
Journal of Cosmology and
Astroparticle Physics

     

PAPER

Searching for axion-like particles through CMB
birefringence from string-wall networks
To cite this article: Mudit Jain et al JCAP10(2022)090

 

View the article online for updates and enhancements.

You may also like
Constraints on axion-like particles with
different magnetic field models from the
PKS 2155–304 energy spectrum
Jia Bu and Ya-Ping Li

-

Physics beyond colliders at CERN: beyond
the Standard Model working group report
J Beacham, C Burrage, D Curtin et al.

-

Axion-like particle generation in laser-
plasma interaction
Shan Huang, Baifei Shen, Zhigang Bu et
al.

-

This content was downloaded from IP address 168.6.20.151 on 31/10/2022 at 14:39

https://doi.org/10.1088/1475-7516/2022/10/090
https://iopscience.iop.org/article/10.1088/1674-4527/19/10/154
https://iopscience.iop.org/article/10.1088/1674-4527/19/10/154
https://iopscience.iop.org/article/10.1088/1674-4527/19/10/154
https://iopscience.iop.org/article/10.1088/1361-6471/ab4cd2
https://iopscience.iop.org/article/10.1088/1361-6471/ab4cd2
https://iopscience.iop.org/article/10.1088/1402-4896/ac8b6b
https://iopscience.iop.org/article/10.1088/1402-4896/ac8b6b
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssDxpdwgKNeDHL4MTv_jlQqsmjhPsadp2CUYoDbk94vQRulBo5Kd0V1RrfWlm94xLlRcnfOj5W72KBqg8TPoVVV1_KMGDUS5LyCZcq45nfzDDagD_Z9KpQCYTOz6h1QDo-jNqZ7eh6D1m3hUy-onx-zi39IPcZVqnFCNOrwFdkMXg1-0qilYNzuCNIarHjKXT1Y0K4c6TSiys3b1XO-zcHEyceV9FhEqfPDWroUob1tMYZEqJpEKYhAfoXjfHlFvzNvgMdapd4NGPvXdZunQQbkqDQsOOReO9FGykpR2nENRA&sai=AMfl-YTCWp5ScMCzDZUEiFNIiCiQkhElSl_VG9AH86DLvYvfiXNBdnY1xWO_5AlovnsqKqtaZBgKwA7s_kWVev2Tig&sig=Cg0ArKJSzMUTepjNRxUY&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=http://iopscience.org/books


J
C
A
P
1
0
(
2
0
2
2
)
0
9
0

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Searching for axion-like particles

through CMB birefringence from

string-wall networks

Mudit Jain, Ray Hagimoto, Andrew J. Long and Mustafa A. Amin

Department of Physics and Astronomy, Rice University,
Houston, TX 77005, U.S.A.
E-mail: mudit.jain@rice.edu, rmh14@rice.edu, andrewjlong@rice.edu,
mustafa.a.amin@rice.edu

Received August 28, 2022
Accepted October 13, 2022
Published October 28, 2022

Abstract. Axion-like particles (ALPs) can form a network of cosmic strings and domain
walls that survives after recombination and leads to anisotropic birefringence of the cos-
mic microwave background (CMB). In addition to studying cosmic strings, we clarify and
emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence
signal; these observations provide a unique way of probing ALPs with masses in the range
3H0 . ma . 3Hcmb. Using measurements of CMB birefringence from several telescopes, we
find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract
constraints on the model parameters that include the ALP mass ma, ALP-photon coupling
A Ã ga““fa, the domain wall number Ndw, and parameters characterizing the abundance and
size of defects in the string-wall network. Considering also recent evidence for isotropic CMB
birefringence, we find it di�cult to accommodate this with the non-detection of anisotropic
birefringence under the assumption that the signal is generated by an ALP defect network.

Keywords: axions, CMBR polarisation, Cosmic strings, domain walls, monopoles, Statisti-
cal sampling techniques

ArXiv ePrint: 2208.08391

c• 2022 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2022/10/090

mailto:mudit.jain@rice.edu
mailto:rmh14@rice.edu
mailto:andrewjlong@rice.edu
mailto:mustafa.a.amin@rice.edu
https://arxiv.org/abs/2208.08391
https://doi.org/10.1088/1475-7516/2022/10/090


J
C
A
P
1
0
(
2
0
2
2
)
0
9
0

Contents

1 Introduction 1

2 CMB birefringence from an axion string-wall network 3

2.1 Stable string network 7
2.2 Collapsing string-wall network 7
2.3 Stable string-wall network 9

3 Measurements of cosmological birefringence with CMB data 11

4 Constraints from anisotropic CMB birefringence measurements 12

4.1 Stable string network 13
4.2 Collapsing string-wall network 14

5 Compatibility with isotropic birefringence measurements 15

6 Summary and conclusion 17

A Simulating loop crossing model 19

B Statistical estimator for anisotropic birefringence 20

C Alternative birefringence data 22

1 Introduction

Exquisite measurements of cosmic microwave background (CMB) temperature and polariza-
tion anisotropies carried out over the past few decades have revolutionized our understanding
of cosmology. The absence of B-mode polarization on large angular scales in the CMB has
already provided important insights about cosmological initial conditions [1]. Building on
these measurements, more subtle analyses of achromatic CMB polarization rotation (“CMB
birefringence”), has been a focus of a growing number of recent studies.

CMB birefringence provides an exciting window into physics beyond the Standard
Model. For example, hypothetical axion-like particles (ALPs) coupled to photons in the
following manner

Lint = ≠
1
4 ga““ a Fµ‹F̃

µ‹ (1.1)

can induce a birefringence signal. A photon propagating through a classical ALP field a(x) is
expected to experience a frequency-independent birefringence [2–5] as its plane of polarization
is rotated by an angle

– = ≠
ga““

2

⁄

C
dX

µ
ˆµa(X) . (1.2)

The integral runs over the photon’s worldline X
µ from the point of emission to detection.

Isotropic birefringence has been studied in the context of an approximately homogeneous
ALP field that may constitute the dark matter or dark energy [6–11], yielding information
about the ALP-photon coupling (ga““) and the mass of the ALP (ma).
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Figure 1. The types of string-wall networks seen by CMB photons travelling from the surface of
last-scattering to us. The possible types of networks seen by CMB photons depend on two parameters:
the domain wall number Ndw and the mass of the axion ma.

ALPs may also form a network of topological defects in the Universe, and leave a
distinctive imprint on the CMB polarization via cosmological birefringence [12–16]. Such a
defect network of strings and walls in the ALP field can exist after recombination, depending
on the value of ma, the number of degenerate vacua Ndw, and the symmetry breaking scale
fa. Even if the defect network is subdominant in energy density, it can lead to a potentially
detectable, anisotropic, and frequency-independent birefringence signal, which depends on
ma, Ndw, and the anomaly coe�cient A Ã ga““fa.

Getting a handle on ma, Ndw, fa, and A would be invaluable from a high energy physics
point of view. For example, a global shift symmetry in the axion field would require a vanish-
ing ALP mass ma = 0, whereas a nonzero mass would signal that this symmetry is broken.
The general expectation is that all global symmetries are explicitly broken due to quantum
gravitational e�ects in string theory [17–21]. On the other hand, some alternative construc-
tions of quantum gravity such as asymptotic safe gravity, may allow global symmetries to
be preserved [22]. Therefore, probing the mass of ALPs and the vacuum structure of their
e�ective potential would constitute a test of the underlying nature of quantum gravity [23].
Birefringence from the defect network probes new physics at the scale fa since the charges
of particles at this scale determine the anomaly coe�cient A. Even if fa ∫ TeV and these
particles cannot be probed directly at colliders, measurements of CMB birefringence could
provide valuable insight into new high energy physics.

For most of this work, we focus on exceptionally light ALPs, with masses that are
comparable to the Hubble parameter between recombination and today (though much higher
and lower masses are also discussed). This regime is relevant for the types of string-wall
networks that can be present after recombination (see figure 1). Such light masses arise
naturally in many string theory constructions via non-perturbative e�ects [24–29].

