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ABSTRACT
Real-time interactive video streaming applications like cloud-based
video games, AR, and VR require high quality video streams and
extremely low end-to-end interaction delays. These requirements
cause the QoE to be extremely sensitive to packet losses. Due to the
inter-dependency between compressed frames, packet losses stall
the video decode pipeline until the lost packets are retransmitted
(resulting in stutters and higher delays), or the decoder state is reset
using IDR-frames (lower video quality for given bandwidth).

Prism is a hybrid predictive-reactive packet loss recovery scheme
that uses a split-stream video coding technique to meet the needs
of ultra-low latency video streaming applications. Prism’s approach
enables aggressive loss prediction, rapid loss recovery, and high
video quality post-recovery, with zero overhead during normal
operation - avoiding the pitfalls of existing approaches. Our eval-
uation on real video game footage shows that Prism reduces the
penalty of using I-frames for recovery by 81%, while achieving 30%
lower delay than pure retransmission-based recovery.
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1 INTRODUCTION
Steady improvements in networking algorithms, hardware, and
video coding techniques have enabled the Internet to support a wide
range of video applications (e.g. live conferencing, large-scale broad-
casts, video-on-demand). Recently, a new class of video streaming
applications has emerged: ultra-low latency interactive video. These
applications o�oad compute and rendering to the cloud, and stream
the view-port to the end user. Examples of these applications include
virtual game consoles (Stadia [13], GeForce NOW[23], XCloud [35]),
cloud AR [29], and virtual desktop (Chrome Remote Desktop [12],
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Azure Virtual Desktop [21]). These applications push the limits
of existing streaming techniques and network infrastructure, and
have extremely demanding QoE requirements (video stream quality
and end-to-end frame delay).

The Internet’s design fundamentally follows a best-e�ort philos-
ophy - there are no guarantees for reliable delivery of packets. As
a result, applications must deal with issues such as packet loss [6],
which is especially harmful for low-latency video streaming appli-
cations due to the interdependence between frames in compressed
video (e.g. P- and B-frames). Loss of video data (as a consequence
of packet loss) stalls the video decoder pipeline, since past frames
need to be decoded in order to decode a P-frame.

Packet loss mitigation strategies fall into four broad categories:
(1) Preventing data loss: FEC [19, 26] transmits redundant

packets to avoid data loss even if some packets are lost.
(2) Concealing lost data: Partial P-slice decoding [5, 8], error

concealment [36, 37], joint source-channel coding [16], and
scalable coding [11, 28] (SVC) are able to continue decoding
the video at a reduced quality when packet losses occur.

(3) Recovering lost data: Packet or frame retransmissions [3]
can be used to recover lost data, and has the bene�t zero
bandwidth or performance overhead when no losses occur.

(4) Recovering from data loss: IDR-frames (independent data
refresh) and slice-based intra-refresh [34] result in lower
delays compared to (3) by eliminating the need for the video
decoding pipeline to catch up to the current frame.

Techniques that prevent or conceal data loss (FEC, partial decod-
ing, error concealment, scalable coding) enable packet loss mitiga-
tion without requiring receiver feedback, and thus, do not incur a
round-trip penalty for loss recovery. On the other hand, these tech-
niques break down when packet losses exceed a certain threshold,
resulting in non-recoverable video data loss. Non-recoverable video
data loss when using FEC has the same implications as a packet
loss when not using FEC. When techniques like loss concealment
are used, packet losses manifest as undesirable artifacts that signi�-
cantly degrade the QoE for immersive applications like cloud-based
gaming, augmented reality (AR), and virtual reality (VR).

There are two techniques used for recovering from video data
loss: packet retransmissions, and IDR frames (Independent Data
Refresh, see § 2 for background). These solutions force applica-
tions to make di�cult tradeo�s between accepting signi�cantly
degraded picture quality, or signi�cantly higher frame delay when
a�ected by packet loss [8, 14]. For instance, during bursty loss
events, transmitting IDR frames reduces frame delay since they can
be independently decoded. On the other hand, since IDR frames
do not leverage temporal redundancies in video data, they require
more bits per frame compared to P-frames for equivalent picture
quality. In the case of retransmission based recovery, high picture
quality is maintained since the frames are still encoded as P-frames.
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Unfortunately, since the receiver accumulates a backlog of unde-
coded frames until the lost data has been recovered, the end-to-end
frame delay remains high until the decoder catches up.

In order to resume decoding after non-recoverable video data
loss, the sender must �rst be noti�ed, after which the sender can
retransmit packets or send IDR frames to recover from the data loss
event. This process incurs a minimum delay of 1 round-trip time
(RTT) before the sender can trigger loss recovery. In order to reduce
this delay, one could use speculative loss predictionmechanisms [10,
27], but this approach has the risk of false positives, which can a�ect
the video quality signi�cantly (eg. when using IDR frames).

Our system, called Prism, incorporates a novel frame transport
protocol, optimizations at the video codec level, and deep-learning
based packet loss prediction to signi�cantly improve the QoE by
achieving smoother video playback without signi�cantly sacri�c-
ing video quality. Prism leverages the insights that (1) IDR-frames
enable rapid recovery of a video stream after a loss event, since
they are immediately decodable and reset the decoder state, and
(2) A stream of P-frames can sustain high quality for some time
even after a reduction in bitrate, and thus enable rapid recovery
post-recovery. When Prism identi�es a potential loss event, it splits
the video stream into two substreams - a low-latency, unreliable
IDR-frame stream, and a high quality, reliable P-frame stream. The
IDR-frames enable the application to continue displaying frames
with low delay, albeit at a lower quality. When the lost P-frame data
is retransmitted and the pending frames are decoded, the applica-
tion can quickly switch back to the higher quality P-frame stream.
Prism carefully allocates the total available bandwidth between
the two streams by using results from a novel video analysis and
optimization pipeline that runs o�ine, and thus avoids real-time
computational overhead.

