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A computational cognitive
model of behaviors and
decisions that modulate
pandemic transmission:
Expectancy-value, attitudes,
self-efficacy, and motivational
Intensity
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Science, Carnegie Mellon University, Pittsburgh, PA, United States, *Biocomplexity Institute,
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We present a computational cognitive model that incorporates and
formalizes aspects of theories of individual-level behavior change and present
simulations of COVID-19 behavioral response that modulates transmission
rates. This formalization includes addressing the psychological constructs of
attitudes, self-efficacy, and motivational intensity. The model yields signature
phenomena that appear in the oscillating dynamics of mask wearing and
the effective reproduction number, as well as the overall increase of rates of
mask-wearing in response to awareness of an ongoing pandemic.
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1. Introduction

Public health response options to pandemics such as COVID-19 are greatly influenced
by predictive epidemiological models (Adam, 2020; Pirolli et al., 2020, 2021; Cramer et al.,
2022). Non-pharmaceutical interventions, such as mask wearing, typically involve
attempts to modify human behavior to reduce the routes by which a pathogen is
transmitted (West et al., 2020; Harvey et al., 2021). Epidemiological models include little
to no refined modeling of the psychology of the people who are being affected by the
pandemic and who must decide whether and how to comply with public health guidance
and mandates. The National Academies of Sciences, Engineering, and Medicine (Brossard
etal, 2020) emphasized the importance of psychological science to the mitigation of the
spread of COVID-19.

We argue that major advances in computational cognitive modeling are needed to serve
as a foundation for predictive and causal-explanatory models of human behavior change in
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response to pandemics. Such models are needed to shape the course
of human behavior response in more precise and less burdensome
ways. The COVID-19 pandemic has involved historically the most
massive set of natural experiments aimed at changing human
behavior along with staggering amounts of data relevant to
understanding human behavioral response to the perceptions about
the pandemic and related interventions. The availability of these data
provides us with an opportunity to understand behavior-change
with predictive, explanatory, computational cognitive models. Our
preliminary research (Pirolli et al., 2020, 2021) on cognitive models
of pandemic behavior response to COVID-19 focused on modeling
beliefs, attitudes, intentions, and behavior that are assumed to
influence the transmission of COVID-19. Our approach uses
Psychologically Valid Agents (PVAs) implemented in the ACT-R
(Adaptive Control of Thought-Rational) architecture (Anderson
etal,, 2004), with input drivers induced from heterogeneous sources
including online media such as Twitter that provide indicators of
pandemic awareness, beliefs, and attitudes (Pirolli et al., 2020).

In this paper, we present a computational cognitive model that
incorporates and formalizes aspects of theories of individual-level
behavior change (Fishbein and Ajzen, 1975; Ajzen, 1991, 1998;
Brewer and Rimer, 2008; Michie et al., 2013, 2014, 2017; Ajzen and
Kruglanski, 2019; West et al., 2020). Such formalization includes
addressing the psychological constructs of attitudes (Hunter et al.,
1984; Lorenz et al., 2021), self-efficacy (Bandura, 1977; Bandura,
1998), and motivational intensity (Kulkla, 1972; Silvestrini et al,,
2022). In most cases, these psychological theories and constructs
have been verbally specified, although some have been specified
with a mathematical foundation (e.g., Hunter et al., 1984; Ajzen,
1991) or in computational agent-based models (e.g., Silvestrini et al,,
2022). This paper is devoted to the development of a computational
cognitive model that integrates these theories and constructs in way
that is predictive of behavior, dynamical (i.e., changing with time
and context), and grounded in established cognitive mechanisms.
Such models could provide the foundation for understanding and
predicting individual-level or aggregate behavior change and could
serve as the basis for a variety of population-level modeling
techniques, for example, by being embedded in agent-based models
(Verelst et al., 2016) or other epidemiological models (Eubank et al.,
2004). In addition, their mechanistic underpinning could provide
the basis of what-if counterfactual modeling of the effects of various
public health actions to non-pharmaceutical interventions and the
evaluations of alternative scenarios and strategies.