The birefringence signature of an ALP defect network was first studied in ref. [12].
Building on that work, some of us developed semi-analytic models to calculate the expected
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power spectrum of axion-defect-induced birefringence for di�erent ranges of ALP masses and
network dynamics [14]. Recently, ref. [15] used Planck (2015) data to investigate some of
these models (particularly those with stable string networks, orange blocks in figure 1) and
derive constraints on their parameters. Taking advantage of these prior studies, our goals for
the present paper are as follows:

• Provide the first constraints on collapsing ALP string-wall networks imposed by mea-
surements of anisotropic birefringence from CMB data.

• Clarify the role played by walls in string-wall networks in the context of birefringence.

• Test for axion-defect-induced birefringence using measurements of anisotropic bire-
fringence derived from data taken by various telescopes: Planck, ACTpol, SPTpol,
BICEP2/Keck Array, and Polarbear.

• Validate the results of our earlier semi-analytic work on anisotropic birefringence [14]
by ray-tracing through statistical ensembles of defect networks and calculating the
corresponding birefringence maps and power spectra.

• Assess the compatibility of recent measurements of isotropic birefringence with limits
on anisotropic birefringence assuming the source is an axion string-wall network.

In contrast with ref. [15], we also investigate scenarios with ma & 3H0 in this paper. Since
walls form when ma ≥ 3H, this necessitates including e�ects due to collapsing string-wall
networks or stable string-wall networks (blue, purple and green regions in figure 1). We find
this higher mass window particularly intriguing since the associated phenomenology has the
potential to provide a measurement of ma in the Ndw = 1 case. By contrast, astrophysical
observations such as probes of exotic stellar emission, are sensitive to arbitrarily light ALPs,
but such observations cannot constrain their masses.

The structure of the paper is as follows. In section 2 we review the loop-crossing
model and discuss how each of the di�erent string-wall network models are described by
this framework. In section 3 we briefly summarize the current status of CMB birefringence
measurements. In section 4 we report on the main results of our work: the non-observation
of birefringence implies constraints on a hyperlight axion-like particle. In section 5 we discuss
the implications of the measurements of isotropic birefringence for our models and analysis.
Finally, we summarize and conclude in section 6. The article is extended by three appendices.
Appendix A contains a detailed outline of the procedure that we have used to simulate
birefringence sky maps. Appendix B presents a statistical estimator that is often used to
extract birefringence measurements from CMB polarization data. Finally, appendix C reports
on searches for axion-defect-induced birefringence in additional data sets.

2 CMB birefringence from an axion string-wall network

The ALP field can form a topological defect network consisting of cosmic strings and domain
walls [30, 31].1 In the early Universe, if the ALP field’s global symmetry is broken after
inflation, then the associated phase transition fills the Universe with a network of cosmic
strings [33, 34]. The string network exhibits rich dynamics, such as the oscillation of curved
string segments under the influence of their own tension, the formation of string loops from

1See ref. [32] for an explicit discussion of cosmic strings arising in the String-Axiverse.

– 3 –



J
C
A
P
1
0
(
2
0
2
2
)
0
9
0

Ndw = 1

Ndw = 2

ma < 3H ma > 3H

Figure 2. An illustration of the axion string-wall network dynamics — black lines represent strings
and colored regions represent walls. Top row: for Ndw = 1, the string network survives from formation
until ma ƒ 3H(t). Thereafter, field gradients in the space between strings realign to form domain
walls, which pull on the strings causing the network to collapse in a few Hubble times. Bottom row:
for Ndw = 2, each string attaches to two domain walls, and the balance of forces from di�erent walls
prevents collapse and allows the network to survive after ma ƒ 3H.

the crossing and reconnection of string segments, and the evaporation of string loops by the
emission of ALPs [35–38]. If the Hubble parameter drops below the axion mass scale, 3H(t) ƒ

ma, the ALP field in the space between strings is released from Hubble drag, and the strings
become bounded by domain walls; see figure 2 for an illustration. The number Ndw of domain
walls attached to each string is a parameter of the theory, associated with explicit symmetry
breaking. For models with Ndw = 1 the string-wall network collapses into a bath of ALPs
within a few Hubble times, but for Ndw Ø 2 the network is stable due to the balance of forces.

To assess the implications of an ALP string-wall network for CMB birefringence, it is use-
ful to break up the parameter subspace (ma, Ndw) into four regions as illustrated in figure 1.
For ma . 3H0, the domain walls have not yet formed by today, which makes Ndw irrelevant,
and the birefringence signal arises from axion strings alone. For 3H0 . ma . 3Hcmb and
Ndw = 1, the domain walls form and cause the network to collapse between recombination
and today. This shuts o� the accumulation of birefringence at the time when 3H(t) ƒ ma.
For 3H0 . ma . 3Hcmb and Ndw Ø 2, the formation of domain walls converts the string
network into a stable string-wall network between recombination and today, whereas for
3Hcmb . ma and Ndw Ø 2, this conversion occurs before recombination.

When coupled to electromagnetism (1.1), ALP strings and walls induce a frequency-
independent birefringence signal. This signal is insensitive to the symmetry breaking scale
fa but directly probes the anomaly coe�cient A = ≠fifaga““/–em [12]. For instance, if
walls have not yet formed, then a photon crossing through a string loop ‘sees’ the axion field
pass through a full cycle �a =

s
C dX

µ
ˆµa(X) æ ±2fifa, and the resultant birefringence
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Figure 3. An illustration of axion-defect-induced birefringence. Left: a photon’s plane of polarization
rotates gradually as it approaches and passes through a string loop without domain walls. Right: for
a string loop bounded by two domain walls, the polarization axis rotates ‘abruptly’ upon crossing
each wall. In both scenarios, with and without domain walls, the net e�ect is the same rotation angle
– = ±A–em.

angle (1.2) is – æ ±A–em. The ± factor is the string’s winding number,2 and the arrow
indicates the limiting value as the end points of C are taken far away from the loop; see
figure 3 for an illustration. If domain walls are present in the network, the birefringence
e�ect is – = ±A–em/Ndw at each wall crossing, since the axion field changes “abruptly”
by �a = ±2fifa/Ndw. However, since each string connects to Ndw walls, the net e�ect is
insensitive to Ndw; we discuss this point further in section 2.3.

To calculate the birefringence signal from an axion string-wall network, we employ the
‘loop crossing model’ developed in refs. [12, 14]. The loop crossing model captures features
of the network’s rich structure and dynamics that are particularly relevant for birefringence.
In this framework the network is treated as a collection of circular, planar string loops
that are uniformly distributed throughout space and isotropically oriented. The density of
loops and its time dependence are controlled by the model parameters. The birefringence
is calculated by considering photons propagating through the network and associating an
angle – = ±A–em to a photon that traverses the disk bounded by a loop. As the photon
crosses through multiple loops with random winding numbers ±1, the accumulated phase-
shift grows like a random walk. For two points on the sky “̂1 and “̂2 separated by an opening
angle ◊o = arccos(“̂1 · “̂2), the correlation between the accumulated birefringence of CMB
photons from these points is taken to be [12]

È–(“̂1) –(“̂2)Í = (A–em)2
Nboth(◊o) , (2.1)

where Nboth(◊o) is the average number of loops that both photons traverse. The associated
angular power spectrum C

––
¸ is given by

C
––
¸ = 2fi

⁄
1

≠1

d(cos ◊o) P¸(cos ◊o) È–(“̂1)–(“̂2)Í , (2.2)

and ¸(¸ + 1)C––
¸ /2fi would be constant for scale-invariant anisotropic birefringence.

2Although strings can have winding numbers ±1, ±2, . . ., only the ±1 strings are the most stable. Through-
out our work, we only consider +1 or ≠1 winding numbers.
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Figure 4. An illustration of the loop-crossing model that we use to calculate the axion-defect-induced
birefringence signal. The string-wall network is modeled as a collection of randomly oriented circular
loops. The abundance and radius of the loops evolves in time, tracking the Hubble scale; parameter
›0 controls the number of loops per Hubble volume and parameter ’0 controls the loop size in Hubble
units. Photons crossing through a loop experience birefringence – = ±A –em, and multiple loop
crossings add incoherently like a random walk. The all-sky maps show the birefringence angle – that
has accumulated up to the stated redshift based on a typical realization of the defect network.

