described in Section 4.1,
and a nonfunctional spatially varying coe#cient Model (SVCM)
which simply replaces the functional temperature covariates in
our model by the annual averages of maximum and minimum
temperatures. We also make comparisons with two machine
learning methods that have gained popularity in crop science
studies (van Klompenburg, Kassahun, and Catal 2020), the Neu-
ral Network (NN) and the extreme gradient boosting (XGB). To
!t PLFAM and FLM, the number of FPC is chosen to recover
at least 99.9% of the total variation in the functional predictors.
Both NN and XGB are trained based on 731 variables including
the annual precipitation and the daily minimum and maximum
temperatures for the whole year, using R packages “nnet” and
“XGB,” respectively. The tuning parameters are determined by
cross-validation in each training set. Further exploration of
machine learning methods based on various summary statistics
of temperatures, such as weekly or monthly averaged temper-
atures, or FPCs of temperatures, are presented in the supple-
mentary materials. There seems to be no advantage of using
the reduced temperature information in the machine learning
algorithms. This aligns with the conclusion of Chu and Yu
(2020), which demonstrated that machine learning methods for
crop yield prediction based on daily temperatures could avoid
over!tting through the optimal choice of the number of hidden
layers.

Two types of MSPE are calculated for model comparison:
(i) Regular MSPE and (ii) Weighted MSPE using the size of
the harvest land as the weight. The latter one is calculated by
averaging

∑

(k,i)∈Am

ωk(si){Yk(si) − Ŷk(si)}2/
∑

(k,i)∈Am

ωk(si),

over m = 1, . . . , 10, where Am = {(k, i); Yk(si) belongs to the
mth validation set}.

Table 2 summarizes the prediction results. Our BSVFM
achieves both the lowest MSPE and the lowest weighted MSPE
compared to all six competitors. It is worth mentioning that the
SVCM turns out to be a very competitive approach by allowing
spatially varying regression coe#cients while employing scalar
rather than functional temperature covariates. This further
demonstrates the essence of allowing spatially heterogeneous
relationships in the corn yield prediction model. On the other
hand, the better performance of BSVFM than SVCM shows
treating daily temperature trajectories as functional covariates
enables gleaning more information from temperatures. More
details of the comparison between SVCM and BSVFM are
illustrated in the supplementary materials. Both NN and XGB
are highly sensitive to the choice of tuning parameters and
the results in Table 2 represent their best performance we

Table 2. MSPE and weighted MSPE based on the 10-fold cross-validation calculated
from BSVFM, SVCM, PLFAM, FGAM, FLM, NN, and XGB.

BSVFM SVCM PLFAM FGAM FLM NN XGB

MSPE 425.5 487.9 481.9 473.7 599.4 714.4 448.3
Weighted MSPE 355.7 395.8 414.3 420.1 464.8 586.5 367.9

have obtained based on our attempts. In addition, results
of machine learning methods are typically challenging to
interpret. In contrast, our proposed BSVFM not only yields the
best predictions, but also delivers insightful and interpretable
messages, as detailed in Section 5.3, and provides prediction
uncertainty through credible intervals.

Figure 5 illustrates predicted yields together with their cor-
responding 95% credible intervals using the BSVFM, based
on a randomly selected subset of the data. Credible interval
widths vary over counties due to di"erent harvest land size. The
displayed credible intervals in Figure 5 are from counties with
the harvest land sizes ranging from 47,000 to 297,600 acres. The
narrow interval widths are obtained from counties with large
corn harvest lands. This numerical experiment demonstrates
how to use our model for crop yield prediction when the mete-
orology trajectories are observed. When the meteorology data
are not available for future yield prediction, we will use weather
forecasting techniques to construct the unobserved temperature
trajectories and precipitation to make the prediction.

5.3. Further Nuances

Following the convention of PCA, we sort the initially estimated
f r in the descending order of the posterior means of σ 2