2. Computational modeling
approaches to behavior change

2.1. The central role of human decision
making and behavior in SARS-CoV-2
transmission

In the early months of the COVID-19 pandemic, before the
availability of vaccines when NPIs (non-pharmaceutical
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interventions) where the only available public health action West
et al. (2020), pointed out that human behavior is central to the
transmission of the SARS-CoV-2 virus. Although our
understanding of the transmission routes from one person has
become more refined since early 2020, it was understood that
behaviors such as social distancing, hand washing, surface
cleaning, mask wearing, and reduced touching of the face blocked
these transmission routes.

Subsequent research corroborated the impact of social
distancing (Gollwitzer et al., 2020) and mask wearing (Howard
et al., 2021; Huang et al., 2022) on reducing COVID-19 cases.
Because of the central role of behavior in controlling transmission,
and the lack of solid empirical evidence for how to promote
specific behaviors such as mask-wearing and social distancing,
West et al. (2020) advocated for the application of behavior change
theory and principles. Similar arguments have been put forth for
applying habit formation theory and principles (Harvey
etal.,, 2021).

As vaccines became widely available, the issue of vaccine
hesitancy became a major problem for public health officials.
Getting vaccinated can be viewed as the result of an individual-
level decision-making process (Peretti-Watel et al., 2015)
influenced by numerous factors. Empirical research suggests that
theories of individual-level behavior change theories explain 43 to
69% of the variance in vaccine hesitancy (Hossain et al., 2021;
Wolff, 2021).

2.2. Individual behavior change theory

Individual-level health behavior theories (Brewer and Rimer,
2008) include the Transtheoretical Model (Bridle et al., 2005),
the Health Belief Model (Harrison et al., 1992), Goal Setting
Theory (Locke and Latham, 2002), and the Theory of Planned
Behavior (Ajzen, 1991; Ajzen, 1998). Michie et al. (2014) have
performed an enormous survey of the behavior change literature
and identified 83 theories, 26 mechanisms of action, 93 behavior
change techniques, and 1,725 theoretical constructs. A recent
meta-analysis (Samdal et al., 2017) of the literature on behavior
change techniques identified in Michie et al. (2014) summarizes
the evidence on which techniques produce reliable effects along
with effect size estimates. As noted above, individual health
behavior change theories are typically not formally specified as
fine-grained predictive and dynamical models of behavior
change.

Rather than provide a survey of these individual-level
health behavior theories, we focus on the Theory of Planned
Behavior (TPB, 9) as a canonical example of such theories to
provide a framework for our discussion of our ACT-R
cognitive model. TPB has been studied extensively (Brewer
and Rimer, 2008) and meta-analyses support the efficacy of
the approach in predicting behavior at a coarse-grained level
(Armitage and Conner, 2001). It is implicated as being the
most predictive of vaccine hesitancy (Hossain et al.,, 2021;
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Wolff, 2021). The TPB proposes that the predictors of a person
engaging in a target behavior include the person’s intention to
do the desired behavior and their perceived behavioral
control—whether the person perceives themselves as being in
control of doing the target behavior. We conceive of intention
as specifically a goal intention: The person’s goal to perform a
specific behavior. Perceived behavioral control encompasses
the concept of self-efficacy (Ajzen, 2002), which we discuss in
further detail below. In TPB, the predictors of intention are
attitudes, subjective norms, and (again) perceived behavioral
control. Attitudes are whether a person is in favor of doing the
behavior. Subjective norms are how much the person perceives
social pressure to do the behavior. Attitudes, subjective norms,
and perceived behavioral control are all forms of expectancy-
value judgments deriving from beliefs about outcomes,
significant referents, and specific facilitating/inhibiting
factors, respectively.

Although our ACT-R models have been shaped by TPB,
we claim that the ACT-R models themselves incorporate many
more additional theoretical mechanisms and assumptions that
derive from the ACT-R theory of cognition. There are many
criticisms of TPB as a theory (e.g., Snichotta et al., 2014). TPB is
primarily a theory of volitional decision making, but ACT-Ris a
dual process theory (Kahneman, 2011) that includes unconscious
as well as deliberative influences on decisions and behavior. TPB
is primarily a static causal influence model, whereas ACT-R is
inherently a continuous-time, dynamical model of cognition.
The ACT-R models provide a way of capturing the evidenced
effects of individual-level experiences and behaviors on future
cognitions and future behavior. In sum, TPB has been as useful
framework in shaping the ACT-R models presented here, but the
models are much more than straightforward instantiations
of TPB.