The model dependence enters through Nboth, which knows about the density of loops
in the network and their length distribution. It can be analytically approximated as [14]

Nboth(◊o) ¥

⁄ Œ

0

d’

⁄ z̃ú(’,◊o)

0

dz Q(’, z, 0) ‰(’, z) , (2.3)

where ’ is a dimensionless measure of loop length, z is redshift, Q(’, z, 0) is a kernel func-
tion, and ‰(’, z) contains the model dependence. Expressions for Q(’, z, 0) and z̃ú(’, ◊o) are
available in eqs. (3.25) and (3.34) of ref. [14]. For the networks that we study in the following
subsections, the defects’ size tracks the growing Hubble scale. Consequently birefringence on
small angular scales is imprinted by small loops at early times, whereas large-scale features
are imprinted at later times; see figure 4 for an illustration. The model function ‰(’, z) is nor-
malized such that it becomes time-independent for a string network in scaling ‰(’, z) = ‰(’),
and then the average string length per Hubble volume is ›0/H with constant ›0 =

s Œ
0

d’ ‰(’).
Recent numerical simulations have sparked some debate as to whether global string

networks (such as the ones we consider here) exhibit scaling [39–46] with constant ›0 or
whether they deviate from scaling [47–53] with a slowly-growing ›0. In our work, the CMB
birefringence signal only depends upon the string network evolution between recombination
and today, so a logarithmic change in ›0 would induce a 1 ≠ (log fa/Hcmb)/(log fa/H0) ≥

O(10%) e�ect on the birefringence signal, which can be neglected. If the network maintains
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scaling we expect ›0 ≥ O(few) and if there is a logarithmic growth during the long time
interval between formation and recombination, we expect ›0 ≥ log fa/Hcmb ≥ O(10); our
analysis captures both scenarios by setting a wide prior on ›0.

2.1 Stable string network

For su�ciently small ALP masses ma < 3H0 and arbitrary Ndw, domain walls have not yet
formed today, and the defect network is a stable string network. We consider the ‘uniform
loop size’ model of ref. [14]; the model function is

‰(’) = ›0 ”(’ ≠ ’0) , (2.4)

such that all loops in the network at time t have the same radius ’0/H(t), and ›0 is the
average number of loops per Hubble volume. Recent simulations [47–53] of axion string
networks identify a dominant population of large loops and infinite strings, which motivates
parameters: ›0 = O(1 ≠ 10) and ’0 = O(0.1 ≠ 1). The birefringence two-point correlation
function is approximately [14]

È–(“̂1) –(“̂2)Í ¥ A
2
›0 –

2

em

Y
__]

__[

’0

4

3
log

!
1 + z̃ú(’0, ◊o)

"
≠

’0

3

4
◊o < ◊t

1
3’0

log3
!
1 + z̃ú(’0, ◊o)

"
◊o > ◊t

, (2.5)

where ◊t ¥ 1. Note that there is a degeneracy between ›0 and A; only the combination A
2
›0

appears in the correlation function, and it controls the amplitude of the signal.
The expected birefringence signal is shown in figure 5 for ’0 = 1 and A

2
›0 = 1. The left

panel shows a simulated realization of the birefringence angle over the sky; see appendix A
for details of the simulation. Note the loop-like features that span a wide range of angular
scales. The right panel shows the corresponding angular power spectrum (2.2). For each
realization we calculate a C

––
¸ ; the blue curve shows their mean and the blue band shows

the 68% containment region. This band broadens toward low ¸ due to cosmic variance. Note
that the spectrum is almost scale invariant for ¸ . 100, which follows from the assumed
scale invariance of the string network. Exact scale invariance is broken by the angular size
of the string loops at recombination, which sets a minimal angular scale for the birefringence
anisotropies that corresponds to the peak at ¸p ≥ 0.1fi/(’0 ◊cmb) ¥ 40/’0. The right panel
also shows the analytic approximation in eq. (2.5) as the gray-dashed curve. Note that the
approximation agrees exceptionally well with the direct simulation, which partly validates
our use of eq. (2.5) for data fitting and parameter constraints in section 4.

2.2 Collapsing string-wall network

For ALP mass in the range 3H0 < ma < 3Hcmb with Ndw = 1, the string network devel-
ops domain walls and collapses between recombination and today. We consider the ‘string
network collapse’ model of [14], which has the model function

‰(’, z) = ›0 ”(’ ≠ ’0) �(z ≠ zc) . (2.6)

The dimensionless parameters ›0 and ’0 have the same interpretation as in section 2.1, and
zc is the redshift when 3H(t) = ma, which is given by

zc =

S

U
A

(ma/3H0)2
≠ ��

�m

B1/3

≠ 1

T

V , (2.7)
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Figure 5. The expected birefringence signal due to a string network that survives until today. We take
A

2
›0 = 1 and ’0 = 1. Left: a sample sky map of the birefringence angle –(n̂). Right: the angular power

spectrum of the birefringence angle C
––
¸ . The dashed black curve is our analytical approximation (2.5),

while the blue curve is the mean of a suite of 1000 simulations of the loop crossing model. The shaded
region shows the corresponding 68% central containment interval exhibiting cosmic variance.

in �CDM cosmology. The step function �(z ≠ zc) models a rapid formation of domain
walls at z = zc and an abrupt collapse of the string-wall network, which shuts o� any
further accumulation of birefringence.3 The birefringence two-point correlation function is
approximately given as [14]

È–(“̂1) –(“̂2)Í ¥ ›0

!
A –em

"2

Y
__________]

__________[

’0
4

log
3

1+(z
3/2
c +z̃

3/2
ú )

2/3

1+zc

4
◊o, ◊c < ◊t

’0
4

log
1
1 + (z3/2

c + z̃
3/2

ú )2/3

2

≠
1

3’0
log3(1 + zc) ≠

’2
0

12
◊o < ◊t < ◊c

1

3’0

1
log3(1 + (z3/2

c + z̃
3/2

ú )2/3)

≠ log3(1 + zc)
2

◊t < ◊o, ◊c

, (2.8)

where ◊c corresponds to the e�ective angular size of loops at the time of collapse.
We show the expected birefringence signal in figure 6 for A

2
›0 = 1, ’0 = 1, and three

choices of the ALP mass ma. Note that 3H0 ¥ 4.5 ◊ 10≠33 eV (for h = 0.7) and Hcmb ¥

1.0 ◊ 10≠29 eV (for zcmb = 1100, �m = 0.3, �� = 0.7, �r = 9 ◊ 10≠5). Raising the
ALP mass causes the network to collapse earlier, which suppresses power at large angular
scales, since larger loops would have formed later. The power spectrum displays a strong scale
dependence ¸(¸+1)C––

¸ Ã ¸
2 for ¸ . ¸c ≥ fi/◊c(ma), where ◊c(ma) corresponds to the angular

size of loops at the time of network collapse [14]. The power spectrum calculations also show
good agreement between the direct numerical simulation and the analytic approximation in
eq. (2.8). An O(1) discrepancy develops at large ma for high ¸ & 100; for the purpose of data
analysis, we neglect this mismatch and use the analytic calculation (dashed curves).

3After the string-wall network collapses, its energy is transferred to a population of non-relativistic ALPs
(a subdominant component of the dark matter), which continue to induce birefringence. However, this con-
tribution to the total birefringence is suppressed at low ¸ by ≥ 10≠3

H0/ma for ma & 100H0, making it
negligible [14].
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Figure 6. Same as figure 5 but for a collapsing string-wall network (Ndw = 1). Several curves for
di�erent axion mass ma are shown, corresponding to di�erent collapse redshifts zc given by eq. (2.7).
For each ma, we also show the corresponding all-sky birefringence map on the left. Increasing ma

causes the network to collapse earlier, and suppresses power at small ¸ (large angular scales).

