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ABSTRACT
Heuristics are ubiquitous in computer systems. Examples in-
clude congestion control, adaptive bit rate streaming, schedul-
ing, load balancing, and caching. In some domains, theoretical
proofs have provided clarity on the conditionswhere a heuris-
tic is guaranteed to work well. This has not been possible
in all domains because proving such guarantees can involve
combinatorial reasoning making it hard, cumbersome and
error-prone. In this paper we argue that computers should
help humans with the combinatorial part of reasoning. We
model reasoning questions as 98 formulas [1] and solve them
using the counterexample guided inductive synthesis (CEGIS)
framework. As preliminary evidence, we prototype CCmatic,
a tool that semi-automatically synthesizes congestion con-
trol algorithms that are provably robust. It rediscovered a
recent congestion control algorithm that provably achieves
high utilization and bounded delay under a challenging net-
workmodel. It also found previously unknown variants of the
algorithm that achieve di�erent throughput-delay trade-o�s.
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1 INTRODUCTION
Heuristics permeate computer systems, including congestion
control, tra�c engineering, CPU/cluster scheduling, adaptive
bit rate (ABR) algorithms, load-balancing, and caching. For
some heuristics and domains, we have formal guarantees on
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what heuristics are best for certain workloads, or environ-
ment assumptions (e.g.,work-stealing for scheduling [11] and,
LRU for cache replacement policies [2]). These theoretical
results are backed up by the popularity of these algorithms
in practice [46]. However, for most heuristics and domains,
we either do not have such guarantees, or the guarantees are
proven under unrealistic assumptions. In some areas, lack
of clarity has led to hundreds of papers with promises of im-
proved performance. In this paper, we ask “What would it
take to obtain formal guarantees in these areas?”.
Two challenges make this hard. First, heuristics operate

in many environments, and balance multiple objectives. It
is laborious to analyze and obtain guarantees for a large
number of environment/objective pairs. For instance, in con-
gestion control1, the environments include various network
types (e.g. wired [15, 35], cellular [67, 72], satellite [13], data-
center [3, 73], networks with explicit feedback [31, 39]), and
CCAs balance between an often con�icting set of objectives,
e.g., throughput [35], delay [12, 15], co-existence/fairness [7,
27, 32], priority [48, 58], and �ow/co-�ow completion time [4,
18, 23], to cater to the diverse needs of di�erent applications.

Second, the environment andheuristics can interact in com-
plex ways. Reasoning about them can be cumbersome and
error-prone. For instance, in congestion control, one needs to
carefully consider subtleties of duplicate acknowledgements
(ACKs), timeouts, ACK aggregation, delayed ACKs, token
bucket �lters, and transmission timing jitter that are common
in real networks [6].

Both challenges above pertain to the combinatorial explo-
sion of possibilities when reasoning about systems. This is
where computers shine [28]We envision a human-computer
collaboration where computers do combinatorial reasoning
to broadly answer two types of questions, (a) given the en-
vironment assumptions, design an algorithm that provably
achieves some given desired properties under the environ-
ment, and (b) given an algorithm, generate assumptions about
the environment under which the algorithm is guaranteed
to achieve given desired properties. Humans can iteratively
update the desired properties, and/or the search space for
algorithms and assumptions depending on their use-case.
In this paper, we explore the feasibility of our human-

computer collaboration approach by designing a tool, CC-
matic, that automates reasoning about congestion control

1We use congestion control as the running example in this paper. §5 discusses
other domains.
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algorithms. Wemodel reasoning questions as 98 logical for-
mulas, and use the counter-example guided inductive syn-
thesis (CEGIS) framework to solve the formulas [1, 61]. The
CEGIS framework involves iterative interactions between a
generator and a veri�er. The generator proposes a candidate
solution from a de�ned search space, while the veri�er pro-
duces a counterexample that breaks the proposed candidate.