2.3. Previous work on cognitive models
of COVID-19 behavior change

In previous research, we performed PVA simulations
(Pirolli et al., 2020, 2021) to demonstrate the feasibility of
mining online media to seed computational models of behavior-
change for NPIs (e.g., mask-wearing; social distancing),
predicting the timeseries of behavior change for different US
regions, and connecting that to epidemiological indicators such
as R, (effective reproduction number). That research developed
a framework that integrates multi-level cognitive and social
simulation with information networks analysis and
epidemiological predictions. The PVAs were initialized and
driven using techniques that extract indicators of pandemic
awareness, beliefs, and attitudes from online media and
COVID-19  datasets
epidemiological data). Pirolli et al. (2021) modeled mask-
wearing behavior in four states of United States (CA, FL, PA,

and NY). Two analyses of COVID-19 Twitter datasets provided

available (including polling and
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inputs to the PVA models. The first Twitter analysis concerned
pro- vs. con-mask-wearing analyzed using hashtags. A second
Twitter analysis provided a more refined analysis of cognitive
content using Natural Language Processing (NLP) techniques.
These analyses were input into PVA models of mask-wearing
attitudes and behaviors and predictions were compared to
mask-wearing behaviors in those four states over the 2020-2021
time frame.

3. A computational cognitive
model of behavior modulating
COVID-19 transmission

3.1. Computational cognitive models
using the ACT-R theory

ACT-R (Anderson and Lebiere, 1998; Anderson et al., 2004)
is a cognitive architecture, i.e., a computational implementation
of a unified theory of cognition (Newell, 1990). Unified theories
of cognition specify how the structure and dynamics of the brain
give rise to the functioning of the mind. Cognitive architectures
include mechanisms and representations abstracted from human
behavior, arranged as fine-grained interactions between
functional modules that reflect the structure and operation of
the human brain. A wide variety of cognitive architectures have
been proposed over the last five decades since the concept was
proposed as a unification of functionality-specific models to
provide an integrated account of human cognition (Newell,
1973). Recently, an attempt has been made to extract an
emerging consensus regarding the central structures and
processes of cognitive architectures in the form of a Common
Model of Cognition (CMC), initially called the Standard Model
of the Mind (Laird et al., 2017). ACT-R provides a computational
implementation of the CMC informed by the rational analysis of
cognition (Anderson, 1990) that assumes that our cognitive
mechanisms and representations have adapted to the statistical
structure of our environment. This assumption enables the
development of models based on the cognitive architecture that
abstract over details of our personal environment to generate
behaviors that respond to the overall regularities of our
information landscape.

The ACT-R theory (Anderson, 2007) has evolved since the
1970s to address a wide variety of experimental results on
problem solving, decision making, memory, learning, cognitive
skill acquisition, perception, and attention, as well as the fine-
grained time course of neural processes. The theory has been
applied to a variety of domains including computer tutoring
systems, human-computer interaction, and language learning.
ACT-R is implemented as a simulation environment with a
number of software variants of that environment that can
simplify application to a specific domain or problem. Practically,
ACT-R is a computational cognitive architecture that supports
the development of models. A scientific understanding of

frontiersin.org


https://doi.org/10.3389/fpsyg.2022.981983
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Pirolli et al.

behavior change in response to pandemics requires such unified
models and toolkits. The literature on behavior change is
extensive, lacks coherence, and needs mechanistic theory.
Preliminary integrative models of behavior change have been
developed in ACT-R (Pirolli, 2016a; Pirolli et al., 2018), which
provide some promise of their utility to modeling behavior
change during a pandemic.

ACT-R is composed of modules, processing different kinds of
content, which are coordinated through a centralized procedural
module. Each module corresponds to a brain region. Each module
is assumed to access and deposit information into buffers
associated with the module, and the central procedural module can
only respond to the contents of the buffers. The procedural
module matches the contents of other module buffers and
coordinates their activity using production rules, which are pairs
of conditions and associated actions. Neurally, a production rule
is a formal specification of the flow of information from buffers in
the cortex to the basal ganglia and back again. Productions have a
utility property that is used to select the single rule that is executed
at any point in time.