Prism’s approach reduces the impact of falsely triggering loss
recovery, enabling the use of aggressive loss prediction for specula-
tive loss recovery. This allows Prism to take action before potential
losses occur, reducing the time to recovery. When Prism’s recovery
mechanism is falsely triggered, the receiver can simply decode and
display the high quality P-frame stream. Prism eliminates the hard
tradeo�s present in traditional approaches and provides a more
�exible trade-o� between frame delay and video quality.

Our key design contributions include:
(1) Split Stream Video Coding: During packet loss, Prism

splits the available bandwidth across a low latency IDR-frame
stream and a high quality P-frame stream, ensuring low
frame delay during loss events, and high video quality post
recovery. In addition, the impact of falsely triggering Prism’s
loss recovery is low; this enables Prism to use loss prediction
mechanisms to respond early to potential packet loss.

(2) Video Analysis Pipeline: Prism analyzes video scenes
o�ine to optimize the bandwidth allocation across the two
video streams. Prism’s novel black box encoder modeling
technique provides fast approximations of the video quality
for given bitrate con�gurations, speeding up the optimiza-
tion pipeline by multiple orders of magnitude.

(3) Deep-learning Based Loss Prediction: Prism’s evaluation
uses a simple deep-learning based packet loss predictor in
order to demonstrate the bene�ts of Prism when used in
conjunction with aggressive loss prediction. Loss prediction

allows Prism to react to losses earlier, mitigating the network
round-trip penalty for packet loss recovery.

We evaluated a real-time implementation of Prism across a di-
verse set of video game footage and emulated network conditions.
Prism reduces the quality penalty of using IDR-frames for loss re-
covery, while preserving the low delay bene�ts of using IDR-frames.
Simulation of Prism’s algorithm using discrete event simulation
techniques on real world network traces from M-Labs [20] shows
that Prism can outperform IDR-frame based recovery and P-frame
retransmissions by handling packet loss better in the presence of
signi�cant delay and bandwidth variation, reducing the quality
penalty of I-frames by 81 % on average. Additionally, aggressive
loss prediction mechanisms that reduce delay by proactively trig-
gering loss recovery work in conjunction with Prism’s split-stream
approach, achieving much higher video quality in comparison to
IDR-frame based loss recovery with loss prediction.

2 VIDEO COMPRESSION BACKGROUND
Video frames are comprised of slices, where each slice can be one of
three types: (1) Intra (or I), (2) Predicted (or P), and (3) Bidirectional
(or B). An I-slice is encoded and decoded independently, whereas P-
slices depend on past frames and B-slices may depend on both, past
and future frames. P- and B-slices leverage inter-frame redundancy
by using motion compensation [18] to approximate the slice by
using localized motion vector references to past and future frames,
signi�cantly reducing the bitrate requirement to achieve the desired
picture quality (e.g. Structural Similarity [32] (SSIM), which ranges
from 0 (worst quality) to 1 (identical to source)) 1.

Low latency streaming applications rely heavily on the use of
IDR-frames (independent data refresh) and P-frames. These appli-
cations encode video as P-frames during normal operation due to
their compression e�ciency - thus, a single missing packet stalls
prevents the decoding of subsequent frames. IDR-frames are special
I-frames (contains only I-slices, I- and IDR- used interchangeably
henceforth) that are commonly used to recover from video data loss,
since they reset the decoder state, which can then discard previous
undecoded frames and decode the most recent frames with minimal
delay.

Prism leverages three key properties of video compression -
(1) The quality of an I-frame depends only on the bitrate and the
content of a particular frame, (2) I- and P-frames demonstrate di-
minishing returns with respect to the video quality as the bitrate
increases, and (3) In addition to motion, frame content, and the
bitrate, the quality of a P-frame also depends on the quality of pre-
vious frames since they are approximated from previous frames
using motion vectors.

3 LOSS DETECTION AND RECOVERY
The goal of this paper is to design a video data loss recovery mech-
anism that simultaneously achieves (1) low delay and smooth video
playback, (2) high picture quality, (3) minimal quality impact un-
der false packet loss triggers, enabling aggressive loss prediction
without signi�cant penalties, and (4) zero overhead under normal
operation. While loss prevention techniques (e.g. error coding, FEC)
can reduce the frequency of video data loss with some bandwidth
1Raw SSIM lies in [-1,1], many tools scale it to be in [0,1].
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and compute overhead, they provide no guarantees. Transmitting
IDR-frames on video data loss achieves (1) and (4), and retrans-
mission of lost P-frame packets achieves (2), (3) and (4). In the
following subsections, we discuss: (1) the impact of loss detection
mechanisms, (2) the two reactive recovery mechanisms, and (3) an
example in Section 3.3 to show how Prism’s split stream approach
can achieve all of the above properties simultaneously.

3.1 Loss Detection
The sender getting noti�ed of video data loss is the �rst step in loss
recovery, which then triggers the loss recovery mechanism. Since
packet losses are often accompanied by periods where no ACKS
are received, or an increase in delay (e.g. due to cross tra�c run-
ning loss-based TCP), speculatively triggering loss recovery using
aggressive loss prediction (e.g. sub-RTT timeouts, loss prediction
using machine learning) can reduce video stuttering and frame
delays [1, 15]. On the other hand, noisy networks, queue-building
cross tra�c (e.g. BBR [4]), packet reordering and ACK loss [17]
may result in frequent false triggers. Excessive false triggering of
recovery mechanisms (like IDR-frames) harms video quality (§ 2).
Delaying recovery until packet loss can be veri�ed results in sig-
ni�cant video stutter, which is unacceptable for ultra-low latency
video streaming applications. Prism drastically reduces the impact
of false loss recovery triggers on video quality, and thus enables
the use of aggressive loss prediction mechanisms in order to reduce
video stutter under packet loss.