2.3 Stable string-wall network

For Ndw Ø 2 the formation of domain walls at the time when 3H(t) ƒ ma leads to a
stable string-wall defect network. The resultant CMB birefringence signal is expected to be
qualitatively unchanged from the stable string network without walls [12], which we discussed
already in section 2.1. We argue this point in two steps: first, we argue that the realignment
of smooth axion field gradients around strings into sharp gradients across walls does not
change the integrated gradient ‘seen’ by a photon propagating through the network; and
second, we argue that the abundance of walls in the network follows the same scaling as the
abundance of string loops in the wall-free network.

Since the birefringence signal is proportional to the integrated axion field gradient (1.2),
it is necessary to understand how this quantity di�ers whether or not walls are present in
the network. For a network of axion strings without domain walls, the axion field’s gradient
varies smoothly throughout space. We illustrate this behavior in figure 7 by showing an axion
field configuration for a collection of parallel long strings (vortices in two dimensions). For
instance, along the path from point A to point B the axion field passes through a full cycle
and the integrated field gradient is �a = 2fifa. If the same collection of strings were each
connected to Ndw = 3 domain walls, then the field gradients would be localized in space in
order to minimize the energy of the configuration. Nevertheless, on the path from A to B

the integrated field gradient would remain equal to �a = 2fifa; each wall contributes only
2fifa/3, but there are 3 walls along the path. More generally, the presence or absence of
walls for a given collection of vortices will not impact the integrated phase gradient modulo
sub-2fi variation in the field value at the endpoints.

The birefringence signal also depends upon the abundance of domain walls in the string-
wall network. Here we argue that for a network in scaling, the number density of domain
walls tracks the number density of string loops, which evolves in the same way whether or
not there are walls. Since every domain wall ends on a string and each string has Ndw
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Figure 7. An illustration of the axion field a/fa œ [0, 2fi) in the vicinity of several parallel long strings
(vortices) with and without walls. Left panel: color legend indicating axion field values on a circle.
Middle panel: the field around a long string in cylindrical coordinates obeys Òa = ±◊̂/fl, and several
strings are superimposed to form the middle image. Right panel: long strings are connected to Ndw = 3
domain walls corresponding to sharp field gradients between minima at a/fa = 0, 2fi/3, and 4fi/3.

domain walls then the number densities of walls and strings are related by ndw ¥ Ndwns.4
Numerical simulations [54–56] of axion string-wall networks indicate that the strings reach a
scaling regime in which the number density ns(t) evolves as if the walls were absent. Thus
we conclude that the density of walls in the string-wall network tracks the density of strings
in the wall-free network.

It is worth noting that these arguments apply equally well for models with ma > 3Hcmb

that form walls before recombination and for those with 3H0 < ma < 3Hcmb that form
walls after recombination. In terms of the parameter space shown in figure 1, the CMB
birefringence signal will be qualitatively unchanged for “string network,” “stringæstring-
wall network,” and “string-wall network.”

The energy density in the stable string-wall network is stored mostly in the rest mass of
the domain walls, which have tension ‡ ¥ 8maf

2
a /N

2

dw
. Since the wall’s energy redshifts more

slowly than strings, the stable string-wall network could present a problem for cosmological
observables. If ›dw is the average number of walls per Hubble volume today, then the string-
wall network’s energy density is approximately ›dw‡H0. A weak cosmological constraint is
obtained by requiring this energy to be small compared to the critical density today 3m

2

pl
H

2
0 ,

which implies:

›dw‡H0

3m
2

pl
H

2
0

≥

3
›dw

Ndw/2

43
Ndw

2

4≠13
ma

10≠20 eV

43
fa

1012 GeV

42

π 1 . (2.9)

It is worth emphasizing that a su�ciently small decay constant fa allows a larger axion mass
ma while still satisfying the overclosure condition and observational constraints on the axion-

4Walls may also close on themselves forming bubbles. A photon passing through one of these configurations
does not experience a net birefringence since the contributions from the two wall crossings cancel. On the
other hand, some component of the birefringence signal arises from photons emitted within a bubble and
detected at a point outside (or vice versa) [16]. Assuming that bubbles are not nested, this component of
the birefringence signal may be as large as |–| = A–em/Ndw. However, for the string-wall networks that we
consider, the e�ect of multiple wall crossings (loop crossing) allows |–| to accumulate to values that are larger
than A–em, which is the dominant component.
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photon coupling (non-minimal models such as clockwork axion [57, 58] may help to further
open this parameter space). For instance, if fa ≥ 1010 GeV (allowed in type IIB String Theory
constructions in the large volume scenario [59, 60]), then the upper bound on ma can even be
as large as ≥ 10≠16 eV with ›dw/Ndw ≥ O(1). Axion masses above ma & 10≠21 eV are espe-
cially interesting, since they avoid the Lyman-– bound on ultralight dark matter [61, 62]. This
scenario in which the ultralight ALP makes up a significant fraction of dark matter and leads
to a birefringence signal in the CMB merits closer study, which we do not pursue further here.

3 Measurements of cosmological birefringence with CMB data

Cosmological birefringence is expected to leave a distinctive imprint on the polarization
anisotropies in the cosmic microwave background radiation. At a given point on the sky, a
rotation in the CMB’s plane of polarization cannot be measured directly, since the initial
orientation on the surface of last scattering is not known. Nevertheless, the polarization pat-
tern across the sky carries information about cosmological birefringence. CMB polarization
maps may be decomposed into parity-even E-mode and parity-odd B-mode type polarization
patterns [63–65]. Thompson scattering at the surface of last scattering generates E-mode
polarization, whereas B-mode polarization requires parity-violating sources, such as gravita-
tional wave radiation [66]. Cosmological birefringence partially converts E-mode polarization
into B-mode polarization (and vice versa). This induces a B-mode signal if none was present
otherwise and leads to correlations among the temperature and polarization patterns [67–69].

In order to extract information about birefringence from CMB temperature and polar-
ization data, it is customary to work with a set of statistical quantities that provide unbiased
estimators of the birefringence [67–69]. These –-estimators are constructed from pairs of
CMB power spectra (possibly also correlating across di�erent frequency bins). The power
spectrum of the –-estimators are equal to the birefringence angular power spectrum C

––
¸

up to a noise term. In this way, the measured EE, BB, EB, TE, and TB power spectra
are used to reconstruct the birefringence power spectrum. For pedagogical purposes, in ap-
pendix B we define the –-estimators and demonstrate the reconstruction procedure for mock
polarization data.

The data from various CMB telescopes have been analyzed to search for evidence of
cosmological birefringence. Assuming that the birefringence e�ect is isotropic (same rotation
angle – at every point on the sky), several studies have recently reported evidence for nonzero
birefringence [70–73], including ref. [73] that reports an angle 0.342¶+0.094

¶
≠0.091¶ using data from

Planck and WMAP. On the other hand, for anisotropic birefringence that is statistically
isotropic, data from several of the current-generation CMB telescopes has been used to ex-
tract a measurement of the birefringence power spectrum. The results of these studies are
summarized in figure 8. In particular, note that Planck data has been analyzed by two dif-
ferent groups using di�erent –-estimators, which partly explains the scatter in their results.
These various measurements in figure 8 indicate an absence of evidence for anisotropic cosmo-
logical birefringence at the level of ≥ 0.1¶ or greater on large angular scales. Next-generation
surveys, such as COrE [74], LiteBIRD [75], Simons Observatory [76], CMB Stage IV [77],
and PICO [78], expect to deliver measurements of CMB polarization with unprecedented pre-
cision. These observations will prove to be a powerful probe of cosmological birefringence,
improving constraints by 2 to 3 additional orders of magnitude [79], and potentially uncover-
ing evidence for birefringence from axion string-wall networks. For the time being, the data
shown in figure 8 imposes constraints on the models, which we quantify in the next section.
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Figure 8. Measurements of anisotropic cosmological birefringence with data from various CMB
telescopes: Planck (2018) [80] (see also ref. [81]), Planck (2015) [82], ACTpol [83], SPTpol [84],
BICEP2/Keck Array [85], and Polarbear [86]. Note the di�erent scales for ¸ < 30 and ¸ > 30.
We do not show the measurements from Planck (2015) for ¸ > 30 due to the large error bars.
Additional data is available at higher multipoles, which is also not shown in this summary figure.
These measurements are consistent with the absence of anisotropic cosmological birefringence.