Weovercomeseveral technical challenges to tractably solve
our formulas (§3). For instance, we carefully construct the
generator’s search space to ensure it captures a variety of
possible solutions while keeping it simple enough to keep the
search tractable. Further, CEGIS is prone to enumerating the
search space as each counterexample eliminates only a few
candidate solutions [1, 59].We use domain speci�c insights to
encodemore informationaboutwhya counterexample breaks
candidate solutions, allowing us to prune a larger part of the
search space per counterexample. Our optimizations collec-
tively improve solving time by at least 60⇥. While domain
speci�c, our optimizations have mathematical equivalents
and can be applied to other domains as well (§3.1.2, §5).
We show that automation can help quickly explore large

design spaces. We ask CCmatic to �nd CCAs that provably
achieve high utilization and bounded delay under a recently
proposed network model [6]. CCmatic was not only able to
generate algorithms that matched existing non-intuitive de-
signs [24, 63], it was able to produce several variants of this
design. These variants provide a new range of throughput-
delay trade-o�s that the existing design did not explore.

Outline.We elaborate the reasoning queries that we hope to
answer (§2), describe our approach, technical challenges, and
salient features of our design (§3), and our results (§4). We
believe that our approach can answer other reasoning queries
within congestion control, and also answer similar queries
in other domains like adaptive bit-rate streaming (ABR), and
scheduling. We discuss anticipated challenges and ideas to
generalize our work (§4.1, §5).

2 VISIONAND SCOPE
Designing and analyzing heuristics is a di�cult task. Many
prior works have tried to address this problem. For the design
part, prior work used techniques such as optimization [66],
analytical modelling [45, 65], and reinforcement learning [44,
69]. For analysis part, techniques such as fuzzing/testing [14,
37, 62], and benchmarking frameworks [52, 70], have been
proposed. A recent work, CCAC [6], proposed the use of for-
mal techniques to verify whether a given congestion control
algorithm (CCA) satis�es a given desirable property. Formal
techniques have the advantage of providing provable guar-
antees. Inspired by CCAC, we investigate the use of formal
techniques to automate important steps in the methodology
of design and analysis of heuristics.

We believe the following steps can be (partially) automated:
(1) synthesizing heuristics, (2) identifying assumptions, (3)

di�erential comparison. Our approach is to frame and solve
automation questions as 98 formulas.
Synthesizing heuristics.We seek to synthesize heuristics
that provably ensure certain desired properties under a spec-
i�ed environment. Synthesizing a heuristic means deciding
what controllable actions should be taken in response to ob-
servable signals. For instance foraCCA,wesynthesize conges-
tion window/rate changes in response to measurable signals
like acknowledgements, delays, and losses.

This was one of the motivations of CCAC, where develop-
ers can iteratively query CCAC to obtain counterexamples
that can inform their CCA design. Designing robust CCAs
that work under all target circumstances is non-trivial, so we
reduce the developer’s e�ort by formulating and automati-
cally answering the CCA synthesis query, “does there exist
a CCA such that for all realistic network traces (e.g., those
allowed in the CCACmodel), the CCA achieves the given de-
sired properties (e.g. high utilization and/or bounded delay)”.
Program synthesis techniques have recently been used to
reverse engineer CCAs fromnetwork traces [26]. Encouraged
by them, we apply similar techniques to synthesize (possibly
novel) CCAs that provably ensure desired properties.
Identifying assumptions.Designs and implementations of
heuristics often make implicit assumptions about the envi-
ronment they operate in. For instance, Copa [7] assumes that
queuing delays are close to zero under low utilization [6].
Uncovering such implicit assumptions is hard. Existing

techniques like fuzzing/testing and even CCAC, produce con-
crete counterexampleswhere heuristics fail. These counterex-
amples are often hard to interpret. Instead, we seek to synthe-
size assumptions as logical constraints that (1) serve as a high
level description of equivalence classes of counterexamples
and (2) are human interpretable.

