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Abstract
Motivated by close analogies between meta reinforcement learning (Meta-
RL) and variational quantum Monte Carlo with disorder, we propose a
learning problem and an associated notion of generalization, with appli-
cations in ground state determination for quantum systems described by
random Hamiltonians. Specifically, we elaborate on a proposal of Zhao et
al. (2020) interpreting the Hamiltonian disorder as task uncertainty for a
Meta-RL agent. A model-agnostic meta-learning approach is proposed to
solve the associated learning problem and numerical experiments in disor-
dered quantum spin systems indicate that the resulting Meta Variational
Monte Carlo accelerates training and improves converged energies.
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1 Introduction

Although deep neural networks excel in individual learning tasks, they are brit-
tle with respect to task deformation. This fragility presents a challenge to the
design of artificially intelligent agents which are required to efficiently adapt
from known source tasks to a stream of unknown and dynamically chang-
ing target tasks. In order to quantify the ability of an agent to adapt when
confronted with a stream of learning tasks, it proves convenient to adopt the
modeling assumption in which there exists a probability distribution supported
on the space of possible tasks called the task distribution. Meta-learning (also
called learning to learn [1]) attempts to formalize the goal of adaptivity by
exploiting regularities in the task distribution in order to output a hypothesis
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that performs well on new task realizations, given limited data access to each
target task. It is instructive to contrast meta-learning with the comparatively
simpler paradigm of transfer learning in which the target task is known. In
this paper, we explore a formal identification between model-agnostic meta-
learning [2] and a seemingly unrelated problem in quantum physics involving
quantum Monte Carlo with disorder.

Given a fixed target Hamiltonian H acting on a Hilbert space H of expo-
nentially high dimension, Variational Monte Carlo (VMC) [3] computes an
estimate of its minimal eigenvalue and a description of the associated eigen-
vector. The ability of VMC to overcome the curse-of-dimensionality in this
context stems from a reformulation of the Rayleigh-Ritz principle as a stochas-
tic optimization problem, the optimum of which is a function outputting the
components of the ground eigenvector in some orthonormal basis. Leveraging
the close connection between VMC and deep reinforcement learning, Car-
leo and Troyer [4] showed that when neural networks are exploited as trial
functions and optimized using natural gradient techniques, VMC can achieve
state-of-the-art results in finding the ground state energies of the antiferromag-
netic Heisenberg model, in which the Hamiltonian is defined by a geometrically
local interaction graph corresponding to a two-dimensional lattice. The domain
of applicability of so-called neural-network quantum states has since been
expanded to encompass problems of electronic structure in finite [5-7] and infi-
nite dimensions [8]. Further connections between VMC and deep learning have
been elaborated in [9, 10] where it was shown that VMC is a quantum gener-
alization of Natural Evolution Strategies (NES) [11], which in turn, provides
a single-step realization of natural policy gradient learning [12].

The ability of VMC to obtain state-of-the-art results comes at the expense
of significant computation time due to the sequential nature of the sampling
process. Sharir et al. [13] proposes autoregressive modelling in replacement of
the original Markov chain Monte Carlo (MCMC) to speed-up the sampling,
and Zhao et al. [14] focuses on the scalability of VMC to large problems and
efficient use of all available resources. This work attempts to address the sim-
ilar problem but under a different context, where we assume the presence of
a sparse matrix ensembles that admit a certain task regularity. Our hypothe-
sis is that one can accelerate the training of VMC and improve the converged
energies on new learning tasks, by employing information from previously
encountered tasks. The naive approach that uses the pretrained model param-
eters from one task as the initialization on the target task fails to apply in
VMC, as there is no notion of generalization to out-of-sample data for a task
of which the stochastic objective function is an unbiased estimator of a given
population objective. This lack of delineation between training and testing
phase is closely analogous to deep reinforcement learning, where agents are
trained and tested in the same learning environment and the algorithm typ-
ically outputs a policy that is strongly overfitted to the learning task. The
above considerations motivate the viewpoint that meta-learning provides the
relevant context in which to discuss generalization both for deep reinforcement
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learning agents and VMC. Indeed, Meta-RL has enjoyed significant progress
in the last few years, propelled by the discovery of a scalable gradient-based
instantiation suitable for deep learning called model-agnostic meta-learning [2]
(MAML).