ξr
(the

variance of the corresponding FPC scores) so that the leading
FPC functions f̂ r represent the dominant modes of variation
in the temperature trajectories. The spatially varying e"ect of
precipitation and temperatures on corn yield is illustrated in Fig-
ure 6 which shows the posterior mean of the coe#cients, α(s),
for annual precipitation, and βr(s), for the top three FPC scores.
Counties marked by yellow dots in (b), (c), and (d) indicate that
their corresponding FPC scores were chosen by our Bayesian
variable selection device. FPC scores are selected into the !nal
model if their posterior inclusion probability is greater than 0.5.
The estimated coe#cients are evidently county-speci!c while
spatially clustered. Figure 6(a) shows a cluster of large positive
α̂(s) in central Missouri and negative α̂(s) concentrated in
northern Illinois and Indiana. In Iowa, a gradual change of
annual precipitation e"ect from the west to east is observed
with the sign of coe#cients changing from positive to negative.
The spatially varying pattern also appears in β̂1(s), β̂2(s) and
β̂3(s) in Figure 6(b)–(d). Indeed, the most striking pattern of
the three estimated β processes is their strong spatial hetero-
geneity. Large clusters of negative and positive coe#cients in
β̂1(s) and β̂2(s) are observed, while β̂3(s) tends to have multiple
smaller clusters of coe#cients. The nonnull sets of coe#cients
are captured via the spatial variable selection, and we observe
spatial clusters of counties with nonzero coe#cients. Estimates
of other location-speci!c coe#cients also show spatially varying
and correlated patterns, and are presented in the supplementary
materials.
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Figure 5. True (•) and predicted corn yields (!) with their corresponding 95% credible intervals using the BSVFM from a randomly selected subset of the validation data.

Figure 6. Posterior means of the spatially varying coe!cients: (a) α̂(s), (b) β̂1(s), (c) β̂2(s), and (d) β̂3(s) over Kansas, Iowa, Illinois, Indiana, and Missouri. Counties with
nonnull coe!cients are marked by yellow circles. Counties with missing data are colored gray.

The estimated PC functions f̂ r = (̂fr1, f̂r2)T , r = 1, . . . , 5, are
presented in Figure 7. The two components of the FPC, f̂r1(t)
and f̂r2(t), generally show similar patterns over time, which is
not surprising since the trajectories of maximum and minimum
temperatures are strongly correlated. Overall, f̂ 1 represents a
temperature pattern featuring a warmer than average Winter,
a cooler than average Summer and a hot Fall. Counties with a
high loading on f̂ 1 may also experience a smaller than usual
diurnal range of temperature in January and August. Then f̂ 2
appears to represent a colder than average Winter followed by
monthly temperature oscillations that are agreed by both the
maximum and minimum temperatures, such as higher than
average temperature in July and September but lower in August
and October. The third component f̂ 3 depicts a cooler July and
October but hotter August and September. The two warmer fall

months also observe a larger than usual diurnal range of temper-
ature through the large gap between f̂31(t) and f̂32(t). Then f̂ 4
features a warmer-than-average temperature pattern in Febru-
ary, June and November; and f̂ 5 appears to represent a cooler
early summer followed by a hot September. The spatially varying
coe#cients β̂r(s) in Figure 6 reveal how the e"ects of their
corresponding climate patterns vary over di"erent geographical
regions. Similar weather patterns, represented by similar PC
scores, can have di"erent, sometimes even opposite e"ects on
corn yield in di"erent regions.

To illustrate the bene!t of allowing spatially varying e"ects
of functional temperature covariates on corn yield, Figure 8
compares the !tted yield using the BSVFM and the FLM in
Illinois and Iowa in 2018. Both the BSVFM and the FLM treat
temperatures as functional covariates yet the latter is a spatially
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Figure 7. Estimated "ve PC functions, f̂ r , r = 1, . . . , 5, from the multivariate Bayesian spatial FPCA. Each PC function is a vector f̂ r = (̂fr1, f̂r2)T . The solid and dashed
curves in each panel are the estimated fr1 and fr2, representing the PC functions for maximum and minimum temperatures, respectively. Alphabet symbols “J”, “A”, “J”, and
“O” along with trajectories in each panel indicate the "rst day of January, April, July, and October, respectively, in the rescaled unit interval T = [0, 1].

Figure 8. Observed corn yield (•) and the "tted corn yield from our BSVFM using annual precipitation only (") and using both the annual precipitation and functional
temperature covariates (#) in (a) Illinois and (b) Iowa in the year 2018. Corresponding plots from the spatially invariant FLM in (c) Illinois and (d) Iowa are also shown for
comparison.

Figure 9. Posterior inclusion probabilities (a) γ̂1(s) of the "rst and (b) γ̂2(s) of the second FPC scores for Iowa. Counties with missing data are colored gray.

invariant model. Apparently, the BSVFM method using both
temperature and precipitation captures signi!cantly more vari-
ability of corn yield than the FLM. Figure 8 also shows the varia-
tions in corn yield explained merely by the annual precipitation
and the added value of incorporating the functional temperature
predictors. For both states, the temperature trajectories seem to
be the main driver for corn yield variability compared to annual
precipitation. All these results indicate the necessity of allowing
spatially varying coe#cients and employing functional temper-
ature covariates for corn yield prediction. Similar patterns are
observed in other states.