Formally, we ask “does there exist an assumption such that
for all system traces, the system trace ensures given desirable
properties i� the trace satis�es the assumption”. Synthesized
assumptions take the form of logical constraints on system’s
environment, e.g., “a network can delay packets by at most
100`B”. Such logical constraints are easier to interpret than
an execution trace of a system.
Di�erential comparison.We can formally perform di�er-
ential comparison between heuristics by asking queries like:
“given CCA�, CCA ⌫, and some desirable properties, for all
networks on which CCA� ensures the desirable properties,
what are additional network constraints are needed for CCA
⌫ to ensure the properties”. Such queries are useful for system
operators to decide what heuristic they might want to deploy
in their custom system. Again, similar to queries on identify-
ing assumptions, di�erential comparison queries will give us
logical constraints that are human interpretable and capture a
set of network traces as opposed to individual network traces
that a tool like CCACmight generate.
In this paper we provide preliminary results for solving

the CCA synthesis query. We believe our approach can be

9



Automating network heuristic design and analysis HotNets’22, November 14–15, 2022, Austin, TX, USA

G��������

V�������

- =ú

A⇤
S��

g⇤
S��

U����
No solution

U����
SolutionA⇤

Figure 1: CEGIS loop (�gure adapted from [1]).

generalized for identifying assumptions and performing dif-
ferential comparison (§4.1). We also see this as an important
step towards automated reasoning for other domains (§5).

3 DESIGN SKETCH
Wemodel the queries we want to answer as 98 logical formu-
las. Formulas with quanti�ers are typically harder to solve
than quanti�er-free formulas (98 formulas are in ⌃2

? complex-
ity class, while quanti�er-free formulas are in NP). There are
multiple techniques in the formal methods literature to solve
such formulas [20, 30, 55–57]manyofwhich are implemented
by solvers for quanti�ed formulas (e.g., Z3 [19], CVC5 [9]), but
they are often slow out-of-the-box [10].We explore the use of
counterexample guided inductive synthesis (CEGIS) [1, 61]
framework as it allows incorporating domain speci�c insights
to speed up formula solving.
Primer on CEGIS. CEGIS is an iterative approach involving
interactions between a generator and a veri�er. It takes as
input a formula of the form 9A .8g .f (A,g), where f (A,g) is
a quanti�er free formula. Then, the generator tries to synthe-
size a candidate solutionA⇤, and the veri�er tries to �nd a
counterexample g⇤ that breaks the solution. In our running
example of CCA synthesis,A is the CCAwe hope to �nd, g is
a network trace, and the speci�cation f encodes whether the
traceg is realistic under theCCAA andwhetherg satis�es the
desirable properties. The generator �ndsA in a search space
typically de�ned using a template with parameters or holes.
The generator assigns values to the parameters to obtain a
concrete CCA. For instance, a �lled template may specify
how the CCA’s congestion window (cwnd) is updated based
on historical cwnd, packet acknowledgements (ACKs), and
events such as losses or timeouts.
CEGISWork�ow (Figure 1). The generator proposes a can-
didate CCA,A⇤. Initially, this is an arbitrary choice. The veri-
�er checkswhether our speci�cation can be violated by check-
ing if¬f (A⇤,g) is satis�able. If so, theveri�erproducesacoun-
terexample trace g⇤ that violates the speci�cation. We add g⇤
to the set of counterexamples,- . Now, the generator searches
for a CCA that can ensure the speci�cation under all coun-
terexamples till now, i.e., it �ndsA such that8g⇤ 2- .f (A,g⇤)
is true. Note, the generator only checks over the �nite (and
hopefully, small) set - . This loop ends in two cases, (1) the
veri�er fails to �nd a counterexample, proving that under the
latestA⇤, the speci�cation can’t be violated, thusA⇤ is a so-
lution to the 98 query, or (2) the generator fails to �nd a CCA,

this means that there is no solution to the query in the search
space forA. Hence this method is both sound and complete.
The veri�er and generator can be implemented using dif-

ferent techniques including machine-learning [38], and con-
straint solving [1, 26], or amix of both [25].We use constraint
solvers as their solutions are more interpretable and we can
logically encode our requirements.
Challenges. There are several challenges in applying CEGIS
that can be categorized into (1) encoding and (2) scalability.