3.2 Reactive Loss Recovery
Packet Retransmissions: A video data loss in a P-frame stream
can be recovered using packet retransmissions. This approach
achieves high picture quality by leveraging the compression ef-
�ciency of P-frames due to motion compensation, but results in
higher end-to-end frame delays and video stutter. Consider a video
stream being sent over a link with an RTT of 60 ms. When a loss
occurs, the sender is only noti�ed 60 ms after having sent the origi-
nal data. During this period, the sender keeps encoding frames as
P-frames, and these frames get queued at the decoder without being
displayed, until the lost packets are retransmitted. On receipt of the
retransmissions, the decoder “catches up” to the latest frame, which
can take a long time (based on decode performance). For example,
for a 60FPS video where each frame takes 10ms to decode, catching
up with 60ms of backlogged frames can take up to 100 ms 2. When
streaming in 4K to low power client devices like mobile phones
and TV streaming sticks, the decode time can be much closer to
the frame time, signi�cantly increasing the recovery delay.

I-frames: When packet loss occurs, transmitting the latest
frames as I-frames (IDR) resets the decoder state, and thus, the latest
frames can be decoded and displayed immediately. Using I-frames in
conjunction with aggressive loss detection can signi�cantly reduce
video stutter and improve video smoothness. Unfortunately, (1)
IDR frames have much lower video quality compared to P-frames
encoded at the same bitrate, and (2) the low quality of an IDR frame
also a�ects the video quality of subsequent P-frames, since their
quality depends on the video quality of past frames.

2Let x be the delay after the loss until P-frames recover. Frames decoded: G
10 , frames

sent: 60+G
16 . Solving, we get x=100

3.3 Proposed Hybrid Approach
The two loss recovery mechanisms discussed above have their own
bene�ts and downsides: P-frame retransmissions achieve higher
picture quality, but incur higher delays and stutter. On the other
hand, IDR-frames improve video smoothness and reduce latency at
the cost of video quality. In Prism, we propose a hybrid architecture
that combines the two mechanisms to achieve a better trade-o�
between latency and video quality by leveraging two key properties
(§ 2): (1) The diminishing returns of video qualitywith higher bitrate,
and (2) the dependence of the quality of a P-frame on the quality
of past frames. When packet loss occurs, the quality of a P-frame
stream can be preserved for a short duration at a reduced bitrate,
while the residual bandwidth can be used for transmitting I-frames
in order to maintain low delay until the P-frame stream recovers
using packet retransmissions.

In Figure 1b, we encode a video segment for “GTA-V” using
di�erent encoding con�gurations. The yellow line is the steady
state P-frame SSIM at 20 Mbps (best case - no packet loss). The line
“I-frame insertion” shows the instantaneous drop in picture quality,
and the quality impact on subsequent P-frames when I-frames at
10 Mbps are used during loss recovery (between frames 5 and 10).
During loss recovery, Prism splits the available bandwidth in order
to continue the P-frame stream (at a lower bitrate), and additionally
transmits low delay I-frames. For example, say we allocate 2 Mbps
for the P-frame stream and 8 Mbps for the I-frames during loss.
The I-frames reduce latency during the ongoing loss event, and the
receiver switches back to the P-frame stream after frame 10. The key
insight here is that when the bitrate is reduced, the quality of the
P-frame stream is preserved for a short duration. The line marked
as “Real Loss” denotes Prism’s video quality when real loss occurs -
while the quality during loss is slightly lower compared to I-frames
(at 10 Mbps), the video quality post-recovery is much higher. The
line marked as “Spurious Loss” denotes Prism’s video quality when
loss recovery is falsely triggered (i.e. the quality of the P-frame
stream), and thus, Prism’s approach works well with aggressive
loss-prediction techniques as opposed to I-frame insertion.

4 DESIGN
In this section, we discuss Prism’s system design, and how it ro-
bustly mitigates video data loss for interactive video streaming
applications like cloud gaming, and AR/VR streaming.

4.1 Overall Architecture
Prism’s streamer and receiver architectures are shown in Figure 1a.
The network transport layers at the streamer and the receiver are
responsible for packetization and multiplexing of the two video
streams over a single connection. In order to trigger loss recovery,
the Prism controller combines signals from a deep-learning based
loss predictor and loss signals from the transport layer. The con-
troller also determines the allocation of the available bandwidth
across the two video streams.

When no packet loss occurs, frames are encoded as P-frames
using all of the available bandwidth. The receiver reassembles the
packets, decodes and displays the frame. When the transport layer
or the loss predictor indicates packet loss, each frame is encoded
as a P-frame (by the primary encoder) and an IDR-frame (by the
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Figure 1: Prism architecture.

secondary encoder), and the Prism controller allocates the total
bandwidth across the two streams. The P-frame is transmitted reli-
ably using packet retransmissions, and the IDR-frames are transmit-
ted as one shot (no retransmissions). The P-frames after a packet
loss are stored in a bu�er at the receiver while the transport layer
retransmits the lost packets. Meanwhile, the IDR-frames that make
it through are immediately decoded and displayed, maintaining low
video latency while the P-frame stream recovers from the loss.

Prism needs to optimize the bandwidth allocation in order to
maximize the bene�t of this approach, and ensure that the quality is
better than simply using I-frames. Prism’s o�ine analysis pipeline
uses prerecorded training video sequences to compute compact
bandwidth allocation tables using a greedy heuristic in order to
make bandwidth allocation decisions in real-time (§ 4.2). Prism uses
a novel black box encoder modeling technique that enables fast
and accurate estimation of the video quality for arbitrary video
encoding schedules (bitrate, IDR-frame insertions) without actually
encoding the video, which reduces the amount of computation
required for generating the bandwidth allocation tables by multiple
orders of magnitude (§ 4.3).

