



Cite this: *J. Mater. Chem. A*, 2023, **11**, 10993

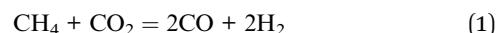
## Non-equilibrium plasma-assisted dry reforming of methane over shape-controlled $\text{CeO}_2$ supported ruthenium catalysts†

Md Robayet Ahsan,<sup>a</sup> Md Monir Hossain,<sup>a</sup> Xiang Ding<sup>b</sup> and Ruigang Wang   <sup>\*,a</sup>

In this report,  $\text{CeO}_2$  and  $\text{SiO}_2$  supported 1 wt% Ru catalysts were synthesized and studied for dry reforming of methane (DRM) by introducing non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) fixed bed reactor. From quadrupole mass spectrometer (QMS) data, it is found that introducing non-thermal plasma in thermo-catalytic DRM promotes higher  $\text{CH}_4$  and  $\text{CO}_2$  conversion and syngas ( $\text{CO} + \text{H}_2$ ) yield than those under thermal catalysis only conditions. According to the  $\text{H}_2$ -TPR,  $\text{CO}_2$ -TPD, and  $\text{CO}$ -TPD profiles, reducible  $\text{CeO}_2$  supported Ru catalysts presented better activity compared to their irreducible  $\text{SiO}_2$  supported Ru counterparts. For instance, the molar concentrations of  $\text{CO}$  and  $\text{H}_2$  were 16% and 9%, respectively, for plasma-assisted thermo-catalytic DRM at 350 °C, while no apparent conversion was observed at the same temperature for thermo-catalytic DRM. Highly energetic electrons, ions, and radicals under non-equilibrium and non-thermal plasma conditions are considered to contribute to the activation of strong C–H bonds in  $\text{CH}_4$  and C–O bonds in  $\text{CO}_2$ , which significantly improves the  $\text{CH}_4/\text{CO}_2$  conversion during DRM reaction at low temperatures. At 450 °C, the 1 wt% Ru/ $\text{CeO}_2$  nanorods sample showed the highest catalytic activity with 51%  $\text{CH}_4$  and 37%  $\text{CO}_2$  conversion compared to 1 wt% Ru/ $\text{CeO}_2$  nanocubes (40%  $\text{CH}_4$  and 30%  $\text{CO}_2$ ). These results clearly indicate that the support shape and reducibility affect the plasma-assisted DRM reaction. This enhanced DRM activity is ascribed to the surface chemistry and defect structures of the  $\text{CeO}_2$  nanorods support that can provide active surface facets, higher amounts of mobile oxygen and oxygen vacancy, and other surface defects.

Received 25th February 2023

Accepted 26th April 2023


DOI: 10.1039/d3ta01196h

rsc.li/materials-a

## 1. Introduction

The production of syngas (mixture of  $\text{H}_2$  and  $\text{CO}$ ) for Fischer–Tropsch synthesis (F–T synthesis) using dry reforming of methane (DRM, eqn (1)) represents a growing strategic interest to simultaneously reduce emission of two major greenhouse gases (GHG;  $\text{CO}_2$  and  $\text{CH}_4$ ) aiming at limiting global climate change. In fact, the depletion of conventional oil reserves and its environmental consequences have received considerable critical attention with a view to pursuing an alternative roadmap in light of the global energy demand outlook.<sup>1</sup> Among various potential solutions, simultaneous conversion and reuse of two primary GHG ( $\text{CO}_2$  and  $\text{CH}_4$ ) *via* catalytic DRM reaction into fuels and value-added chemicals have been considered as one of the attractive strategies.<sup>2</sup> However, due to the  $\text{sp}^3$  hybridization, the high C–H bond dissociation energy (434 kJ mol<sup>−1</sup>) in  $\text{CH}_4$  and C=O bond dissociation energy (532 kJ mol<sup>−1</sup>) in  $\text{CO}_2$

require relatively high temperatures to overcome the thermodynamic energy barriers in heterogeneous gas–solid thermal catalysis, which can result in catalyst sintering deactivation and coke formation. For example, thermal catalytic DRM and its syngas production, given in eqn (1), can only be achieved with relatively high temperatures (627–1000 °C).<sup>3,4</sup>



Besides several lab scale single step conversion methods of  $\text{CO}_2$  &  $\text{CH}_4$  such as thermo-chemical,<sup>5</sup> electrochemical,<sup>6</sup> and photochemical methods, recently non-thermal plasma reactors have emerged as a powerful platform for DRM conversion. For example, Andersen *et al.* reported that at ambient pressure and temperature, a  $\text{CO}_2$  and  $\text{CH}_4$  conversion of ~22% and ~33% were achieved, respectively, by introducing non-equilibrium plasma for DRM reaction, while a series of  $\text{Al}_2\text{O}_3$  supported catalysts can be added to tune the selectivity to  $\text{H}_2$  and  $\text{CO}$ ,  $\text{H}_2/\text{CO}$  molar ratio, and selectivity to different hydrocarbons and oxygenates.<sup>7–9</sup>

For plasma-assisted catalytic conversion *via* DRM, various radicals, ions, electrons, and excited intermediate species can be generated by high-energy electrons and ionized gases once the breakdown voltage is reached to form a plasma discharge.

<sup>a</sup>Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA. E-mail: rwang@eng.ua.edu

<sup>b</sup>College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

† Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d3ta01196h>

Thus, the high temperature and pressurized conditions in the thermal catalytic reactor are replaced by highly energetic electrons and abundant radicals/ions in plasma-assisted catalytic reactors. These excited species, typically not available in thermal reactors, are a great advantage of plasma-assisted catalytic reactions that can operate under relatively mild conditions. For example, the chemical reactions in dielectric barrier discharge (DBD) reactors, especially at low temperatures, are mainly governed by electron temperature rather than reactor gas temperature, which controls the bond activation/dissociation and recombination processes of gas molecules. Several experimental and computational studies have suggested that the synergic effect of the combination between the plasma and the catalysts can significantly enhance the gas conversion and product selectivity in DRM.<sup>10–12</sup> Many catalysts have been tested over the last few decades for DRM *via* thermal catalysis, usually operating in the 650–1000 °C temperature range. Noble metals (Rh and Ru) are well known for their high catalytic activities in DRM, but nickel-based catalysts are widely used due to their lower cost but have coke formation issues.<sup>13</sup> For plasma-assisted catalytic DRM using Ru over TiO<sub>2</sub>,<sup>14</sup> Al<sub>2</sub>O<sub>3</sub>,<sup>15</sup> and MgO,<sup>16</sup> it has been demonstrated that plasma has a profound effect on their catalytic activity. In addition, the kinetic studies showed that coordinatively unsaturated Ru surface atoms were more active than those in low-index crystal planes, predominately exposed on large crystallites. Meanwhile, some literature studies reported the stabilization of Ru species over a CeO<sub>2</sub> support by mild oxidative pretreatment.<sup>17,18</sup>

In the supported catalysts, the role of the catalyst support is mainly to provide a high surface area to disperse catalytically active metal or metal oxide clusters for better distribution and thermal stability.<sup>19,20</sup> Among various catalyst supports, CeO<sub>2</sub> has been widely investigated because of its enriched mobile surface oxygen, surface oxygen vacancy, and other surface defects, which contribute to facilitating the catalyst–CeO<sub>2</sub> interaction and gas adsorption (*i.e.*, CO<sub>2</sub> adsorption) due to the reversible reaction between Ce<sup>4+</sup> and Ce<sup>3+</sup>. The facile redox Ce<sup>4+</sup>/Ce<sup>3+</sup> transition in CeO<sub>2-x</sub> led to a proliferation of many fundamental catalyst–support interaction studies. The concentration of Ce<sup>3+</sup> is generally proportional to oxygen vacancy concentration, which illustrates the effectiveness of oxygen exchange between the catalyst and CeO<sub>2</sub> support.<sup>21</sup> In addition, the occupied 4f-orbital electrons of Ce<sup>3+</sup> ions can promote electronic interaction between reducible CeO<sub>2</sub> and metal nanoparticles.<sup>22</sup> To further improve the oxygen exchange capability of CeO<sub>2</sub>, it was discovered that specific shapes of CeO<sub>2</sub> nanoparticles allow a controlled supply of oxygen in a redox-related catalytic reaction such as octahedra, rods, cubes, and spheres.<sup>23–25</sup> For example, the exposed surfaces of CeO<sub>2</sub> nanocubes (CeO<sub>2</sub>-NC) with {1 0 0}, CeO<sub>2</sub> nanorods (CeO<sub>2</sub>-NR) with {110} and {100} or {1 1 1} and CeO<sub>2</sub> nano-octahedra (CeO<sub>2</sub>-NO) with {1 1 1} facets have been most studied for catalytic applications.<sup>8,26–28</sup> Thanks to this unique oxygen storage capacity (OSC) property, reducible CeO<sub>2</sub>-based oxides have been utilized in versatile catalytic reactions. On the other hand, irreducible SiO<sub>2</sub> with a high surface area has also been frequently used as oxide catalyst supports, mainly aiming at enhancing the metal cluster dispersion and thermal

stability. In general, SiO<sub>2</sub> is considered an inert catalyst support in nature due to the high oxygen vacancy formation energy and low isoelectric point (IEP) of SiO<sub>2</sub> (IEP ~ 2), and it forms weak or no interaction with metal catalyst clusters.<sup>29</sup>

In this work, we report 1 wt% Ru supported on irreducible SiO<sub>2</sub> and reducible CeO<sub>2</sub> with two different morphologies (CeO<sub>2</sub>-NR and CeO<sub>2</sub>-NC), exposing {110}/{100}/{1 1 1} and {1 0 0} facets respectively to investigate the non-thermal plasma influence as well as the support shape effect on the DRM reaction under non-equilibrium conditions.

## 2. Experimental section

### 2.1 Catalyst preparation

**2.1.1. Preparation of catalyst supports.** The SiO<sub>2</sub> support was synthesized by a modified Stober method from our previous research.<sup>30,31</sup> First, 158 mL absolute ethanol, 7.8 mL NH<sub>4</sub>OH (28% NH<sub>3</sub> in H<sub>2</sub>O), and 2.8 mL deionized water were introduced in a 250 mL round-bottom flask. The flask was heated to 50 °C under vigorous stirring. Then, 5.8 mL (TEOS 99%) was added dropwise to the solution under vigorous magnetic stirring, and this stirring was continued for another 24 h at 50 °C to achieve complete hydrolysis. The sample was obtained by drying the suspension at 70 °C for 24 h.

CeO<sub>2</sub> nanorods (NR) and CeO<sub>2</sub> nanocubes (NC) were synthesized using a hydrothermal method, according to our previous research methodology.<sup>32–34</sup> For CeO<sub>2</sub> NR, firstly, 8 mL of 6.0 M NaOH (VWR, 99%) solution was added dropwise to 88 mL of 0.1 M Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (Acros Organics, 99.5%) solution and appropriately mixed in a 200 mL Teflon liner. The mixture was stirred for approximately 15 s, and the lid of the Teflon liner was closed. The Teflon liner was then put into a stainless-steel autoclave and sealed tightly. The stainless-steel autoclave was heated to 90 °C and kept at this temperature for 48 h. After the hydrothermal reaction, the precipitate materials were washed thoroughly with 500 mL deionized water to remove any residual ions (Na<sup>+</sup>, NO<sub>3</sub><sup>−</sup>), then washed with 50 mL ethanol to avoid hard agglomeration of the nanoparticles and dried in air at 60 °C for 12 h. The dried sample was collected and ground gently with a mortar and pestle. The preparation of CeO<sub>2</sub> NC followed the same procedure; however, the autoclave was kept at 150 °C instead of 90 °C for 48 h.

**2.1.2. Preparation of supported catalysts.** 1.0 wt% Ru was loaded onto CeO<sub>2</sub> NR, CeO<sub>2</sub> NC and SiO<sub>2</sub> by impregnating the support powders with an aqueous solution of Ru(NO)(NO<sub>3</sub>)<sub>3</sub>. Specifically, 0.99 g of CeO<sub>2</sub> NR, CeO<sub>2</sub> NC, and SiO<sub>2</sub> powders were put into 100 mL deionized water separately in three 200 mL beakers. Ru(NO)(NO<sub>3</sub>)<sub>3</sub> (Alfa Aesar) equivalent to 1 wt% Ru was dissolved in each suspension solutions of the support powders. The suspension solutions were mixed properly using magnetic stirring followed by dropwise addition of 0.5 M aqueous solution of ammonium hydroxide (NH<sub>3</sub>·H<sub>2</sub>O, BDH, 28–30 vol%) to tune the pH value of the suspension to ~9. Then the precipitates were initially heated at 80 °C under stirring (400 rpm) for 4 h. Finally, the precipitates were continuously heated at 100 °C to evaporate water and transferred into a drying oven and kept overnight. To obtain fine powder, a mortar and pestle was used

for grinding and left in an air furnace for calcination at a rate of  $10\text{ }^{\circ}\text{C min}^{-1}$  up to  $350\text{ }^{\circ}\text{C}$  and maintained at this temperature for 5 h. These samples were labeled as 1.0 wt% Ru/CeO<sub>2</sub> NP-o (o refers to the oxidized sample, and NP represents NR or NC) and 1.0 wt% Ru/SiO<sub>2</sub>-o. Finally, some of the powder samples were further reduced by heating in a 5% H<sub>2</sub>/Ar flow (200 mL min<sup>-1</sup>) at a rate of  $10\text{ }^{\circ}\text{C min}^{-1}$  up to  $300\text{ }^{\circ}\text{C}$  and maintained at this temperature for 5 h. After cooling down to room temperature under a H<sub>2</sub> atmosphere, these samples were labeled as 1.0 wt% Ru/CeO<sub>2</sub> NP-r (r refers to the reduced sample) and 1.0 wt% Ru/SiO<sub>2</sub>-r.

## 2.2 Catalyst characterization

Powder X-ray diffraction (XRD) characterization was conducted on a Philips X'Pert MPD diffractometer with a copper K $\alpha$  radiation source ( $\lambda = 0.154\text{ nm}$ ) at 40 kV and 40 mA. The samples were scanned with a scan rate of  $0.5^{\circ}\text{ min}^{-1}$  in the  $2\theta$  range between  $10^{\circ}$  and  $90^{\circ}$ . JADE software was used to determine each catalyst sample's lattice parameters and average crystallite size based on the recorded XRD patterns.