Encoding. It is non-trivial to precisely specify the CCA tem-
plate and desired properties. Ideally, we want a template that
is expressive enough to capture a variety of actions that CCAs
can take, at the same time, we want to restrict the template
to keep our search tractable. Likewise, we want our desired
properties to be strong enough to synthesize potentially novel
CCAs, but keep them relaxed enough so that solutions to our
queries exist.

Scalability. The CEGIS approach can be slow in general.
The generator/veri�er formulation can often involve non-
linearities consuming signi�cant time per iteration. CEGIS
loop is alsoprone toenumerating thegenerator’s entire search
space through many iterations of the loop since each coun-
terexample eliminates few candidate solutions [1, 59].

We describe howwe use CEGIS to solve the CCA synthesis
query, and our learnings to overcome above challenges.

3.1 Prototype: CCmatic
Recall, wemodel the CCA synthesis query as 9A .8g .f (A,g).
The CCA,A, controls when packets are sent in response to
previousnetworkbehavior.The traceg speci�eswhenpackets
are dropped or delayed. Wemodel f as:

f (A,g) := 5 40B81;4 (A,g) =) 34B8A43 (A,g) (i)
i.e., all feasible traces must satisfy our desired properties (e.g.,
“high utilization AND low delay”). Here, feasiblity means two
things, (1) packets in the trace should be sent according to the
CCA, (2) packet should be ACKed or dropped as allowed by
a realistic network. To encode what traces are 5 40B81;4 and
whether they satisfy our 34B8A43 properties, we use the en-
coding proposed by CCAC [6]. CCACmodels the network en-
vironment using Network Calculus [41], and captures a wide
variety of sub-RTT phenomena that real networks exhibit.

We encode the generator as a constraint satisfaction prob-
lem in the theory of quanti�er-free linear real arithmetic
(QF-LRA) [40], and use Z3 [19] to solve it. We directly use
CCAC [6] as the veri�er.

3.1.1 Encoding challenges. Template forCCA.CCAs are
de�ned by how they handle di�erent network events such as
ACKs, delays, and losses. As an initial attempt, we consider
lossless networkswith in�nite bu�ers. TheCCA template sets
the cwnd every round trip time (RTT) in response to ACKs.
Prior work has shown CCAs operating on summary metrics
every RTT to be as good as �ne-grained, per-ACK control [6,
49]. This�tswellwithCCAC’s abstractionof available control
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actions and response granularity, allowing us to easily encode
the templated candidate solution into CCAC’s formulation.

CCAscanalsode�ne their ownstate abouthistorical events.
Allowing such state in the template signi�cantly increases
the size and complexity (non-linearity) of the encoding con-
straints and slowsdownsynthesis time. Instead,wegivedirect
access to a small period of historical information to the CCA.
In summary, our template is:

2F=3 (C)=
⌘’
8=1

⇣
U82F=3 (C�8)+V802: (C�8)

⌘
+W (ii)

where, U8 , V8 , andW are coe�cients (holes or parameters) syn-
thesizedby thegenerator,2F=3 (C) is thecwndat timeC ,02: (C)
is the cumulative bytes ACKed by time C , and⌘ is the number
of historical RTTs that the CCA can query statistics about.
The time indices (C), (C�8) are in units of propagation delay.
The user can experiment with di�erent templates (see §4.1)
to explore the design space.

Steady state behavior and desired properties. Constraint
solvers work best with �nite traces and it is hard to directly
reason about steady state behavior. CCAC tackles this by let-
ting the constraint solver pick arbitrary initial values for cwnd
and queue size, e�ectively treating the time before C = 0 to
have had arbitrary evolution of the packet delays, drops, and
other network behavior.