4.2 Optimizing Bandwidth Allocation
Consider the timeline shown in Figure 1c, with the X-axis denoting
the frame number. In the example, no packet losses occur until
frame 5, and frames 6 through 9 are a�ected by packet loss (shown
in the loss timeline). The video bitrate of the P-frame stream before
loss recovery is triggered is ⌫?A4 Mbps, and the available band-
width during the period of loss recovery is ⌫;>BB (⌫?A4 and ⌫;>BB are
determined by the congestion control and rate control algorithms,
assumed to be constant here for simplicity). During the recovery
period, let the encoding bitrate of the I-frames and the P-frames be
⇢� (5 ) and ⇢% (5 ) respectively, where 5 is the frame number. This
gives us the constraint

⇢� (5 ) + ⇢% (5 ) = ⌫;>BB 8 50  5  51 (1)

Since the duration of loss is not known beforehand, we propose
a greedy optimization strategy: when transmitting a frame during
loss recovery, Prism splits the bandwidth assuming that it is the
last frame in the loss recovery state. Thus, given the bandwidth
split until frame 58 , Prism needs to determine the allocation for
frame 58+1 that balances three things: (1) The video quality during
loss (the quality of the I-frames), (2) the video quality after the loss
event (quality of the last P-frame sent during loss recovery), and (3)

the video quality when the loss is spurious (quality of the P-frames
during loss recovery).

We �rst derive the optimization objective for a known video
segment, where the loss recovery begins at 50 and ends at 51. The
mappings between video bitrate and video quality are de�ned as:

• &� (G, 5 ): The quality of frame 5 when encoded at a bitrate
G as an I-frame.

• &% ( [G1 ...G 5 ], 5 ): The quality of frame 5 when frames 1...5
are encoded as P-frames, and the bitrate of frame 8 is G8 .

For a frame 5 transmitted during loss recovery, we de�ne two
objective functions, $1 and $2, denoting the video quality during
real loss, and when loss recovery was falsely triggered respectively.
Under real loss, the video quality is determined by the quality of
the I-frames (&� in Figure 1c) and the quality of the P-frames after
recovery (&% after 51 in Figure 1c). If the I-frame allocation is G ,

$1 (G) = &� (G, 5 ) +
5 + ’
8=5 +1

&% ( [G 50 ...G 5 �1,⌫;>BB � G,⌫;>BB ...⌫;>BB ], 8)

(2)

where  is a �xed horizon of future frames that are assumed to
be encoded at ⌫;>BB to account for the quality convergence of the
P-frames, and G 50 ...G 5 �1 are �xed according to the allocations for
past frames during the current loss event (greedy approximation).

When spurious loss occurs, the video quality is determined solely
by the quality of the P-frame stream. Thus,

$2 (G) =
5 + +1’
8=5

&% ( [G 50 ...G 5 �1,⌫;>BB � G,⌫;>BB ...⌫;>BB ], 8) (3)

This allows us to de�ne objective function for determining the
bandwidth split for a frame 5 :

G 5 = argmax
G

F ·$1 + (1 �F) ·$2 (4)

Here,F is the weight for real loss, and 1 �F is the weight for false
loss recovery triggers. F is set based on the accuracy of the loss
prediction mechanism (eg. a smaller value for F is better if false
loss recovery triggers are frequent).

In order to �nd the best split, it is su�cient to sweep di�erent
values of G , and pick the value that maximizes the objective func-
tion. Unfortunately, this optimization cannot be solved in real-time
since objective function requires the quality of future frames, which
are not available for real-time applications. Prism’s key insight is
that while video properties can vary across individual frames, the
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result of the optimization is “stable” for a given video style. In 4.3,
we describe an o�ine approach to compute bandwidth allocation
tables for a particular video style using prerecorded training seg-
ments, enabling Prism to run in real-time without any runtime
computational overhead.

4.3 O�line Analysis Pipeline
Solving the optimization problem in real-time when a loss event oc-
curs is impractical not only from a delay and overhead perspective,
but also not possible since the objective function includes the quality
of future frames. To address this issue, Prism analyzes pre-recorded
video segments that are representative of particular scene types,
and runs the optimization for a wide range of bandwidth values
and loss durations, for various starting points in the pre-recorded
video. The results are aggregated across the starting points in the
video into a decision table that maps (⌫?A4 ,⌫;>BB ) ! [G 5 ...G 5 +⇡ ],
where⇡ is a maximum limit on loss recovery duration before Prism
falls back onto traditional techniques. Prism uses the appropriate
decision tables for the particular video style in order to determine
the bandwidth split in real-time during loss recovery.

Consider the optimization run for a particular section of a pre-
recorded video segment. If we limit the maximum loss duration
to 10 frames, and limit ⌫?A4 , ⌫;>BB , and G 5 to 1 � 20Mbps in steps
of 1Mbps, the brute force approach requires ⇡ 20 ⇥ 20 ⇥ 10 ⇥ 10,
ie. 40000 di�erent encoding schedules to be evaluated. In addition,
for each evaluation, we must consider around 1 second of video
before and after loss recovery for allowing the quality of the P-
frames to converge. Thus, analyzing a single location in a training
video requires an unacceptable 80000 seconds of video encoding
(22 hours). This scales up linearly as we sample more locations in
the training video in order to generalize the decision table for a
particular video style.

4.3.1 Black box encoder modeling. In Prism, we propose a
unique approach to reduce the complexity of the o�ine analysis
step, speeding it up by multiple orders of magnitude. Prism analyzes
data from a small set of carefully designed video encoding runs,
which enables Prism to accurately predict video quality for the
given video sample when (1) a frame is encoded as an I-frame, (2)
the encoding bitrate of a P-frame stream is changed, or (3) an I-
frame is inserted in a P-frame stream. This enables Prism to avoid
encoding the actual video to compute the objective function when
performing a brute force sweep of the search space for determining
the optimal bandwidth splits. To our knowledge, this method is
unique to Prism and has not been published in past work.