At 77 K, the BET surface area was determined using single-point nitrogen physisorption. A Micromeritics AutoChem II 2920 chemisorption analyzer was used to characterize H<sub>2</sub>-temperature programmed reduction (H<sub>2</sub>-TPR). The powder samples (85–95 mg) were placed in a quartz U-tube sandwiched between two pieces of quartz wool, then heated at a rate of  $10\text{ }^{\circ}\text{C min}^{-1}$  from  $30\text{ }^{\circ}\text{C}$  to  $900\text{ }^{\circ}\text{C}$ . During the H<sub>2</sub>-TPR, the samples were reduced at a flow rate of 50 mL min<sup>-1</sup> in a 10 vol% H<sub>2</sub>–90 vol% Ar gas mixture. A thermal conductivity detector (TCD) was used to monitor the quantity of H<sub>2</sub> uptake during the reduction, which was calibrated using a quantitative reduction of CuO to metallic copper.

Carbon dioxide temperature-programmed desorption (CO<sub>2</sub>-TPD) was performed using the same Micromeritics AutoChem II 2920 instrument as for H<sub>2</sub>-TPR to investigate the interaction of CO<sub>2</sub> with the catalyst/support surface. First, the quartz wool sandwiched powder sample was put into a quartz U-tube microreactor and heated from room temperature to  $400\text{ }^{\circ}\text{C}$  with a He stream (flowrate: 50 mL min<sup>-1</sup>) to remove residual moisture. After cooling to room temperature, a 10 vol% CO<sub>2</sub>–90 vol% He mixture gas was supplied with a flowrate at 50 mL min<sup>-1</sup> through the sample for 60 min. The sample was then heated up to  $900\text{ }^{\circ}\text{C}$  at a linear ramping rate of  $10\text{ }^{\circ}\text{C min}^{-1}$  under helium gas. A thermal conductivity detector was used to evaluate the desorption behavior of CO<sub>2</sub> at elevated temperatures.

High-resolution transmission electron microscopy (HRTEM) images were obtained using an FEI Tecnai F20 with an acceleration voltage of 200 kV while a JEOL 7000 FE SEM was used to obtain energy dispersive X-ray spectroscopy data (EDAX system). For the TEM sample preparation, the sample underwent ultrasonic dispersion of the powder in ethanol. One or two drops of the suspension solution were deposited on ultrathin carbon film supported by a 400-mesh copper grid (Ted Pella Inc.) and then dried for 2 h before analysis.

A Kratos Axis Ultra DLD spectrometer using a monochromatic Al K $\alpha$  ( $h\nu = 1486.6\text{ eV}$ ) source under ultra-high

vacuum ( $10^{-10}\text{ torr}$ ) was used to acquire X-ray photoelectron spectroscopy (XPS) data, and carbon (C) 1s at 284.8 eV was used for calibration of binding energies (BE). The fitting and deconvolution of the spectra were conducted using the CASA XPS software.

Non-destructive Raman characterization of the catalysts was done using a Horiba LabRAM HR 800 Raman spectrometer (equipped with a  $100\times$  long working distance objective, NA = 0.60) in the spectral window from 100 to  $1200\text{ cm}^{-1}$ . A diode-pumped solid-state (DPSS) laser system (Laser Quantum MPC6000) tuned at  $\lambda = 532\text{ nm}$  was used for excitation. Prior to each analysis, the spectrometer was calibrated using a single crystal Si wafer.

## 2.3 Catalytic activity measurements

The components of the DBD reactor can be divided into four parts: a gas delivery system, a central quartz reactor tube, an experimental control section, and a flow gas analysis system. Fig. 1 shows a schematic diagram of the whole plasma reactor system. The gas supply system includes three Brooks GF040 Multiflo thermal mass flow controllers (MFC) with  $<1\text{ s}$  response time, represented by MFC-1, MFC-2, and MFC-3. The flows of Ar, CH<sub>4</sub>, and CO<sub>2</sub> with purity  $>99.99\%$  from Airgas were controlled by these MFCs. A computer interface with a NI card loaded with a home-written MATLAB GUI code was used to control the gas flow of MFCs. Each complete operation of the plasma-assisted DRM reaction consists of a 7 min reduction cycle followed by a 6 min purge with pure Ar gas. During the reduction, the gas mixture of CH<sub>4</sub> and CO<sub>2</sub> flowed with a total flowrate of 350 sccm (CH<sub>4</sub> : CO<sub>2</sub> = 100 : 250 sccm), while in the purging step, 100% Ar was flowed to purge the reactor for the subsequent reduction cycle.

For plasma generation, the main reactor includes two concentric quartz tubes placed inside an ATS 3210 split tube furnace that can heat the reactor to  $1100\text{ }^{\circ}\text{C}$  and provide an isothermal environment. Three thermocouples TC1, TC2, and TC3 are used to measure the furnace temperature during plasma and thermal DRM reactions. The 2" length inner quartz tube has an outer diameter (OD) of 1/4" with an expansion section of 3/8" inner diameter (ID). This tube links with the supply gas system so that reactive gases flow into the inner tube first. The other side of the inner quartz tube with an open end was placed inside the outer quartz reactor tube. The outer quartz tube has a 1" OD and is closed at the bottom end. The catalyst sample was dispersed in quartz wool and placed inside the expansion section of the inner quartz tube where the plasma was generated. After entering the inner tube, the reactant gases interact with catalysts and plasma and go through the open end of that tube. The closed outer tube reverses the direction of the gases and flows out to the exhaust. An enlarged schematic of the plasma-catalysis reactor area is shown in Fig. S1.†

The exhaust gas system is analyzed using a quadrupole mass spectrometer (QMS, model: MAX300-EGA from Extrel, 300 ms, 1–250 amu detectability) and a customized tunable diode quantum cascade laser absorption spectroscopy (TDLAS) system. The QMS is connected with a tiny capillary quartz probe

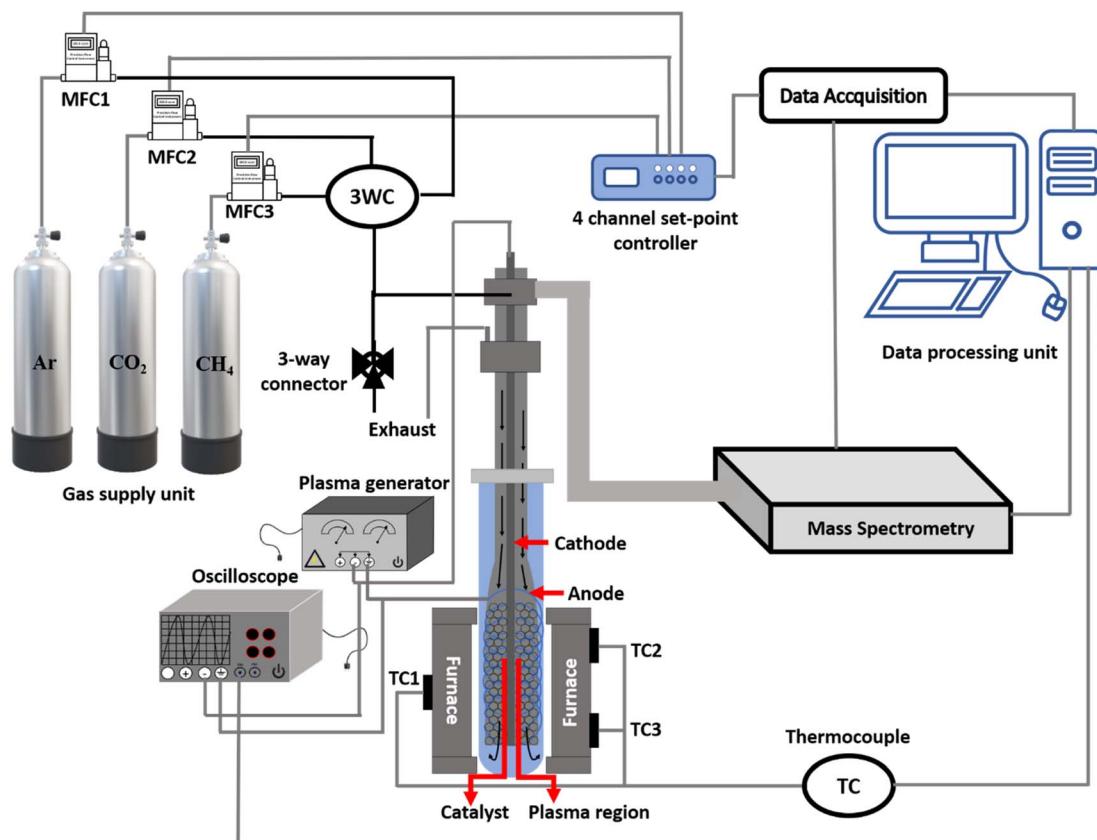



Fig. 1 Schematic of the reactor setup for the plasma-assisted DRM test station. The red color arrows identify the plasma and catalyst regions, as well as the anode and cathode. TC1, TC2, TC3 – thermocouples, 3WC – three-way gas flow controller, and MFC-1, MFC-2, MFC-3 – mass flow controllers.

(0.80 mm OD, 0.53 mm ID) to sample the gases and measure time-resolved species at the probe end location, at the exit of the inlet tube expansion section where the catalyst is placed in plasma. But the TDLAS system is connected at the exhaust line for detecting C-2 based species such as  $C_2H_2$ ,  $C_2H_4$ , and  $C_2H_6$ . Before the operation, QMS is calibrated by flowing a known mixture of gases. All gases ( $CO_2$ ,  $CO$ ,  $H_2$ ,  $CH_4$ ,  $Ar$ ,  $O_2$ ) flowed simultaneously for calibration. Typically, increasing the gas flow rate decreases the gas residence time in the reaction region, while the QMS sensitivity to species measurements also decreases due to the large dilution of  $H_2$  by the balance gas  $Ar$ .<sup>35,36</sup> Thus, a lower flow rate increases gas residence time and makes it comparable to reaction time constants (5–10 s), and therefore we choose an optimum total volume flow rate of 350 sccm for our experiments. According to a calculation by dividing the reaction region volume by the gas volume flow rate at the reactor temperature, the gas residence time at the catalyst and plasma regions is <0.5 s. The expanded part of the inner quartz reactor tube contains two coaxial electrodes. One electrode is placed at the center of the inner inlet tube inside a 0.063 ID ceramic tube as a dielectric barrier. Another is placed on the outside of the expansion section spirally surrounding the tube, giving rise to Dielectric Barrier Discharge (DBD) which produces non-equilibrium plasma. Those two electrodes are connected to a plasma driver (PVM500-2500) from <https://www.amazing1.com>

integrated with a voltage regulator (1–40 kV) with a 20–70 kHz discharge frequency to generate the plasma.

In our experiment, the total flow rate of the gas mixture was maintained at 350 sccm (standard cubic centimeter  $min^{-1}$ ) during the reduction step. The mixture of gases contains  $CH_4$  (100 sccm or 28.6 vol%) and  $CO_2$  (250 sccm or 71.4 vol%).

In previous reports,<sup>37,38</sup> it was claimed that the metastable O species could accelerate the dissociation of  $CH_4$  and promote  $CH_4$  conversion. In this project, in the supplied gases of DRM reaction,  $CO_2$  is the only source of oxygen. To reduce the  $CH_x$  recombination and the formation of byproducts, excess  $CO_2$  supply was used in this project ( $CH_4$ : 100 sccm or 28.6 vol% and  $CO_2$ : 250 sccm or 71.4 vol%). The average gas velocity is ~6.48  $cm\ s^{-1}$  at 25 °C in the reactor environment. The measured plasma power was 10.2 to 13.6 W during the reduction cycle (DRM reaction). This variation possibly happened due to gas breakdown voltage and concentration.<sup>38</sup> Similarly, Yabe *et al.*<sup>39</sup> also reported this power variation for different  $Ni/M-ZrO_2$  catalysts. It should be noted that a portion of plasma power is lost by heating the cable, electrodes, and reactor wall from the applied plasma power. For instance, Nozaki *et al.*<sup>40</sup> reported a maximum of 25% power consumption for increasing gas temperature theoretically, while it was 15% in practical experiments. Only  $Ar$  was supplied during the purging step at

a flowrate of 350 sccm. All experiments were conducted at 1 atm pressure and in the temperature range of 150–450 °C. A single periodic operation consists of 6 min purge and a 7 min reduction step.