For the cognitive model presented in this paper, we rely
on the declarative module, retrieval buffer, and blending
buffer that are used to simulate how people retrieve knowledge
and past experiences from long-term declarative memory.
We use the ACT-UP simulation system (Reitter and Lebiere,
2010)  that
ACT-R. Knowledge and experience in the declarative module

implements this specific subset of
are represented formally in terms of chunks (Miller, 1956;
Simon, 1974). Chunks have activation levels that determine
the probability and time course of chunk retrieval into a
buffer. Chunk activations are real-valued quantities produced
by subsymbolic mechanisms in ACT-R. These subsymbolic
mechanisms reflect neural-like processes that determine the

time course and probability of cognitive activity and

TABLE 1 Core ACT-R mechanisms used in the simulations.

Mechanism

Blended retrieval

Equation

V= argminZP,‘ (1 - Sim(V,Vi))2
i

10.3389/fpsyg.2022.981983

behavioral performance. The dynamics of declarative memory
retrieval and production selection are determined by these
subsymbolic mechanisms.

Table 1 presents a subset of the ACT-R subsymbolic
mechanisms relevant to the current model. The first three
equations in Table 1 define how the level of activation of chunks
in memory relates to the probability of their retrieval at any
given time. The fourth equation defines how activation levels are
increased by repeated experiences, or decay with time
(forgetting). These first four subsymbolic mechanisms are crucial
to the ACT-R model discussed below. A few general comments
can be made about these mechanisms. The base-level learning
equation and activation equation captures two key memory
phenomena: activation increases with the frequency of
experience (i.e., a practice effect) and decreases with time (i.e.,
forgetting). Level of activation dictates retrieval probability and
weighs how blended retrievals produce aggregate values over
past experiences.

3.2. Modeling attitudes as the expected
value of behaviors

Attitudes are assumed by many (Ajzen, 1991) to be an
expectancy-value assessment, such than an attitude a towards a
behavior is proportional a oc 2.b; ¢; to the strength of beliefs, b,
about outcomes and their evaluated values, e. For instance, the
Theory of Planned Behavior—discussed above—is historically
related to seminal work on expectancy-value theory in psychology
(Fishbein and Ajzen, 1975). The general idea is that people develop
expectations about behavioral outcomes as well as subjective
values about those outcomes.

Our model of expectancy-value judgments assumes that
decisions and enacted behavior have values that reflect subjective

Description

P;: Probability of declarative retrieval
Sim (V,V,): Similarity between compromise value V and

retrieved value Vi

Retrieval probability Als P;: The probability that chunk i will be recalled
e
F= 72 ATs A;: Activation strength of chunk i
J 2 A;: Activation strength of all of eligible chunks j
s: Chunk activation noise
Activation B;: Base-level activation reflects the recency and

Aj =Bj +¢&;
frequency of use of chunk i

&; Random noise value

Base level learning n: The number of experiences for chunk i

= n —d )
Bi = ln(szI l ) b t;: The time since the jth presentation
d: A decay rate

P A constant offset
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utility—e.g., a degree of satisfaction, reward, or degree of preference
(Luce, 1959). That is, when a behavior occurs in some situation and
produces an outcome, it may be associated with a subjective
assessment of its value. Based on ACT-R, we assume those
experienced associations of features as <situation context, behavior,
outcome, value> associations that are stored in declarative memory
as chunks. These instances of decision and behavioral experience
are core to the theory of Instance Based Learning that has been
developed within ACT-R (Gonzalez et al., 2003). Over time,
implicit knowledge about decision making is generated through
the creation and storage of experiential instances.