Suppose we are given a long sample video of duration # seconds.
First, we encode the video only using I-frames for all bitrates rang-
ing from 1 � 20 Mbps (20 ⇥ # seconds of video encoded), enabling
us to compute &� (G, 5 ). Second, we sample K segments (each seg-
ment starts at frame 5 , duration of 1 second) from the video, and
encode each segment in the following manner for each bitrate ⇢
value between 1 Mbps and 20 Mbps:

• Encode the �rst frame at a very low bitrate, and the sub-
sequent frames at the chosen bitrate as P-frames (20 ⇥  
seconds of video encoded). Let’s denote this family of func-
tions as )(5 ,⇢) , shown as the yellow �ow lines in Figure 2a.

• Encode the �rst frame at a very high bitrate, and the sub-
sequent frames at the chosen bitrate as P-frames (20 ⇥  
seconds of video encoded). Let’s denote this family of func-
tions as ) 0

(5 ,⇢) , shown as the red �ow lines in Figure 2a.
)(5 ,⇢) and ) 0

(5 ,⇢) can be combined and interpolated as a vector
�eld that denotes the quality convergence of P-frames for a given
bitrate ⇢, enabling us to compute the video quality of a P-frame
encoded at ⇢ when the video quality of the previous frame is known.

If we sample  = 100 segments from the original video of dura-
tion # = 20s, the total duration of video encoding required is 400s
for I-frame qualities, and 4000s for the P-frame transition properties.
This enables us to compute the SSIM of the 40000 encoding sched-
ules for each starting point in the video discussed in § 4.3 without
requiring any additional encoding. If the optimization aggregates
across 100 di�erent starting points in the video, this technique
provides more than a three orders of magnitude speed up.

To measure the accuracy of our algorithm, we generated video
encoding schedules with random changes in the video bitrate and
with random I-frame insertions. Each video is encoded with 100
di�erent random schedules. A zoomed in view of one such random
schedule is shown in Figure 2b. The lower subplot shows the bitrate
schedule and the I-frame insertions, while the true SSIM and the
predicted SSIM are shown in the top subplot . We also compared
the results of our algorithm discussed in Section 4.3 to a simpler
algorithm where the SSIM of the video converges to the steady
state P-frame SSIM using exponential decay (we choose the decay
parameter that minimizes the total absolute error for each encoding
schedule). The prediction error CDFs for three videos (best, worst
and one in-between) are shown in Figure 2c, along with the overall
prediction error CDF across all 13 videos (§ 5). Our algorithm for
modeling the video SSIM is very accurate, with 90% of the predic-
tions being within 1% of the true SSIM. The naïve approach using
exponential decay fails to capture the SSIM variations across frames
during transition periods.

4.4 Loss Prediction
Prism’s design enables the use of aggressive loss prediction which
in turn reduces video frame delay, since the decoder can utilize
the higher quality P-frame stream if the loss prediction was a false
trigger. We designed a simple convolutional neural network that
uses network statistics such as bytes sent, mean, variance and linear
�t for RTT, and the bytes lost for 200 ms windows to predict the
occurrence of loss in the subsequent 50 ms. The neural network
comprises of three convolutional layers and three dense layers, and
the simplicity results in low computational overhead - predicting
loss for a 50 ms window takes less than 1 ms on an Intel Core i7
CPU. We trained this model on 9 days of M-Labs NDT data [20],
and tested the packet loss prediction performance for a tenth day.
Additional details are provided in appendix F.

The neural network outputs a probability value that denotes
its con�dence in loss occurring. This design also enables Prism to
choose a probability threshold for triggering loss recovery, which
determines the trade-o� between loss prediction accuracy and false
triggering of loss recovery. This trade-o� between accuracy and
false loss recovery triggers is shown in Figure 2d. While a low
threshold for loss prediction is able to identify many more packet
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loss events, thus enabling faster loss detection and recovery for
lower delay and smoother video, it also results in a signi�cant
number of false packet loss triggers - Prism is able to adapt its
bandwidth allocation to the accuracy of loss prediction since it
includes a tuning parameter F (§ 4.2) that balances the quality
between real losses and false loss triggers.

5 EVALUATION
Prism’s evaluation has two broad themes: evaluation of the opti-
mization framework, and end-to-end evaluation of the system.

Optimization Framework. Prism uses pre-computed band-
width allocation tables for di�erent video types, since optimizing
the video quality in real-time is not feasible (§ 4.2). We evaluate
Prism’s optimization strategy using the CGVDS [2] dataset, which
contains a diverse set of 13 video game captures that have very
di�erent video compression properties (screenshots in appendix A).
This section of the evaluation provides a better understanding of
Prism’s e�cacy in achieving better quality compared to recovery
using I-frames. In § 5.1.1, we evaluate the impact of overall band-
width availability on Prism’s performance. In § 5.1.2, we quantify
the impact of using a single decision table for an entire scene, as
opposed to the “ideal” bandwidth split for a particular location in a
given video. In § 5.1.3, we quantify the impact of loss duration on
video quality.

End-to-EndEvaluation. In the second part, we evaluate Prism’s
performance using two di�erent approaches: (1) we evaluate Prism’s
implementation that runs in real-time and uses the generated deci-
sion tables for allocating bandwidth across the two streams, and (2)
we evaluate Prism using a discrete event simulator that uses real-
world network traces fromM-Labs [20] and Prism’s neural-network
based loss prediction.

We compare Prism’s end-to-end performance to the two key
video data loss recovery techniques: IDR-frames, and packet retrans-
missions (§ 3.2). For comparing video quality, we use SQI-SSIM [7],
a metric based on SSIM that imposes an exponential decay penalty
when video frames are delayed (accounting for the length of video
stalls), and penalizes the quality for some time after each stall event
(accounting for frequency of stalls). We also compare the end-to-
end frame delay (including transmission delay, propagation delay
and decoding delay) for frames that end up getting displayed on the
screen. SQI-SSIM and the frame delay together provide a holistic
view of the QoE for low-latency streaming applications.

5.1 Optimization Framework
In our plots, we compare structural dissimilarity (DSSIM), de�ned
as 1�A0F((�"

2 , which quanti�es the amount of distortion from the
reference image. For consistency, we use decision tables generated
usingF = 0.5 throughout (equal weights for real and spurious loss).