## 2.4 Performance parameters

The conversion rate is defined as the molar ratio of how much the reactant is converted according to the input. The yield of a reaction is calculated as the ratio of the desired product formed (in moles) to the total amount that could have been made (if the yield of the limiting reactant is 100% and no side reaction occurs), while selectivity of a reaction is the ratio of the desired product formed (in moles) to the undesired product formed (in moles). The formulae of CH<sub>4</sub> and CO<sub>2</sub> conversion and product (H<sub>2</sub> and CO) selectivity and yield for a DRM reaction are given below:

$$C_{\text{CH}_4} = \frac{\text{moles of CH}_4 \text{ converted}}{\text{moles of CH}_4 \text{ input}} \times 100\% \quad (2)$$

$$C_{\text{CO}_2} = \frac{\text{moles of CO}_2 \text{ converted}}{\text{moles of CO}_2 \text{ input}} \times 100\% \quad (3)$$

$$Y_{\text{H}_2}(\%) = \frac{\text{moles of H}_2 \text{ produced}}{2 \times \text{moles of CH}_4 \text{ input}} \times 100\% \quad (4)$$

$$Y_{\text{CO}}(\%) = \frac{\text{moles of CO produced}}{\text{moles of CH}_4 \text{ input} + \text{moles of CO}_2 \text{ input}} \times 100\% \quad (5)$$

$$S_{\text{H}_2}(\%) = \frac{\text{moles of H}_2 \text{ produced}}{2 \times \text{moles of CH}_4 \text{ converted}} \times 100\% \quad (6)$$

$$S_{\text{CO}}(\%) = \frac{\text{moles of CO produced}}{\text{moles of CH}_4 \text{ converted} + \text{moles of CO}_2 \text{ converted}} \times 100\% \quad (7)$$

## 3. Results and discussion

### 3.1 Powder X-ray diffraction and TEM/EDX analysis

Fig. 2 shows the XRD patterns of CeO<sub>2</sub> and amorphous SiO<sub>2</sub> supported 1 wt% Ru catalysts after the oxidation (Fig. 2a) and reduction (Fig. 2b) treatments. The XRD patterns of CeO<sub>2</sub> NR and NC match well with the face-centered cubic fluorite structure of ceria (JCPDS #34-0394 and space group *Fm3m*). The XRD pattern of SiO<sub>2</sub> “aligns” with the standard JCPDS card of amorphous SiO<sub>2</sub> (PDF #00-038-0360). Three intense diffraction peaks appeared at  $2\theta$  of 28.6, 47.5, and 56.4, corresponding to the crystal planes of CeO<sub>2</sub> (111), (220), and (311), which confirmed that CeO<sub>2</sub> NR and NC with impregnated RuO<sub>x</sub> maintained their fluorite-type structures after calcination at 350 °C for 5 h in air and H<sub>2</sub> reduction treatment at 300 °C for 5 h.<sup>41</sup> The diffraction peaks for CeO<sub>2</sub> NR and CeO<sub>2</sub> NC are in similar positions. However, their relative intensities and sharpness indicate that CeO<sub>2</sub> NR has a smaller crystallite size

and/or smaller crystalline domains compared to those of CeO<sub>2</sub> NC. For both oxidized and reduced 1 wt% Ru/CeO<sub>2</sub> NR and NC, no apparent diffraction peaks were detected for either RuO or Ru. Possible explanations for the absence of RuO<sub>x</sub> (0 ≤  $x$  ≤ 1) species are (a) RuO<sub>x</sub> diffusion into the CeO<sub>2</sub> lattice or formation of Ru–O–Ce solid solution, (b) highly dispersed RuO<sub>x</sub> on CeO<sub>2</sub> and (c) low RuO<sub>x</sub> loading (1 wt%).<sup>42</sup> Meanwhile, the XPS and *in situ* DRIFTS data revealed the presence of RuO<sub>x</sub> species on both CeO<sub>2</sub> NR and NC.

The estimated crystallite sizes of SiO<sub>2</sub> and CeO<sub>2</sub> supported RuO<sub>x</sub> samples are enlisted in Table S1† using the Scherrer equation from XRD peak analysis. Besides, the EDS line spectrum and elemental mapping are also presented in Fig. 3, suggesting a uniform distribution of RuO<sub>x</sub> over CeO<sub>2</sub>. On the other hand, after calcination and reduction treatment of 1 wt% Ru/SiO<sub>2</sub>, as shown in Fig. 2, the XRD profiles show the peaks of RuO<sub>2</sub> for the calcined sample and metallic Ru for the reduced sample. The main RuO<sub>2</sub> peaks are observed at  $2\theta = 28.2$ , 35.3, and 54.6, while metallic Ru peaks are observed at 42.3 and 44 with relatively low peak intensity.

### 3.2 H<sub>2</sub>-temperature programmed reduction (H<sub>2</sub>-TPR)

The H<sub>2</sub>-TPR profiles of the prepared catalysts can be utilized to investigate oxygen release capacity or H<sub>2</sub> consumption and identify possible surface metal/oxide species and the nature of active sites. As shown in Fig. 4, the H<sub>2</sub>-TPR signals show a few hydrogen consumption peaks corresponding to the reduction of surface oxygen (O<sub>s</sub>) and bulk oxygen (O<sub>b</sub>).<sup>33</sup> All of the oxidized and reduced CeO<sub>2</sub> samples display three main reduction peaks at less than 200 °C, 200–500 °C and greater than 500 °C.<sup>43</sup> In the region below 200 °C, 1 wt% Ru/CeO<sub>2</sub> NR-o presents two reduction peaks at 105 °C and 129 °C resulting from multiple oxidation states of RuO<sub>x</sub> due to the interaction between RuO<sub>x</sub> and CeO<sub>2</sub>.<sup>43</sup> Two similar peaks (surface oxygen reduction peaks) also appear at 115 °C and 158 °C for 1 wt% Ru/CeO<sub>2</sub> NC-o. Notably, the reduction peaks of 1 wt% Ru/CeO<sub>2</sub> NR-o appear at slightly lower temperatures than those of 1 wt% Ru/CeO<sub>2</sub> NC-o. The latter two regions of the oxidized CeO<sub>2</sub> samples have significantly lower intensity and are barely observable due to a higher amount of H<sub>2</sub> consumption below 200 °C and the corresponding scaling factor. After the reduction treatment of the catalysts, there is an increase in BET surface area for each catalyst. This is due to the redispersion of partially reduced RuO<sub>x</sub> species over CeO<sub>2</sub> supports. For example, Fernández *et al.*<sup>44</sup> reported the disaggregation and transformation of large RuO<sub>2</sub> to small round shape Ru crystallites after reduction treatment. The H<sub>2</sub>-TPR profiles of the reduced sample are shown in Fig. 4(b). After the reduction treatment of two CeO<sub>2</sub> samples, three hydrogen consumption peaks were also observed but with a slightly lower reduction temperature. For example, the O<sub>s</sub> peak shifted from 105 °C for 1 wt% Ru/CeO<sub>2</sub> NR-o to 82 °C for 1 wt% Ru/CeO<sub>2</sub> NR-r while a similar peak shifted from 115 °C for 1 wt% Ru/CeO<sub>2</sub> NC-o to 67 °C for 1 wt% Ru/CeO<sub>2</sub> NC-r. The BET surface area, crystal size, total H<sub>2</sub> consumption and reduction temperature data are shown in Table S1.† The pore size distribution and total pore volume of

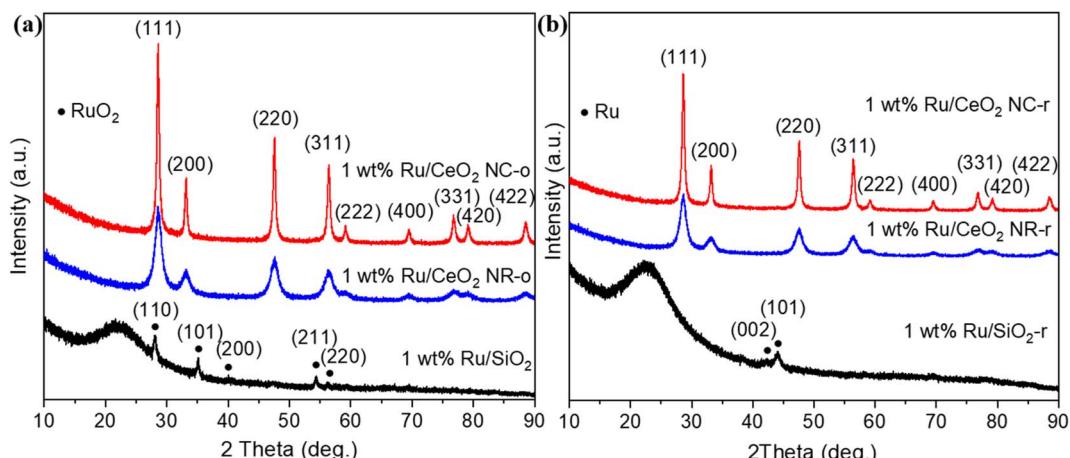



Fig. 2 XRD patterns of 1 wt% Ru/SiO<sub>2</sub>, 1 wt% Ru/CeO<sub>2</sub> NR, and 1 wt% Ru/CeO<sub>2</sub> NC for (a) the oxidized and (b) reduced samples.

both 1 wt% Ru/CeO<sub>2</sub> NC and 1 wt% Ru/CeO<sub>2</sub> NR catalysts are shown in Fig. S2.†

The shift of these hydrogen consumption peaks after a reduction treatment are attributed to the activation of Ru catalysts.<sup>27,45</sup> Because after reduction treatment, metallic Ru can easily donate electrons and surround the Ru-oxide support interface by electron-enriched oxygen ions.<sup>42</sup> These “donated” electrons can be easily released, are involved in bond breaking, and promote gas conversion reactions with activated CO<sub>2</sub> and CH<sub>4</sub> species. The H<sub>2</sub>-TPR profile of 1 wt% Ru/SiO<sub>2</sub>-o showed one low-intensity peak at 146 °C, which shifted to 57 °C for 1 wt% Ru/SiO<sub>2</sub>-r. The reduction peaks at 517 °C and 532 °C for Ru/SiO<sub>2</sub> present relatively low intensity compared to Ru/CeO<sub>2</sub>. These reduction peaks are possibly related to (1) the mixed RuO<sub>2</sub>-SiO<sub>2</sub> phases formed; (2) decomposition of precursors; and (3) the reduction of RuO<sub>2</sub>.<sup>46,47</sup>

### 3.3 CO<sub>2</sub>-temperature programmed desorption (CO<sub>2</sub>-TPD)

To better understand the CO<sub>2</sub> adsorption–desorption behavior and nature of different basic sites on the prepared oxidized and reduced catalysts, CO<sub>2</sub>-TPD measurements were carried out as the DRM reaction is initiated by an acid–base interaction, where CO<sub>2</sub> acts as an acid towards the catalyst with basic properties. Thus, the adsorption and activation of acidic CO<sub>2</sub> depend on the base catalyst's surface, which will determine the overall conversion and catalyst stability. The CO<sub>2</sub>-TPD profiles in Fig. 5(a–c) demonstrate the surface basicity of SiO<sub>2</sub>, CeO<sub>2</sub> NR, and CeO<sub>2</sub> NC supported RuO<sub>x</sub>, respectively. The typical CO<sub>2</sub>-TPD profile consists of contributions from three fundamental group classes that corresponds to weak Brønsted basic sites (e.g., surface OH groups), Lewis acid–base sites of medium strength, and low-coordination oxygen anions as strong basic

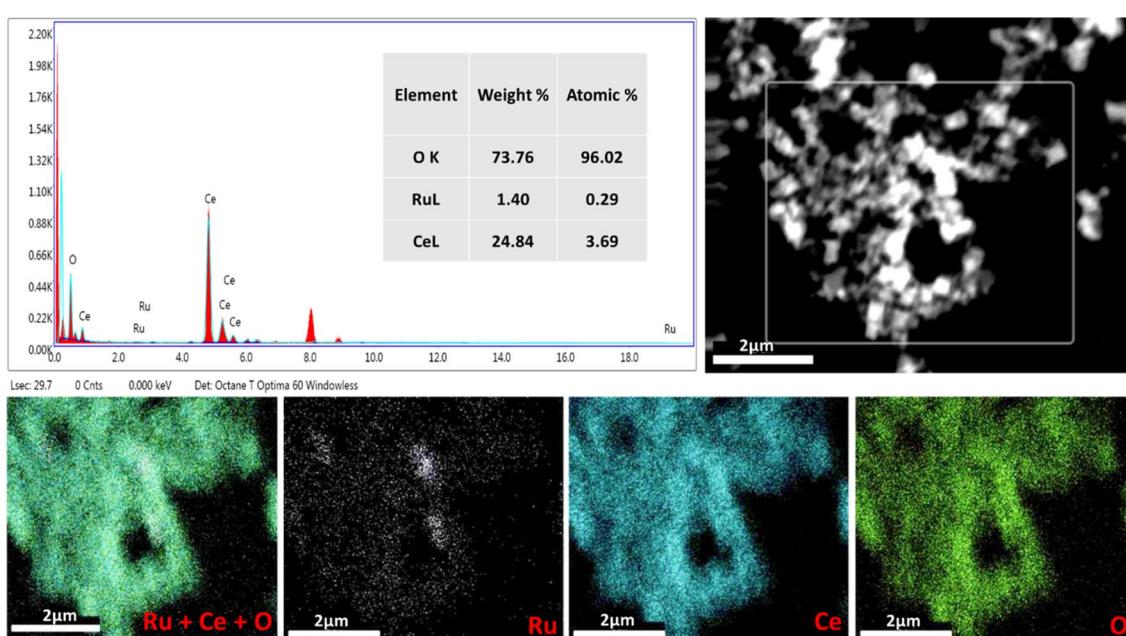



Fig. 3 EDS line spectrum and elemental mapping of 1 wt% Ru/CeO<sub>2</sub> NC-r catalyst.

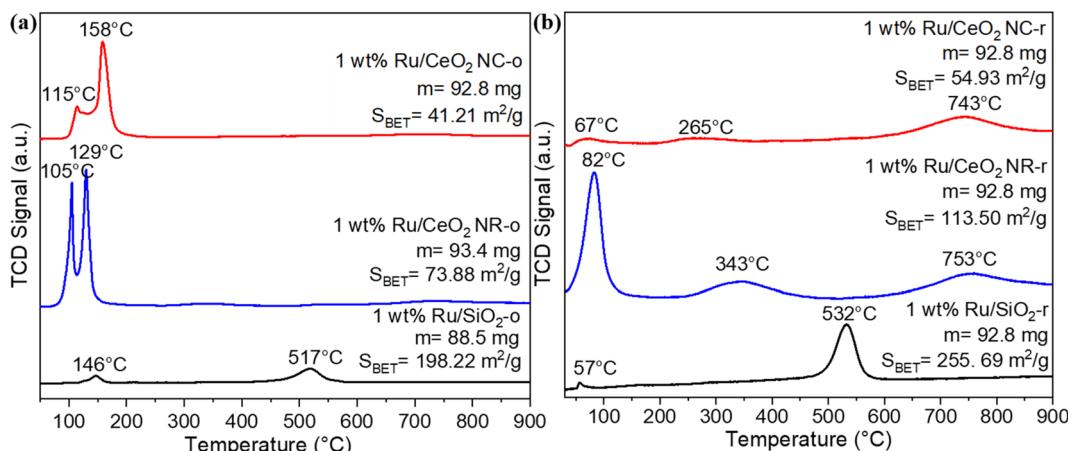



Fig. 4  $\text{H}_2$ -TPR profiles of  $\text{CeO}_2$  NP and  $\text{SiO}_2$  supported  $\text{RuO}_x$  catalysts after (a) oxidation treatment and (b) reduction treatment.

sites, respectively.<sup>48</sup> These three classes of basic sites appeared at three temperature regions, 50–150, 150–250, and >250 °C.<sup>49</sup> The  $\text{CO}_2$ -TPD profiles of 1 wt%  $\text{Ru/SiO}_2$ -o and 1 wt%  $\text{Ru/SiO}_2$ -r consist of three desorption peaks from 300 °C to 900 °C. These three peaks appeared at 395 °C to 425 °C, 535 °C to 555 °C and 790 °C to 860 °C corresponding to  $\text{CO}_2$  desorption from strong basic sites.<sup>50</sup> Thus, no weak or medium  $\text{CO}_2$  desorption happened for  $\text{Ru-SiO}_2$  catalysts due to poor interactions between Ru and  $\text{SiO}_2$ .

