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There is little significant work at the intersection of mathematical and
computational epidemiology and detailed psychological processes,
representations, and mechanisms. This is true despite general agreement in the
scientific community and the general public that human behavior in its seemingly
infinite variation and heterogeneity, susceptibility to bias, context, and habit is an
integral if not fundamental component of what drives the dynamics of infectious
disease. The COVID-19 pandemic serves as a close and poignant reminder.
We offer a 10-year prospectus of kinds that centers around an unprecedented
scientific approach: the integration of detailed psychological models into
rigorous mathematical and computational epidemiological frameworks in a way
that pushes the boundaries of both psychological science and population models
of behavior.

KEYWORDS

cognitive modeling of human behavior, mathematical modeling and simulation, graph
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1. Introduction

Prospectus (noun) means an offering that provides a forward (pro) view (spectus), one
that is typically used to show potential investors what financial gains might be made of
shares in a product or company and a look at the features of said company that should
instill confidence in the investor. We offer a prospectus of kinds: a view of potential societal
gains if we invest in developing the next generation of at-scale, agent-based epidemiological
simulation modeling. This kind of modeling will build scientific understanding of at-scale,
meaningful, impactful, and real-world dynamics of human behavior across technological,
social and physical networks or contexts. Although our prospectus focuses on the dynamics
of infectious disease (e.g., SARS-CoV-2, Ebola, Influenza, Monkeypox), it applies equally
to social phenomena in general and beyond scientific interest alone—understanding, and
ultimately intervening on large scale human behavior during times of crises and major
sociotechnical system-level shocks is a key problem central for public health, national
security, climate change, economic stability, and disaster preparedness.

A major component of this prospectus relies on developing novel ways in which
human behavior is represented in at-scale, agent-based simulations. We have seen
some interesting work over the past decade that addressed the effects of human
behavior on infectious disease dynamics (Funk et al., 2015; Verelst et al, 2016), but
nothing that entails the integration of detailed psychological constructs, assumptions
and models. Because of the complex and dynamic nature of epidemiological contexts,
well-detailed and theoretic (as opposed to just descriptive and statistical) explanations
should derive from theories in psychology, economics, neuroscience, and the cognitive
sciences. To complicate matters, our prospectus puts tight constraints on how
we use psychological theory and constructs: (i) the psychological theory must be
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in formal terms precise enough for implementation in computer
code and definable as a mathematical object, and (ii) the
implementation of such theory must factor in the degree of
computational complexity in time and space.

Our prospectus not only provides methods for developing
richer  representation of  psychological processes and
but,

includes a formal rigorous mathematical framework, Graph

representations in agent-based simulations critically,
Dynamical Systems (GDS), for both designing and understanding
the behavior of at-scale, complex systems. Graph Dynamical
Systems is a framework for efficient and accurate design of at-scale
agent-based models, one that is formal and rigorous, flexible,
and maps well to modern computing hardware (for scaling
purposes). Figure 1 puts these two notions together (figure details

are provided in the next section).

2. Scientific framework

The foundation of our 10-year prospectus is a scientific
framework for analysis, modeling and simulation of systems
that span multiple scales and networks. It captures the co-
evolving, coupled networked systems via what we call a system
graph composed of multiple sub-systems. Each sub-system (or
component) is a separate GDS and is described by a network G
over a set of vertices V. For each vertex v of this sub-system, there
is a state x, and a function f,. We denote the system state as a
sequence X = (Xy,,Xy,,...,%y,), or simply x = (x,),, and we
write f = (f,), for the corresponding vertex-indexed sequence of
functions. The function f, captures the characteristics of that vertex
and governs how the state x, of vertex v evolves with time taking
as input the vertex’s own state as well as the state of its neighbors
in the network G. An update mechanism or schedule governs how
all the vertex functions f, with v € V assemble to generate the
dynamics of the sub-system. In summary, each component system
is described by a network G, a sequence of vertex states x = (x,)y,
vertex functions f = (f,),, and an update mechanism. The complete
system is modeled using a collection of graphs as above. We thus
have graphs G = (G;); with matching vertex functions F = (f*);
where f' = (f!),, and a corresponding (total) state X = (x); and
x = (xi,)v is the state in network G;. In addition, there will be a
collection of transfer functions 7 between each pair of networks,
see Figure 1, that captures how a vertex state x,, on one graph may
influence to the same vertex state on another graph.

