Check for
Updates

CC-Fuzz: Genetic Algorithm-based Fuzzing for Stress
Testing Congestion Control Algorithms.

Devdeep Ray

Carnegie Mellon University

ABSTRACT

Recent congestion control research has focused on purpose-
built algorithms designed for the special needs of specific
applications. Often, limited testing before deploying a CCA
results in unforeseen and hard-to-debug performance issues
due to the complex ways a CCA interacts with other exist-
ing CCAs and diverse network environments. We present
CC-Fuzz, an automated framework that uses genetic search
algorithms to generate adversarial network traces and traffic
patterns for stress-testing CCAs. Initial results include CC-
Fuzz automatically finding a bug in BBR that causes it to stall
permanently, and automatically discovering the well-known
low-rate TCP attack, among other things.

CCS CONCEPTS

« Networks — Network performance analysis; Protocol
testing and verification; Transport protocols;

KEYWORDS

Congestion Control, Fuzz Testing, Genetic Algorithm

ACM Reference Format:

Devdeep Ray and Srinivasan Seshan. 2022. CC-Fuzz: Genetic Algorithm-

based Fuzzing for Stress Testing Congestion Control Algorithms..

In The 21st ACM Workshop on Hot Topics in Networks (HotNets '22),

November 14-15, 2022, Austin, TX, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3563766.3564088

1 INTRODUCTION

Recent networking research has shown an increased in-
terest in designing custom congestion control algorithms
(CCAs) for meeting application-specific performance goals
(e.g. SCReAM [11], GoogCC [7], Sprout [22] for low latency
video streaming) or for specific network environments (e.g.
Swift [12], DCTCP [1], CCAs for hybrid optical networks [14]

(©MOM

This work is licensed under a Creative Commons Attribution International 4.0 License.

HotNets °22, November 14-15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11.
https://doi.org/10.1145/3563766.3564088

31

Srinivasan Seshan
Carnegie Mellon University

for data-center network environments). In addition, CCAs
like Copa [3], Nimbus [9], and TCP-BBR [6] use complex,
stateful network modeling techniques in order to achieve
their performance targets. It is important to evaluate the
robustness of a CCA and it’s implementation across a wide
range of scenarios before it is deployed in the wild. For
CCAs developed by the academic community, the oppor-
tunities for large scale real-world testing are limited. Many
newly proposed CCAs are evaluated using small scale de-
ployments [23], and local, scenario-based emulation and
simulation [15]. Testing of these new, complex CCAs per-
formed at an academic scale can easily miss situations where
the algorithm fails to achieve it’s goals (like high utiliza-
tion, fairness, or low delay [9, 19]), or corner cases where
implementation bugs are triggered.

In this paper, we describe the design of our testing frame-
work called “CC-Fuzz!”, and demonstrate how genetic algo-
rithms (GAs) for searching the space of link and cross traffic
patterns can be used to identify issues with CCAs and their
implementations, and inspire confidence in a CCA before it
is deployed. GAs are search heuristics inspired by the Dar-
winian theory of biological evaluation - on each iteration,
each entity in a gene pool is assigned a fitness score that
depicts the chances of survival of an entity across genera-
tions (akin to natural selection). In our case, the entities are
network traces, the fitness score of a trace is determined by
the performance of the CCA under that trace, and evolution
involves modifying/eliminating traces based on the fitness
scores such that a trace that causes poor performance is more
likely to survive. In order to generate realistic network traces,
CC-Fuzz (1) uses heuristics during trace generation, and (2)
leverages the generality of GAs, using carefully designed fit-
ness scores for implicitly modeling trace properties that are
hard to implement using heuristics. In Section 5, we propose
an alternate way to impose realism on network traces as part
of future work.