The desorption peaks of the reduced sample appeared at a slightly lower temperature than those of the oxidized catalyst due to the activation of Ru particles by the  $\text{H}_2$  reduction treatment. The  $\text{H}_2$  reduction treatment typically plays roles in catalyst activation including: (a) the reduction of  $\text{RuO}_x$  to metallic Ru which can lead to an enhanced reaction rate of  $\text{CH}_4$  adsorption and decomposition; (b) creating oxygen vacancies due to the reduction treatment which promotes  $\text{CO}_2$  activation

and C–O bond cleavage; (c) removing the surface water/ $\text{CO}_2$  which makes the surface more basic. The effects of the reduction treatment of  $\text{CeO}_2$  NR and NC supported 1 wt% Ru can be clearly seen in Fig. 5(b) and (c). Both oxidized and reduced 1 wt%  $\text{Ru/CeO}_2$  NR and 1 wt%  $\text{Ru/CeO}_2$  NC present three  $\text{CO}_2$  desorption peaks at 150–215 °C, 380–410 °C and 700–850 °C, respectively. Here, the weak and moderate adsorptions in the low temperature range correspond to the formation of bridged and bidentate carbonates in the 50–150 °C and 150–250 °C regions. The high-temperature peaks at greater than 250 °C are attributed to the formation of carboxylate and monodentate carbonates with stronger  $\text{CO}_2$  adsorption.<sup>51</sup> Both of 1 wt%  $\text{Ru/CeO}_2$  NP-o samples showed low-temperature  $\text{CO}_2$  desorption peaks, while the reduced samples showed broader desorption peaks. This indicates that a reduced catalyst allowed a higher amount of  $\text{CO}_2$  desorption at low temperatures, which can promote the DRM reaction. According to the literature,<sup>52</sup> broad

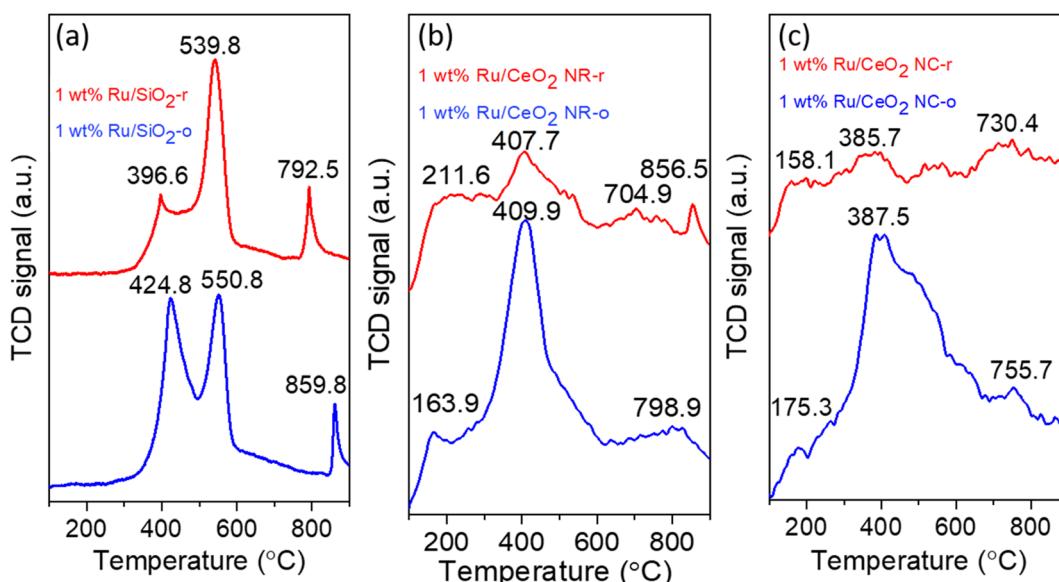



Fig. 5  $\text{CO}_2$ -TPD profiles of the oxidized and reduced (a)  $\text{SiO}_2$ , (b)  $\text{CeO}_2$  NR, and (c)  $\text{CeO}_2$  NC supported  $\text{RuO}_x$  catalysts.

desorption  $\text{CO}_2$  peaks suggest a higher amount of basic sites, which can reduce the coking or deactivation of the catalyst by the reaction:  $\text{CO}_2 + \text{C} = 2\text{CO}$ .  $\text{CO}_2$  adsorption on weak and moderate basic sites promotes the formation of active carbonate species on the metal-support interface of the catalysts, while  $\text{CO}_2$  adsorption on strong basic sites could lead to direct decomposition of  $\text{CH}_4$  and aggregation of carbon on active metal catalysts. These active carbonate species can interact with  $\text{CH}_4$  and produce CO between the interaction of O from carbonate species and C from  $\text{CH}_4$  decomposition. Li *et al.*<sup>53</sup> reported that  $\text{CO}_2$  adsorption on medium-strength basic sites leads to easy activation of  $\text{CO}_2$  compared to that on strong basic sites. The desorption peaks of the reduced sample shifted to a lower temperature compared to oxidized 1 wt% Ru/CeO<sub>2</sub> NP which indicates that loading of active Ru promotes the formation of weak and medium strength basic sites and  $\text{CO}_2$  derived species and accelerates DRM. From Fig. 5(b) and (c), it seems that the shape effect of the CeO<sub>2</sub> support on  $\text{CO}_2$  desorption is negligible from  $\text{CO}_2$ -TPD.

### 3.4 X-ray photoelectron spectroscopy (XPS)

In order to understand the valence states and surface chemical composition of the oxidized and reduced catalysts, XPS characterization was executed. Fig. 6(a-c) show the XPS spectra of the 3d orbital of Ru and Ce and 1s orbital of O. In the case of 1 wt% Ru/CeO<sub>2</sub> NR-o, RuO<sub>x</sub> is analyzed based on the 3d orbital of Ru, which gives intense peaks but which overlap with C 1s peaks. The deconvolution of the Ru 3d core-level spectrum exhibits four different components centered at 280.61 eV, 281.81 eV, 285.21 eV, and 286.01 eV. These peaks are assigned to

$\text{Ru}^{n+} 3\text{d}_{5/2}$  ( $4 < n < 6$ ),  $\text{Ru}^{6+} 3\text{d}_{5/2}$ ,  $\text{Ru}^{n+} 3\text{d}_{3/2}$  ( $4 < n < 6$ ) and  $\text{Ru}^{6+} 3\text{d}_{3/2}$  respectively. The peaks observed at 283.71 eV and 287.81 eV could be C 1s peaks. For the reduced 1 wt% Ru/CeO<sub>2</sub> NR, four similar peaks are also observed with slightly lower binding energy. From these peaks, two deconvolution peaks centered at 281.31 eV and 285.61 eV still showed  $\text{Ru}^{n+}$  ( $4 < n < 6$ ) species, while the two remaining peaks with binding energy 280.31 eV and 284.81 eV are assigned to spin-orbit coupling of  $\text{Ru}^{4+} 3\text{d}_{5/2}$  and  $\text{Ru}^{4+} 3\text{d}_{3/2}$  respectively.<sup>27</sup>

The existence of  $\text{Ru}^{n+}$  species suggests possible electron transfer from RuO<sub>x</sub> to CeO<sub>2-x</sub>, which promotes the formation of Ru-O-Ce solid solution or increases oxygen vacancy concentration.<sup>54</sup> Fig. 6(c) shows the XPS spectrum of the 1s orbital of O for two CeO<sub>2</sub> NR samples. The broad peak of O 1s for oxidized and reduced CeO<sub>2</sub> NR supported RuO<sub>x</sub> is evaluated by fitting into two components: lattice oxygen (O<sub>L</sub>) and oxygen vacancy (O<sub>V</sub>) as well as chemisorbed oxygen (O<sub>C</sub>) centered at 530.11 eV and 531.91 eV, respectively. The relative content of these two oxygen species was calculated using the following formula:  $O_V/(O_V + O_L)$ . The relative oxygen contents are similar, with the values of 50.1% and 49.5% for 1 wt% Ru/CeO<sub>2</sub> NR-o and 1 wt% Ru/CeO<sub>2</sub> NR-r, respectively. For the XPS spectra of Ce 3d shown in Fig. 6(b), there are eight peaks from four pairs of Ce 3d<sub>3/2</sub> and Ce 3d<sub>5/2</sub>, which correspond to Ce<sup>3+</sup> and Ce<sup>4+</sup> ions. These peaks labeled as U<sup>o</sup>, U', U'', and U''' belong to Ce 3d<sub>3/2</sub>, and the peaks labeled as V<sup>o</sup>, V', V'', and V''' are assigned to Ce 3d<sub>5/2</sub>. The peaks located at 883.81 eV (V<sup>o</sup>) and 901.41 eV (U<sup>o</sup>) are attributed to the concentration of Ce<sup>3+</sup> ions from Ce 3d<sub>5/2</sub> and Ce 3d<sub>3/2</sub>, respectively. The remaining peaks appearing at 882.81 eV, 889.51 eV, 898.91 eV, 901.41 eV, 908.21 eV, and 917.31 eV labeled as V', V'', V''', U', U'', and U''' represent the concentration of Ce<sup>4+</sup> ions. The

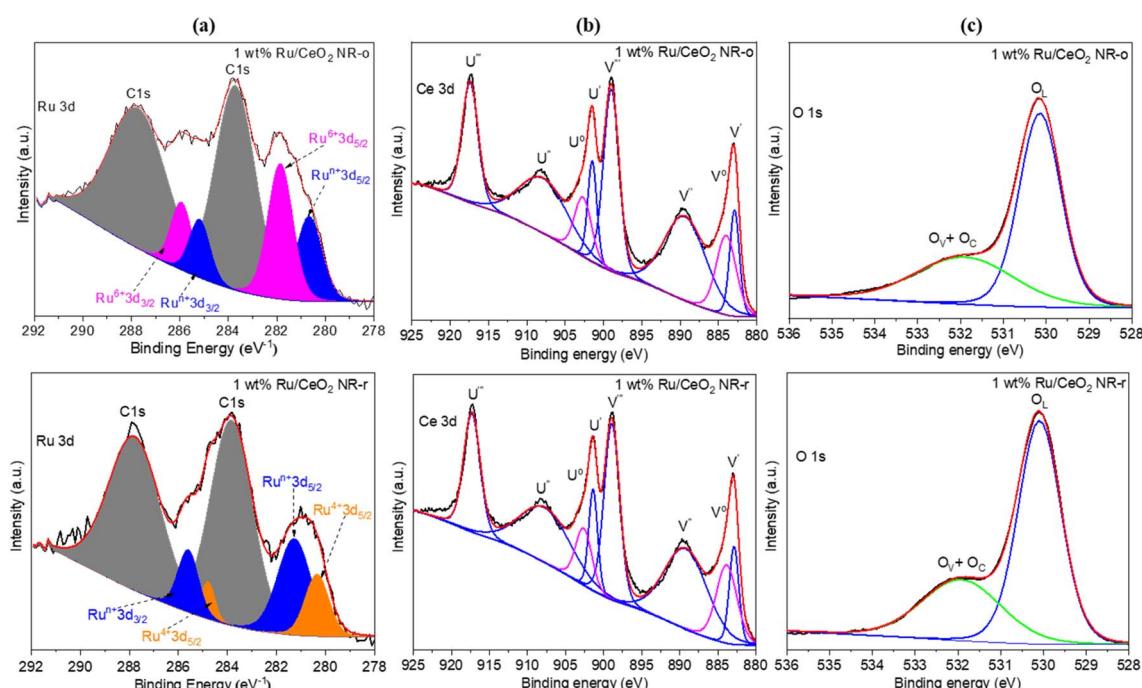



Fig. 6 XPS spectra of the 1 wt% Ru/CeO<sub>2</sub> NR samples after the oxidation (upper row) and reduction treatments (bottom row) for (a) Ru 3d, (b) Ce 3d, and (c) O 1s. O<sub>V</sub> and O<sub>C</sub> refer to the oxygen vacancy and chemisorbed oxygen, respectively.

relative concentration of  $\text{Ce}^{3+}$  ions can be calculated by integrating each peak area using the equation below:

$$[\text{Ce}^{3+}] = \frac{A_{u^\circ} + A_{v^\circ}}{A_{u^\circ} + A_{v^\circ} + A_{u'} + A_{u''} + A_{u'''} + A_{v'} + A_{v''} + A_{v'''}} \quad (8)$$

The concentration of  $\text{Ce}^{3+}$  was 26.54% and 23.24% for the reduced and oxidized 1 wt% Ru/CeO<sub>2</sub> NR catalysts, respectively. One of the main reasons for the slight difference in  $\text{Ce}^{3+}$  concentrations is the reduction treatment temperature. We reduced the treatment temperature of each catalyst to 300 °C in a H<sub>2</sub> environment. A valid reason for this low reduction treatment temperature is to maintain the shape of the CeO<sub>2</sub> NP because CeO<sub>2</sub> shape is highly influenced by temperature. As shown in Fig. S3,† the initial reduction for CeO<sub>2</sub> NR started at around 350 °C. Thus, besides the small reduction of CeO<sub>2</sub>, RuO<sub>2</sub> is mainly reduced by the reduction treatment and leads to an increase in oxygen vacancy concentration. From oxidized and reduced XPS characterization data of 1 wt% Ru/CeO<sub>2</sub> NR, it is apparently clear that partially reduced Ru<sup>n+</sup> ions increase significantly along with the slight increase of  $\text{Ce}^{3+}$  ion concentration after reduction treatment. The formation of  $\text{Ce}^{3+}$  ions is believed to relate to the available oxygen vacancy, and such undercoordinated Ce<sup>3+</sup> ions due to Ru doping on the surface of a small CeO<sub>2</sub> crystal could result in lattice distortion.<sup>55</sup>

### 3.5 Transmission electron microscopy (TEM)

Fig. 7 displays the low and high-magnification TEM images of CeO<sub>2</sub> NR and NC supported RuO<sub>x</sub> catalysts. Both rod and cube-shaped CeO<sub>2</sub> supports maintained their initial morphology

after Ru loading, calcination, and reduction treatment. The length and diameter of CeO<sub>2</sub> NR for the reduced sample are in the range of 50 to 80 nm and 5 to 10 nm, respectively. The cube-shaped CeO<sub>2</sub> has an approximate length of 20 to 40 nm. The Ru crystallites are hard to detect due to their smaller size and low doping amount (1 wt%). However, Fig. 3 indicated the presence of Ru by EDS elemental mapping. The HRTEM images also demonstrate the rough surface of CeO<sub>2</sub> NR, which indicates the presence of lattice distortion, lattice defects, and voids, among many other surface defects. The exposed crystal facets of CeO<sub>2</sub> NC are (100) lattice fringes, while CeO<sub>2</sub> NR possesses a mixture of (111), (100), and (011) lattice fringes with the corresponding *d*-spacings of 3.08–3.16 Å, 2.7 Å and 1.9 Å, respectively, observed from the HRTEM images.