In this work, we investigate the empirical performance of meta-VMC over
sparse matrix ensembles with different kinds of task regularity, which we
encode via geometric locality assumptions. Our experimental results suggest
that meta-VMC is capable of effectively accelerating the training of VMC
and improving the converged energies on new task realizations from the given
ensemble. This paper expands on the preliminary work of Zhao et al. [15] in
which the notion of meta-VMC was introduced and numerically investigated
for diagonal matrix ensembles as a special case, which correspond to the Max-
Cut optimization problem. The content of the paper is organized as follows:
in section 2, we introduce single-task variational Monte Carlo, emphasizing
the connection with the REINFORCE [16, 17] algorithm and natural policy
gradient learning. The basics of meta-learning and the meta-VMC are then
recalled. The theory underlying model-agnostic meta-learning and gradient-
based meta-VMC are described in section 3. Experimental results and analysis
are presented in section 4 and section 5 concludes the paper.

2 Background

2.1 Variational Monte Carlo

This paper proposes heuristic approximation algorithms for determining a
minimal eigenpair of certain large and sparse random conjugate-symmetric
(Hermitian) matrices that admit an efficient description. For simplicity, we
restrict to the case of real symmetric matrices and consider only real eigen-
vectors. In addition, the ground eigenvector is non-negative entry-wise if
all off-diagonal entries of H are further restricted to be non-positive, as a
consequence of the Perron-Frobenius theorem. The N x N matrices under con-
sideration are required to be s-sparse in the sense the number of nonzero entries
per row is O(s) for s < N. In this work, we consider s-sparse quantum many-
body Hamiltonians where s = O(poly(log(N ))), although the techniques we
discuss do not require an exponential separation between the sparsity param-
eter s and the matrix side length N. In addition, we require that for each
row € [N] of the matrix H, the list of nonzero entries and their locations
{(y, Hyy) : Hgy # 0} can be determined in time O(s).

We describe the differentiable family of trial vectors § € R? with a function
g : [N] = C, of which the outputs are the components of the vector relative
to the standard basis 1g(x) = (e, 1g). Given a row-sparse Hermitian matrix
H, we define the variational Monte Carlo learning problem as the following
continuous stochastic optimization task,

- (g, Hipg) (Hg)(z) _
minZ(o) . L) =l g [W) }zxmmw), 1)
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where the population quantity is computed over the probability distribution

_ |e(x)?
mo(@) = (Yo, ) @)

It is convenient to express the population objective function as the mean of a
random variable as L(0) = E,r,[lo(z)] where we have defined the following
stochastic objective function, which is defined for « € [N] whenever ¥y (x) # 0,

_ (Hye)(@)
ly(z) := @) (3)

and whose variance under 7y is given by,

._ o) 2y (o, H?o) [ (1o, Hby)]?
v, (1)) = E[liole) - LO] = 522 [ - ww} )

It follows from the Rayleigh-Ritz principle that if the trial vector vy
approaches any eigenvector of H, then the variance of stochastic objective
approaches zero. In practice, the objective function is optimized using a variant
of stochastic mini-batch gradient descent closely related to the stochastic nat-
ural gradient called stochastic reconfiguration [18]. Stochastic estimators for
the gradient and the Fisher information matrix follow from their population
forms. In the special case of real-valued wavefunctions,

VL(O) =2 E [(lg(x) — L(9)) Volog|te(z)]] ,

T

I(0) = E [Vglogmy(z) ® Vglogmy(x)] , (5)