CC-Fuzz currently uses NS3 [8] for simulating CCAs and
assigning fitness scores for traces. In the future, we plan
to use emulation of CCA implementations, since CCA im-
plementations in NS3 can sometimes differ from the real
implementations. Results summary (§ 4):

1CC-Fuzz is a pun on Sisyphus. Wikipedia notes, “tasks that are both labo-
rious and futile are therefore described as Sisyphean” [21]

https://doi.org/10.1145/3563766.3564088
https://doi.org/10.1145/3563766.3564088
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563766.3564088&domain=pdf&date_stamp=2022-11-14

HotNets ’22, November 14-15, 2022, Austin, TX, USA

(1) BBR - CC-Fuzz found traces that cause BBR to perma-
nently stall due to the way ACKs and spurious retrans-
missions interact with each other during a retransmis-
sion timeout, and found traffic patterns that trigger
BBR to cause high queuing delays.

(2) CUBIC - CC-Fuzz found a bug in NS3’s CUBIC imple-
mentation regarding CWND updates.

(3) Reno - CC-Fuzz found traffic patterns that are similar
to the TCP low-rate attack [13].

In the remainder of the paper, we discuss the design of CC-
Fuzz (§ 3) and present directions for future work (§ 5).

2 MOTIVATION AND RELATED WORK

CCAs are often evaluated using metrics such as throughput,
delay and fairness across a limited range of simple scenar-
ios, like varying bandwidth at macroscopic time-scales, and
making the CCA compete with other CCAs. Past work has
shown that commonly evaluated scenarios often fail to catch
surprising failure modes - In [19], the authors use mathe-
matical modeling to show that multiple BBR flows are unfair
towards loss-based CCAs. In CCAC [2], the authors argue
that basic evaluation techniques are not sufficient for cap-
turing every scenario that causes undesirable behavior, and
propose a formal technique that generates network behav-
ior in response to queries about CCA performance. Formal
approaches are limited - they analyze “theoretical models”
of CCAs, which overlooks potential bugs in real implemen-
tations, and become intractable for high-fidelity models and
modeling longer time-scale behaviors.

Fuzzing [17] is a widely used technique for discovering
vulnerabilities in code. TCPwn [10] uses model-based fuzzing
in order to identify manipulation attacks (e.g. dup ACK in-
jection, ACK storm, sequence desynchronization) on CCAs.
TCP-Fuzz [24] tests TCP stack implementations for bugs.

The goal of CC-Fuzz is to find realistic situations where
CCA performance suffers due to packet delivery timing and
losses automatically, and not bugs that are triggered by in-
jecting spoofed packets - the tools mentioned above can be
used for protocol-level bug finding. ACT [16] and Packet-
drill [5] are perhaps the closest in spirit to CC-Fuzz. ACT
searches for numerical values of the state variables in the
CCA implementation that represent a bad performance state
- in contrast, CC-Fuzz directly searches for realistic network
traces that lead to poor performance. Packetdrill [5] uses
scripted tests to detect bugs in the networking stack and for
regression testing of CCAs. Packetdrill requires clearly laid
out networking scenarios that must be developed by hand
- CC-Fuzz automatically generates such scenarios based on
high-level performance goals.

32

D. Ray, S. Seshan, et al.

Algorithm Genetic Algorithm Loop

procedure CC-Fuzz
TRACES «— Initial pool of traces
kElite < Number of traces that live on unmodified.
kCrossover «— Count of new traces generated by
combining traces with high scores.
repeat
for trace € TRACES do
SCORE(i) <« Score when CCA run with
TRACES(i)
ELITE « Top kElite traces
CROSSOVER «— kCrossover traces that are
generated by combining traces
MUTATED «— len(TRACES) - kElite - kCrossover
traces generated by modifiying traces
TRACES <— ELITE + CROSSOVER + MUTATED
until convergence

Figure 1

3 DESIGN

CC-Fuzz uses a GA for generating network traces that cause
a CCA to perform poorly. CC-Fuzz’s high level loop is de-
scribed in Figure 1. CC-Fuzz’s core components include the
following:
(1) Trace Generator: Generates initial traces, performs
cross-overs between trace pairs, and mutates traces.
(2) Scoring Function: Assigns a score based on the prop-
erty being evaluated (e.g. throughput, delay, loss, or a
combination) based on simulated/emulated results.
(3) Selection Algorithm: Selects traces for cross-overs
and mutations for the next generation.
These components are discussed in further detail below.