5.1.1 Bandwidth Sensitivity. Video quality gains achieved by
Prism depend on the overall bandwidth availability. Transmitting
two separate streams is ine�cient when the available bandwidth
is low, since a large portion of this bandwidth would be taken up
by redundant data shared across the frames. On the other hand,
when a lot of bandwidth is available, the impact of I-frames on
video quality is insigni�cant. Figure 3a shows the improvement
(reduction) in DSSIM vs. using I-frames, for di�erent values of pre-
loss bandwidth (shown on the X-axis). The data points on the Y-axis
aggregate the improvements across all the values of loss bandwidth
that are greater than half of the pre-loss bandwidth.

Prism’s gains are higher for videos like “LoL TF”, where P-frames
are particularly e�cient at encoding the video data. On the other
hand, games like “Minecraft” and “Tekken” have smaller gains since
intricate textures and complex motion reduce the e�ciency of P-
frames (see appendix A). Further, Prism’s gains are lower at very
high bitrates, since I-frames have su�cient video quality.

5.1.2 Scene Stability. Prism’s optimization pipeline generates a
single decision table for an entire scene by aggregating the objective
function across multiple segments extracted from the sample scene.
The underlying assumption behind this approximation is that while
the SSIM of individual frames can vary, the transition properties and
the relative quality between I-frames and P-frames are stable across
a particular scene type. To verify this assumption, we compute the
CDF of the percentage di�erence in the objective function when
using the decision table, versus the optimal bandwidth split that
is optimized for a speci�c video section. We generate data points
using various pre-loss and loss bitrates, and multiple loss durations.

The results (shown in Figure 3b) show that the performance
when using a single decision table is almost as good as using the
optimal split for a speci�c segment. This approximation enables
Prism to make bandwidth allocation decisions in real-time by sim-
ply performing a table lookup. In appendix B, we include additional
analysis that shows the impact of using incorrect bandwidth alloca-
tions on the video quality, demonstrating that optimizing for each
video type is necessary.

5.1.3 Loss duration sensitivity. Prism’s bene�ts are realized
due to two fundamental video coding properties: P-frames are more
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Figure 3: Performance of Prism’s bandwidth split optimization algorithm.

e�cient at encoding video data, and the quality of a P-frame stream
exhibits a gradual transition when the bitrate is changed. The ben-
e�ts of Prism can be realized even for very long periods of packet
loss if the P-frames are extremely e�cient (eg. “LoL TF”). When
P-frames are not as e�cient, Prism still demonstrates quality gains
for shorter loss durations (e.g. “Overwatch”). This is shown in Fig-
ure 3c, which plots the improvement in video quality over simply
using I-frames, as a function of the loss duration. Prism’s optimiza-
tion algorithm accounts for scenarios like “Overwatch”, switching
to sending I-frames only after running in split-stream mode for
a few frames. For extended loss durations, this approach is only
slightly worse than transmitting I-frames right from the beginning,
and stems from Prism’s greedy approach for allocating bandwidth
across the two streams.

These results also suggest that game developers designing games
for cloud platforms can improve streaming performance by making
encoder-friendly choices for artistic styles and gameplay mechanics.

5.2 End-to-end Evaluation
We evaluated the end-to-end performance of Prism in two di�er-
ent ways: (1) A real-time implementation that streams video over
emulated lossy links (§ 5.2.1), and (2) a discrete event simulator
that evaluates Prism on real-world M-Labs [20] traces, integrating
Prism’s neural network based loss prediction mechanism (§ 5.2.2).

5.2.1 Real-time Streaming Experiments. We implemented a
real-time video streaming test bed that enables the comparison
of various loss recovery mechanisms and allows us to compare
Prism’s performance to baselines like I-frame based recovery and
packet level retransmissions. This test bed uses the NvEnc [25]
encoder and the H.264 [33] video codec3, and implements a video
streaming API that provides direct control over each frame’s en-
coding con�guration. For simplicity, we assume that the available
bandwidth under normal operation is 20 Mbps, dropping down to
15 Mbps during periods of loss. Note that Prism can work with
any congestion control algorithm, Prism just needs to know the
instantaneous available bandwidth and needs a trigger for loss re-
covery. In these experiments, we use the MahiMahi [22] network
emulator to emulate a 25 Mbps link with a 40 ms RTT. We evaluate
two types of packet loss - (1) random packet loss, and (2) loss caused

3Any other codec that is supported by FFMPEG [31] and NvEnc [24] can be used.

by queue-building �ows (e.g. loading a web page with wget that
uses TCP-Cubic).

In Figure 4, we show timelines comparing I-frame based recovery,
packet retransmissions, and Prism under random loss (timelines
for web page load provided in appendix D). Each loss event results
in a large, sustained drop in video quality when using I-frames.
While the quality of Prism’s I-frames are slightly lower, the video
quality recovers rapidly after the loss event. In the case of packet
retransmissions, the delay spike that occurs after a loss event takes
a signi�cant amount of time to recover since the decoder needs
to catch up to the latest frame after receiving the retransmissions
for the lost packets. Secondary losses can compound this delay,
resulting in very low QoE.

5.2.2 Trace-based Discrete Event Simulation. In order to eval-
uate Prism’s performance under real-world network conditions,
we designed a discrete event simulator that replicates Prism’s pro-
tocol and integrates Prism’s neural network based loss predictor.
We evaluate Prism on ⇡ 50 di�erent network traces from M-Labs.
These traces exhibit multiple loss events, and delay and bandwidth
�uctuations, and were not used in the training of the loss predictor.

The bandwidth and delay of a sample trace is shown in Figure 5,
along with the output of Prism’s loss predictor. Aggressive loss
prediction enables Prism to initiate recovery earlier, which reduces
video stutter and delay. While Prism’s loss predictor has quite a
few false positives, recall that Prism’s design signi�cantly reduces
the impact of falsely triggering loss recovery (§ 3.3, appendix E).