## 4. Performance test

Fig. 8 shows the molar fraction of CO<sub>2</sub>, CH<sub>4</sub>, CO, and H<sub>2</sub> obtained from Extrel QMS for DRM at seven different temperatures from 150 °C to 450 °C. This “plasma-off–plasma-on” experiment was designed to understand the synergistic effect of plasma and thermal catalysis in DRM. The plasma was introduced for seven minutes, initiating in the 6th minute and stopping at the 12th minute, followed by a 5 minute thermal only DRM reaction. The effect of introducing plasma in a thermal DRM is very clear from Fig. 8, where two different colors indicate thermal and plasma + thermal regions. For example, at 150 °C, initially, there were “no detectable” CO and H<sub>2</sub> gases for five minutes in the thermal catalysis region. Upon the initiation of plasma at the 6th minute, CO (red line) and H<sub>2</sub>

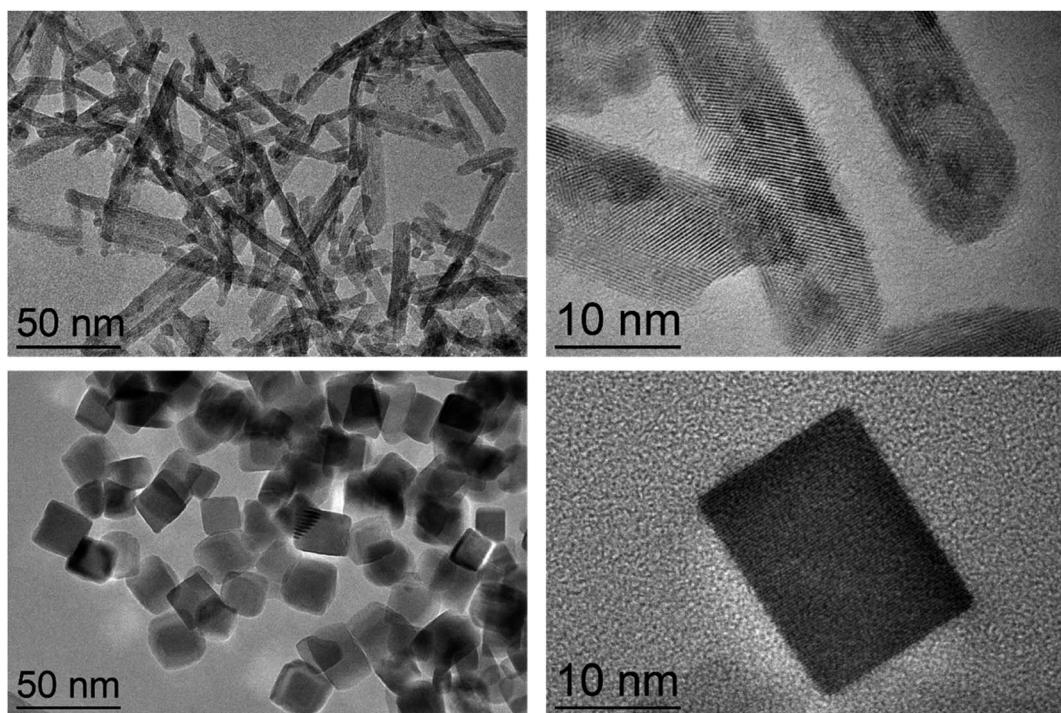



Fig. 7 HRTEM images of 1 wt% Ru/CeO<sub>2</sub> NR-r and 1 wt% Ru/CeO<sub>2</sub> NC-r.

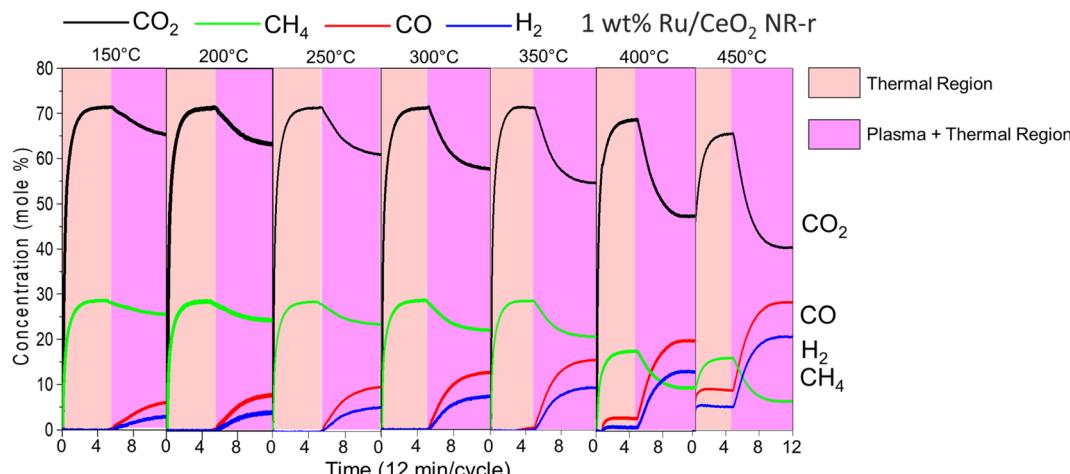



Fig. 8 Measured time-resolved species mole fraction for thermal and thermal + plasma regions from 150 °C to 450 °C, 1 atm pressure (5 min for thermal catalysis only and 7 min for thermal + plasma catalysis) (catalyst wt: ~200 mg, power: 10.2 to 13.6 W, frequency: 20 kHz, flowrate: CO<sub>2</sub>: 250 sccm and CH<sub>4</sub>: 100 sccm).

(blue line) gases were clearly observed with a sudden decrease in mole concentration of supplied CO<sub>2</sub> (black line) and CH<sub>4</sub> (green line). For the thermal catalysis region at 150 °C, the mole percentage of both CO and H<sub>2</sub> was “zero”, which changed to 7% and 3%, respectively, when plasma was introduced. In this project, we utilized both a thermopile infrared array sensor and infrared thermometer to measure the surface temperature of the catalysts during plasma-assisted catalytic DRM reaction. It should be noted that the measured surface temperature of the catalysts is reasonably close (10–40 °C) to the reactor temperature as shown in Fig. S4.† There was “no detectable” CO and H<sub>2</sub> up to 350 °C for thermally driven DRM. Thus, in the temperature range from 150 °C to 350 °C in the plasma + thermal region, the conversion of CH<sub>4</sub> and CO<sub>2</sub> gradually increased, which is due to the introduction of non-thermal plasma. The mole percentage of CO and H<sub>2</sub> increased from 7% to 16% and 3% to 9% from 150 °C to 350 °C in the plasma + thermal region. This indicates that the introduction of plasma plays a crucial role in initiating and promoting low-temperature DRM to produce syngas. For 400 °C and 450 °C, CO and H<sub>2</sub> concentrations were less than 10% for thermal DRM. For example, for the thermal region at 450 °C, CO and H<sub>2</sub> concentrations were 9% and 5%. However, for the plasma + thermal region at 450 °C, these concentrations were 28% and 21% for CO and H<sub>2</sub>, respectively, which are significantly higher than those in the thermal-only DRM regions. The CO and H<sub>2</sub> molar concentrations *vs.* time at temperature between 150 °C and 450 °C is shown in Fig. S5.† At low temperatures, it takes time for the reaction to reach equilibrium, whereas at high temperatures, it stabilizes rapidly. In Fig. S6,† a 10 min plasma-assisted reduction cycle for the 1 wt% Ru/CeO<sub>2</sub> NR-r catalyst at 250 °C is shown, which clearly illustrates that there was no noticeable change from MS in the molar concentration of CO<sub>2</sub>, CH<sub>4</sub>, CO, or H<sub>2</sub> after 7 minutes. According to our Quantum Cascade Laser (QCL) absorption system, a very tiny amount of C<sub>2</sub>H<sub>6</sub> or ethane was detected during plasma-assisted DRM as shown in Fig. S7.†

Fig. 9 shows the conversion of DRM reaction with only plasma, plasma-assisted only support, plasma-assisted catalyst, and thermal catalysts at 450 °C, 400 °C, and 350 °C. It is noticeable that plasma-assisted DRM is extraordinarily high compared to thermally driven DRM. Plasma and catalyst synergism highly enhanced the DRM conversion close to 51% and 37% for CH<sub>4</sub> and CO<sub>2</sub>, respectively, at 450 °C. However, DRM conversion with only plasma and plasma-assisted only support was less than 5% for both CH<sub>4</sub> and CO<sub>2</sub>.

All the CO<sub>2</sub>, CH<sub>4</sub>, CO, and H<sub>2</sub> species profiles acquired from QMS were time integrated to obtain the total amounts of the products at each temperature which were later used for quantitative calculation of conversion, selectivity, and yield shown in Fig. 10 and 11.

The conversion of the reactants CH<sub>4</sub> and CO<sub>2</sub> under thermal only and plasma + thermal conditions is presented in Fig. 10(a–d) in the temperature range 150 °C to 450 °C for two catalysts: 1 wt% Ru/CeO<sub>2</sub> NR and 1 wt% Ru/CeO<sub>2</sub> NC. These experimental results were obtained from the reaction conditions where the catalysts were placed in the plasma zone with a constant temperature zone of the furnace. In this case, plasma was in direct contact with the catalyst, and the furnace temperature seriously influenced the plasma zone. It is important to mention that no conversion occurred in thermal DRM till 250 °C for 1 wt% Ru/CeO<sub>2</sub> NC and 300 °C for 1 wt% Ru/CeO<sub>2</sub> NR, which is consistent with the observations in the literature due to the endothermic nature of DRM reaction.<sup>56</sup> Typically for thermally driven DRM, the conversion of CH<sub>4</sub> and CO<sub>2</sub> was observed at operating temperatures higher than 300 °C.<sup>50</sup> For thermally driven DRM, CH<sub>4</sub> conversion percentage is typically lower compared to CO<sub>2</sub> conversion, which may be a result of the simultaneous reverse water-gas shift (RWGS) reaction (CO<sub>2</sub> + H<sub>2</sub> = CO + H<sub>2</sub>O).<sup>57</sup> The conversion trends of CH<sub>4</sub> and CO<sub>2</sub> over 1 wt% Ru/CeO<sub>2</sub> NC and 1 wt% Ru/CeO<sub>2</sub> NR samples are similar, and the conversion percentage of 1 wt% Ru/CeO<sub>2</sub> NC was “even” higher than for 1 wt% Ru/CeO<sub>2</sub> NR under thermally driven



Fig. 9 CH<sub>4</sub> and CO<sub>2</sub> conversion with only plasma, plasma + CeO<sub>2</sub> NR, plasma + 1 wt% Ru/CeO<sub>2</sub> NR and thermal + 1 wt% Ru/CeO<sub>2</sub> NR at (a) 450 °C, (b) 400 °C and (c) 350 °C (catalyst wt: ~200 mg, power: 10.2 to 13.6 W, frequency: 20 kHz, flowrate: CO<sub>2</sub>: 250 sccm and CH<sub>4</sub>: 100 sccm).