T~y

where we used an identity for the derivative of the logarithm. If the normal-
izing constant (g,1y) of the probability distribution my is unknown, then
above expectation values can be approximated by the Markov chain Monte
Carlo method. If the normalization condition (g, 1) = 1 is fulfilled, then by
absorbing the factor of 2 into the logarithm one finds,

VL(G) = E [(lg(x) — L(G))Vg logﬂ'g(l‘)] . (6)

Tr~Tg

In the special case where H is diagonal, it was noted in [10] that Ip(z) becomes
independent of # and thus the VMC algorithm can be understood either as
natural evolution strategies [10] or equivalently as single-step natural policy
gradient, also known as REINFORCE [16, 17].

2.2 Meta-learning

In contrast to the single-task formulation of VMC, which accepts a fixed target
Hamiltonian as input, our proposed meta- VMC' asks for an approximation of
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the ground energy for an ensemble of Hamiltonians H, indexed by a random
disorder parameter 7 sampled from a known distribution 7. The simplest
strategy of retraining a separate neural-network quantum state from scratch
for each realization of the disorder parameter 7 is impractical. The goal is
thus shifted to finding a neural network that is maximally adaptive to new
realizations of the disorder. For experimental support, our focus in this paper
is a special case of disordered quantum spin systems. These results are viewed
as a stepping stone to random electronic structures, in which we anticipate
similar optimization considerations to apply.

The formulation of meta-VMC exhibits obvious parallels with meta-
learning or learning-to-learn in the machine learning literature [1], where data
from previously encountered learning tasks is employed to accelerate perfor-
mance on new tasks, drawn from an underlying task distribution 7. In the
language of meta-learning, 7 indexes the learning task and 7 denotes the distri-
bution over all tasks. In meta-VMC, we assume the task distribution is known
to the learner; in contrast, conventional meta-learning assumes 7 is unknown
but possesses sufficient regularity to render meta-learning feasible.

2.3 Relationship with previous work

In this section, we differentiate our proposal from the uses of meta-learning
that have been proposed elsewhere in the quantum information literature. In
[19], for example, meta-learning has been proposed to mitigate various sources
of noise, specifically shot noise and parameter noise. In the context of VMC,
shot noise is analogous to variance associated with finite mini-batches, whereas
parameter noise has no clear analogue. Ref. [20] is the most similar to ours in
that they consider meta-learning from known distributions. They differ by the
choice to focus on variational quantum algorithms such as VQE and QAOA
and by the fact that they do not use model-agnostic meta-learning. Instead, the
meta-learning outer-loop involves training a separate recurrent neural network,
similar to [21]. In our work, we do not take this learning-to-learn approach
of training an adaptive optimizer, but rather learn an initialization that can
accelerate subsequent standard training on different but related tasks. The for-
mer approach is more suitable for example in large-scale computer vision tasks
where the size of the LSTM optimizer is negligible in comparison with that of
a CNN network; such an optimizer would be likely lead to severe overfitting for
our tasks of interest. The notion of meta-VMC and a model-agnostic training
algorithm was originally introduced in [15]. The numerical experiments of [15]
restricted to diagonal matrix ensembles which can be understood as classical
combinatorial optimization problems. In this paper, we expand the experi-
ments to include off-diagonal matrix ensembles which have no classical analog,
since their ground eigenfunction involves a superposition of basis states.
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3 Theory

A simple strategy that has proven successful in meta-learning of deep neural
networks is multi-task transfer learning [22, 23], which aims to learn an ini-
tialization for subsequent tasks by jointly optimizing the learning objective
of multiple tasks simultaneously, using a mini-batch training strategy that
interleaves batches across the tasks. Multi-task learning is, however, prone to
catastrophic interference [24], making it unsuitable for generalization to the
VMC. The problem is exemplified by some of the simplest examples of dis-
ordered spin systems: suppose H. is a random Hamiltonian whose expected
value under the disorder parameter vanishes E,.7[H.] = 0. As a concrete
example, consider the Sherrington-Kirkpatrick Hamiltonian, in which 7 rep-
resents a collection of i.i.d. centered Gaussian random variables J;; ~ N(0,1)
representing the exchange energies. If we denote by L, the objective function
corresponding to disorder parameter 7, then the multi-task learning objective
function, expressed in the population limit, is given by