4 Constraints from anisotropic CMB birefringence measurements

In this section we outline the Bayesian inference method have used to search for evidence of
birefringence in CMB data. For each dataset we approximate the likelihood as a Gaussian
and assume vanishing covariance across multipoles (data is available for each multipole up
to ¸ = 30, whereas data above ¸ = 30 is binned). We take the log-likelihood to be

ln L
!
C

obs

¸ |◊
"

=
ÿ

¸

≠
1

2‡
2

¸

Ë
C

obs

¸ ≠ C
th

¸ (◊)
È2

, (4.1)

where ◊ represents the model parameters of the theory (listed in table 1 along with the
assumed priors), and ‡¸ are the uncertainty in the observed values C

obs

¸ . We take them to be
the error bars in the published birefringence power spectrum plots, which are reproduced in
figure 8. To obtain the posterior for our likelihood and priors, we perform a Markov Chain
Monte Carlo (MCMC) simulation using the Metropolis algorithm implemented in the Python
package PyMC [87]. For all data sets, we ran 10 chains in parallel for at least 5, 000 steps (with
some up to even 50, 000 steps depending upon the data set).5 We assess their convergence by
manually inspecting their trace plots for good mixing, and also ensuring that the Gelman-
Rubin statistic R̂ [88], for each model parameter, is close to 1. For each parameter X œ ◊

(e.g. X = A
2
›0), our Markov chains satisfy |R̂X ≠ 1| < 0.04.

5PyMC requires the user to specify the number of tuning steps, used to optimize the sampling algorithm.
We used anywhere between 1000≠2500 tuning steps (for di�erent data sets), which were eventually discarded
to get all of our final results.
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stable strings collapsing string-wall
amplitude: A

2
›0 ≥ U(≠Œ, Œ) A

2
›0 ≥ U(≠Œ, Œ)

loop length: ’0 ≥ U(0.1, 1.0) ’0 ≥ U(0.1, 1.0)
axion mass: N/A log10

!ma
eV

"
≥ U(≠32.4, ≠28.0)

DW number: N/A Ndw = 1

Table 1. The two string-wall network models that we study, their model parameters, and the prior
ranges used for MCMC sampling. The function U(a, b) denotes a uniform probability density on the
interval from a to b and a vanishing probability outside this interval.

4.1 Stable string network

We first study a network of stable hyperlight axion strings. The birefringence power spectrum
C

––
¸ is calculated using the procedure described in section 2.1. It is a function of the ampli-

tude parameter A
2
›0 and the loop length parameter ’0, which have the priors shown in table 1.

We allow the amplitude parameter A
2
›0 to take unphysical, negative values in order to assess

the presence of systematic bias in the data; we only use positive values to derive constraints.
The result of our MCMC sampling is summarized in figure 9, which shows the posterior

probability distribution over the amplitude parameter A
2
›0 and the loop length parameter

’0. This figure illustrates the constraints from Planck (2018) (1 Æ ¸ Æ 24) and SPTpol

(75 Æ ¸ Æ 525); constraints from other data sets can be found in appendix C. The joint
posterior distribution shows a degeneracy direction where A

2
›0 = 0, since C

––
¸ becomes

independent of ’0 when A
2
›0 = 0. Similarly, the joint posterior broadens toward smaller ’0,

since ’0 = 0 is another degeneracy direction; our prior enforces 0.1 Æ ’0 (see discussion in
section 2.1), and the degeneracy at ’0 = 0 is not seen on the plot. The SPTpol data has
a very slight preference for A

2
›0 < 0 due to a pair of downward fluctuations in the data at

¸ = 120 and 160, whereas the Planck (2018) data has a wider tail toward A
2
›0 > 0 due to

a few upward fluctuations at ¸ = 2, 5, and 6. Note that the Planck (2018) and SPTpol

measurements have comparable constraining power, even though the SPTpol measurements
are almost two orders of magnitude more precise. The signal C

––
¸ falls o� with increasing ¸,

while the precision of the data improves at a comparable rate up to about ¸ ≥ 200. Thus,
similar limits are obtained from Planck at low ¸ and SPTpol at high ¸ (and also other
data sets, with the exception of Polarbear; see appendix C). Furthermore, since the signal
spectrum drops o� more quickly than the measurements’ precision beyond ¸ & 200, we do
not expect such high ¸ data points to contribute significantly towards our results.

Using the marginalized posterior distribution over the amplitude parameter A
2
›0, we de-

rive 95% confidence level upper limits for both data sets. In doing so, we discard the unphysi-
cal parameter space with A

2
›0 < 0, and we enforce A

2
›0 Ø 0. Planck (2018) gives A

2
›0 < 13

(95% CL) and SPTpol gives A
2
›0 < 3.7 (95% CL). The SPTpol limit is tighter, partly be-

cause the posterior distribution is slightly skewed toward negative amplitudes, and we take
only A

2
›0 > 0 to derive the limits. Since we expect A = O(1) from UV model building and

›0 = O(1≠10) from string network simulations, these limits are already strongly constraining.
These results are in good agreement with a previous study [15] that calculated the

posterior probability distribution over A
2
›0 and ’0 and derived constraints on the amplitude

A
2
›0 using Planck (2015) data [82]. See appendix C for our analysis of the Planck (2015)

data. Ref. [15] also presents results for a string network model with a range of loops sizes [14],
which we do not repeat here. Instead, we provide birefringence constraints on a collapsing
string-wall network below.
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Figure 9. For the stable string network we show joint posteriors obtained from our MCMC simula-
tions using anisotropic birefringence measurements derived from Planck (2018) [80] and SPTpol [84]
observations. Light and dark contours show 95% and 68% CL regions respectively.

4.2 Collapsing string-wall network

We now study an axion string-wall network that collapses between recombination and today.
We calculate the birefringence power spectrum C

––
¸ by following the procedure described in

section 2.2. Table 1 shows our priors on the three model parameters: the amplitude parameter
A

2
›0, the loop length parameter ’0, and the axion mass parameter ma that controls when

the network collapses; we fix Ndw = 1. For ma . 10≠32.4 eV the string network has not yet
collapsed in the universe today, and we revert back to the analysis of section 4.1, whereas
raising ma causes the network to collapse earlier.

Our results are summarized in figure 10, which shows the marginalized posterior proba-
bility distribution over the model parameters. The degeneracy direction at A

2
›0 = 0 is con-

sistent with the discussion in section 4.1. The data prefers larger values of the axion mass ma,
and the marginalized posterior is peaked at the cuto� imposed by the prior ma < 10≠28 eV.
This is because the data is consistent with the absence of cosmological birefringence, and
raising ma suppresses power at large angular scales, as seen in figure 6.

Using the marginalized posterior distributions we calculate the 95% CL upper limits
on the amplitude parameter, which are found to be A

2
›0 < 18,000 for Planck (2018) and

A
2
›0 < 390 for SPTpol. In comparison with our study of the stable string network from

section 4.1, we see that the amplitude limits are weaker here. This is partially because
raising ma suppresses power at low ¸ and accommodates larger A

2
›0. We also note that

the Planck (2018) limit is weaker than the SPTpol limit here by a factor of ≥ 100. The
strongly scale-dependent power spectrum has C

––
¸ Ã ¸

0 at large angular scales, which sup-
presses the signal in the range of multipoles from 1 Æ ¸ Æ 24 at which the Planck (2018)
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Figure 10. Joint posteriors for the collapsing string-wall network. Data and contour shading is the
same as figure 9.

birefringence measurement is available, leading to a weaker limit on the amplitude A
2
›0 as

compared with SPTpol. This observation emphasizes the complementarity between all-sky
and ground-based measurements of CMB polarization as probes of cosmological birefringence.
A detection of anisotropic birefringence on small angular scales (¸ ≥ 100) without a detec-
tion on large angular scales (¸ . 10) would point to a strongly scale-dependent source, and
provide evidence for cosmological birefringence from a collapsing axion string-wall network.