DRM. For example, at 450 °C, CO<sub>2</sub> conversion was 17% for 1 wt% Ru/CeO<sub>2</sub> NC, which is 3% greater than for 1 wt% Ru/CeO<sub>2</sub> NR (14%). In similar work, Zhou *et al.*<sup>58</sup> reported that the reaction rate of Ru dispersed on CeO<sub>2</sub> NC was higher than that of Ru dispersed on CeO<sub>2</sub> NR. Although kinetic modeling indicates similar turnover frequency (TOF) for CeO<sub>2</sub> NC and CeO<sub>2</sub> NR based on surface-oxygen vacancies ( $2.67\text{--}2.91 \times 10^{-4} \text{ s}^{-1}$ )

and activation energies (72.9–76.4 kJ mol<sup>-1</sup>), the higher performance of thermally driven DRM over 1 wt% Ru/CeO<sub>2</sub> NC is rooted in oxygen vacancy concentration at the RuO<sub>x</sub>–CeO<sub>2</sub> interface. Compared to thermally driven DRM, Fig. 10(a–d) show that reaction conversion for both CH<sub>4</sub> and CO<sub>2</sub> for plasma-assisted DRM is extraordinarily high. It is clear that the trigger temperature of plasma-assisted thermo-catalytic DRM was at

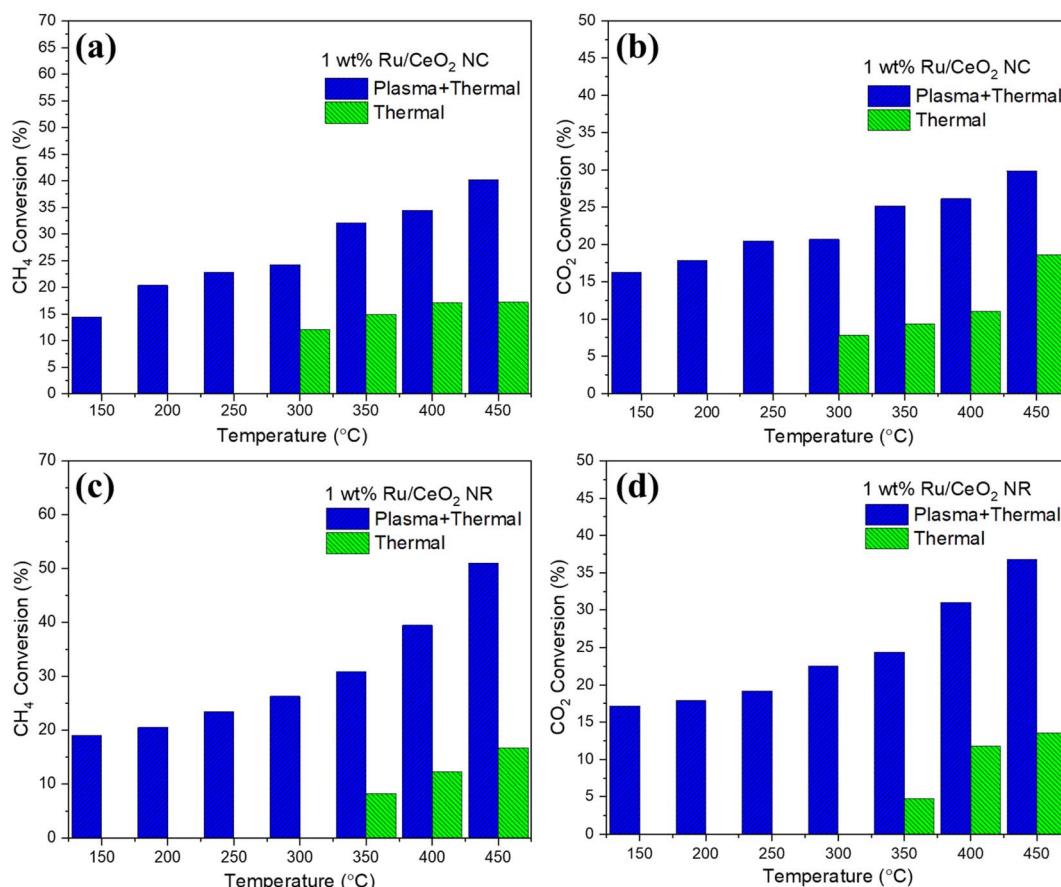



Fig. 10 (a) CH<sub>4</sub> and (b) CO<sub>2</sub> conversion of 1 wt% Ru/CeO<sub>2</sub> NC; (c) CH<sub>4</sub> and (d) CO<sub>2</sub> conversion of 1 wt% Ru/CeO<sub>2</sub> NR from 150 °C to 450 °C under thermal and thermal + plasma conditions (catalyst wt: ~200 mg, power: 10.2 to 13.6 W, frequency: 20 kHz, flowrate: CO<sub>2</sub>: 250 sccm and CH<sub>4</sub>: 100 sccm).

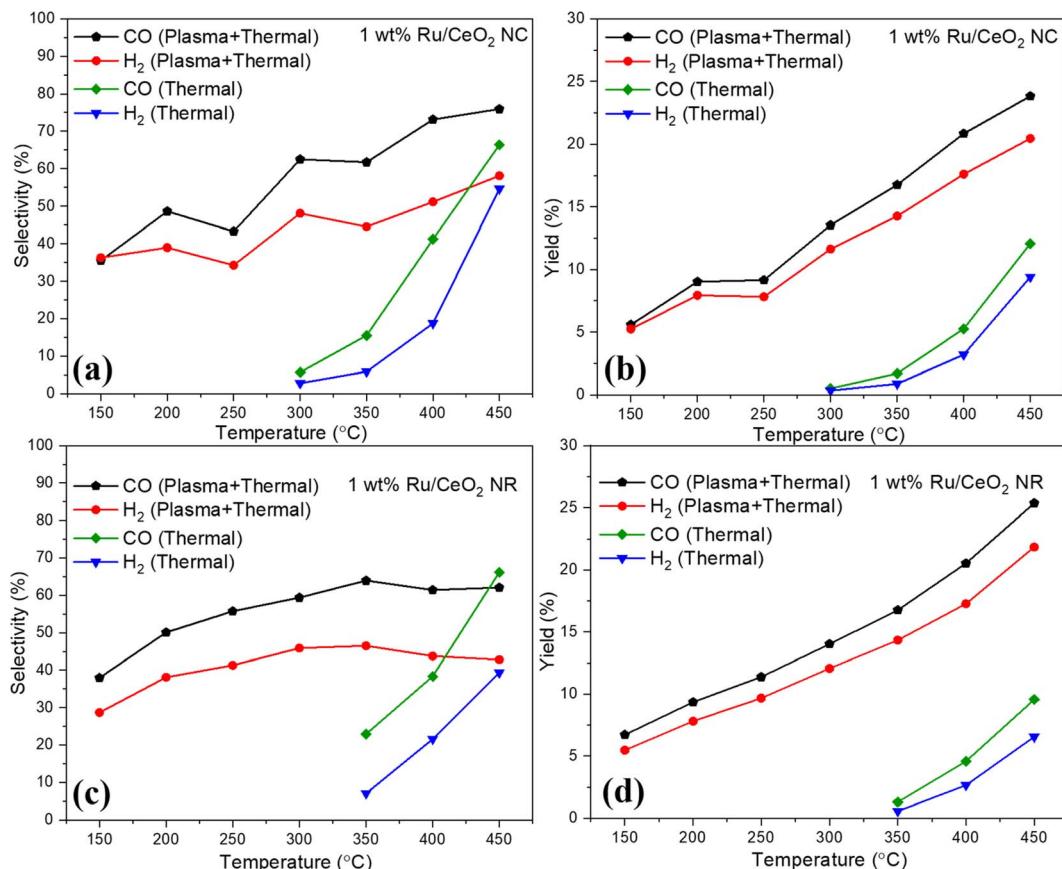


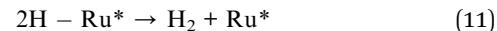
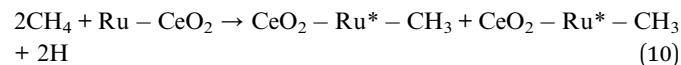

Fig. 11 CO and H<sub>2</sub> (a) selectivity and (b) yield of 1 wt% Ru/CeO<sub>2</sub> NC; (c) selectivity and (d) yield of 1 wt% Ru/CeO<sub>2</sub> NR from 150 °C to 450 °C under thermal and thermal + plasma conditions (catalyst wt: ~200 mg, power: 10.2 to 13.6 W, frequency: 20 kHz, flowrate: CO<sub>2</sub>: 250 sccm and CH<sub>4</sub>: 100 sccm).

least 250 °C lower than that of thermo-catalytic DRM. Under non-thermal plasma conditions, the collision frequency between electrons and gas molecules increases dramatically, followed by the generation of highly energetic electrons, leading to the generation of more active species such as ions, radicals, *etc.* For instance, the reactant CH<sub>4</sub> can dissociate into CH<sub>x</sub> ( $x = 0, 1, 2, 3$ ) species and active H atoms, which are later combined with cracked products from CO<sub>2</sub> and form products such as CO and H<sub>2</sub>.<sup>59</sup> The obtained conversion of CH<sub>4</sub> and CO<sub>2</sub> was in the range of ~19% to ~51% and ~17% to ~37%, respectively, for 1 wt% Ru/CeO<sub>2</sub> NR from 150 °C to 450 °C. For 1 wt% Ru/CeO<sub>2</sub> NC, the conversion was ~14% to ~40% for CH<sub>4</sub> and ~16% to ~30% for CO<sub>2</sub>. The higher CH<sub>4</sub> conversion than CO<sub>2</sub> conversion may result from CH<sub>4</sub> dissociation reaction and carbon deposition,<sup>60</sup> because excessive coking could happen due to a lack of balance between carbon atoms from CH<sub>4</sub> dissociation and carbon atoms dislodged by active O atoms from CO<sub>2</sub> dissociation. Similarly, Zheng *et al.*<sup>59</sup> reported higher CH<sub>4</sub> conversion than CO<sub>2</sub> at higher discharge power which was consistent with our results. They also reported higher CO selectivity than H<sub>2</sub>, and their trend was similar to our results shown in Fig. 11. For plasma-assisted DRM, it is worth mentioning that 1 wt% Ru/CeO<sub>2</sub> NR was more active than 1 wt% Ru/CeO<sub>2</sub> NC. Therefore, the shape and/or exposed crystal planes of the CeO<sub>2</sub> support

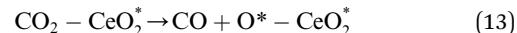
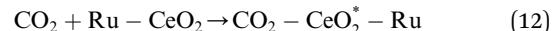
played a role in DRM. The conversion of CH<sub>4</sub> increased from 40% (1 wt% Ru/CeO<sub>2</sub> NC) to 51% (1 wt% Ru/CeO<sub>2</sub> NR) at 450 °C whereas CO<sub>2</sub> conversion increased from 30% (1 wt% Ru/CeO<sub>2</sub> NC) to 37% (1 wt% Ru/CeO<sub>2</sub> NR) at the same temperature, because CeO<sub>2</sub> NR is predominantly exposed with (110) and (100) or defected (111) facets which can anchor higher content of Ru<sup>4+</sup> species and provide a greater amount of Ru–O–Ce solid solution, compared to CeO<sub>2</sub> NC. In addition, Ru clusters on the reducible CeO<sub>2</sub> support give rise to partially oxidized Ru, reduced by CeO<sub>2</sub> (Ru<sup>δ+</sup>–CeO<sub>2–x</sub>) to provide active chemistry for better conversion selectivity and yield. It is also concluded from the literature that plasma can bring in more basic sites and smaller crystal sizes of catalysts that promote higher reactivity.<sup>61</sup> The catalyst in the plasma zone accelerates the externally applied electric field and creates stronger micro-discharge and surface discharge. A greater number of exciting species can be ruptured from the collisions between highly energetic electrons and reactant molecules which could be adsorbed over the catalysts to achieve the desired products. Based on the carbon balance analysis of the 1 wt% Ru/CeO<sub>2</sub> NR-r catalyst shown in Fig. S8,† it is reflected that approximately 10% deposited carbon was observed from Boudouard or other coking reactions (*i.e.*, CH<sub>4</sub> decomposition). In addition, a very tiny amount of C<sub>2</sub>H<sub>6</sub> or ethane was detected using the quantum cascade laser

absorption spectroscopy (TDLAS) system, as shown in Fig. S7.<sup>†</sup> A few possible reasons for this low carbon deposition are: (1) Ru is known for reducing carbon deposition; (2) more  $\text{CO}_2$  was supplied than  $\text{CH}_4$  during the reaction for enough metastable O ions that can hinder the  $\text{CH}_x$  recombination and/or can react with the deposited carbon on the catalyst surface; and (3) below 450 °C,  $\text{CH}_4$  decomposition is probably preferable, which produces reactive and less stable carbon species. A  $\text{CH}_4$  and  $\text{CO}_2$  conversion comparison is presented in Fig. S9,<sup>†</sup> for  $\text{CeO}_2$  supports with plasma and under plasma only conditions. Under plasma only conditions, both  $\text{CH}_4$  and  $\text{CO}_2$  conversions were very low compared to for Ru doped  $\text{CeO}_2$  catalysts. The result showed a maximum 3.5% and 5.5% conversion of  $\text{CH}_4$  and  $\text{CO}_2$ , respectively, with the plasma-assisted support and bare plasma. Hence, incorporation of a small amount of Ru dramatically increases the performance. The experimental data on the DRM performance under thermal catalysis and plasma-assisted catalysis using the 1 wt% Ru/ $\text{SiO}_2$  catalyst is presented in Fig. S10.<sup>†</sup>

As shown in Fig. 11, yield and selectivity increased with the temperature increase. The maximum CO selectivity and yield were 75% and 25% for 1 wt% Ru/ $\text{CeO}_2$  NC, while for  $\text{H}_2$ , these were 60% and 22% at 450 °C. The selectivity of CO was better than that of  $\text{H}_2$  due to the formation of a hydrocarbon.<sup>62</sup> In addition, at higher temperatures, the selectivity of  $\text{H}_2$  tends to diminish due to the enhancement of RWGS reaction.<sup>63,64</sup> Moreover, the side products and carbon deposition play a crucial role in the selectivity and yield of desired products.<sup>65</sup> In a catalytic gas–solid reaction, reactant conversion is inversely proportional to desired product selectivity due to the evolution of secondary gas phase reaction.<sup>66</sup> The produced  $\text{H}_2/\text{CO}$  ratio was less than the unity shown in Fig. 12, which indicates that CO production was higher than  $\text{H}_2$  production. This is probably due to the side reactions.<sup>67</sup> RWGS reaction ( $\text{CO}_2 + \text{H}_2 = \text{CO} + \text{H}_2\text{O}$ ;



$\Delta H_{298} = 41 \text{ kJ mol}^{-1}$ ) is another possible reason for the low  $\text{H}_2/\text{CO}$  ratio, which is a common phenomenon in catalytic DRM.<sup>62</sup> This side reaction can consume the produced  $\text{H}_2$ , reduce the  $\text{H}_2$  yield, and increase CO production. However, the  $\text{H}_2/\text{CO}$  ratio tends to increase gradually with temperature, which indicates that at elevated temperatures, the  $\text{CeO}_2$  supported RuO<sub>x</sub> catalysts enhanced both DRM and Boudouard reactions given below.<sup>68</sup>





The addition of RuO<sub>x</sub> on  $\text{CeO}_2$  supports causes a significant increase in oxygen vacancy concentration due to the interaction of RuO<sub>x</sub> and  $\text{CeO}_2$  at their interface. For 1 wt% Ru/ $\text{CeO}_2$  NR-r the relative oxygen content was 49.5%, calculated from XPS characterization. Sakpal *et al.*<sup>69</sup> reported that 1 wt% Ru/ $\text{CeO}_2$  NC promotes a higher concentration of OH and/or carbonate groups and lowers the concentration of oxygen vacancy compared to 1 wt% Ru/ $\text{CeO}_2$  NR for  $\text{CO}_2$  methanation. On the other hand, exposed (110) and (100) or defected (111) facets by  $\text{CeO}_2$  NR have lower oxygen vacancy formation energy and high oxygen vacancy concentration. The interaction of RuO<sub>x</sub> species with these  $\text{CeO}_2$  facets enhances the activation of  $\text{CO}_2$  during the reaction and promotes high catalytic activity in the methane dry reforming reaction.