_ B (o) (@) |\ (o ELH, Jo)
LMTL(e)._TgT[LT<e)}—TgET{w3Eﬂ9[ e ]}_ Bl

The fact that the multi-task learning objective loses dependence on 6 in the
population limit implies that the associated mini-batch algorithm makes no
progress asymptotically.

In order to define an objective function which is asymptotically non-
vacuous and which promotes adaptation to new realizations of disorder, we
propose to optimize the following meta-learning objective function, again
presented in population form for simplicity [2, 21],

Lav(0) = E_[L-(U(0))] = E_[Lr(Uro---oUr(0))] (8)

t times

where Ut : R — R? denotes the t-fold application of a task adaptation oper-
ator U,, which in the simplest case of gradient descent with step size 3, is
given by U, () = 6 — BV L,(#). Optimization of the meta-learning objective
Ly ensures that when a new realization of the disorder parameter is drawn,
the initialization performs well after performing one or more steps of gradient
descent. Loosely speaking, meta-learning can be justified when one has a bud-
get for running a few steps of gradient descent. In practice, we train a model
using a finite number of training tasks generated from a given task distribu-
tion, and use the resulting parameters to initialize subsequent training on new
test tasks drawn from the same distribution.

In the case of meta-VMC, we consider gradient-based optimization. Specif-
ically, we focus on model-agnostic meta-learning (MAML) [2] which is a
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Input: Matrix ensemble T, adaptation operator U, adaptation steps t
Initialize 6;

while not done do

Sample batch of disorder parameters B ud T;

for each disorder parameter T € B do

0 =UL(0);
V= (U) (0)VL-(0:);
end

V= % ZTEB VT;
0 «+ OPTIMIZER(0, V);
end
Algorithm 1: MAML [2] adapted to meta-VMC (batched over tasks).

gradient-based algorithm that has been proposed for optimizing the meta-
learning objective. Straightforward application of the chain rule gives rise to
the following gradient estimator for the meta-learning objective,

VIa(0) = Err (UL (0)V L (UL0))] (9)

where (U%)'(0) denotes the Jacobian matrix of the function U? : R? — R?. The
pseudocode for MAML is outlined in Algorithm 1. In order to facilitate read-
ability, we have presented the algorithm with batching only in the task index,
leaving the remaining expectation values (with respect to Born probabilities)
in population form. In a practical algorithm, the intermediate variables 6,
and V, are estimated stochastically using independent batches of data gener-
ated by the same task 7. Since the computation of the Jacobian involves an
expensive back-propagation, first-order MAML (foMAML) has been proposed
(e.g., [2, 25]) as a simplification of MAML, in which the Jacobian matrix is
approximated by the identity matrix.

3.1 An illustrative example

The fact that the meta-learning objective function manages to avoid the
catastrophic interference phenomenon can be illustrated by the following toy
model'. Rather than considering the Rayleigh quotient, consider the following
ensemble of quadratic functions specified by a random positive-definite matrix
A € R™4 and a random vector b € R,

Lo(6) = 5(6,A6) — (0,0) . (10)

where the random variable 7 = (A, b) now corresponds to the task label. In
the simplest setting of single-step (¢ = 1) meta-learning with vanilla update

I This quadratic model has also been analyzed in the context of convergence theory in [26].



8 Meta Variational Quantum Monte Carlo

operator U.(0) = 6 — BVL,(0), the optimal solution of the multi-task and
meta-learning objectives can be found in closed form,

arg min Ly (0) = E[A(I — BA)?] 'E[(I — BA)?D] . (11)

In the limit 5 — 0 corresponding to multi-task learning, the optimal solution is
found to only depend on the mean value of the random variable 7, whereas the
meta-learner (corresponding to 8 > 0) exploits information in the higher-order
moments of 7.