This creates an issue—a desired property (e.g. “high utiliza-
tionANDboundeddelay”) canbeviolated in a�nite tracewith
arbitrary initial conditions. For instance, at the start of a �ow,
the CCA needs to ramp up before it can achieve high utiliza-
tion. Likewise, the trace may start with a large initial queue
that can cause excessive delays. In such situations, the best
anyCCAcando is to increase or decrease the cwnd in the right
direction.Thus,we relax theoriginal desiredpropertyas: “(the
CCAshouldhaveahighutilizationORincrease its cwnd)AND
(it should maintain a small queue OR reduce its cwnd)”. If this
property is true,mathematical induction proves that in a long-
running trace, the synthesized CCA either achieves our origi-
nal desired properties directly, or moves in a direction to real-
ize our original desired properties. Speci�cally, the encoding
we use is 02: () )�02: (0) � thresh* ⇤⇠ ⇤) (high utilization),
2F=3 () )>2F=3 (0) (increase cwnd),2F=3 () )<2F=3 (0) (de-
crease cwnd), 8C .@D4D4 (C)  thresh⇡ , where) is the duration
of CCAC’s trace and⇠ is the link rate.We can vary the desired
utilization (thresh* ) and delay thresholds (thresh⇡ ) (see §4).

Note, a �nite trace in CCAC has �xed average link rate, we
incorporate variable link rates using CCAC’s jitter term and
mathematical induction (as was done in CCAC [6]).

Putting it all together. To summarize, we �rst de�ne a tem-
plate of what the CCAs look like. The generator picks a CCA
from this template. The veri�er either certi�es that this CCA
satis�es thedesiredproperties orproduces a concretenetwork
trace that “breaks” the CCA. The generator produces another
CCA that is not broken by any of the veri�er-produced traces

thus far until either a solution is found or the generator proves
that none of the CCAs speci�ed by its template can work.

3.1.2 Scalability challenges. The speed of the CEGIS loop
is a�ected by (1) time per iteration, and (2) number of itera-
tions. We reduce both these factors to improve solving time.
Time per iteration. The generator formulation has non-
linear constraints. These mainly involve the product between
two generator variables, one of which is a coe�cient variable.
Speci�cally, the cwnd function (Equation ii) involves product
between old 2F=3 and a coe�cient. The old cwnd in turn
depends on coe�cients.We restrict coe�cients to take values
fromadiscrete set. This allowsus to convert the product terms
into linear terms using “if then else” constraints. We replace
the product term E⇤D as

Õ
02�8C4 (E ==0,0⇤D,0)where� is the

set of possible values for E and 8C4 (2,C4G?A ,5 4G?A ) evaluates
to C4G?A if condition 2 is true and 5 4G?A otherwise.
Number of iterations. Each counterexample might only
eliminate few candidate solutions in CEGIS. We reduce the
iterations by (1) encoding more information about why a par-
ticular candidate CCA did not work, allowing us to prune a
range of candidate CCAs (range pruning), and (2) producing
network traces that are likely to break the most number of
candidate CCAs (worst-case counterexample).

Problem. The generator tries to �nd a CCA,A, such that
8g⇤ 2 - .f (A,g⇤). Recall, f (A,g⇤) is 5 40B81;4 (A,g⇤) =)
34B8A43 (A,g⇤). To satisfy f the generator can, (1) make
34B8A43 (A,g⇤) true, or (2) make 5 40B81;4 (A,g⇤) false. The lat-
ter is easy. The generator can simply tweak theCCA so it has a
di�erent behavior than any trace in- . This forces the veri�er
to produce a new trace for each slight variation of the CCA
which is ine�cient (§4 shows the number of iterations for var-
iousmethods). This is a commonproblemwithCEGIS [59, 60].
Range Pruning. The problem is that each trace in - elim-

inates exactly one CCA behavior. Our solution is for each
trace to eliminate a range of behaviors, whichmakes 5 40B81;4
harder to falsify with trivial tweaks. Thus the generator will
spend more iterations satisfying 34B8A43 .