3.1 Network Model

CC-Fuzz uses a simple network topology with two sources
(one source uses the CCA being tested, and the other source
generates cross traffic) that are connected to a gateway with
high speed links. The gateway is connected to a sink via a
bottleneck link with a fixed propagation delay. The gateway
consists of a fixed-size drop-tail FIFO queue.

CC-Fuzz’s current design separates link-based fuzzing
(searching the space of bottleneck service curves with a
fixed queue size), and cross-traffic based fuzzing (searching
the space of cross-traffic patterns on a fixed-rate link with
a fixed queue size). These two approaches can trigger dif-
ferent behaviors - link-fuzzing models a variable link with
unbounded delay jitter (e.g. wireless with link-layer retrans-
missions), whereas in traffic-fuzzing, the maximum delay

CC-Fuzz

Algorithm Packet Distribution Algorithm

procedure DisTPACKETS(num, start, end)
if num == 0 then return []

if num == 1 then return [trend
num

rate < end—start

loop

tsplit «— U(start, end)
numleft « U(0, num)

> U is uniform random sampling.
if end — start < kAgg then break

numleft num - numleft
tsplit—start® end—tsplit

if Irate > 2 X rate or rrate > 2 X rate then
continue
if Irate < 0.5 X rate or rrate < 0.5 X rate then
continue
return DisTPACKETS(numleft, start, tsplit)
+ DisTPACKETS(num - numleft, tsplit, end)

Irate « rrate «—

Figure 2

is bounded (e.g. fixed rate wired link with variable cross
traffic). In addition, while a realistic link may exhibit aggre-
gation, delay jitter, and some degree of long-term temporal
rate variation, cross-traffic can be highly adversarial. Note
that these two modes do not cover every scenario, e.g. ran-
dom packet losses. We defer evaluation of CC-Fuzz on more
comprehensive network models to future work (§ 5).

3.2 Link Fuzzing

A link trace (bottleneck service curve) is represented as
packet transmission opportunities (similar to MahiMahi [15]).
This representation lends itself well to modeling unbounded
packet delays (large gaps between two packet transmissions).
The duration and total number of packets is fixed for the
entire run (i.e. fixed average bandwidth).

Initial Trace Generation. CC-Fuzz uses heuristics to
limit the range of long-term bandwidth variation, while al-
lowing jitter and aggregation. This is done using DisTPACK-
ETs (Figre 2), which recursively divides packets by splitting
the trace duration and number of packets into two in each
step, and ensures that the average rate for each partition
is within a multiplicative range of the average rate. Deeper
in the recursion, when the duration is below kAgg, the rate
check is disabled to model packet aggregation and jitter.
Figure 3 shows sample service curves generated by this al-
gorithm at two time-scales.

Evolution Mechanism. When creating a new generation
from a pool of link traces, CC-Fuzz must ensure that the same

33

HotNets ’22, November 14-15, 2022, Austin, TX, USA

5000

4000 A
3000 A
2000 1

Packet Count
Packet Count

1000 A

O -
0 2000 4000 0
Time (ms)

20
Time (ms)

40

(a) 5 second interval. (b) 50 millisecond interval.
Figure 3: Service curves generated using DISTPACKETS,
with an average rate of 12 Mbps and kAgg = 50 ms.

properties as that of the initial generation hold - otherwise,
the constraints imposed by D1sTPACKETS can be violated sig-
nificantly after a few generations. Mutations generate new
traces for the next generation by slightly perturbing some
traces with desirable properties in the current generation.
For mutations, CC-Fuzz selects a random split point in the
trace, and redistributes packets (D1sTPACKETS) either before
or after the split point (chosen using a coin toss). This in-
ductively preserves the properties imposed by DiSTPACKETS.
Crossover picks two or more traces that have desirable prop-
erties, and combines them to generate a new trace. CC-Fuzz
currently does not use crossovers for link fuzzing, since we
could not come up with a combining function that preserves
rate variation and average properties.

3.3 Traffic Fuzzing

CC-Fuzz uses the same algorithm (D1sTPACKETS) for gener-
ating traffic traces, with some modifications.