Decision-makers retrieve and generalize from these instances
to evaluate alternatives, make a decision, and execute a behavior.
This is achieved through memory retrieval and blending. Memory
retrieval in ACT-R is a request to retrieve a specific memory
chunk when provided with a set of cues (features). For example, a
set of features might in a situational context might be used to
retrieve a memory of a behavior that occurred in a similar
situation. A blended retrieval produces a memory that aggregates
and generalizes over past experience based on inter-instance
similarity and the activation of those memories. For instance, a
blended retrieval of the subjective value of a behavioral outcome
is an aggregate of instance values, weighted by the activation of
those instances (see Table 1).

10.3389/fpsyg.2022.981983

Figure 1 illustrates how instance-based learning mechanisms
yield expectancy-value judgments. The data in Figure 1 come
from a purely synthetic set of simulation runs. For each run, there
is a training phase in which experience instances of <situation,
behavior, value> are stored in memory, followed by a test in
which a blended retrieval is made to judge the expected value of
a behavior. The behavior is arbitrarily labelled as “mask wearing.”
Each training run simulates a behavior producing a value = v with
probability = p or a value =0 with probability (1-p) for a total of
100 experiences (instances). Note that there is no explicit
representation of probability—just a set of experiences that
produce subjective values with some probability. Following, a
training run, a blended retrieval is performed to assess the
expected value of “mask wearing” The synthetic runs in Figure 1
range over p=0, 0.2, ...1.0 and v=0.25, 0.5, ... 1.0.

3.3. Modeling the time and frequency
effects of messaging or experiences

Attitudes can be modified through messages and experiences,
and the impact of messages can be modulated by evaluations of
the credibility of the sources of those messages (Hunter et al.,
1984). Figures 2—4 illustrate the predicted dynamics of message

Value
10 { —o- 025
-o— 05
-o— 075
- 10
0.8
0.6
[
2
S
c
]
£
04
0.2
0.0
00 02 04 06 08 10
Expectation
FIGURE 1

Expectancy value assessments for multiple simulation runs of ACT-R in which subjective values associated with success range from 0.25 to 1.0,

and the probability of success ranges from p=0 to 1.0.
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FIGURE 2
Dynamics of subjective intentions that start a level of zero but messaging at t=10, 20, 30, 40 promotes a higher level of intention.

effects on intentions in another series of ACT-R simulations. The exp( ,')
simulations assume that the subject value of “mask wearing” is P r(zlJ ) = z exp (/)
initially zero, and messages are delivered at specific points in time Jel

that ‘mask wearing’ has a higher value. Those messages are stored

as additional instances in memory and affect subsequent Using this choice probability model, the competing intentions
judgments based on blended retrievals. In Figure 2, one can in Figure 3 produce the choice to “wear mask” with the
observe the effects of the base-level learning mechanism: (Adam, probabilities depicted in Figure 4.

2020) As the cumulative frequency of messages increases, the

activation of chunks representing a higher value for “mask

wearing” increases, and that weights the expected value 3.4. Modeling self-effi cacy and
assessments to be larger (Pirolli et al., 2020), the effect of a message motivational intensity

decays with time, again because of the decay in activation specified

by base-level learning. Self-efficacy defined as an individual’s belief in their capacity

So far, we have simplified the discussion by only attending to to execute behaviors necessary to produce specific performance
one behavioral alternative (“mask wearing”), but decision making attainments. The Social Cognitive Theory of self-efficacy
involves choice amongst multiple alternatives. Figure 3 presents (Bandura, 1998) predicts that behavioral goals that are perceived
data from simulation runs in with there are alternative behaviors as too difficult are unlikely to be attempted. In general, greater
(“wear mask;” “do not wear a mask”) in which the subjective value levels of self-efficacy lead to greater likelihoods of achieving a
of “wear mask” is initially less than the alternative, but messages goal. Self-efficacy is often broken down into: (Adam, 2020)
at specific points in time place a higher value on “wear mask” than perceived general self-efficacy, which is an individual’s perception
“do not wear a mask” of their ability across many situations and (Pirolli et al., 2020)