For completeness we mention howwemap an exact trace
produced by CCAC to a range of possible CCA behaviors. We
omit detailedderivationdue to space limitations.According to
notation used in the CCAC paper [6], the range of CCAs for a
trace is such that cumulative bytes sent by theCCA (�C ) lies in
the interval [(C ,1] if,C =,C�1 and interval [(C ,⇠C�,C ] other-
wise. These bounds can be derived by simple algebraic manip-
ulation of the constraints in the CCAC paper. Here (C and,C
are produced by the veri�er. If the corresponding�C produced
by the generated CCA lies within this range, 5 40B81;4 is true.

Worst-case counterexample. We can further improve the
range of CCAs pruned. The range is speci�ed using an upper
and lower bound, e.g., [(C ,⇠C �,C ]. If the upper and lower
bounds are close to each other, then few CCAs are captured
by the trace. Tomaximise the range of CCAs captured, we ask
the veri�er to �nd a trace that maximizes the minimum range
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for any timestep, i.e., �nd a trace that maximizes<8=C (DC�;C )
where [;C ,DC ] is the range for cwnd at time t in the trace.
Wemaximize using binary search. This involves calling the
veri�er multiple times in a single CEGIS iteration. For us, ver-
i�er calls are typically fast. Hence, the reduction in iterations
makes up for extra time spent in veri�er calls (§4).
For intuition, consider that most candidate CCAs will not

work even on ideal links. The veri�er has to do very little
to break them. By asking it to maximize the range of CCAs
eliminated, we can quickly get to the interesting candidate
CCAs that are harder to break.
Our optimizations do not violate soundness or complete-

ness of the logic, i.e., the solution set does not change on
adding the range pruning and worst-case counterexample op-
timizations. We merely avoid otherwise redundant iterations.
Further,whilewedescribedouroptimizations in thecontextof
CCA synthesis, these optimizations havemathematical equiv-
alents and can be applied in a domain agnostic manner. For
instance, range pruning is similar to variable movement [54]
or adding existential quanti�ers for dependent inputs [34, 59].

4 RESULTS
We study the solutions produced CCmatic, and solving time.
Methodology. We ask CCmatic to synthesize CCAs that
achieve high utilization and bounded delay in steady state in
a lossless network. We consider two di�erent search spaces,
(1) without access to historical cwnd (i.e., coe�cient of cwnd,
V8 , is �xed to 0 for all 8), and (2) with access to historical cwnd.
We consider two domains for the coe�cients and constants:
(1) small: {�1,0,1}, and (2) large: {�2,�3/2,�1...,2} or { 82 : |8 |
4^8 2 Z}. The small domain restricts to additive responses,
while the large domain includes multiplicative responses. We
explore solutions that use up to 3 RTTs of historical informa-
tion (by setting⌘=3+1=4). We let CCAC jitter each packet
up to 1⇥RTT. We set requirements as “� 50% utilization AND
 4⇥RTTdelay”, and later vary these thresholds. CCAC found
traceswhereBBR [15],Copa [7] achieve arbitrarily lowutiliza-
tion, so we start with 50% utilization as a reasonable goal [6].
SynthesizedCCAs.Oneof thesolutionswe�ndis:2F=3 (C)=
02: (C � 1) �02: (C � 3) + 1. This CCA, called RoCC, was re-
cently proposed [24, 63]. On each RTT, it sets cwnd as bytes
acknowledged in last 2 RTTs plus a small additive increment.
On an ideal link with constant rate, RoCC converges to a
queue of BDP +MSS (bandwidth-delay product + maximum
segment size) bytes. In the CCACmodel, for the same choice
of parameters we use in this paper (i.e., jitter = 1⇥RTT), if this
additional queuing is not present we risk getting arbitrarily
low utilization [5]. An explanation for why this simple rule
works is available [63].