(1) Trace generation heuristics: We eliminate the local
rate constraints, allowing arbitrary traffic bursts.

(2) Crossover operation: Without the local rate con-
straints, the crossover operation as follows: randomly
choose a split point by packet count, randomly select
the left half of one trace and the right half of the other
trace around the split point, and combine the two sets
of timestamps.

In the case of traffic fuzzing, it is desirable to generate
“minimal” traffic vectors that induce poor behavior in CCAs.
E.g., a large traffic burst where many cross-traffic pakcets
are lost will behave the same even if the lost packets aren’t
transmitted. In addition, cross traffic at the bottleneck queue
when the CCA is quiescent (e.g. when TCP is waiting for
ACKs after filling the CWND) has no impact. CC-Fuzz en-
forces a maximum average rate instead of a fixed average
rate for traffic fuzzing. When mutating a portion of the trace,
the number of packets in that portion are changed randomly.

HotNets ’22, November 14-15, 2022, Austin, TX, USA

During a crossover operation, the number of traffic packets
also changes depending on the number of packets in the
trace on the right side. This is combined with a “total traffic”
penalty in the scoring function (§ 3.4), which steers the GA
towards minimizing the traffic vectors.

3.4 Scoring Function

The scoring function is a key aspect of a genetic algorithm
- it determines which traces were successful in triggering
specific performance behavior, and allows implicit modeling
of desirable properties in a link or traffic trace. As part of
calculating the score for a trace, CC-Fuzz runs the CCA using
the link or traffic trace (simulated using NS3. Emulation
using tools like MahiMahi can also be used - comparison in
Section 3.6), and analyzes the queuing behavior. The score
assigned to each trace in a generation has two components:
performance score and trace score.

Performance Score. The performance score can be de-
signed for specific types of poor behavior like high loss rate,
high delay or low utilization. For quantifying low utilization,
CC-Fuzz calculates windowed throughput for the run, and
takes the average of the lowest 20% of the windows. This
prevents algorithmic bias towards traces that trigger poor
behavior early on, which improves trace diversity.

Trace Score. CC-Fuzz can also assign a separate score
to the trace itself to implicitly impose additional properties
of the traces which are hard to model using heuristics. For
example, CC-Fuzz scores traffic traces using the (negation
of) total traffic packets and the total traffic packets dropped
in order to make the GA prefer minimal traces where few
traffic packets are lost.

3.5 Selection Algorithm

Once the traces in a generation have been assigned scores,
we rank the traces from highest score to lowest score. We
first pick kElite of the highest scored traces that make it to the
next generation unchanged. We assign a relative probability
of —— to each trace and then choose kCrossover pairs of
traces according to these probabilities, and combine them for
generating crossover traces. The same probabilities (based
on rank) are used for picking traces that undergo mutation
for generating the rest of the traces in order to maintain a
constant population size.

3.6 Emulation vs. Simulation

CC-Fuzz currently simulates CCAs using NS3 to calculate
the CCA performance score for each trace. An alternative
is emulation (e.g. using MahiMahi). In either case, CC-Fuzz
will test a combination of the CCA implementation and the
run-time framework, finding failures in either system and
their interactions.

34

D. Ray, S. Seshan, et al.

The benefit of emulation is the ability to test a real im-
plementation of a CCA. Unfortunately, emulating multiple
traces in parallel in a reproducible manner is challenging.
We need to ensure that the performance is not affected due
to CPU and memory bottlenecks, and that the start time of a
flow is synchronized with the network trace. Otherwise, the
CCA behavior can be very different across generations for a
given trace, which can delay or even prevent convergence
of the genetic algorithm.

Simulation, on the other hand, will generate identical re-
sults across repeated runs, resulting in faster convergence.
In addition, for link rates in 10s of Mbps, simulation is likely
to be faster than real-time emulation, and the results of the
simulation are not affected by machine load - this makes it
easy to massively parallelize the algorithm on a single ma-
chine. The key drawback of simulation is that it does not test
the actual implementation, but a re-implementation in the
simulation framework (e.g. NS3). Tools like DCE [18] can
mitigate this drawback by simulating real network stacks.