These competing behavior intentions are related to a decision task-specific self-efficacy, which is an individual’s perception of
to pursue a behavior using a variation of a Random Utility Model their ability to perform a specific action or task in one or a
(McFadden, 1974) or Luce’s Choice Axiom (Luce, 1959) by which variety of situations. ACT-R models of self-efficacy have focused
the probability of choosing an alternative with an intention of i on the task-specific self-efficacy. However, because of the way
from a set of alternatives having intentions J is given by: declarative memory blending works in ACT-R these models do
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FIGURE 3
Dynamics of subjective intentions for mask wearing or not wearing masks with messaging promoting masks at t=10, 20, 30, 40.
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FIGURE 4
The impact of the changes of intentions in Figure 3 on mask choice probability.
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have the capability to transfer self-efficacy across similar
behaviors and tasks or produce self-efficacy across a range of
situation bs and or tasks. ACT-R models (Pirolli, 2016a,b) are
based on self-efficacy from mastery experiences (i.e., personal
experiences of success), but in principle can be based on
vicarious experience (e.g., witnessing similar others who have
exhibited mastery).

Related to assessments of self-efficacy is how motivated people
are to engage in effortful behaviors (physical and or cognitive). As
Vancouver (Vancouver, 2008; Vancouver et al., 2008) has noted,
when self-efficacy is low relative to a difficult task, then it is likely
to be judged as being more effortful, so high motivated effort can
be compensatory for low self-efficacy—up to a limit. This is
because the general observation and Motivational Intensity
Theory (Silvestrini et al., 2022) is that as the difficulty of a task or
behavior exceeds some threshold, people will not be motivated to
allocate effort, producing a saw-tooth relationship between effort
and perceived task difficulty. Previous ACT-R research (Pirolli,
2016b) combined self-efficacy theory with an implementation of
the Attributional Theory of Performance (Kukla, 1972), which is
a variant of Motivational Intensity Theory.

How ACT-R integrates self-efficacy and motivation intensity
theories can be illustrated with another synthetic example about
mask wearing. The ACT-R theory (Pirolli, 2016b) assumes that
when mask wearing is judged as having a difficulty, 5, a self-
efficacy (1) at time ¢, and the individual engages with motivation
intensity t(£), then the probability of engaging in the behavior will
be another variation of Luce’s Choice Axiom:

exp(5-0(t)+7(1))

Pr(engage in behavior) = " eXp(5 - H(I) n r(t))

As described by Pirolli (2016a) this ACT-R model assumes
that self-efficacy and intended effort are fundamentally the result
of memory processes. Past experiences of efficacy at behaviors
similar to a target goal are retrieved and blended together to
produce assessments of self-efficacy and intended effort for the
new goal. The assumption is that given a decision to pursue a goal,
an assessment is made of the difficulty, 5, of achieving that goal. A
blended retrieval is performed to assess the self-efficacy, 6(1),
based on memory of experiences on behaviors similar to the goal
behavior. A judgment is made about the intentional level of effort
required to achieve a behavior with desired probability p:

r(t)zln[lf ]5-9(1)

p

It is assumed that the individual will put in effort 7 (7) ifit is
less than a threshold ¢.

If the behavior is performed, then a new instance is learned.
That instance will be stored with a self-efficacy that includes the
old self-efficacy value plus the additional intentional effort
expended. New successful experiences on behaviors where the
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perceived difficulty was high relative to self-efficacy—but within
the limits of what a person was motivated to put in the effort
required—will tend to improve self-efficacy with repeated
experience. Figure 5 depicts another synthetic simulation
illustrating the dynamics of self-efficacy, intentional effort, and
probability of performing the behavior. Figure 5 show the growth
of self-efficacy and diminishment of intentional effort with
successful experiences. Figure 5 shows how the probability of
engaging with the behavior increases with self-efficacy.