4 Experiments

For our experiments, we focus on symmetric matrices whose side length is
a power of 2, that is, N = 2™. The real vector space of 2" x 2" symmetric
matrices contains a subspace of dimension n(n + 3)/2 = O(poly(n)) which is
parametrized by real parameters g;, hi, gi;; € R as follows,

H=—- Z (hiXi+ 9 Z;) — Z 9ij il (12)

1<i<n 1<i<j<n

where X; 1= I®0"D @ X @ I®("=) and Z; := [®0~D @ Z@ I1®("~9) are defined
in terms of the following elementary 2 x 2 matrices,

o T PR 1 ™

The Hamiltonian H can be verified to be n-sparse, and admits a binary
representation with entry value written as

Hyy =— Z hi5m1y1 "'5ﬁ'x7:y1: "‘5zn,yn, - 5a:y Z gi(1 — 2x;)

1<i<n 1<i<n

Oy > gii(1—2x)(1 - 2x;) (14)

1<i<j<n

where the row and column indices z, y are in their binary forms z = 2" 'z +
o+ 20,y =271y + .- 4+ 2%, and —z; denotes logical negation of x; €
{0,1}.

Given a description of the matrix ensemble and a differentiable family of
trial vectors described by a neural network, we seek an initialization strategy
which rapidly accelerates the convergence of the trial vector to the ground
space of randomly drawn problem instances. The proposed strategy was com-
pared against training random problem instances from scratch (randomly
initialized neural network). We also consider random initialized models that
are trained using the stochastic reconfiguration method (stochastic natural
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gradient descent), as an additional baseline. To showcase the robustness of
meta-VMC, we conduct experiments across various settings involving different
task distributions and model architectures.

4.1 Task distribution generation

Matrix ensembles of exponential size were chosen by specifying the distribution
for the O(poly(n)) parameters g;, h;, g; ; appearing in (14). In this work, we
impose h; < 0 to ensure that the ground eigenvector can be chosen to be
a non-negative vector due to the Perron-Frobenius theorem. Meta-learning
experiments were conducted using four task distributions (matrix ensembles)
supported on the subspace of symmetric matrices of the form (14), by first
fixing a base matrix in and then introducing Gaussian noise to the parameters.
The first base matrix we consider is referred to as the Max-Cut problem and
is defined by

Hytax-Cut = —i > LiZiZ; (15)
1<i<j<n
where L = [L;;] denotes the Laplacian matrix for an undirected graph G =
(V, E) of size V = n. The diagonal entries of this matrix correspond to the sizes
of the 2™ possible cuts on the graph G. The adjacency matrix for G was chosen
by forming the n x n matrix (B + BT)/2 — diag(B) with entries B;;s which
are randomly generated bits. By design, the diagonal entries of G are all zero.
The second base matrix is referred to as Sherrington-Kirkpatrick model,
which is a matrix of the form (14) with g;,¢9;; ~ U(—1,1) and h; ~ U(0,1)
sampled once and fixed. The final experiments consider geometrically local
versions of the Sherrington-Kirkpatrick model (referred to as transverse field
Ising model), in which the interactions are determined by a one-dimensional
ring geometry Zy = {0,...,L — 1} (with addition defined modulo L) and a
two-dimensional torus geometry Zj x Zp. The respective base matrices are
given by