In addition, randomization in a CCA’s implementation
can also prevent convergence. In such cases, we need to
modify the CCA implementation so that the randomization
is repeatable (fix the random seed). This is much easier in a
simulated setup as opposed to modifying kernel CCA code in
an emulated environment. In the future, we plan to explore
the use of emulation for CC-Fuzz.

4 FINDINGS

In this section, we will discuss some interesting findings that
CC-Fuzz was able to automatically discover. For all of our
tests, we set the bottleneck bandwidth to 12 Mbps (average
bandwidth in the case of link fuzzing) and set the propaga-
tion delay of the bottleneck link to 20 ms. TCP-SACK and
delayed ACKs are enabled (Linux defaults), and min-RTO is
set to 1 second (as per RFC 6298/2.4, Linux uses 200 ms). We
use a population size of 500, and use an island-isolation [20]
strategy with 20 islands for solution diversity, where 10%
of the traces migrate every 10 generations. Across island
generations, the best trace is preserved (kElite = 1), 30% of
the traces are crossovers, and the rest are mutations. We
simulate each CCA for around 5 seconds. CC-Fuzz took ap-
proximately 5 seconds per generation, where we parallelized
the simulation across 32 cores on an Intel Xeon machine.

4.1 BBR - Stuck Throughput

We tested NS3’s version of TCP-BBR with CC-Fuzz, and
after a few generations, it produced traces that triggered
low throughput for BBR where it get’s stuck permanently.
One such trace is shown in Figure 4a. We verified that this
issue was specific to BBR by running Reno and Cubic on
such traces, and they worked as expected. For understanding

== Ingress

30 4 Egress
Link Rate

Time (s)

(a) CC-Fuzz traffic trace
that causes BBR to get
stuck.

(b) CC-Fuzz link trace
that causes BBR to get
stuck.

HotNets *22, November 14-15, 2022, Austin, TX, USA

owiy

(c) Timeline showing
how BBR’s bug is trig-
gered.

= Default BBR
4000 4 BBR (ProbeRTT on RTO)
3000 4

W

0 20 40
Generations

Packets sent

2000 4

(d) CC-Fuzz performance
with and without BBR
patch.

= + BBR Flow
£ 200 Cross Traffic
>
B
8 e
o |
21007 i - |
£ ¥
o
)
< 01 T T T
0 2 4
Time (s)

(e) CC-Fuzz triggering
high delays in BBR with
cross traffic.

Figure 4: Analyzing BBR with CC-Fuzz.

the root cause, we dug into NS3 code and generated various
internal logs from BBR’s code and from the NS3 TCP socket
code.

BBR uses an 8-RTT gain cycle for estimating bandwidth,
where it sends at 1.25X the current bandwidth estimate for
the first RTT, 0.75X on the second RTT and at 1X for the
rest of the gain cycle. Each RTT is considered as a probing
round. The measured rate in each probing round is processed
through a windowed max-filter that keeps the estimates from
the last 10 rounds of probing.

We found the root cause to be BBR’s mechanism for tim-
ing it’s bandwidth probing cycles in terms of RTT. For each
packet, the TCP send buffer tracks the number of bytes deliv-
ered when that packet was sent in the SKB. At the beginning
of a probing round, BBR records the number of bytes de-
livered so far. The probe ends when the prior delivered of
the packet most recently ACK (i.e. bytes delivered when the
ACKed packet was sent) exceeds the bytes delivered at the
beginning of the probing round.