5 Compatibility with isotropic birefringence measurements

Aside from searches for anisotropic birefringence, various groups [70–73] have recently ana-
lyzed all-sky polarization data to search for evidence of isotropic birefringence. In particular,
the authors of ref. [73] report a measurement of – = ≠0.342¶+0.094

¶
≠0.091¶ (68% CL) using data from

Planck and WMAP.6 These analyses provide strong evidence for isotropic birefringence in the
CMB at more than 99.9% confidence. Here we address the implications of this measurement
for birefringence from axion string-wall networks.

The axion string-wall network produces an anisotropic birefringence signal that is sta-
tistically isotropic. A general birefringence map can be decomposed onto spherical harmonics
as –(n̂) =

q
¸,m –¸mY¸m(n̂), and we are interested in the monopole –00, which corresponds to

isotropic birefringence. Averaging –00 over an ensemble of universes gives zero, since positive
and negative fluctuations are equally likely. Nevertheless, every individual Universe has a
nonzero –00. To illustrate this point, we simulate 1000 realizations of the birefringence map

6We have adopted the sign convention where a positive birefringence angle induces a counter clockwise
rotation in the plane of polarization. Our convention is opposite to the one used in ref. [73], and we have
added a minus sign in reporting their measurement.
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Figure 11. Distribution over the monopole –00 of the birefringence map –(n̂). To generate the gray
histogram we simulate 1000 sky maps using the loop crossing model with stable strings for parameters
A = 1, ›0 = 0.5, A

2
›0 = 0.5, and ’0 = 1. These parameters are chosen to maximize the “Isotropic

BF + SPTpol” distribution shown on figure 12. We approximate the simulated distribution by a
normal distribution (black-dashed curve) with zero mean and variance C

––
0 = (0.23¶)2 calculated from

the model. The orange curve shows the measurement of isotropic birefringence from ref. [73], which
we model as a normal distribution with mean

Ô
4fi ◊ (≠0.342¶) = ≠1.21¶ and standard deviation

Ô
4fi ◊ (0.0925¶) = 0.328¶.

for the stable string network model, and plot the distribution over the monopole in figure 11.
As expected, the mean is close to zero and the variance is approximately C

––
0 that we cal-

culate from theory. The distribution is clearly non-Gaussian, displaying a tighter central
distribution, and moreover the circular features in the sky map imply correlations across
modes. Nevertheless, a normal distribution with zero mean provides a good approximation.
We intend to investigate the non-Gaussian behavior further in future work.

We evaluate the likelihood for isotropic birefringence as follows. We treat –00 = S + N

as the sum of uncorrelated signal and noise terms. The signal is modeled as a Gaussian
random variable with zero mean and variance C

––
0 that we calculate in the loop crossing

model. The slightly non-Gaussian nature of the –00 distribution is neglected for this analysis.
The noise is modeled as a Gaussian random variable with zero mean and standard deviation
‡0 =

Ô
4fi◊0.0925¶; this corresponds to the average uncertainty in the isotropic birefringence

measurement from ref. [73], and the factor of
Ô

4fi accounts for the normalization of the
spherical harmonics.7 We extend our log-likelihood (4.1) to include the ¸ = 0 mode in this
way, assuming it is uncorrelated with the other multipoles, and we evaluate it at –00 =
Ô

4fi ◊ (≠0.342¶). Note that the sign of –00 does not provide any constraint on the model;
the monopole –00 follows a symmetric distribution with zero mean.

We repeat the MCMC analysis and present the results in figure 12. This figure shows the
marginalized posterior distribution over the amplitude parameter A

2
›0 for the stable string

network model. First, taking only the anisotropic birefringence measurements from SPTpol,
this data is consistent with the absence of an ALP string network, implying A

2
›0 < 3.7 (95%

CL), as we also discuss in section 4.1. Second, the isotropic birefringence measurement alone
strongly favors the presence of an ALP string network; the posterior is broad, peaking at
A

2
›0 ¥ 40 ≠ 50 and extending to much larger values (not shown). Third, we show the fit to

7If –(n̂) =
q

¸,m
–¸mY¸m(n̂) with Y00 = 1/

Ô
4fi then the sky-averaged isotropic birefringence angle is

–̄ =
s

d2n̂ –(n̂)/4fi = –00/
Ô

4fi. We are grateful to Eiichiro Komatsu for pointing out this distinction.
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Figure 12. Assessing the compatibility of isotropic and anisotropic birefringence measurements. We
show the marginalized posterior over the amplitude parameter A

2
›0 for the stable string network

model. The isotropic birefringence measurement favors a nonzero amplitude to fit the monopole –00
(orange), whereas the anisotropic measurements using SPTpol data constrain the amplitude around
zero (blue). The small overlap of the two distributions illustrates the di�culty in accommodating
both measurements from axion-defect-induced birefringence. A joint likelihood combining both mea-
surements (red) favors A

2
›0 = 0.5 ± 1.0 at 68% CL.

the joint likelihood, which leads to the measurement A
2
›0 = 0.5 ± 1.0 (68% CL).

The anisotropic and isotropic birefringence measurements are di�cult to reconcile in
the context of axion-defect-induced birefringence; this is one of the key results of our work.
The isotropic birefringence measurement favors a large amplitude parameter A

2
›0, which is

in conflict with the anisotropic birefringence measurements. There is only a small overlap
of the posterior distributions in the tail regions. Although we present results for SPTpol

here, the same conclusions can be drawn from the Planck (2018) measurement of anisotropic
birefringence (or other data sets) instead; however, the wider tail of the Planck posterior
distribution (see figure 9) leads to a smaller tension.

We have also performed a similar analysis for the collapsing string-wall network model.
Since larger ma suppresses the birefringence signal at low ¸, an even larger amplitude A

2
›0

is required to accommodate the isotropic birefringence measurement at ¸ = 0. However, this
large amplitude comes into sharper tension with the anisotropic birefringence measurements
at ¸ > 0.

6 Summary and conclusion

In this work we have studied models of axion-like particles that form a network of cosmic
strings and domain walls. We distinguish four model classes in the parameter space spanned
by the axion mass ma and the domain wall number Ndw: (1) a stable string network that
survives in the universe today, (2) a string network that forms domain walls and collapses
between recombination and today, (3) a string network that forms stable domain walls be-
tween recombination and today, and (4) a string network that forms stable domain walls
before recombination.

We calculate the cosmological birefringence signal that these axion string-wall networks
imprint on the polarization pattern of CMB radiation via the usual coupling of the axion-like
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particles to electromagnetism. Using measurements of anisotropic birefringence derived from
polarization data taken by various CMB telescopes, we assess the extent to which they are
compatible with axion-defect-induced birefringence. All of the measurements are consistent
with the absence of birefringence from axion string-wall networks, and we derive constraints
on the amplitude of the signal. Our main results are:

• For hyperlight ALP masses ma . 3H0 ƒ 4 ◊ 10≠33 eV, we find that SPTpol measure-
ments constrain A

2
›0 < 3.7 at 95% CL (assuming A

2
›0 Ø 0) where A = ≠fifaga““/–em

parametrizes the strength of the axion-photon coupling, and ›0 parametrizes the average
total string length in a Hubble volume in units of the Hubble length. In UV exten-
sions of this e�ective theory, the parameter A corresponds to an anomaly coe�cient,
which is model dependent but typically equals an O(1) rational number. The precise
expected value of ›0 is a matter of some debate, but broadly speaking ›0 = O(1 ≠ 10).
For instance if ›0 = 30 then the constraint implies A . 1/4. Thus, we conclude
that SPTpol measurements are already placing meaningful constraints on hyperlight
axion-like particles and their UV embedding.