#### 4.1 Reaction mechanism

For catalytic DRM reaction under thermal-only conditions, it is generally assumed that, for  $\text{CeO}_2$  supported Ru catalysts, catalytic DRM is initiated by  $\text{CH}_4$  decomposition on active metal Ru sites. At the same time,  $\text{CO}_2$  adsorption/dissociation occurs on the support surface.<sup>70</sup> The step-wise  $\text{CH}_4$  decomposition leads to  $\text{CH}_4 \rightarrow \text{CH}_3 \rightarrow \text{CH}_2 \rightarrow \text{CH}$  and C with  $\text{H}_2$  production with the following possible surface reactions.



On the other hand,  $\text{CO}_2$  adsorption on the  $\text{CeO}_2$  support leads to either direct dissociation of  $\text{CO}_2$  to CO and adsorption of oxygen or formation of the carbonate precursor with further possible reaction routes given in eqn (14) below.



It should be noted that the produced carbonate precursor is considered a highly reactive intermediate that can promote both CO and  $\text{H}_2$  production as well as hydrocarbon formation by interacting with  $\text{CH}_x$  and spillover H from  $\text{CH}_4$  dissociation from the active metal site to the support.

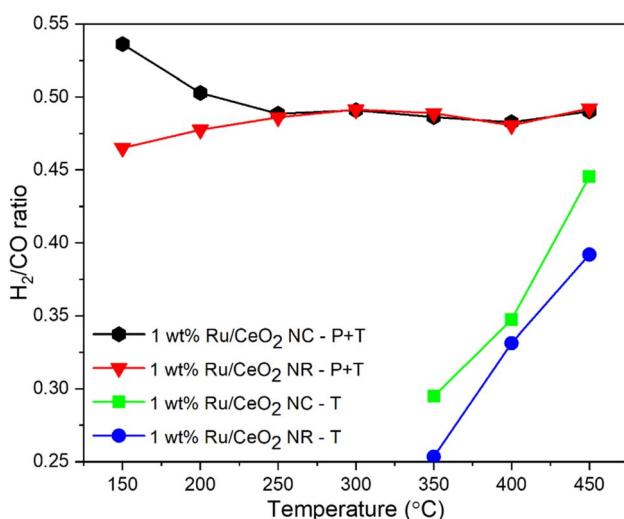



Fig. 12  $\text{H}_2/\text{CO}$  ratio of 1 wt% Ru/ $\text{CeO}_2$  NC and 1 wt% Ru/ $\text{CeO}_2$  NR catalysts from 150 °C to 450 °C under thermal and thermal + plasma conditions (catalyst wt: ~200 mg, power: 10.2 to 13.6 W, frequency: 20 kHz, flowrate:  $\text{CO}_2$ : 250 sccm and  $\text{CH}_4$ : 100 sccm).

For the plasma-assisted DRM reaction, a possible mechanism can be explained as follows. Plasma and/or high energetic electrons first initiate the activation and dissociation of  $\text{CO}_2$  and  $\text{CH}_4$ , which is followed by the adsorption of intermediate species of  $\text{CH}_x$ ,  $\text{C}$ ,  $\text{O}$ ,  $\text{H}$ ,  $\text{CO}_3^*$  on the metal and support. This adsorption later leads to numerous reaction routes (Fig. 13).

The dry reforming of methane technique commonly faces the risk of coking or carbon formation at high temperatures mainly either by the methane decomposition (eqn (15): methane cracking) or the Boudouard reaction (eqn (16)). This is because these two reactions are favored at lower temperatures (*i.e.*, 300 °C to 500 °C), which is similar to the furnace (gas) temperature range of 150 °C to 450 °C during the plasma-assisted reactions.



Carbon species from the methane decomposition reaction are more reactive than from the Boudouard reaction.<sup>71</sup> According to our experimental temperature range, methane decomposition is highly favored, while Boudouard or other coking reactions are unlikely to occur. The provided carbon balance profile (Fig. S8†) and EDX spectrum (Fig. S11†) of 1 wt% Ru/ $\text{CeO}_2$  NR-r catalyst showed approximately 90% that reflects a minimal amount of deposited carbon from Boudouard or other coking reactions and a small amount of  $\text{C}_2\text{H}_6$  from methane decomposition (Fig. S7†). The production of C-2 species (such as  $\text{C}_2\text{H}_2$ ,  $\text{C}_2\text{H}_4$ ,  $\text{C}_2\text{H}_6$ ) is higher at 150 °C, decreases with increasing reaction temperature, and becomes close to zero when the temperature exceeds 300 °C. The STEM and HRTEM images of the spent 1 wt% Ru/ $\text{CeO}_2$  NR catalyst are

shown in Fig. S12.† At lower temperatures, the catalyst and plasma synergy produces more  $\text{CH}_3$  and  $\text{CH}_2$  radicals instead of deposited carbon, and these radicals move the reaction directly to the production of C-2 species. Although methane decomposition promotes amorphous carbon deposition on active  $\text{RuO}_x$  sites, this was efficiently oxidized by the redox properties of  $\text{CeO}_2$  support ( $\text{Ce}^{3+}/\text{Ce}^{4+}$ ). The strong metal support interaction of Ru and  $\text{CeO}_2$  support formed a solid solution of partially oxidized Ru on reduced  $\text{CeO}_2$  support with the chemical formula  $\text{Ru}^{\delta+}-\text{CeO}_{2-x}$ . Thus, higher oxygen transfer between Ru and ceria allowed surface carbon gasification and produced CO.

## 5. Conclusion

In summary, three different oxides ( $\text{CeO}_2$  NR,  $\text{CeO}_2$  NC, and  $\text{SiO}_2$ ) supporting 1 wt% Ru catalysts were prepared to study plasma-assisted DRM under non-equilibrium conditions. The reduced 1 wt% Ru/ $\text{CeO}_2$  NR showed higher surface basicity and oxygen vacancy concentration and superior low-temperature activity for DRM compared to the 1 wt% Ru/ $\text{CeO}_2$  NC and 1 wt% Ru/ $\text{SiO}_2$  catalysts. The introduction of non-thermal plasma in a DBD reactor promoted low-temperature DRM conversion over 1 wt% Ru/ $\text{CeO}_2$  NR and 1 wt% Ru/ $\text{CeO}_2$  NC catalysts compared to the catalyst activity under thermal catalysis only conditions. Compared to 1 wt% Ru/ $\text{CeO}_2$  NC-r, the 1 wt% Ru/ $\text{CeO}_2$  NR-r catalyst presented 11% higher  $\text{CH}_4$  conversion and 7%  $\text{CO}_2$  conversion at 450 °C. The enhanced DRM activity with  $\text{CeO}_2$  NR as catalyst support is attributed to the highly exposed surface faces and a greater number of surface defects (*i.e.*,  $\text{Ce}^{3+}$ , oxygen vacancy, and rough surface).

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

This project is supported by the grants from the National Science Foundation (CBET 1856729 and IIP 2044733). We are thankful of Prof. Martin G. Bakker for help with the measurements of the  $\text{N}_2$  physisorption isotherms and pore size distribution. This project also received partial financial support from the Alabama Transportation Institute and Alabama Water Institute. The use of electron microscopy facilities at the Alabama Analytical Research Center (AARC) at The University of Alabama is gratefully acknowledged.

## References

- 1 P. Friedlingstein, R. A. Houghton, G. Marland, J. Hackler, T. A. Boden, T. J. Conway, J. G. Canadell, M. R. Raupach, P. Ciais and C. Le Quéré, Update on  $\text{CO}_2$  emissions, *Nat. Geosci.*, 2010, 3, 811–812.
- 2 Y. Zheng, W. Zhang, Y. Li, J. Chen, B. Yu, J. Wang, L. Zhang and J. Zhang, Energy related  $\text{CO}_2$  conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies, *Nano Energy*, 2017, 40, 512–539.

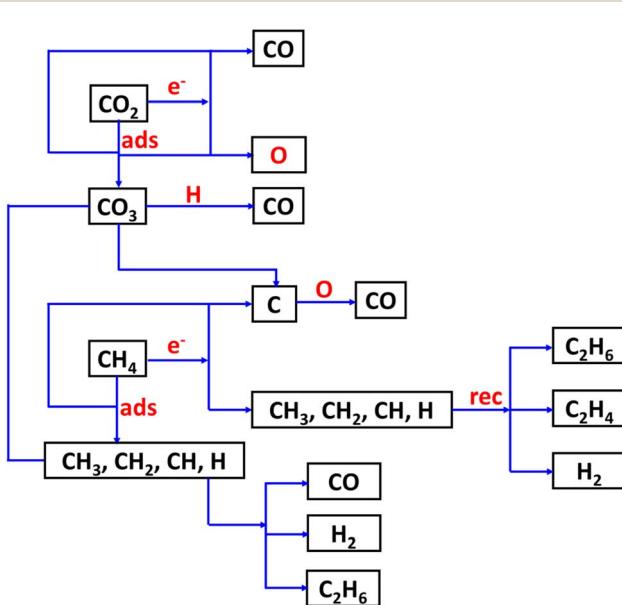



Fig. 13 Possible reaction pathways for the formation of  $\text{CO}$ ,  $\text{H}_2$ ,  $\text{C}_2\text{H}_6$ , and carbon deposition in the direct reforming of  $\text{CH}_4$  and  $\text{CO}_2$  with DBD.

3 P. Mehta, P. Barboun, D. B. Go, J. C. Hicks and W. F. Schneider, Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review, *ACS Energy Lett.*, 2019, **4**, 1115–1133.

4 G. A. Olah, A. Goeppert, M. Czaun, T. Mathew, R. B. May and G. K. S. Prakash, Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to met gas ( $\text{CO}_2\text{H}_2$ ) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen, *J. Am. Chem. Soc.*, 2015, **137**, 8720–8729.

5 A. Galadima and O. Muraza, Catalytic thermal conversion of  $\text{CO}_2$  into fuels: Perspective and challenges, *Renewable Sustainable Energy Rev.*, 2019, **115**, 109333.

6 D. R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P. R. Ohodnicki, C. Zeng and R. Jin, Efficient electrochemical  $\text{CO}_2$  conversion powered by renewable energy, *ACS Appl. Mater. Interfaces*, 2015, **7**, 15626–15632.

7 D. Yap, J.-M. Tatibouët and C. Batiot-Dupeyrat, Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature, *Catal. Today*, 2018, **299**, 263–271.

8 X. Chen, Z. Sheng, S. Murata, S. Zen, H.-H. Kim and T. Nozaki,  $\text{CH}_4$  dry reforming in fluidized-bed plasma reactor enabling enhanced plasma-catalyst coupling, *J.  $\text{CO}_2$  Util.*, 2021, **54**, 101771.

9 J. A. Andersen, J. M. Christensen, M. Østberg, A. Bogaerts and A. D. Jensen, Plasma-Catalytic Dry Reforming of Methane: Screening of Catalytic Materials in a Coaxial Packed-Bed DBD Reactor, *Chem. Eng. J.*, 2020, 125519.

10 M. H. Pham, V. Goujard, J. M. Tatibouët and C. Batiot-Dupeyrat, Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—Influence of  $\text{La}_2\text{O}_3/\gamma\text{-Al}_2\text{O}_3$  catalyst, *Catal. Today*, 2011, **171**, 67–71.

11 X. Zheng, S. Tan, L. Dong, S. Li and H. Chen,  $\text{LaNiO}_3@\text{SiO}_2$  core-shell nano-particles for the dry reforming of  $\text{CH}_4$  in the dielectric barrier discharge plasma, *Int. J. Hydrogen Energy*, 2014, **39**, 11360–11367.

12 H. J. Gallon, X. Tu and J. C. Whitehead, Effects of reactor packing materials on  $\text{H}_2$  production by  $\text{CO}_2$  reforming of  $\text{CH}_4$  in a dielectric barrier discharge, *Plasma Processes Polym.*, 2012, **9**, 90–97.

13 A. H. Khoja, M. Tahir and N. A. S. Amin, Cold plasma dielectric barrier discharge reactor for dry reforming of methane over  $\text{Ni}/\gamma\text{-Al}_2\text{O}_3\text{-MgO}$  nanocomposite, *Fuel Process. Technol.*, 2018, **178**, 166–179.

14 M. C. J. Bradford and M. A. Vannice,  $\text{CO}_2$  Reforming of  $\text{CH}_4$  over Supported Ru Catalysts, *J. Catal.*, 1999, **183**, 69–75.

15 D. Sutton, S. M. Parle and J. R. H. Ross, The  $\text{CO}_2$  reforming of the hydrocarbons present in a model gas stream over selected catalysts, *Fuel Process. Technol.*, 2002, **75**, 45–53.

16 D. Qin and J. Lapszewicz, Study of mixed steam and  $\text{CO}_2$  reforming of  $\text{CH}_4$  to syngas on  $\text{MgO}$ -supported metals, *Catal. Today*, 1994, **21**, 551–560.

17 J. Wei and E. Iglesia, Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru–based catalysts, *J. Phys. Chem. B*, 2004, **108**, 7253–7262.