The mapping to psychological constructs is straightforward.
The functions in the sequence (fI), capture the psychological
models relevant for all individuals represented and interacting on
the graph G;. For the individuals present in multiple graphs, the
transfer functions n relate the psychological models on different
graphs (e.g., between G; and G;j), something that can capture unique
transfer functions for specific individuals and are denoted by (ng )y
The transfer functions can be directional, to mean that the mapping
from (xi)v to (x), is not necessarily equal to that of (), to
(xf,)v; in notation this is (17,)y and (), for the former and latter,
respectively.

To put this in real-world terms, consider the example shown on
the left panel of Figure 1; each of the two component graphs (e.g., an
online contact network such as Twitter and a physical, real-world
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contact network) will encode vertices as individual people and
edges as possibilities of interactions among them. Some individuals
are represented on both GDS in which case we map the relation
between GDS (or contexts) with the transfer functions. An example
of a non-symmetric transfer function, for example, would be that
beliefs learned on Twitter (G;) might transfer to the mechanism of
action (wear a mask) in the physical world (G;) via 17y, a relation
that may not be reciprocated by ng .

The identification of individuals into types is an important
feature of our system graph. Thus, for a given context and graph,
individuals are identified using a suitable equivalence relation
(all individual vertices fall under an equivalence class, e.g., all
vertices who are targets of a misinformation campaign are of
one equivalence class). The vertices of what we call the cognitive
situation graph (upper right of Figure 1) are the equivalence
classes under this relation, with edges being induced from the
full network of the given context. Referring to the upper right
of Figure I, “Target” may represent all those who are vaccine
neutral, while “Influencer A” may represent the collection of people
who are against vaccine, both in an online network. Note that
such a class may be present in multiple situation graphs and
networks contexts (e.g., persons against vaccine in online and
offline networks). Deriving models for the agents of a situation
graph (i.e., the equivalence classes of agents) is both an efficient
and practical approach for embedding cognitive models into graph
representations. A similar approach was used in our work (Barrett
et al, 2013) in a different domain (disaster preparedness), but
the systems here are more complex, and also have more complex
coupling captured by the transfer functions.

In summary, our scientific framework speaks to a particular
kind of scientific application, what we call constrained multiscale
explanation, an approach that affords explanation of dynamic
phenomena in multiplex social systems at multiple levels of scale
and in a way that is constrained-in design and for analytic
purposes—by a formal mathematical treatment. Our prospectus
was developed with the recognition that building scientific
explanations for phenomena in at-scale social systems must
consider different classes of scientific issues: within disciplinary,
cross-disciplinary and the unique issues implied by the larger social
system. Further, our prospectus realizes mechanisms at different
levels of scale: individual psychological processes, the interaction
between individuals and social groups characterized by sociology
and economics, and large-scale contextual and emergent system-
wide processes.

The remainder of this article will explore (i) psychological
theory instantiated as cognitive models followed by (ii) graph
dynamical systems, (iii) the integration of cognitive modeling with
graph dynamical systems, and (iv) the simulation of infectious
disease dynamics in a way that incorporates cognitive models of
individuals and is informed by graph dynamical systems.

3. Psychological theory, cognitive
architectures, and cognitive modeling

Psychological theory provides (i) theoretical psychological
mechanisms, (ii) insights into the external social & environmental
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FIGURE 1
The 10-year prospectus imagined graphically shows the larger system graph illustrated on the left captured through coupled, co-evolving networks,
possibly including mass media. Transfer functions (e.g., n1 and n2) govern how states associated to a different network layer (e.g., online) may
influence dynamics in another network layer (e.g., physical contacts). A cognitive situation graph is illustrated in the top right, capturing dynamics at a
compact level for the various agent classes present in the system network. Essential to this 10-year prospectus is the invocation of human cognitive
architectures to realistically constrain mathematical models of system-level behavior.