3.5. Modeling norms affecting
polarization

Compliance with NPIs (and vaccination decisions) involves
decision making between safe and risky options. As has been
shown empirically by Gollwitzer et al. (2020), the probability of
engaging with an NPI behavior can differ initially between groups
having different normative beliefs (as measured by political
leaning), and those differences can be amplified over time.
Figure 6 illustrates this amplification process. The chunks in this
model reflect the relative payoft values of the two options of
wearing or not wearing mask, including both outcomes of the
riskier option (basically usual, unencumbered life vs. illness and
potentially death) as well as the single outcome of the safe option
(the annoyance of wearing a mask). The relative activations of
those options reflect the initial messaging propagated in social and
mass media, gradually supplemented by personal experience. A
key characteristic of this process of decision-making under risk is
that later decisions are influenced by the sampling of options early
in the process, itself driven by the initial presentation of the
options (Lebiere et al., 2007; Erev et al., 2010). An important
consequence is to amplify initial differences in messaging as found
in Gollwitzer et al. (2020). The blue line represents counties with
a higher proportion of messages (0.25) emphasizing the negative
outcome of the risky option. This leads to an expectation of the
risky option that is worse than that of the safer option, leading to
that option being selected consistently, and the relative
expectations being maintained, even when the original messaging
is relaxed (period 20). The red line represents counties with a
lower proportion of messages (0.15) warning about the negative
outcome. This leads to an expectation of the risky option that is
often better than the safer option, resulting in that risky option
being selected with higher frequency. Because the probability of
the negative outcome was relatively low, this led to a gradual
improvement in expectation leading to lower adoption of the safer
option. Once messaging is relaxed, the usual risky behavior then
quickly returns as the default option.

3.6. Modeling awareness-driven
oscillations in behavior

It has generally been observed throughout the history of
pandemics that people typically modulate their behavior in ways
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The dynamics of self-efficacy and intentional effort over time (left) and the impact on the probability of pursuing a behavior (right).
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that mitigate transmission rates before NPI mandates (Christakis, rates, R, (Weitz et al., 2020). It has been argued (Weitz et al., 2020)
2020). This awareness-driven behavior modulates the shape of that it is awareness-driven behavior that produces the signature
epidemiological curves such as case rates or effective transmission temporal phenomenon observed in virtually all regions: the
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damped oscillation pattern of the effective transmission rate, R,
such as those presented in Figure 7. That is, there is typically a
rapid decline from R, > 1 as people react to the initial spread of the
virus, followed by an oscillation around R,=1. This oscillation
phenomenon is reminiscent of a Proportional-Integral-Derivative
control system in which a controlling intervention (e.g., mask-
wearing) occurs in proportional response to the state of the system
(e.g., R), although there may be lags between awareness of the
system state and the response, and between the response and
effecting a change.

However, the observed oscillation pattern is not entirely
simple. Figure 8 presents phase space plots for R, (t+1) by R, ()
over the first three waves of COVID-19 in the United States for
CA and WY (see the Supplementary material for description of
the data sources and phase space diagrams for five states with the
highest 2016 Republican Presidential vote and five states with the
highest 2016 Democrat Presidential vote). In general, one can
observe that there is oscillating pattern around the R,=1 mark, but
in both cases the oscillation loops appear to shift over time.

Figure 9 plots the phase space relationship between Rt and
mask-wearing for CA and WY for the first three waves of COVID-
19. As can be seen in Figure 9, the mask-wearing response in WY
is initially far lower than CA, and the decline in mask-wearing as
R, declines is sharper in WY than in CA, where mask-wearing

10.3389/fpsyg.2022.981983

essentially stays flat as R, values decrease. We hypothesize that this
is the result of to the norm-driven polarization discussed above.

Figure 10 presents a model of this oscillation pattern that
emerges from an integration of expectancy-values attitudes, self-
efficacy, intentional effort and the assumption that individual
assigns value to mask wearing or not, based on their perceptions
of whether the pandemic is increasing or abating. Again, this is a
synthetic simulation of two hypothetical waves driven by variants
with R,=4 and R,=5, corresponding to the values estimated for
the first wave and delta-variant waves of COVID-19 (Liu and
Rocklov, 2021; Yu et al, 2021). High R, values trigger strong
behavior activation, leading to mask wearing, which leads to a
decrease in infection. This in turn leads to a relaxation in behavior,
triggering another increase and another cycle starts. One effect of
the experience built up during the first wave of the simulation is
that mask wearing response is more probable during the second
wave (Figure 11). This is primarily the result of the build-up of
self-efficacy (Figure 11).