5.2.3 Results Summary. In Figure 6a, we compare the perfor-
mance of Prism over the two emulated network conditions men-
tioned earlier (random loss, web-page load cross-tra�c), and the
network traces from M-Labs. The results are aggregated across 5
videos (“LoL TF”, “Apex”, “GTA-V”, “Overwatch”, and “FF XV”), and
multiple runs for random packet loss and web-page load cross traf-
�c (with staggered page load timing in each run), and across all the
M-Labs traces. In our analysis, we use a simple clustering algorithm
(see appendix C) to extract events of interest (e.g. I-frames, large
stutter, frame loss) and compare the results from these periods (as
opposed to the quality of an entire run, which may only have a few
loss events) to highlight the performance of our system.

Across all the three scenarios, Prism achieves higher SQI-SSIM
than a pure I-frame based approach for recovering from video data
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loss, since Prism’s P-frame stream enables it to achieve higher video
quality after recovery from loss (§ 1b). Prism’s SQI-SSIM is also
higher than retransmission based recovery on M-Labs traces - some
of these traces have signi�cant bandwidth and delay variations, and
Prism’s recovery stream is able to meet more playback deadlines
due to its lower bitrate and since it is composed entirely of I-frames.
In all cases, Prism achieves lower delay than I-frame based recovery
and packet retransmissions. While it is clear why Prism’s delay is
lower than packet retransmissions (avoids delays from the decoder
needing to catch up), the reasoning behind Prism’s lower delay
compared to I-frames is subtle - since the bandwidth of Prism’s I-
frames are lower, they have lower encoding, decoding, transmission
and propagation delays.

This �gure also shows the trade-o�s of using loss prediction -
Prism with loss prediction achieves lower end-to-end delay at the
cost of lower video quality, but the video quality is much higher
than I-frame based recovery with loss prediction since Prism’s
receiver simply ignores the recovery stream and uses the higher
quality P-frame stream during a false loss recovery trigger.

6 RELATEDWORK
A key body of related work is the �eld of error correcting codes
(forward error correction). These techniques aim to prevent video
data loss by transmitting redundant packets in addition to the base
video data. A given FEC scheme makes the assumption that over a
certain window of time, the loss rate is lower than a predetermined
threshold. When packet loss exceeds this threshold, video data loss

occurs and the only solution is a reactive loss recovery approach
like Prism, I-frames or packet retransmissions. For handling 50%
packet loss, the FEC code rate must be at least double of the video
bitrate, and needs to be even higher for higher loss rates.

To understand the impact of Internet loss patterns on FEC de-
signs, we plot the distribution of the fraction of data lost for di�er-
ent windows of time (Figure 6b). Even over durations as long as
5 frames (⇠80ms for 60FPS video), the 80th percentile loss rate is
over 80%, which makes FEC impractical for low latency streaming
applications [30]. FEC schemes that operate over larger windows
add signi�cant latency for recovery when losses occur, and also
add a signi�cant amount of computational overhead. Thus, systems
that use FEC still require reactive loss recovery mechanisms to
handle video data loss. Prism’s design is complementary to FEC -
Prism simply needs to know the e�ective available bandwidth after
accounting for the overhead of using FEC. No other changes are
required to Prism’s core algorithm.

Salsify [9] proposes a joint video codec and network transport
design that aims to avoid inducing losses by matching the size of
the compressed frames to the estimated network capacity. While
this approach is suitable for low bandwidth environments where
the video tra�c is itself likely to cause queuing and packet losses,
Prism targets a di�erent set of network conditions - cloud streaming
applications require much higher bandwidth, and losses are often
caused by external factors like queue-building cross tra�c or noisy
wireless links. We include results comparing NvEnc’s and Salsify’s
rate control accuracy in appendix G.

7 CONCLUSION
In this paper, we presented the design of Prism, a novel approach for
recovering from transient packet loss for ultra-low latency applica-
tions like cloud streaming. Prism uses a hybrid approach, splitting
the available bandwidth between an I-frame stream and a P-frame
stream to balance the video quality during loss recovery and video
quality post-recovery while having zero overhead when network
conditions are stable. Prism proposes a novel algorithm to model
video SSIM which signi�cantly reduces the computational require-
ments for optimizing the bandwidth allocation. Prism’s approach
also signi�cantly reduces the impact of spurious losses on video
quality, which enables aggressive loss prediction that can further re-
duce the end-to-end latency, resulting in overall improved QoE for
low-latency interactive streaming applications like cloud gaming
and AR/VR streaming.
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A VIDEO DATASET
In our evaluation of Prism, we use videos from CGVDS [2]. This
dataset includes a variety of gameplay footage with di�erent game-
play and artistic styles. Screenshots from these videos are shown in
Figure 7. Bejeweled, Lol-TF, MapleStory and Rayman Legends are
examples where motion compensation is highly e�ective - these
games have simple graphics with static backgrounds or simple trans-
lation motion of the background. Minecraft is an example where
intra-compression is very e�ective, but motion compensation is less
e�ective since the edges of themacro-pixels are hard to approximate
by motion vectors alone. Overwatch, Dauntless, and Fortnite have
simpli�ed textures, and thus, e�cient intra-compression is feasible.
In addition, motion compensation is also e�ective, in contrast to
Minecraft. Black Desert and FF-XV have �ne textures, making intra-
compensation less suitable. The footage from Apex Legends and
GTA-V have a mix of �ne textures (on ground surfaces) and large,
�at gradients (like skies). In the case of Apex Legends, antialiasing
is disabled, which adds complexity to the frame and temporal noise
during movement, which makes motion compensation less e�ec-
tive. In the case of Tekken, intra-compression is less e�ective due
to �ne textures and complex arena design, but since the camera
movement mostly involves panning, motion compensation is very
e�ective.