(contextual) cues/stimuli/communications that drive behavior,
and (iii) methods of measurement for theoretical constructs.
Besides rational/cognitive models—e.g., Theory of Planned
Behavior/Reasoned Action (Ajzen, 1991)—from social psychology,
theory can integrate insights from behavioral economics (Boyd,
2020), habit theory (Zhang et al., 2022), as well as the role of
emotions for identification of the features and cues in the social
context that shape behaviors (van Doorn et al., 2015). It is precisely
these kinds of theory that should be integrated into at-scale,
agent-based simulations of infectious disease.

In our scientific framework, psychological theory is wedded to
the vertex state functions (f,), and the transfer functions (1,)y.
Thus, its representation must yield something both mathematically
tractable and computationally implementable while retaining
important theoretical commitments relevant to behavior in
epidemic contexts. However, the psychological literature, primarily
in relation to social psychology, is limited in terms of formal
mathematical or computational theory for our purposes. For
example, computational models of attitude formation and change
have been developed as stylized, and highly abstracted analogs to
(i) hypothetical, (ii) specific tightly-controlled experimental, or (iii)
survey contexts (Van Overwalle and Siebler, 2005; Overwalle, 2007;
Monroe and Read, 2008; Dalege et al., 2016, 2018; Galesic et al.,
2021). It is unknown to what degree these models are relevant for
real-world behaviors and decisions that are social in nature and
relevant for infectious disease dynamics. There exist sporadic calls
in the public health literature for the integration of behavior change
theory with computational psychology in public health (Orr et al.,
2013, 2017, 2019; Orr and Plaut, 2014; Pirolli, 2016; Orr and Chen,
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2017) but these suffer from similar issues to those found in the
social psychological literature. A more domain-general approach is
needed.

Qur scientific framework, in contrast, invokes the notion
of cognitive architectures as the basis for models of behavior
implied in infectious disease. As is typical, we reserve the term
cognitive modeling to refer to the class of models of behavior that
are constrained by cognitive architectures and attempt to model
how the human mind drives behavior (as opposed to modeling
human-like behavior in any way possible). But what are cognitive
architectures and what is the value of cognitive modeling in terms
of infectious disease epidemiology?

Cognitive architectures, as computational implementations
of unified theories of cognition, provide predictive quantitative
constraints on human behavior across all fields of human activity.
A prominent example is ACT-R, a highly modular cognitive
architecture that was designed specifically for the purpose of
cognitive modeling. It is composed of a number of modules (e.g.,
procedural and declarative memory, perception and action) that
operate asynchronously through capacity-limited buffer interfaces
(Anderson, 2007). Each module is in turn composed of a number
of independent mechanisms, typically consisting of symbolic
information processing structures combined with equations that
represent specific phenomena and regularities (e.g., power law
of practice and forgetting). The architecture includes a number
of learning mechanisms to adapt its processing to the structure
of the environment. The combination of powerful mechanisms
together with human capacity limitations (e.g., working memory,
attention, etc.) provides a principled account of both human
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information processing capabilities as well as cognitive biases and
limitations.

An important feature of ACT-R, in comparison to other
cognitive architectures, is that it has sustained decades of
validation against human experimental data. This feature, we
argue, is imperative for epidemiology because it grounds at-scale
epidemiological population agent models in the psychological and
cognitive sciences. Our prospectus advocates the use of such
grounded cognitive architectures as the basis for developing agent-
level cognitive models in epidemiological simulations.