• For ALP masses in the range between 3H0 and 3Hcmb ƒ 1 ◊ 10≠28 eV and for
Ndw = 1, the anisotropic birefringence signal is predicted to be strongly scale de-
pendent ¸(¸ + 1)C––

¸ Ã ¸
2 for small ¸ (i.e. on large angular scales the birefringence

angles are uncorrelated). This is because the ALP string network develops unstable
domain walls when 3H ¥ ma, causing the string-wall network to collapse and shutting
o� the source of large-scale birefringence. We find that current measurements of CMB
polarization provide no evidence for this signal, which allows us to derive constraints
on the axion mass ma and signal amplitude A

2
›0. Looking forward to future surveys,

this distinctive scale-dependent signal provides a compelling target, since its detection
would furnish a measurement of the axion mass scale in the range 3H0 . ma . 3Hcmb.
It may also be accessible to redshift-dependent probes of birefringence [89].

• For larger domain wall numbers Ndw Ø 2, the formation of domain walls when 3H ¥ ma

leads to a stable string-wall defect network. We argue that the expected birefringence
signal is qualitatively equivalent to the case of a stable string network with ma . 3H0.
Thus, we do not perform a separate constraint analysis of these stable string-wall
networks, but rather expect out constraints from the stable string network discussed
in section 4.1 to carry over. It is interesting that the stable string-wall network can be
consistent with overclosure constraints (depending on fa and Ndw) even for ALP masses
as large as ma ≥ 10≠20 eV, which is the usual range of ultralight bosonic dark matter.
This observation provides motivation to study the connections between ultralight ALP
dark matter, astrophysical constraints, and cosmological signatures.

• For hyperlight ALP masses, we find that the measurements of anisotropic birefringence
derived from ground-based telescopes such as ACTpol and SPTpol, currently provide
the strongest constraints on axion string-wall networks. A plausible explanation is as
follows. The birefringence power spectrum ¸(¸ + 1)C––

¸ peaks around ¸p ≥ 40/’0 before
decreasing again at larger multipoles. This translates to C

––
¸p

≥ (A2
›0 ’

2
0 ) (4 ◊ 10≠5).

Since the current ACTpol and SPTpol measurements have data points around this
region with strongest precision (‡¸ . 10≠4 deg2), they end up providing the most
stringent constraints.
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• Among the various data sets that we consider, we find that anisotropic birefringence
measurements derived from SPTpol data yield the strongest constraints on axion-
defect-induced birefringence. This is partly because of two downward fluctuating data
points at ¸ = 120 and ¸ = 160, which skew the amplitude distribution towards negative
values, leading to a tighter 95% CL upper limit on A

2
›0 assuming A

2
›0 Ø 0.

• We assess the extent to which recent measurements of a nonzero isotropic birefringence
are consistent with constraints on anisotropic birefringence in the context of an axion-
defect-induced signal. We find that it is somewhat di�cult for a stable string network
(or stable string-wall network) to induce a birefringence signal that is compatible with
the isotropic measurement and the lack of an anisotropic signal. The situation is further
exacerbated for the collapsing string-wall network models due to additional reduced
power on large angular scales.

Finally, let us remark on potential directions for extending the computational framework
in which our results have been derived. The rich dynamics of a topological defect network
present a challenge toward deriving phenomenological observables. In the work presented
here, we have used the loop-crossing model (see section 2) to reduce the complex network
down to a manageable number of degrees of freedom with which we can calculate a birefrin-
gence signal. The loop crossing model does not capture certain features that an axion-string
wall network is expected to exhibit: the finite duration of domain wall formation and net-
work collapse around 3H ≥ ma (for Ndw = 1), or transition into a new scaling solution (for
Ndw Ø 2); and the gradual change in the axion field nearby to a string loop. This last feature
is expected to impact the low-¸ power spectrum, since the axion field does not change by the
full asymptotic amount of ≥ 2fifa, leading to only – < A–em during the last few e-foldings.
Or in the case of stable walls, there aren’t ≥ Ndw wall crossings in these last few e-foldings
before the CMB light reaches us in the present. It is important to understand how each
of these features a�ects the birefringence signal in order to derive robust limits on axion
string-wall networks from next-generation surveys.
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A Simulating loop crossing model

Here we present a step-by-step procedure of how we simulate the loop crossing model to
generate birefringence maps using HEALpix [90].

1. Initialize HEALPix map. We begin by making a HEALpix map with pixel param-
eter Nside = 2048, and initialize a null array of length Npix = 12N

2

side
.
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2. Choose time steps. For time evolution, we pick redshifts in logarithmic intervals
from recombination zcmb = 1100 till the present z = 0, in the following manner

1 + zn = (1 + zcmb)
31 + zfinal

1 + zcmb

4(n≠X)/Nsteps
. (A.1)

Here, the index n goes from 1 to Nsteps = 28, and X is a random variable sampled
uniformly between ≠1/2 and 1/2 at the start of the simulation (subsequent steps then
use the same value). This ensures each simulation samples di�erent redshift steps over
many simulations. This reproduces a continuous evolution, when averaged over a large
ensemble of simulations.

3. Run simulation. For each redshift step zn:

3.1. We populate the CMB light cone (from zn≠1 to zn) with circular loops, all having
the same dimensionless radius ’. The number of loops is determined by calculating
the average number of loops N and randomly selecting each pixel to be the center
of a loop with probability N/Npix. Assuming the network is in scaling, the average
number density is

n = fl

E
= ›0H

3

2fi’
. (A.2)

Here fl = ›0µH
2 is the energy density of the scaling network, E = µ2fi’0H

≠1 is
the energy of a circular string loop with radius ’0H

≠1 and tension µ. The average
number of loops on the CMB light cone from zn≠1 to zn is therefore

N =
⁄

dVlightcone (number density)

=
⁄ zn≠1

zn

dz
›0(aH)3

2fi’0

4fis(z)2
H

≠1(z) .

(A.3)

Here s(z) is the comoving distance from an observer on Earth to the centers of
loops through which CMB photons crossed at redshift z.

3.2. Out of Npix, we randomly select NT pixels on the sphere for loop centers. Every
loop is given a random orientation and assigned a random winding number w

(equal to +1 or ≠1 with equal probability). For uniformly oriented loops, cos � ≥

U(0, 1) and � ≥ U(0, 2fi), where (�, �) are polar and azimuthal angles measured
relative to the normal vector of the loop’s center pixel.

3.3. After populating the CMB light cone with NT loops, for every loop we find the
region/pixels bounded by its spherical projection onto the sphere. (The function
healpy.query_polygon() was used for this purpose). All the pixels in the region
are assigned the value wA–em where w is the winding number of the loop.

3.4. We repeat this procedure until n = Nsteps, and perform many such simulations for
ensemble averaging.

B Statistical estimator for anisotropic birefringence

This appendix includes supplementary material regarding: the e�ect of birefringence on
the CMB, a statistical estimator that may be used to measure birefringence from CMB
polarization data, and a demonstration of how the estimator works using simulated data.
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The e�ect of birefringence on the CMB is most easily understood in position space
where n̂ is a unit vector at some point on the sky. If T̃ (n̂), Q̃(n̂), and Ũ(n̂) denote the
would-be CMB temperature and polarization sky maps in the absence of birefringence, then
an anisotropic birefringence angle –(n̂) mixes Q- and U -mode polarization [91], giving rise
to the observable sky maps

T = T̃ (B.1a)
Q = Q̃ cos 2– ≠ Ũ sin 2– (B.1b)
U = Q̃ sin 2– + Ũ cos 2– . (B.1c)

If T̃ , Q̃, and Ũ were known, then eq. (B.1) would allow – to be extracted from measurements
of T , Q, and U . Of course, the would-be temperature and polarization anisotropies of
the CMB cannot be calculated (nor measured), but the statistical properties of these fields
are calculable. This observation motivates one to define a birefringence estimator, which
reproduces the true birefringence as a statistical average.