Hriveip = — Z (9iZiZig1 +hiX5) (16)
i€,

Hrowoo = = Y (98205 Zi01 + 95 Zi5 2050 + higXig) . (17)
(i,5)€Z3,

Having fixed the base matrices as above, sampling from the respective matrix
ensembles was achieved via the following procedure. In the case of Max-Cut,
a random adjacency matrix was formed by perturbing the base adjacency
matrix A with additive noise matrix A and then rebinarizing the sum A+ JA.
In particular, we chose A = (N + N7T)/2 where the entries of N consist
of independent centered Gaussian noise of variance o2. In the case of the
transverse field Ising and Sherrington-Kirkpatrick models, the parameters were
perturbed by additive centered Gaussian noise of variance o2, followed by
clippings of h;s to non-negative values.
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Training Curves for Max-Cut with RBM
0
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Fig. 1 Results for RBM on 7, with ¢ = 0.2,0.5,1.0 from left to right, where the base
Hamiltonian is Max-Cut-49. Each curve is the average of the training curves over 8 testing
tasks randomly sampled from 7,. The learning rates for outer and inner loops are 0.002
and 0.005, respectively. Initializations from foMAML and MAML discover solutions that
outperform random initialization using far fewer iterations with SGD, on problems with
diagonal matrix ensembles. However, SR (stochastic reconfiguration) outperforms SGD in
the long run. On the other hand, the convergence of foMAML and MAML goes slower as o
increases, indicating that task adaptation becomes more difficult for task distributions that
are more complex.

4.2 Architectures and hyper-parameters

Network architectures are chosen to be either restricted Boltzmann machine
(RBM) or convolutional neural network (CNN). Carleo et al. (2017) [4] pro-
posed RBM for the transverse field Ising model and the anti-ferromagnetic
Heisenberg model, taking the one-dimensional state as input and outputs the
logarithmic probability amplitude. Besides, RBM accommodates input states
with higher dimensional structures by flattening them down to a single dimen-
sion. For Ising models with local geometric structures, it’s also natural to use
convolutions as local operators to process the inputs. In this paper, we con-
sider CNN models with one layer of convolution followed by a fully connected
layer. More architectural details are deferred to the appendices.

Each iteration of the meta-learning loop involves independently sampling
a batch of 16 tasks from the task distribution 7,, parametrized by o. During
testing, 8 testing tasks are sampled from 7, and fixed for evaluation purposes.
The inner loop used 1 iteration of vanilla SGD with batch size 1024, while
the outer loop training used 50 iterations of vanilla SGD with batch size 16.
The learning rates for outer and inner loops depend on the problem type and
model architecture.

4.3 Analysis of results

In Figure 1, we train separate RBM models on task distributions 7, (o =
0.2,0.5,1.0) with initializations from MAML and foMAML methods, and plot
the training curves of the models for 300 iterations. The training curves of
randomly initialized models with SGD and stochastic reconfiguration are also
plotted for comparison. Our result shows that models initialized using MAML
discover solutions that outperform SGD in the long run using far fewer iter-
ations than SGD, consistent with the expectation that MAML initializations
perform well after performing only a few iterations of gradient descent. Despite
accelerated convergence, MAML was found to converge to suboptimal local



Meta Variational Quantum Monte Carlo 11

Training Curves for Sherrington-Kirkpatrick with RBM
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Training Curves for TIM-1D with RBM
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Fig. 2 Results for RBM on 7, with ¢ = 0.2,0.5,1.0 from left to right, where the base
Hamiltonians are Sherrington-Kirkpatrick model and TIM (transverse field Ising model)
with 49 sites. Each curve is the average of the training curves over 8 testing tasks randomly
sampled from 75. The learning rates for outer and inner loops are 0.002 and 0.005, respec-
tively. Initializations from foMAML and MAML discover solutions that outperform random
initialization using far fewer iterations with SGD, on problems with sparse non-diagonal
matrix ensembles.