Many efforts have been made to build cognitive models of
human behavior across a wide range of applications, ranging
from simple psychology experiments to decision making to
complex dynamic task environments (e.g., decision making, sense-
making, game playing, and interactions over social networks);
see for example (Anderson, 2022). The practice and use of
building cognitive models varies in terms of the scope of
architectural components or modules. Some cognitive modeling
efforts have leveraged modeling frameworks to specify knowledge-
level structures and processes as additional constraints. For
instance, instance-based learning (IBL) assumes that decisions
are based on experience, leveraged through memory mechanisms
(Gonzalez et al, 2003) which can be implemented using
components of the ACT-R cognitive architecture. The notion
of accountable modeling attempts to cleanly separate aspects
of human performance that are based on theoretical cognitive
constraints from model parameterizations that reflect other factors
such as procedures and task environment. The former are assumed
to be invariant across tasks and contexts (Reitter, 2010).

A key feature of cognitive models in respect to epidemiology
is their generative and predictive nature. Thus, they can be used
to optimize behavior-change interventions, both in design or as an
online surveillance aid. For example, our recent work has integrated
cognitive modeling using ACT-R with network simulations
of population responses to public health messages of non-
pharmaceutical interventions and their impact on epidemiological
spread (Pirolli et al., 2020, 2021); another similar example is the
modeling of the effects of (in)coherence of messaging and sources
on credibility (Liao et al., 2012).

Our
constrained by a grounded cognitive architecture to provide a single

prospectus, in short, leverages cognitive models
unified computational formulation of disparate psychological and
other behavioral theories, e.g., the integration of multiple factors

into a single predictive theory.

4. Graph dynamical systems

In this section, we provide a brief formal description of the
Graph Dynamical Systems approach (readers may find it useful to
refer to Section 2). We then introduce the reasoning behind using
this framework in the context of at-scale, agent-based simulations
of infectious disease, something that applies to many analogous
systems. To preface of our reasoning, we note that at-scale, agent-
based simulation approaches to human-relevant infectious disease
dynamics are quite complex. GDS provides several features for both
the analysis of such dynamics and the design of simulation systems
without which, we claim, would render it unreasonable to make
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any substantive scientific or practical claims. The key focus of our
prospectus, to integrate psychological processes into such models,
brings such need into sharp relief.

4.1. Formal description

The mathematical and computational theory of GDS (see, e.g.,
Goles and Martinez, 1990; Barrett and Reidys, 1999; Barrett et al,,
2000b, 2001, 2003a,d, 2006, 2009; Mortveit and Reidys, 2001, 2007;
Rosenkrantz et al, 2015) is largely concerned with the formal
abstraction of dynamics evolving over networks. For this, the
theory is generally focused on finite state sets (e.g., {0,1}) and
specific update mechanisms used to assemble local dynamics of
agents into global dynamics of the complete system. Formally, a
sequence of vertex function (f,), indexed by the agents will, by
applying an update scheme U, assemble to a map Fy: K" — K"
where K is the state set of each agent. For example, for a parallel
update scheme with # agents/vertices, we have

Sxn) = (G, .. (X))

FU(X = (xl,. .

Here the variable dependencies in the functions f, reflect the
network G. Existing mathematical and computational theory is
concerned with how structural properties of the functions f,,
properties of the network G, and the choice of update mechanism
translate into properties of the system dynamics of the system map
Fy. All standard questions and topics such as stability and control
are studied.

4.2. Rationale for GDS

The GDS framework has been central for analytics and
design of simulation models for co-evolving networked systems
in prior work for more than two decades, having been applied
to epidemiological studies, evacuation scenarios, and large-scale
models for resilience in socio-technical system at large (Barrett
et al., 2000a, 2013; Cedeno-Mieles et al., 2018; Adiga et al., 2019;
Chen et al., 2020a,b; Islam et al., 2020; Meyur et al., 2020; Swarup
and Mortveit, 2020; Wang et al., 2020). The framework of GDS, and
in particular the notion of vertex function, was designed specifically
to support (i) precise modeling of networked systems, while (ii)
being amenable to mathematical and computational analysis, and
at the same time (iii) mapping well to high performance computing
hardware (Barrett et al., 1998, 2000b, 2001, 2003d; Barrett and
Reidys, 1999; Atkins et al., 2008; Laubenbacher et al., 2009). Each
of these features has important implications for the feasibility of
use of at-scale, agent-based epidemiological simulations.