B BANDWIDTH OPTIMIZATION
In Figure 8, we show the di�erence in the video quality improve-
ment achieved by Prism’s per-video optimization strategy and an
alternate strategy that generates a single bandwidth allocation table
across all of the videos. When using a single bandwidth allocation
table, the improvement in video quality can be up to 15 percentage
points lower at the 80th percentile, with a heavy tail. This demon-
strates that optimizing per-video is necessary. Note that since our
algorithm is greedy and not truly optimal, the single bandwidth
allocation table gets lucky sometimes and beats the per-video opti-
mized allocation table - hence, there are some data points on the
negative side of the X-axis.

C EVENT CLUSTERING
In order to highlight Prism’s bene�ts in the overall results shown in
Figure 6a in the main paper, we use a simple �lter that detects frame
clusters that are of interest. The �lter identi�es frames in the video
where there were large delay spikes, missing frames, I-frames and
retransmissions, and expands these events into windows of interest
that include additional frames after the event in order to account
for the transition properties of the video quality of P-frames. In all
the timeseries discussed in this section, the red boxes highlight the
events automatically detected by our �ltering algorithm.

D WEBPAGE LOAD TIMESERIES
We evaluated Prism’s real-time implementation over an emulated
bottleneck using MahiMahi [22], where we induce packet losses by
introducing a competing Cubic �ow that downloads a web page. In
this experiment, we use a simple RTT threshold �lter as a dummy
loss prediction technique in order to demonstrate how loss predic-
tion impacts the video quality and delay. The time series depicting
the performance of I-frames (SSIM and frame delay) is shown in

Figure 13. During each run, the web page is downloaded 3 times,
and each page load lasts for a duration of about 1.5 seconds, which
can be seen by the regions with increased delay. For each event,
there is one false loss trigger at the beginning (due to the increased
RTT as Cubic starts �lling the bu�er), and one true loss event. I-
frames cause a signi�cant drop in video quality during the false
loss trigger and the actual loss event, and takes a while to recover.
Figure 14 depicts the use of packet retransmissions for recovering
from packet loss. There is no drop in the video quality, but the video
stalls until the missing packet is retransmitted. This also causes
high delays after recovery while the decoder catches up. Figure 15
shows the timeline for Prism. The three key bene�ts of Prism are
highlighted here - (1) The drop in video quality when a loss is falsely
triggered is minimal, (2) Once loss recovery is complete, the video
quality recovers to the steady state P-frame quality quickly, and (3)
the delay remains low throughout the recovery process.

E M-LABS TRACE TIMESERIES
Figure 16 shows the timeline for Prism for one trace from the M-
Labs dataset without loss prediction, and Figures 17 and 18 show
the timelines for Prism and I-frames respectively when using loss
prediction. Loss prediction reduces the end-to-end frame delay,
but false predictions in the case of I-frames signi�cantly impact
video quality. Prism avoids this drop in some cases when the loss
recovery is falsely triggered (�rst two events), and thus achieves
overall higher video quality than I-frame based recovery.

F LOSS PREDICTION
Prism’s loss prediction neural network uses data from a 200 ms
window in the past in order to predict if there will be a loss in the
next 50 ms. The 200 ms window comprises of multiple overlapping
50 ms windows with a stride of 10 ms. This is shown in Figure 11.
The architecture of Prism’s loss predictor is shown in Figure 12.
During training, we �ltered the data to only include traces that
contained at least 500 windows and had a maximum RTT less
than 200 ms. Since the training data was heavily skewed towards
examples with no loss (less than 20% of traces contained any loss,
less than 3% of training windows contained loss). During training,
we oversample the windows with loss in order to reduce training
bias. Prism’s loss predictor as presented in this paper is just used
as an example of what can be achieved when such techniques are
combined with Prism, and is a supplementary tool used in our
evaluation.

G ENCODER RATE CONTROL
We ran some simple tests to evaluate the rate-control accuracy
of NvEnc [24], and a design like Alfalfa(used in Salsify [9]). We
encoded each video 5 times with a random bitrate for each frame.
For Alfalfa, we used the REALTIME_QUALITY preset with two
pass encoding, and for NvEnc we used recommended options by
NVIDIA for real-time streaming [24]. Alfalfa can overshoot by 2X
for bitrates lower than 10 Mbps at the 90th percentile, whereas we
do not see any overshoots at the 90th percentile for NvEnc. Thus,
rate control algorithms of hardware-based video codecs today work
extremely well, and there is no need to use a slower software-based
codecs like Alfalfa.
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(a) Bejeweled 3 (b) Black Desert (c) Dauntless (d) FF XV (e) Fortnite (f) GTA V (g) LoL Team�ght

(h) Maple Story (i) Minecraft (j) Overwatch (k) Apex Legends (l) Rayman Legends (m) Tekken

Figure 7: Screenshots from the raw videos.
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Figure 8: Comparison of per-
video optimization vs. optimiz-
ing jointly for all the videos.
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Figure 9: Convergence of
P-frame SSIMwhen the bi-
trate is decreased.
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Figure 10: Convergence of
P-frame SSIMwhen the bi-
trate is increased.

Figure 11: Prism’s loss prediction in-
put window and output window.

Figure 12: Prism’s loss prediction in-
put window and output window.
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Figure 13: I-frame timeseries for loss caused by a competing
�ow performing a web page load.

0.8

1.0

SS
IM

2 4 6 8 10 12 14 16 18
Time (seconds)

0

200

D
el

ay
 (

m
s) Display

Figure 14: P-frame timeseries for loss caused by a competing
�ow performing a web page load.
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Figure 15: Prism timeseries for loss caused by a competing �ow
performing a web page load.
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Figure 16: Prism timeseries for an MLabs trace (no loss predic-
tion). Video quality quickly recovers after a loss event.
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Figure 17: Prism timeseries for anMLabs trace (loss prediction).
Some false triggers cause quality drops, but the delay reduced.
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Figure 18: I-frame timeseries with loss prediction for anMLabs
trace. Note the frequent drops in video quality for events where
loss recovery is triggered without an actuall loss.
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