Extensions.We ask CCmatic to produce all possible solu-
tions, implying that there are no other solutions in our search
space apart from those produced by CCmatic. In the search
space without historical cwnd, in the large domain space, we
�nd a total of 12 CCAs that meet our requirements. This is

Params Domain Search Baseline RP RP+WCE
size # Itr Time # Itr Time # Itr Time

No cwnd Small 35 100 3m 30 30s 7 3s
No cwnd Large 95 DNF DNF 60 1m 50 1m
cwnd Small 39 DNF DNF 100 9m 50 30s
cwnd Large 99 DNF DNF 360 32h 80 45m

Table 1: Time to synthesize �rst solution. DNF: did not
�nish within a week, # Itr: number of iterations, RP:
range pruning,WCE:worst-case counterexample, (h,m,
s): (hours,minutes, seconds). # Itr and time are rounded.

an exhaustive set out of 95 candidate solutions in the search
space. 9 possible values for each decision variable, and 5 vari-
ables (4 coe�cients and 1 constant). The 12 synthesized CCAs
use di�erent amount of historical knowledge. Six of them use
information about last 2 RTTs, and other six use last 3 RTTs.
All these 12 CCAs are minor variations of RoCC, e.g.,

2F=3 (C)= 3
2
02: (C�1)� 1

2
02: (C�2)�02: (C�3) (iii)

An interestingobservation ishowthesolutionspacechanges
aswechange theutilization anddelay thresholds.At 4⇥RTT
delay, if we require CCAs to have � 65% utilization, only 2
CCAs remain. With � 70% utilization, only 1 CCA remains
(Equation iii). At � 50% utilization, we get 245 solutions with
 8⇥RTT delay, 9 solutions with  3.6⇥RTT delay and no
possible solution with  3⇥RTT delay.
Scalability. Table 1 shows improvement in synthesis time
from various optimizations. All runs use the encoding tech-
niquesdescribed in§3.1.1, theyonlydi�er in theoptimizations
described in §3.1.2.We terminate the CEGIS loop after �nding
the �rst solution. All runs were done on server machine with
Intel Xeon Gold 6226R CPU (32 physical cores) and 256 GB
RAM using Z3 version 4.8.17.0. CCmatic uses only 1 core at
a time.
Our optimizations improve synthesis time by at least 60⇥.

The optimizations are essential for applying our approach as
the loop does not converge even after a week of running in
many cases with the baseline. Further, the baseline is even
slower than a brute-force search (due to generator overheads).
The complexity of veri�er formulation is �xed across itera-
tions, unlike the generator that gets more constraints in each
iteration. The veri�er typically takes⇡0.5s to compute a coun-
terexample.Abrute force searchwhere theveri�er is called for
each candidate solution over a search spacewith size 35would
take ⇡ 120s, while the baseline takes ⇡ 180B (3m in Table 1).
However, such brute force would take more than 6 core ⇥
years of computing time for a search space of size 99, whereas
our approach can �nd a solution in 45m using a single core.

4.1 Next steps
We considered CCA synthesis with lossless networks, and uti-
lization/delay objectives. We discuss next steps in expanding
to other environments, objectives, and queries.
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Environment and objectives. For lossless networks, a sim-
ple CCA template su�ced. This template may not su�ce
for lossy networks and/or fairness/co-existence objectives.
A natural �x is to encode cwnd functions with conditionals,
i.e., if 2>=3 then 2F=3 4G?A1 else 2F=3 4G?A2, where
2>=3 , 4G?A1, and 4G?A2 are decided by the generator (similar
to Equation ii). This template expresses traditional CCAs,
e.g., for AIMD [16], 2>=3 is loss detected, 4G?A1 is multiplica-
tive decrease, and 4G?A2 is additive increments. This template
substantially increases our search space size. We envision
synthesizing subsets of the expressions at a time instead of
all at once, and/or have coe�cients for known good signals
instead of having coe�cients for each observable quantity.
We hope to use CCmatic to solve open problems. Recent