Taking Iowa as an example, we examine the variable selection
results using the posterior inclusion probabilities for the !rst

and second FPC scores in Figure 9. Iowa is chosen for a better
visualization due to it having the smallest number of missing
counties among the !ve states. The probabilities are calculated as
the posterior means of γ1(s) and γ2(s). Higher (lower) posterior
probabilities imply a higher (lower) chance of the corresponding
FPC scores being selected in the !nal model. Again, the inclu-
sion probabilities display a heterogeneous feature, strongly sup-
porting our conjecture of spatially varying in$uence of di"erent
PCs on crop yield. As a summary of the variable selection result
for the !ve states, the average number of selected FPC scores in
the !nal model is 3. The second FPC score shows the highest
chance of being included with a 64.5% rate over all counties.
The lowest selection percentage is observed on the fourth FPC
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score with a 54.1% rate. The selection rates of the !rst, third, and
!%h FPC are 59.5%, 57.1%, and 62.3%, respectively. Overall, 72
counties select all !ve FPCs, 85 select four FPCs, and the rest
counties mostly have 2–3 FPCs in the !nal model. We perform
Moran’s I test on spatial residuals obtained from the BSVFM
!t over the !ve states at each of the 22 years. Fi%een out of
22 years show a p-value larger than 0.05. This demonstrates
that the spatially varying coe#cients of the BSVFM properly
address the spatial variability in our data, and the assumption of
independent errors in the functional regression model appears
reasonable.

6. Conclusions

We developed a fully Bayesian functional regression model
for corn yield prediction over a large-scale spatial domain.
Our model treats county-level maximum and minimum daily
temperature trajectories as spatially dependent functional
predictors and annual precipitation as a scale predictor. Our
model allows for idiosyncratic response-predictor relationships
by incorporating spatially varying coe#cients as well as spatially
heterogeneous variable selection. We estimate the low-rank
representation of the multivariate functional covariates via a
penalized spline expansion approach while considering additive
measurement errors and spatial dependency in the functional
data. The introduction of spatially varying coe#cients enables
us to achieve more accurate predictions than other methods,
demonstrated by both simulation and real data studies.
The Bayesian approach also has the advantage of providing
uncertainty quanti!cation for predictions. Although our model
is motivated by the corn yield prediction, it can be broadly
applied to scalar-on-function regression models with spatially
indexed functional predictors.

Crop yield is o%en boosted by the advancement of seed
genetics and biotechnologies. South et al. (2019) reported that
crops engineered with a photorespiratory shortcut for photo-
synthetic glitch are 40% more productive in real-world agro-
nomic conditions. Those types of discontinuous year-to-year
variation are beyond the scope of our current model, though
our model can be naturally expanded to gain such power given
appropriate predictors are available. To focus on modeling the
variation arising mainly from meteorological variables, our 10-
fold cross-validation randomly chose 10% from all observations
rather than data of an individual year as the validation set.
That allows model !tting to learn the year-speci!c e"ect. In
practice, an estimated shi% should be added to the prediction if
a breakthrough technology is expected to signi!cantly improve
the crop yield in the prediction horizon. Other factors such as
soil conditions and soil moisture, if available, should also be
included in the prediction model as their $uctuation can directly
impact crop yield.

As mentioned in Section 2, our analysis focuses on counties
with corn yield data available for at least !ve years between 1999
and 2020. Ignoring counties with no observations for at least
15 years seems reasonable in our study since very sparse corn
data is likely to indicate insigni!cant corn production in that
county, possibly due to its geographic features or attributes. For
instance, certain counties may include large urban areas that do
not or only intermittently grow corn. Additionally, we could not

identify a systematic pattern on ignored counties regarding their
geographic and time locations, and the missing mechanism is
unknown. Thus, we assume missing at random in our analysis
and only use the observed values with at least !ve repetitions
for the model !tting. However, if we consider the extension of
the model to other data or applications, the missing mechanism
should be carefully investigated. For example, the public health
data o%en suppress the small number of cases in a county for
con!dentiality issues (Shand et al. 2018). In such a case, the
missing values are not at random and could place prediction at
the risk of carrying bias if le% unattended.

In addition to improving prediction accuracy, our BSVFM
provides further insights in understanding the relationship
between crop yield and temperature trends and variation as
discussed in Section 5.3. Our model enables capturing spatially
heterogeneous e"ects of temperature characteristics on crop
yields, such as di"erent e"ects of hot summer or warm fall on
corn yield over di"erent regions. With the accelerating climate
change and more frequent extreme weather events, our study
will shed new light on evaluating the impact of climate change
on crop yield and food security.

Supplemental Materials

The online Supplement contains the full hierarchical model and MCMC
sampling algorithm. It also contains MCMC diagnostics, additional Monte
Carlo experiments, and additional corn yield data analysis results. R codes
and data are also provided.
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