Suppose a packet P(0) is transmitted at time T, and is
lost. Fast retransmit will cause the first retransmission to
occur at some time T; > Ty + RTT, and an RTO timer will be
set for Ty + minRTO. At T; + minRTO, P(0) is retransmitted
for the second time. Suppose P(i)...P(j) were the last few
packets sent before the second retransmission for P(0), and
the SACKSs for these have not arrived yet. After transmitting
P(0) for the second time, P(i) will be transmitted again (a
spurious retransmission). Here, the prior delivered for P(i) is
updated in the SKB for P(i) to the current bytes delivered. If
the SACK for the original transmission of P(i) arrives right
after the second transmission of P(i), BBR will prematurely
end the current probe cycle, since the value of prior delivered
for P(i) increased when the spurious retransmission was
sent, and now likely exceeds threshold at which the current
probing round was supposed to end. This sequence of events
is depicted in Figure 4c. Thus, BBR’s rate sample is now
incorrect, as it is using the time and bytes delivered between
the ACK for the original packet, and the packet’s spurious
retransmission, to calculate the rate. This can result in a

35

low value for the bandwidth sample. This can repeat for the
other packets P(i + 1)...P(j) that were in-flight when P(0)
was transmitted the second time. If this continues for 10 or
more packets, the true bandwidth estimates in the bandwidth
max-filter expire, and BBR’s bandwidth estimate becomes
low. With a very low bandwidth estimate, delayed ACKs can
cause a positive feedback loop, causing BBR to send slower
and slower, stalling BBR indefinitely. It is possible that this
is the same issue being referenced in [4].

CC-Fuzz was able to trigger this behavior with both, link
fuzzing and traffic fuzzing. Figure 4b shows a link trace gen-
erated by CC-Fuzz that triggers the same bug. The traffic
trace generated by CC-Fuzz is very easy to understand - CC-
Fuzz’s implicit constraints on traffic traces generate a clean,
minimal trace. On the other hand, despite our trace anneal-
ing mechanism significantly smoothing out the bandwidth
variations, the link trace is harder to reason about. In the
future, we plan to implement better heuristics and implicit
constraints in order to generate easier to understand link
traces that trigger poor behavior.

In order to try and mitigate this behavior, we made BBR
trigger a minRTT probe when an RTO occurs - this slows
down BBR momentarily which allows BBR to receive the
in-flight ACKs, and thus avoid the spurious retransmissions
that cause poor RTT-clocking for BBR’s bandwidth probes.
Figure 4d plots the average of the top 20 traces with the low-
est throughput in each generation. Our proposed fix reduces
throughput a little bit, but avoids the permanent stalling
behavior observed in BBR without the fix.

4.2 TCP-CUBIC Incorrect CWND Update

When testing TCP-CUBIC, we discovered a bug in NS3’s
implementation of CUBIC’s window update during slow
start. When a packet is lost, and it’s retransmission triggered
by fast retransmit is also lost, the CCA goes into slow start
after RTO. The sender performs a second retransmission for
the packet, and when the ACK for this is received, there
is a large jump in the cumulative ACK. CUBIC’s slow start
window-increase function is called with the large number

HotNets ’22, November 14-15, 2022, Austin, TX, USA

of segments ACKed. At this point, the CWND must only be
increased upto the slow-start threshold. In NS3, this check
is not performed, and the congestion window is increased
by a large value - causing CUBIC to send almost 1-RTO (1
second in the case of NS3) worth of pending data, causing
catastrophic losses. This leads to CUBIC going into slow start
again. As of commit 60e1e4@3, this bug is still present in
NS3. This computation is performed correctly in the Linux
kernel source code.

4.3 Other Findings

For TCP-Reno, CC-Fuzz was able to find a traffic trace simi-
lar to the well-known low-rate TCP attack [13] for a single
flow, where traffic bursts cause the same packet sequence to
get lost after each retransmission, which triggers exponen-
tial RTO back-off. This prevented Reno from ever ramping
up after the initial slow start phase. CC-Fuzz can also test
CCAs for goals other than low throughput, by just chang-
ing the performance component of the scoring function. For
example, we ran traffic fuzzing on BBR with the goal of in-
ducing high delays by setting the score function to the 10th
percentile delay. This caused CC-Fuzz to generate a traffic
vector that (1) fills up the queue just before BBR starts, so
that BBR cannot see the true link RTT, and (2) injects traffic
right after BBR’s slow start phase to accelerate queue-growth
caused by BBR. This is shown in Figure 4e.