Training Curves for TIM-1D with CNN

30 0=02 _30 0=05 0=1.0 —— Rand Init-SGD
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40 _a0 — MAML-SGD
S -50
5]
5 -s0 —50 —60
—60 -60 -70
= -80
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
20 Training Curves for TIM-2D with CNN
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Fig. 3 Results for CNN on 7, with ¢ = 0.2,0.5,1.0 from left to right, where the base
Hamiltonians are TIM (transverse field Ising model) on 1D lattices with 49 sites and 2D
lattices with 7x7 sites. Each curve is the average of the training curves over 8 testing tasks
randomly sampled from 7. The learning rates for outer and inner loops are 0.005 and 0.01,
respectively. Initializations from foMAML and MAML discover solutions that outperform
random initialization using far fewer iterations with SGD and CNN. On the other hand, the
performance of CNN is in general comparable with RBM.

minima in this case compared to the stochastic reconfiguration (initialized
from random). This observation reiterates the importance of the Riemannian



12 Meta Variational Quantum Monte Carlo

geometry to the success of this optimization problem. On the other hand, the
convergence of MAML goes slower as o increases, indicating that task adap-
tation becomes more difficult for task distributions that are more complex.
In Figure 2, we follow similar protocols with the experiments conducted for
MaxCut, but switch the base matrix to Sherrington-Kirkpatrick model, and
its geometrically local 1D and 2D versions. Similar results are observed for
these problems, where MAML can discover solutions that outperform ran-
dom initialization using far fewer iterations with SGD, and the performance
is competitive with that of stochastic reconfiguration training from scratch.
This implies that MAML is robust with respect to the choice of Hamilto-
nian type. In Figure 3, we switch the architecture from RBM to convolutional
neural networks that take into account the geometric information of the lat-
tice. The advantage of MAML persists in disordered but geometrically local
environments, and MAML performance is largely on par with stochastic recon-
figuration. This experiment indicates that MAML is robust with respect to
both the choice of the model architecture.

We conclude from our experiments that single-task learners are consistently
slow to converge and the convergence remains slow when using the stochas-
tic reconfiguration method. In some cases, for example, the experiments in
Figure 3, meta-learners achieved the same or better long-term energy as single-
task learners trained with stochastic reconfiguration, at significantly decreased
computational cost. In addition, foMAML and MAML exhibit overall better
performance on task distribution 7 with smaller strength of disorder factor
o, in comparison with the random weight initialization counterparts. This is
expected as larger o corresponds to a sparser task distribution where the sam-
ples are less related. The improvements from MAML initializations are robust
with respect to the choice of Hamiltonian types and model architectures.

5 Discussion and Future Directions

The experimental results for various matrix ensembles indicate that MAML
effectively solves meta-VMC by accelerating training and improving energy.
While the Max-Cut problem is exactly solvable for the graph sizes considered
here (e.g., by the Branch and Bound method [27]), the experiment illumi-
nates the importance of Riemannian geometry to the success of the algorithm
in some learning environments. It would be interesting to investigate if sim-
ilar findings impact the conclusions of policy-gradient based Meta-RL. Since
stochastic Riemannian optimization appears to be instrumental to the success
of VMC in some situations, it would interesting to explore preconditioned task
adaptation operators as advocated in [28]. In the case of quantum spin sys-
tems the advantage offered by SR optimization is less significant, while MAML
maintains the lead compared to SGD both in terms of acceleration and energy.
The reduction in performance with increasing disorder is expected on general
grounds, since MAML has less opportunity to exploit regularities in the task
distribution. We speculate that the geometrically local models provide further
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opportunities to exploit task regularity, explaining the improved performance
of MAML relative to SR in these environments. The models investigated all
have non-positive off-diagonal entries, which is a simplifying assumption and
can be relaxed, paving the way to investigating matrix ensembles relevant to
electronic structure. The ideas presented in this paper naturally extend also
to variational quantum algorithms (VQAs) such as the variational quantum
eigensolver. The key difference in the case of VQAs is that the denominator in
the Rayleigh quotient (1) is normalized (1g,109) = 1 and stochastic estimation
of the quantum expectation value (g, H-1g) involves performing measure-
ments in multiple bases if the Hamiltonian contains non-commuting terms.
The exploration of meta-VQA and associated learning algorithms is left to
future work.
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