The key distinguishing factors at the level of behavioral
aspects in our prospectus include (i) the vertex functions, derived
from cognitive models, are significantly more complex, (ii) the
dependencies on other agents within a network (i.e., the network
structure) are not that well known, and (iii) agents may only be
privy to partial observations of state of the agents with whom
they interact, and the latter party may additionally choose to apply
deceptive strategies when revealing their partial state. To address
(i)-(iii), significant extensions of theory and structure of GDS are
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needed both at the level of fundamental theory and for integration
within the design of simulation models, as detailed in the next
section. In plain terms, vertices that represent human behavior
as cognitive models pose challenges to the GDS framework. We
provide a sketch of how this might be accomplished in the
next section.

5. Integration of cognitive
architectures and graph dynamical
systems

Our prospectus follows the design illustrated in Figure 2 for
modeling vertex functions. Key features of our approach are: (i)
it is applicable across agent classes, (ii) the choice of framework
for representing vertex functions (e.g., Markov decision process,
Boolean functions) is flexible, and (iii) it provides a mechanism
for quantifying how well vertex functions approximate the domain
(e.g., cognitive) model, and thus a means for assessing the balance
between fidelity of agent representations with computational
scaling in the simulation models (Figure 2 caption provides further
details on these features). More broadly, our approach provides
a generic approach for integrating domain knowledge of a context
or situation graph into a computational framework for networked
systems while keeping track of the fidelity of the mapping from
domain knowledge and expertise (e.g., the kind of cognitive model
to represent) to vertex functions.

In the diagrams of Equation (1) the map B, is the cognitive

model for agent v in the context ¢, while (ni, (”,))d is the

10.3389/fpsyg.2023.986289

collection of transfer functions factoring into the cognitive model
for agent v in the context ¢ impacted by other contexts c'.
These are formalizations of the cognitive models of behavior.
While one would typically expect that the cognitive models for
agents B, to be computationally heavy, one may in principle use
a suitable update mechanism U’ to assemble these functions across
networks to form the full system model Mgy driving the system
dynamics as illustrated at the top in the rightmost diagram of

Equation (1).
, Mg
ACT-R repr. Mooy =~ Bre —— Mp=p, )0,V Xy —————— x,rl
L l Ix
. My +
_
GDS repr. Mere) == fre = Ms=(£, 000U “ 241

The cognitive behavioral components can be mapped into a
GDS form by constructing a general approach to (i) translate
cognitive models into GDS vertex functions 8, —> f,, (ii) match
this for the associated transfer functions n:,)(c,)c) —> 1y(¢,)> and
(iii) develop metrics for how well f, . captures B, in preparation
for assessing how well the system map at the GDS level (i.e., My y
in Equation (1)) captures the composed cognitive model Mg . It
is worth pointing out that the state space for the cognitive model
and for the GDS translation need not be the same, thus there may
be a mapping 7 connecting the two. Similarly, while it is likely
that the update mechanism U and U’ for the assembly of local-to-
global dynamics may be the same in both cases, this is not generally
required (Roka, 1999).

To develop the mapping B, —> fyc from cognitive models
into suitable vertex functions, future work could leverage prior
work (Sycara et al, 2015) as a starting point. In this prior

Mathematical framework,
e.g., MDP formalisms

l

Scaling &
fidelity criteria

!