work [5] showed that network delays can cause competing
�ows to starve for many known CCAs including BBR [15],
Cubic [35], and PCC [22, 48]. It is unknown if a CCA outside
this class can avoid starvation.
Otherqueries. In §2,we discuss identifying assumptions and
di�erential comparison. Both �nd an assumption and require
describing a template of an assumption. A simple template
could just be a set of parameterized inequalities (similar to
[40]). However, it is challenging to de�ne the speci�cation
f . Say we require an assumption such that “a trace satis�es
desired properties if and only if the trace satis�es the assump-
tion” (from §2). It might be too harsh to synthesize an assump-
tion that is both necessary and su�cient. Such an assumption
maynot evenexist ingeneral, let alone inour search space. Ide-
ally,wewant theweakest su�cientassumption. Simplyquery-
ing for a su�cient assumption causes the CEGIS loop to triv-
ially output “False”, since the assumption “False” satis�es the
su�ciency requirement (i.e., the if part). To solve this, we are
exploring three approaches: (1) techniques like MaxSAT [8]
to de�ne the weakest su�cient assumption, (2) re-de�ning
our template as feasible actions that the network can take in-
stead of constraints that the trace satis�es, (3) weakening the
necessary and su�cient requirement, e.g., “if trace satis�es
assumption then utilization � 70% else utilization  50%.”

5 GENERALIZING TOOTHERDOMAINS
We describe what would it take to apply our approach to a
new domain, then for each domain we describe why auto-
mated reasoning is a good �t, what (open) questions in those
domains could �t within our framework, and any unique
domain-speci�c challenges we anticipate.
The CEGIS approach requires a veri�er. For congestion

control, we were able to use prior work (CCAC [6]). Build-
ing veri�ers is challenging as veri�ers need to capture di-
verse/realistic behaviorswhile avoiding adversarial behaviors
that no heuristics can handle. CCACdoes this by constraining
when packets can be delayed/dropped. This requires signif-
icant domain expertise and it is unclear if such constraints
are strictly necessary. We believe the CEGIS loop can help
with tuning veri�ers. We can synthesize veri�er constraints

by asking “9 constraints on system parameters such that 8
traces that satisfy these constraints, at least one knownheuris-
tic achieves its desired goals”. The intuition is that di�erent
heuristics are designed for di�erent realistic environments.
The union of traces over all heuristics captures a broad set of
behaviors that realistic systems can exhibit.
ABR.ABR shares similar environments as CCAs, e.g., packet
drops, delays, and jitter, but with di�erent objectives, e.g.,
video quality, playback latency, playback stalls. We were able
to reuse CCAC’s environment model and encode video qual-
ity/stall in terms of playback bu�er to build a veri�er for
ABR.We see this as positive evidence that future work could
use automation to distill insights and synthesize robust-by-
construction ABR algorithms. Automation could help rapidly
specialize o�ine, live and real-time video streaming. It could
further help co-design ABRwith congestion control [29], loss
recovery mechanisms that mix re-transmission with forward
error correction [36], and frame skipping [64].
Scheduling.Schedulingalsohas a combinatorial explosion in
environments (or workloads), objectives, and system interac-
tions. Scheduling decisions depend on factors like preemption
and migration overheads, resource constraints, privacy and
service-level agreements. As a result, schedulers have been
specialized for di�erent workloads and requirements, e.g.,
data analytics [21, 71], deep learning [33, 43, 51, 68], and short
network requests [17, 50, 53]. It is unclear if existing sched-
ulers meet performance bounds. For instance, prior works ex-
posemany algorithmic bugs in existing schedulers [42].Work
stealing, to balance load across cores, is a rare exceptionwhere
we have practically relevant theoretical guarantees [46, 47].

A challenge we anticipate is building an abstraction for
the environment. In congestion control/ABR, Network Cal-
culus allowed modeling a variety of sub-RTT phenomena
(e.g., ACK aggregation, jitter, token-bucket �lters) using a
simple packet delay abstraction. We would need a similar
way to logically represent environments in scheduling, e.g.,
placement/locality preferences (data/GPU/NUMA), job/task
priorities, communication delays, stragglers.

6 CONCLUSION
We build CCmatic as preliminary evidence for feasibility
of modeling and formally reasoning about heuristics in a
tractable manner. While we show this in the context of CCA
synthesis, we believe our approach can bring clarity to other
questions within congestion control and other domains.
Acknowledgements.Wewould like to thank anonymous
reviewers and NSF grants #2212102, and #2212390.
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