18 A. Aitbekova, L. Wu, C. J. Wrasman, A. Boubnov, A. S. Hoffman, E. D. Goodman, S. R. Bare and M. Cargnello, Low-temperature restructuring of  $\text{CeO}_2$ -supported Ru nanoparticles determines selectivity in  $\text{CO}_2$  catalytic reduction, *J. Am. Chem. Soc.*, 2018, **140**, 13736–13745.

19 C. H. Bartholomew, Mechanisms of catalyst deactivation, *Appl. Catal., A*, 2001, **212**, 17–60.

20 P. Ferreira-Aparicio, I. Rodriguez-Ramos, J. A. Anderson and A. Guerrero-Ruiz, Mechanistic aspects of the dry reforming of methane over ruthenium catalysts, *Appl. Catal., A*, 2000, **202**, 183–196.

21 N. J. Lawrence, J. R. Brewer, L. Wang, T.-S. Wu, J. Wells-Kingsbury, M. M. Ihrig, G. Wang, Y.-L. Soo, W.-N. Mei and C. L. Cheung, Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation, *Nano Lett.*, 2011, **11**, 2666–2671.

22 J. A. Rodríguez and J. Hrbek, Inverse oxide/metal catalysts: a versatile approach for activity tests and mechanistic studies, *Surf. Sci.*, 2010, **604**, 241–244.

23 P. X. Huang, F. Wu, B. L. Zhu, X. P. Gao, H. Y. Zhu, T. Y. Yan, W. P. Huang, S. H. Wu and D. Y. Song,  $\text{CeO}_2$  Nanorods and Gold Nanocrystals Supported on  $\text{CeO}_2$  Nanorods as Catalyst, *J. Phys. Chem. B*, 2005, **109**, 19169–19174.

24 H.-X. Mai, L.-D. Sun, Y.-W. Zhang, R. Si, W. Feng, H.-P. Zhang, H.-C. Liu and C.-H. Yan, Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes, *J. Phys. Chem. B*, 2005, **109**, 24380–24385.

25 C. Ho, J. C. Yu, T. Kwong, A. C. Mak and S. Lai, Morphology-Controllable Synthesis of Mesoporous  $\text{CeO}_2$  Nano- and Microstructures, *Chem. Mater.*, 2005, **17**, 4514–4522.

26 Y. Wang, Z. Liu and R. Wang,  $\text{NaBH}_4$  Surface Modification on  $\text{CeO}_2$  Nanorods Supported Transition-Metal Catalysts for Low Temperature CO Oxidation, *ChemCatChem*, 2020, **12**, 4304–4316.

27 Z. Liu, Y. Lu, M. P. Confer, H. Cui, J. Li, Y. Li, Y. Wang, S. C. Street, E. K. Wujcik and R. Wang, Thermally Stable  $\text{RuO}_x\text{-CeO}_2$  Nanofiber Catalysts for Low-Temperature CO Oxidation, *ACS Appl. Nano Mater.*, 2020, **3**, 8403–8413.

28 S. Agarwal, L. Lefferts, B. L. Mojet, D. A. J. M. Ligthart, E. J. M. Hensen, D. R. G. Mitchell, W. J. Erasmus, B. G. Anderson, E. J. Olivier, J. H. Neethling and A. K. Datye, Exposed Surfaces on Shape-Controlled Ceria Nanoparticles Revealed through AC-TEM and Water–Gas Shift Reactivity, *ChemSusChem*, 2013, **6**, 1898–1906.

29 J. Zhao, Y. He, F. Wang, W. Zheng, C. Huo, X. Liu, H. Jiao, Y. Yang, Y. Li and X. Wen, Suppressing Metal Leaching in a Supported Co/SiO<sub>2</sub> Catalyst with Effective Protectants in the Hydroformylation Reaction, *ACS Catal.*, 2019, **10**, 914–920.

30 R. Wang and R. Dangerfield, Seed-mediated synthesis of shape-controlled  $\text{CeO}_2$  nanocrystals, *RSC Adv.*, 2014, **4**, 3615–3620.

31 S. A. Mock, E. T. Zell, S. T. Hossain and R. Wang, Effect of Reduction Treatment on CO Oxidation with  $\text{CeO}_2$  Nanorod-Supported CuOx Catalysts, *ChemCatChem*, 2018, **10**, 311–319.

32 J. Li, Z. Liu and R. Wang, Support structure and reduction treatment effects on CO oxidation of  $\text{SiO}_2$  nanospheres and  $\text{CeO}_2$  nanorods supported ruthenium catalysts, *J. Colloid Interface Sci.*, 2018, **531**, 204–215.

33 M. R. Ahasan, Y. Wang and R. Wang, In situ DRIFTS and CO-TPD studies of  $\text{CeO}_2$  and  $\text{SiO}_2$  supported CuOx catalysts for CO oxidation, *Mol. Catal.*, 2022, **518**, 112085.

34 Z. Wei and R. Wang, Chemically etched  $\text{CeO}_2\text{-x}$  nanorods with abundant surface defects as effective cathode additive for trapping lithium polysulfides in Li-S batteries, *J. Colloid Interface Sci.*, 2022, **615**, 527–542.

35 Z. Zhao, *Redox Kinetics Study for Chemical-Looping Combustion, Water and  $\text{CO}_2$  Splitting Using Nickel and Cerium-Based Oxygen Carrier*, (2016).

36 Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz and A. F. Ghoniem, Redox kinetics study of fuel reduced ceria for chemical-looping water splitting, *J. Phys. Chem. C*, 2016, **120**, 16271–16289.

37 N. A. S. Amin, Co-generation of synthesis gas and  $\text{C}^{2+}$  hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review, *Fuel*, 2006, **85**, 577–592.

38 Y. P. Raizer and J. E. Allen, *Gas Discharge Physics*, Springer, 1991.

39 T. Yabe, K. Mitarai, K. Oshima, S. Ogo and Y. Sekine, Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ $\text{ZrO}_2$  catalysts, *Fuel Process. Technol.*, 2017, **158**, 96–103.

40 T. Nozaki and K. Okazaki, Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications, *Catal. Today*, 2013, **211**, 29–38.

41 M. Farahmandjou, M. Zarinkamar and T. P. Firoozabadi, Synthesis of Cerium Oxide ( $\text{CeO}_2$ ) nanoparticles using simple CO-precipitation method, *Rev. Mex. Fis.*, 2016, **62**, 496–499.

42 J. Li, Z. Liu, D. A. Cullen, W. Hu, J. Huang, L. Yao, Z. Peng, P. Liao and R. Wang, Distribution and Valence State of Ru Species on  $\text{CeO}_2$  Supports: Support Shape Effect and Its Influence on CO Oxidation, *ACS Catal.*, 2019, **9**, 11088–11103.

43 F. Wang, C. Li, X. Zhang, M. Wei, D. G. Evans and X. Duan, Catalytic behavior of supported Ru nanoparticles on the  $\{1\ 0\ 0\}$ ,  $\{1\ 1\ 0\}$ , and  $\{1\ 1\ 1\}$  facet of  $\text{CeO}_2$ , *J. Catal.*, 2015, **329**, 177–186.

44 C. Fernández, C. Pezzotta, G. Raj, E. M. Gaigneaux and P. Ruiz, Understanding the growth of  $\text{RuO}_2$  colloidal nanoparticles over a solid support: An atomic force microscopy study, *Catal. Today*, 2016, **259**, 183–191.

45 Y. Wang and R. Wang, Effects of chemical etching and reduction activation of  $\text{CeO}_2$  nanorods supported ruthenium catalysts on CO oxidation, *J. Colloid Interface Sci.*, 2022, **613**, 836–846.

46 T. Niu, C. X. Wang, L. H. Zhang and Y. Liu, Potassium promoted Ru/meso-macroporous  $\text{SiO}_2$  catalyst for the preferential oxidation of CO in  $\text{H}_2$ -rich gases, *Int. J. Hydrogen Energy*, 2013, **38**, 7801–7810.

47 C. A. Teles, R. C. Rabelo-Neto, J. R. de Lima, L. V. Mattos, D. E. Resasco and F. B. Noronha, The effect of metal type on hydrodeoxygenation of phenol over silica supported catalysts, *Catal. Lett.*, 2016, **146**, 1848–1857.

48 M. A. A. Aziz, A. A. Jalil, S. Wongsakulphasatch and D.-V. N. Vo, Understanding the role of surface basic sites of catalysts in  $\text{CO}_2$  activation in dry reforming of methane: a short review, *Catal. Sci. Technol.*, 2020, **10**, 35–45.

49 W. Li, G. Zhang, X. Jiang, Y. Liu, J. Zhu, F. Ding, Z. Liu, X. Guo and C. Song,  $\text{CO}_2$  hydrogenation on unpromoted and M-promoted Co/ $\text{TiO}_2$  catalysts (M= Zr, K, Cs): effects of crystal phase of supports and metal-support interaction on tuning product distribution, *ACS Catal.*, 2019, **9**, 2739–2751.

50 A. Arman, F. Y. Hagos, A. A. Abdullah, R. Mamat, A. R. A. Aziz and C. K. Cheng, Syngas production through steam and  $\text{CO}_2$  reforming of methane over Ni-based catalyst-A Review, in *IOP Conf Ser Mater Sci Eng*, IOP Publishing, 2020, p. 42032.

51 I. Luisetto, S. Tuti, C. Romano, M. Boaro, E. Di Bartolomeo, J. K. Kesavan, S. S. Kumar and K. Selvakumar, Dry reforming of methane over Ni supported on doped  $\text{CeO}_2$ : New insight on the role of dopants for  $\text{CO}_2$  activation, *J.  $\text{CO}_2$  Util.*, 2019, **30**, 63–78.

52 J. Ilsemann, M. M. Murshed, T. M. Gesing, J. Kopyscinski and M. Bäumer, On the support dependency of the  $\text{CO}_2$  methanation-decoupling size and support effects, *Catal. Sci. Technol.*, 2021, **11**, 4098–4114.

53 X. Li, D. Li, H. Tian, L. Zeng, Z.-J. Zhao and J. Gong, Dry reforming of methane over Ni/ $\text{La}_2\text{O}_3$  nanorod catalysts with stabilized Ni nanoparticles, *Appl. Catal., B*, 2017, **202**, 683–694.

54 Z. Ma, S. Zhao, X. Pei, X. Xiong and B. Hu, New insights into the support morphology-dependent ammonia synthesis activity of Ru/ $\text{CeO}_2$  catalysts, *Catal. Sci. Technol.*, 2017, **7**, 191–199.

55 H. Huang, Q. Dai and X. Wang, Morphology effect of Ru/ $\text{CeO}_2$  catalysts for the catalytic combustion of chlorobenzene, *Appl. Catal., B*, 2014, **158**, 96–105.

56 J. Horlyck, S. Lewis, R. Amal and J. Scott, The impact of La doping on dry reforming Ni-based catalysts loaded on FSP-alumina, *Top. Catal.*, 2018, **61**, 1842–1855.

57 L. He, Y. Ren, Y. Fu, B. Yue, S. C. E. Tsang and H. He, Morphology-dependent catalytic activity of Ru/ $\text{CeO}_2$  in dry reforming of methane, *Molecules*, 2019, **24**, 526.

58 Y. Zhou, Y. Li and W. Shen, Shape engineering of oxide nanoparticles for heterogeneous catalysis, *Chem. – Asian J.*, 2016, **11**, 1470–1488.

59 X. Zheng, S. Tan, L. Dong, S. Li and H. Chen, Plasma-assisted catalytic dry reforming of methane: Highly catalytic performance of nickel ferrite nanoparticles embedded in silica, *J. Power Sources*, 2015, **274**, 286–294.

60 S. Hamzehlouia, S. A. Jaffer and J. Chaouki, Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas, *Sci. Rep.*, 2018, **8**, 8940.

61 Y. Ge, T. He, D. Han, G. Li, R. Zhao and J. Wu, Plasma-assisted CO<sub>2</sub> methanation: effects on the low-temperature activity of an Ni–Ce catalyst and reaction performance, *R. Soc. Open Sci.*, 2019, **6**, 190750.

62 D. Ray, P. M. K. Reddy and Ch. Subrahmanyam, Ni-Mn/γ-Al<sub>2</sub>O<sub>3</sub> assisted plasma dry reforming of methane, *Catal. Today*, 2018, **309**, 212–218.

63 I. Istadi and N. A. Saidina Amin, Co-generation of C<sub>2</sub> hydrocarbons and synthesis gases from methane and carbon dioxide: a thermodynamic analysis, *J. Nat. Gas Chem.*, 2005, **14**, 140–150.

64 H. Tsai and C. Wang, Thermodynamic equilibrium prediction for natural gas dry reforming in thermal plasma reformer, *J. Chin. Inst. Eng.*, 2008, **31**, 891–896.

65 F. Barrai, T. Jackson, N. Whitmore and M. J. Castaldi, The role of carbon deposition on precious metal catalyst activity during dry reforming of biogas, *Catal. Today*, 2007, **129**, 391–396.

66 M. Usman, W. M. A. W. Daud and H. F. Abbas, Dry reforming of methane: Influence of process parameters—A review, *Renewable Sustainable Energy Rev.*, 2015, **45**, 710–744.

67 D. Zambrano, J. Soler, J. Herguido and M. Menéndez, Kinetic study of dry reforming of methane over Ni–Ce/Al<sub>2</sub>O<sub>3</sub> catalyst with deactivation, *Top. Catal.*, 2019, **62**, 456–466.

68 J. M. Saad and P. T. Williams, Manipulating the H<sub>2</sub>/CO ratio from dry reforming of simulated mixed waste plastics by the addition of steam, *Fuel Process. Technol.*, 2017, **156**, 331–338.

69 T. Sakpal and L. Lefferts, Structure-dependent activity of CeO<sub>2</sub> supported Ru catalysts for CO<sub>2</sub> methanation, *J. Catal.*, 2018, **367**, 171–180.

70 M. Li, Z. Sun and Y. H. Hu, Catalysts for CO<sub>2</sub> reforming of CH<sub>4</sub>: a review, *J. Mater. Chem. A*, 2021, **9**, 12495–12520.

71 A. S. A. S. Omran, *DFT Study of Copper-Nickel (111) Catalyst for Methane Dry Reforming*, 2019.