So, the cognitive model predicts an increase in mask-wearing
probability to perceived COVID-19 transmission rates. That is, for
a given value of Rt, the proportion of people who choose to wear a
mask should increase with successive waves. Figure 12 shows that
the distribution of daily mask wearing per state increased from the
first to third waves of the COVD-19 pandemic (first wave mean
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FIGURE 7
The effective reproduction number for the first three waves of COVID-19 in the United States for the top five states that voted for the 2016
Republican presidential candidate (bottom) and top five that voted for other candidates (top).
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The oscillation of mask wearing and effective reproduction number in two United States states.

mask wearing=>58.22%, second wave mean=71.62%, third risk-factors of individuals can provide a basis for whom to target,
wave =76.46%). More specifically the percentage of people in a given a specific disease or outcome. This includes social factors
state on a given day at a given R, on that day increased from the first (e.g., the position of an individual in a network) as well as
wave to the third wave, as shown in the scatterplots in Figure 13. individual-based factors (e.g., gender, race/ethnicity, and age).

This perspective applies to both acute events (pandemic,

environmental emergency) and chronic public health issues

4. Discussion (smoking, obesity, etc.). For the latter there is an additional need.
Mechanistic models that forecast key outcomes of interest (e.g.,

In public health practice, behavioral prevention and force of infection, how many people will accept vaccination) or
intervention efforts have relied on the notion that identifying provide what-if mitigation scenarios (what if we mandate masks)
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for use by policy makers sometimes require assumptions about
behavior change or behavioral compliance (Halloran et al., 2008).
The use of social psychological theory is part-and-parcel of
practice in public health, yet as it is used today we see several
practical limitations: (i) little incorporation of dynamics of
behavior, (ii) no affordance for testing an interventions efficacy on
behavior change i silico (simulation), (iii) lack of a general and
unifying model for application across behavioral domains and
public health contexts, (iv) little feasibility for incorporation of the
theory into mechanistic, real-time forecasting or what-if
population models.

Computational cognitive modeling offers one approach to
mitigate the limitations of current public health practice. Its
foundational advantage is that it represents the detailed mental/
cognitive processes and representations that drive behavior. For
example, one of our efforts presented above was a model of
intention formation that was derived from a detailed specification
of the human memory system. The latter was derived from the
ACT-R cognitive architecture, a formal theory of the human
mind that rests on decades of both experimental and
neurophysiological human data. In a sense, our intention model
is constrained in its structure and parameterization by decades of
abduction between experimental data and psychological theory.
This, we argue, is the foundation for the computational cognitive
modeling approach in public health.
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The computational cognitive modeling approach is extremely
well suited to address each of the limitations listed above. First, it
affords a clear understanding of the dynamics of behavior change
precisely because the basis for ACT-R is theory about the
dynamics of human memory, in general. Second, it provides a
test-bed for the effects of intervention/prevention efforts (e.g.,
messaging, or temporal effects of mitigations) in silico. ACT-R is
a computational theory, and, is naturally extendable to small-scale
social simulations of groups for testing in social contexts (Morgan
etal, 2021). Third, it is a general approach, unified by the ACT-R
cognitive architecture (or even the Common Model of Cognition),
that can span behavioral domains (e.g., chronic diseases such as
cancer and obesity and infectious disease such as HIV or COVID-
19) and span social contexts and differences in built environments).
Finally, it can form the basis for the behavior models for large or
at-scale simulations of infectious disease and mitigation. Agent-
based modeling has been integrated with ACT-R in several
contexts (Bhattacharya et al., 2019; Orr, 2019; Orr et al., 2021).

A final point wed like to make is more general but important for
future integration with the public health community. Computational
cognitive modes provide a perspective on risk-factors (Orr and
Plaut, 2014). Different risk groups have the same mental apparatus;
the difference between groups amounts to what has been learned via
social context and what are the affordances of the built-environment.
Cognitive modeling forces one to think through what are the
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informational and contextual differences between groups and how
this has effected the operation of the cognitive model. In short, from
the cognitive modeling perspective, all people and groups are the
same. Differences in risk behaviors stem from differences in
experience. Although our focus here has been on behavioral
responses, such as mask wearing, the underling processes are
expected to generalize to other important pandemic-related health
decisions, especially that of vaccination. This will be a challenge
because of the causal role played by individual experiences, beliefs,
and values in vaccination decisions (Reimer et al., 2022).
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