Several statistical estimators of anisotropic birefringence have been proposed in the
literature. Here we discuss a particular set of estimators that have been used in recent
CMB data analyses. These are similar to the quadratic estimators proposed by Hu and
Okamoto [92] for studies of CMB weak lensing, building on which the authors of refs. [67–69]
constructed another set of estimators for studies of CMB birefringence.

Following the notation of ref. [15], the birefringence estimators in the flat-sky approxi-
mation [68] can be written as

–̂XY (L) = ⁄XY (L)
⁄ d2

l1

(2fi)2
X(l1)Y ú(l2)FXY (l1, l2)

--
l2=l1≠L (B.2)

where X and Y stand for temperature T , parity-even E-mode polarization, or parity-odd B-
mode polarization. In fact there are five di�erent birefringence estimators corresponding to
the choice of XY œ {EE, BB, TE, TB, EB} (since XY = TT is trivial). In the flat-sky ap-
proximation, L, l1, l2 œ R2 are the analogs of the spherical harmonic integer indices (¸, m), and
eq. (B.2) assumes L ”= 0. The estimator integrates over X(l) and Y (l), which represent the
observed temperature or polarization maps, weighting them by the mode coupling coe�cients

FXY (l1, l2) =

Y
_]

_[

fXY (l1,l2)

(1+”XY )CXX
l1

CY Y
l2

, XY ”= TE

CY Y
l1

CXX
l2

fXY (l1,l2)≠CXY
l1

CXY
l2

fXY (l2,l1)

CXX
l1

CY Y
l2

CXX
l2

CY Y
l1

≠(CXY
l1

CXY
l2

)2 , XY = TE

. (B.3)

Here C
XY
¸ are the predicted power spectra (or cross-correlation spectra if X ”= Y ), ”XY is

the Kronecker delta, and the response functions fXY (l1, l2) are given in table 2. Finally the
normalization coe�cient

[⁄XY (L)]≠1 =
⁄ d2

l1

(2fi)2
fXY (l1, l2)FXY (l1, l2)

--
l2=L≠l1

(B.4)

ensures that –̂XY (L) is an unbiased estimator.
We seek to demonstrate how the estimator (B.2) reconstructs a known birefringence

map –(n̂) from an ensemble of simulated temperature and polarization maps. This is done
with the following procedure.
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XY fXY (l1, l2)
TT 0
TE ≠2C̃

T E
l1 sin 2Ï12

TB 2C̃
T E
l1 cos 2Ï12

EE ≠2
!
C̃

EE
l1 ≠ C̃

EE
l2

"
sin 2Ï12

EB 2
!
C̃

EE
l1 ≠ C̃

BB
l2

"
cos 2Ï12

BB ≠2
!
C̃

BB
l1 ≠ C̃

BB
l2

"
sin 2Ï12

Table 2. Response functions. Here Ïij = Ïli ≠ Ïlj where cos Ïl © n̂ · l̂. In symlens cos 2Ï12 is
represented symbolically by symlens.cos2t12.

1. We begin by calculating the angular power spectra C̃
T T
¸ , C̃

EE
¸ , and C̃

T E
¸ using

CAMB [93] (we take C̃
BB
¸ = C̃

T B
¸ = C̃

EB
¸ = 0). Assuming Gaussian fluctuations,

we construct all-sky temperature and polarization maps, T̃ (n̂), Q̃(n̂), and Ũ(n̂) using
healpy (the Python wrapper for HEALPix).

2. Next, we generate a birefringence map –(n̂) using the procedure outlined in appendix A;
since this is just a proof of principle demonstration, the parameters of the string network
model are not particularly important.

3. Using the simulated birefringence map, we transform the temperature and polarization
maps according to eq. (B.1), and convert Q and U maps to E and B maps.

4. In order to apply the flat-sky estimator, we isolate some small section of the all-sky
maps and port it into the pixell [94] software.

5. With the chosen small section, we calculate the birefringence estimator –̂EB(L). We
use symlens [95] to evaluate the integrals in eq. (B.2).

6. Finally we perform an inverse 2D Fourier transform on –̂EB(L) to obtain the recon-
structed birefringence map –̂EB(n̂).

Figure 13 shows the result of the above procedure. The left panel shows the ‘true’ bire-
fringence map –(n̂), which acts on the CMB polarization anisotropies according to eq. (B.1).
The middle and right panels show the reconstructed birefringence map –̂EB(n̂) using only
1 and an average over 20 realizations of the CMB, respectively. Upon averaging over many
CMB realizations, the estimator should converge to the true birefringence map (for an unbi-
ased estimator). We note that even a single CMB realization leads to a reliable reconstruction
that captures many qualitative properties of the true map, e.g. scale and shape of loop-like
features.

C Alternative birefringence data

Measurements of anisotropic cosmological birefringence are available from the various CMB
telescopes; see figure 8. Using each of these data sets individually, we derive constraints on
the axion string-wall network models. Our results are summarized in this appendix.

Figure 14 shows the marginalized probability distribution over the amplitude parameter
A

2
›0 for the stable string network (left panel) and the collapsing string-wall network (right
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Figure 13. A demonstration of how the statistical estimator –̂EB(n̂) from eq. (B.2) reconstructs
a birefringence map –(n̂). Left: the ‘true’ birefringence map –(n̂). Middle: the reconstructed bire-
fringence map –̂EB(n̂) obtained from a single realization of the CMB temperature and polarization
maps. Right: reconstructed birefringence map –̂EB(n̂), averaged over a suite of 10 realizations. Our
implementation of the estimator in this figure introduces a multiplicative bias (not perceptible here)
that scales inversely with the map width.

�20 �10 0 10 20

A2�0

stable string network

�200 �100 0 100 200

A2�0

collapsing string-wall network

Planck 2015 Planck 2018 ACTpol SPTpol BICEP2 / Keck Polarbear

Figure 14. Marginalized posterior on the amplitude parameter A
2
›0 for a network of stables strings

(left panel) and a collapsing string-wall network (right panel).

panel). Each curve corresponds to a measurement of anisotropic birefringence using data
from a di�erent CMB telescope; see figure 8. The corresponding 95% CL upper limits on the
amplitude parameter (assuming 0 < A

2
›0) are summarized in table 3.

From these results, one can see that each of the data sets is consistent with A
2
›0 = 0

at the 1‡ level, corresponding to the absence of axion-defect-induced birefringence. SPTpol

provides the strongest constraints on the amplitude of the signal, for both the stable string
network model and the collapsing string-wall network model. An upward fluctuation in the
Polarbear data [86] leads to a ≥ 1‡ preference for A

2
›0 > 0, whereas several downward

fluctuations in the BICEP2/Keck Array data [85] broaden the distribution toward negative
amplitudes. For the collapsing string-wall network, the Planck data is less constraining,
consistent with the discussion in section 4.
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stable strings collapsing string-wall
Planck (2015): A

2
›0 < 13 A

2
›0 < 55, 000

Planck (2018): A
2
›0 < 13 A

2
›0 < 18, 000

ACTpol: A
2
›0 < 7.1 A

2
›0 < 1, 100

SPTpol: A
2
›0 < 3.7 A

2
›0 < 390

BICEP2/Keck: A
2
›0 < 11 A

2
›0 < 3, 200

Polarbear: A
2
›0 < 81 A

2
›0 < 3, 300

Table 3. Upper limits at 95% CL on the amplitude parameter A
2
›0 derived from measurements of

anisotropic birefringence using data from various CMB telescopes.

Using a birefringence measurement [82] derived from Planck (2015) data, we find that
the network of stable strings is constrained by A

2
›0 < 13 at 95% CL. This particular data

set was also analyzed by another recent study [15], and our results are in good agreement.
Note that ref. [15] presents a constraint A

2
›0 < 8.0 at 95% CL, which is derived allowing

A
2
›0 < 0. To compare with our result, we digitize the marginalized posterior from figure 5 of

ref. [15] and calculate A
2
›0 < 12.6 at 95% CL when imposing A

2
›0 > 0, which is in excellent

agreement with our result.
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