5 FUTURE WORK

Realism Scoring. The current version of CC-Fuzz uses a
heuristic-based approach for generating realistic traces. In
the future, we plan to explore an alternate technique for gen-
erating realistic traces using aggregate performance across
multiple CCAs as a score function to quantify the realism
of a trace, assigning high scores to traces under which at
least a few algorithms perform well, and vice versa. Figure 5
shows the traces accepted and rejected by this mechanism.
Note how traces that have low bandwidth initially and higher
bandwidth later are rejected - such traces will naturally cause
low throughput in most CCAs.

This approach can be thought of as “differential” testing,
where the GA tries to find traces where one CCA performs
poorly, whereas other CCAs work fine. In order to reduce the
amount of computation required, the realism score can be
computed every few iterations instead of every iteration, or
can be computed for a single randomly chosen CCA instead
of all CCAs in each generation.

Diversity and Semantic Scoring. Currently, CC-Fuzz
tends to converge at a point where most traces trigger the
easiest to induce performance bug. In order to find other
bugs, an iterative process of fixing the bug and retesting, or

36

D. Ray, S. Seshan, et al.

5000 w5000
+ 4000 4 + 4000 4
c c
3 3
G 3000 3 3000 A
£ 2000 A £ 2000 -
[} o)
& &
1000 4 1000 A
0- T T 0 - T T
0 2000 4000 0 2000 4000
Time (ms) Time (ms)
(a) Valid traces. (b) Invalid traces.

Figure 5: Distribution of service curves according to re-
alism scores assigned by testing on multiple CCAs. The
traces were generated with Di1sTPACKETS, but without
the local rate constraints.

defining a score function that negatively weights the mani-
festation of that bug can be used. In the future, we plan to
explore techniques that automatically result in a diverse set
of bugs being found automatically by using machine learning
to classify different behavior and dropping traces that trigger
similar bugs across generations. We also plan to implement a
framework to translate logical specifications of performance
goals into score functions, so that the user does not have to
come up with complex score functions themselves in order
to make CC-Fuzz work.

Random Losses and Combined Fuzzing. Random packet
losses are common on wireless links. CC-Fuzz’s two modes,
link, and traffic fuzzing, do not cover scenarios where ran-
dom losses occur without a corresponding queue build up. It
is not difficult to also do this in CC-Fuzz, we just limited our
scope for this submission. In the future, we plan to explore
loss fuzzing in order to increase the testing coverage, and
also explore combining link, traffic, and loss fuzzing into a
single process. Combined fuzzing will result in much more
complex network traces that include link variations, cross
traffic and loss - these are harder to understand, and thus, it
is harder to pin-point the bug. We plan to address the chal-
lenge of generating easier to understand network traces in

order to aid debugging.
6 CONCLUSION

In this paper, we have presented the design of an automated
congestion control testing tool, CC-Fuzz. Our results are
highly promising with an initial prototype of CC-Fuzz are
finding both known and unknown issues with existing well-
tested CCAs. We believe that with further development, CC-
Fuzz could fill an important gap in the development of new
CCAs by providing a simple way to identify settings in which
a particular CCA performs poorly.

CC-Fuzz

REFERENCES

[1] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-

(10

[11

[12

[13

[15

—

=

=

—_

=

=

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 Conference. 63-74.

Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad
Alizadeh, and Hari Balakrishnan. 2021. Toward Formally Verifying
Congestion Control Behavior. In Proceedings of the 2021 ACM SIG-
COMM 2021 Conference (SIGCOMM °21). Association for Computing
Machinery, New York, NY, USA, 1-16. https://doi.org/10.1145/3452296.
3472912

Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical {Delay-
Based} Congestion Control for the Internet. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18).
329-342.

BBR-Development. 2022. Question on strange BBR behavior. https:
//groups.google.com/g/bbr-dev/c/XUOKHJiIAWS80. (2022). [Online;
accessed 23-June-2022].

Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis,
Barath Raghavan, Nandita Dukkipati, Hsiao-keng Jerry Chu, Andreas
Terzis, and Tom Herbert. 2013. packetdrill: Scriptable network stack
testing, from sockets to packets. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13). 213-218.

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2017. BBR: congestion-based congestion
control. Commun. ACM 60, 2 (2017), 58—66.

Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo.
2016. Analysis and design of the google congestion control for web real-
time communication (WebRTC). In Proceedings of the 7th International
Conference on Multimedia Systems. 1-12.

Gustavo Carneiro. 2010. NS-3: Network simulator 3. In UTM Lab
Meeting April, Vol. 20. 4-5.

Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana,
Mohammad Alizadeh, and Hari Balakrishnan. 2018. Elasticity detec-
tion: A building block for internet congestion control. arXiv preprint
arXiv:1802.08730 (2018).

Samuel Jero, Md Endadul Hoque, David R Choffnes, Alan Mislove,
and Cristina Nita-Rotaru. 2018. Automated Attack Discovery in TCP
Congestion Control Using a Model-guided Approach.. In NDSS.
Ingemar Johansson and Zaheduzzaman Sarker. 2017. Self-clocked rate
adaptation for multimedia. Technical Report.

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, et al. 2020. Swift: Delay is simple
and effective for congestion control in the datacenter. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data Com-
munication on the applications, technologies, architectures, and protocols
for computer communication. 514-528.

Aleksandar Kuzmanovic and Edward W Knightly. 2003. Low-rate TCP-
targeted denial of service attacks: the shrew vs. the mice and elephants.
In Proceedings of the 2003 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications. 75-86.
Matthew K Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok
Kim, Srinivasan Seshan, and Alex C Snoeren. 2020. Adapting {TCP}
for Reconfigurable Datacenter Networks. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). 651-666.
Ravi Netravali, Anirudh Sivaraman, Keith Winstein, Somak Das,
Ameesh Goyal, and Hari Balakrishnan. 2014. Mahimahi: A lightweight
toolkit for reproducible web measurement. ACM SIGCOMM Computer
Communication Review 44, 4 (2014), 129-130.

37

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

HotNets *22, November 14-15, 2022, Austin, TX, USA

Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. 2019. {Model-
Agnostic} and Efficient Exploration of Numerical State Space of {Real-
World} {TCP} Congestion Control Implementations. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19). 719-734.

Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute
force vulnerability discovery. Pearson Education.

Hajime Tazaki, Frédéric Urbani, and Thierry Turletti. 2013. DCE
Cradle: Simulate network protocols with real stacks. In Workshop on
NS3 (WNS3).

Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine
Sherry. 2019. Modeling bbr’s interactions with loss-based congestion
control. In Proceedings of the internet measurement conference. 137-143.

Darrell Whitley, Soraya Rana, and Robert B Heckendorn. 1999. The
island model genetic algorithm: On separability, population size and
convergence. Journal of computing and information technology 7, 1
(1999), 33-47.

Wikipedia contributors. 2022. Sisyphus — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Sisyphus&
0ldid=1091831787. (2022). [Online; accessed 23-June-2022].

Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Sto-
chastic forecasts achieve high throughput and low delay over cellular
networks. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). 459-471.

Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby,
Philip Levis, and Keith Winstein. 2018. Pantheon: the training ground
for Internet congestion-control research. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18). 731-743.

Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin,
and Shi-Min Hu. 2021. {TCP-Fuzz}: Detecting Memory and Semantic
Bugs in {TCP} Stacks with Fuzzing. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 489-502.

https://doi.org/10.1145/3452296.3472912
https://doi.org/10.1145/3452296.3472912
https://groups.google.com/g/bbr-dev/c/XUOKHJiAW80
https://groups.google.com/g/bbr-dev/c/XUOKHJiAW80
https://en.wikipedia.org/w/index.php?title=Sisyphus&oldid=1091831787
https://en.wikipedia.org/w/index.php?title=Sisyphus&oldid=1091831787

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Design
	3.1 Network Model
	3.2 Link Fuzzing
	3.3 Traffic Fuzzing
	3.4 Scoring Function
	3.5 Selection Algorithm
	3.6 Emulation vs. Simulation

	4 Findings
	4.1 BBR - Stuck Throughput
	4.2 TCP-CUBIC Incorrect CWND Update
	4.3 Other Findings

	5 Future Work
	6 Conclusion
	References