Model .
Cognitive Model Building | Model Testing | Refinment > Cognitive GDS vertex function
Architecture ' ' Model representation (e.g., MDP type)
A 1
1 1
e S ey 4

Iterative process based
on measured model fidelity

FIGURE 2

A major component of our 10-year prospectus is to develop and design vertex functions for the GDS framework from cognitive first principles (i.e.,
derived from or constrained by a human cognitive architecture). The left portion above shows the development from cognitive architecture to
cognitive model. The dotted-arrow represents an iterative process that is designed to vary the degree of abstraction (more abstraction means less
fidelity) in the mathematical representation of an agent’s cognitive model. Scaling criteria are considered in respect to the time and space complexity
of computations on the graph; for large graphs with high-fidelity vertex functions, this may be a serious consideration. The mathematical
frameworks for representing vertices are various and may be explored as part of the development of a GDS formalism.
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work, the cognitive model abstracted human performance and
was in turn abstracted into an analytical framework captured
as a Markov decision process (MDP). The mechanisms of the
ACT-R cognitive architecture provided additional theoretical
constraints on a limited amount of human data, especially when
developing personalized models (see Cranford et al., 2020). In
turn, the representation of the IBL process in ACT-R declarative
memory provided additional constraints on the states of the
MDP. Thus, the framework for Markov decision processes
(MDP) can be used to represent vertex functions capturing
cognitive models that are represented and calibrated using ACT-R
(Sycara et al., 2015).

MDP is a natural framework for modeling stochastic processes
or phenomena with inherent uncertainties, and also lend
themselves well to controlling computational scaling by (i)
adapting the resolution of selected states (e.g., more fine-
grained states) and (ii) by an increase in fidelity resulting from
modifying the dimension of the agents state space used in its
vertex function representation (see, e.g., Barrett et al., 2006;
Rosenkrantz et al, 2015) for a joint characterization of the
boundary for which many GDS problems become intractable
formulated in terms of the network and vertex function
complexity.) In addition to MDPs, future work could consider
deterministic Boolean- and finite state space representation for
vertex functions (Mortveit and Reidys, 2001, 2007). This could
be used for (a) simplified models, (b) studying scenarios for
large systems involving scaling, (c¢) and for model validation
and verification of the simulation framework. This allows for
bridging from existing mathematical and computational theory
of GDS (Goles and Olivos, 1980, 1981; Goles-Chacc et al,
1985; Goles and Martinez, 1990; Barrett and Reidys, 1999;
Barrett et al, 2000b, 2003a,b,c,d, 2006; Mortveit and Reidys,
2001, 2007; Laubenbacher and Pareigis, 2003, 2006; Macauley
and Mortveit, 2008, 2009, 2011; Laubenbacher et al., 2009;
Rosenkrantz et al., 2015). We remark that it is also possible
to consider algorithmic or procedural representations for vertex
functions.

6. Integration into at-scale systems

The methodological considerations when building an at-scale
agent-based simulation are vast for any domain of study. Several
well-vetted, industry-grade platforms exist for such efforts (e.g.,
AnyLogic, REPAST) as do academic, in-house enterprises [e.g.,
Matrix (Bhattacharya et al., 2019); EpiHiper (Machi et al., 2021)].

Our prospectus does not advocate methods or platforms.
Instead, we offer a framework for incorporating psychological
theory into at-scale agent-based simulations. Naturally, our
framework increases the complexity of the system components
and, potentially, the dynamics of the system. GDS provides a
mathematical framework for taming such complexities.

7. Summary

The overarching offering of our 10-year prospectus is a more
nuanced understanding of the implications of human behavior
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on the dynamics of infectious disease. The primary scientific
advance will stem from the coupling of high-fidelity models
of human behavior, derived from the domain-general cognitive
architecture, and the rigorous mathematical framework of GDS for
understanding complex system dynamics. This, we surmise, will
form the foundation for more detailed, realistic and usable agent-
based simulations of infectious disease in human populations.

Is this 10-year prospectus feasible? It leverages long-standing
results and methods from mathematical and computational
epidemiology, human cognitive architectures, and graph dynamical
systems into a convergent approach. We think the technological
and scientific advances have set the stage to tackle some of the more
difficult issues that implicate human behavior, e.g., fatigue effects,
trust/credibility, attitudinal polarization, social learning; utility-
satisficing, etc. and how these are interdependent with proximal
behaviors that drive disease dynamics, e.g., non-pharmaceutical
intervention/protection, vaccination, and medical intervention.
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