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1 Introduction

The standard early-universe cosmology involves an early phase of accelerated expansion
known as inflation. It is usually assumed that the dynamics of inflation is driven by the
potential energy V' (¢) of a single scalar field ¢(z), known as the inflaton field. In the quasi-de
Sitter phase of inflation the cosmological expansion rate H(t) must satisfy e = —H/H? < 1.
During slow-roll inflation this condition may be associated with a requirement on the
flatness of the potential ey (¢) = (M3,/2)(V'(¢)/V)? < 1. Measurements of anisotropies
in the cosmic microwave background (CMB) temperature and polarization are a powerful
probe of the inflationary epoch. Some once-favored models of inflation are now excluded;
for example, Quadratic Inflation [1] and Natural Inflation [2] each predict a primordial
spectrum of curvature perturbations that is in significant disagreement with measurements
of the CMB furnished by the Planck satellite telescope (2018) [3] (see also [4]). Other
still-viable models of inflation have begun to receive renewed attention. Much of this recent



work has explored models of inflation driven by the dynamics of multiple scalar fields,
so-called multifield inflation (see refs. [5, 6] for reviews). In the context of well-motivated
ultraviolet (UV) embeddings, such as string theory, one generically expects multiple fields
with comparable masses, whose collective dynamics govern the cosmological expansion
during inflation. Moreover, such multifield dynamics can even ‘revive’ an otherwise excluded
model; for example, bringing Natural Inflation into agreement with Planck [7].

Theoretical considerations also provide valuable guidance when navigating the space of
viable models of inflation. One such consideration comes from the swampland program [8],
which seeks to connect low-energy effective field theories that provide a phenomenological
description of Nature with high-energy theories that also accommodate the quantization of
gravity (for a review, see [9, 10]). In particular the de Sitter (dS) swampland conjecture [11]
asserts that effective field theories with a consistent UV completion in quantum gravity
must satisfy the condition

Vi(¢) 2 V(¢)/Mpi, (1.1)

for every possible field configuration ¢(x). Here V' = /GI/9;V9;V is the norm of the
potential gradient defined using the metric G/ on field space in the kinetic term of the scalar
fields. The dS swampland conjecture ostensibly forbids slow-roll inflation, which requires
ey (¢) < 1, however it remains consistent with, and provides motivation for, multifield
models of inflation, such as the ones we study here. Moreover, the conjecture prevents
V(¢) from having a minimum (V' = 0) at positive energy (V' > 0) and thus, insofar as the
cosmological constant is due to the potential energy of scalar fields, it forbids a cosmological
constant as the observed dark-energy component of the universe. One might naturally
wonder if the swampland conjectures have anything to say about the other side of the
dark universe, namely dark matter, and indeed many recent works have considered this
possibility, e.g., refs. [12-15].

Planck data indicates the existence of dark matter to a statistical significance greater
than 700 [16], and yet the identity and origin remain a mystery. Inflation provides a
built-in minimal mechanism to produce the observed dark-matter abundance: so-called
“Gravitational Particle Production” (GPP) [17-23] requiring only a particle coupled to
gravity. As interest in non-thermal dark candidates has risen, so too has interest in inflation
as a particle factory. GPP has been studied for a variety of particle spins (such as spin-
1/2 [24-28], spin-1 [25, 29-32], spin-3/2 [33-37], spin-2 [38], and spin-s (s > 2) fields [39]),
and in inflation models consistent with current data (see e.g., [40, 41]).

Recently a class of inflation models was developed that does not require a flat potential.
So-called “rapid-turn” inflation models utilize angular momentum to resist the downward pull
of a steep potential gradient. Models include hyperinflation [42, 43], angular inflation [44],
sidetracked inflation [45], and orbital inflation [46], among others [47, 48]; see ref. [49]
for a review. The UV completion of these models has been recently discussed in ref. [50].
These models, of which refs. [42, 44, 45] predate the de Sitter swampland conjecture, are
interesting in their own right as new inflation models consistent with Planck and testable
by next-generation experiments. They are also naturally consistent with the dS swampland
conjecture.



Rapid-turn inflation models may be classified by their field-theory construction, notably
whether the field space manifold is hyperbolic (as in refs. [42-45]) or flat [46], and whether the
potential energy V respects ([42]) or breaks ([46]) the isometries of the field-space manifold
(see [51] for related work). Models may alternatively be classified by their dynamics, and in
particular, in the context of two-field models with a radial field ¢ and an angular field 6,
the evolution of the field-space angular momentum J:

e Hyperbolic inflation. Models with a hyperbolic field space naturally feature an
exponential stretching at large radii (responsible for such phenomena as a-attractor
inflation [52]), leading to an exponential enhancement of the angular momentum
J = L?§sinh?(¢/L), where L is the curvature radius of the hyperbolic space. If the
potential energy respects the isotropy of the field space, then the comoving angular
momentum is conserved, d(a®J)/dt = 0, and hence J x a~3 redshifts exponentially
fast during inflation, but may nonetheless play an important role in the dynamics.
We refer to this class of models as hyperbolic inflation.

e Monodromy inflation. A second class of models forgoes the exponential enhancement
of J, taking instead a flat field space. These models break angular momentum
conservation via an explicit angular dependence of the potential energy, or monodromy,
in which case angular momentum satisfies d(a®J)/dt = a3dV/df. With an appropriate
an appropriate choice of V(¢,0), these models can realize a near-constant J, leading
to slow-roll inflation. We refer to this class of models as monodromy inflation.

In this work we study the gravitational production of dark matter in rapid-turn
inflation models that are consistent with the dS swampland conjecture. We focus on the
two representative models of refs. [42] and [46], which implement the inflationary dynamics
using a hyperbolic inflation model and a monodromy inflation model, respectively. For both
of these models, we perform a detailed numerical analysis of GPP for a scalar spectator field,
including the dependence on the scalar’s mass and nonminimal coupling to gravity. We
find that rapid-turn inflation in hyperbolic inflation [42] cannot produce sufficient particles
to explain the observed relic abundance of dark matter. This conclusion is reversed for
rapid-turn inflation in monodromy inflation [46], for which GPP is qualitatively similar
to the well-studied case of quadratic inflation. The origin of this difference lies in the
parameter fine-tunings needed for perturbations of the inflationary fields to match the
Planck constraints on ng and A: rapid-turn inflation for hyperbolic inflation is characterized
by an instability of isocurvature perturbations, sourcing a growing curvature perturbation,®
and as a result, the fit to Planck amplitude of scalar perturbations A forces upon these
models an exponentially lower energy scale of inflation than would be naively anticipated, a
feature that is absent in the monodromy inflation case. The relatively low scale of inflation
for rapid-turn inflation in hyperbolic inflation prevents the model from producing any
sizeable amount of dark matter.

"While the model presented in ref. [44] is an exception to this, evidence from supergravity [50] suggests
this is a rather generic feature.



Looking beyond the scope of this work, we observe that the dS swampland conjecture
may be consistent with a gravitational origin of dark matter. Thus, while the dS swampland
conjecture forbids the simplest (and an arguably ‘boring’) dark-energy candidate, namely
a cosmological constant, it is not in conflict with the simplest (and an arguably ‘boring’)
dark-matter candidate, namely dark matter with only gravitational interactions. We note
that gravitationally produced dark matter exhibits a rich phenomenology (see, e.g., [53]),
making it an exciting avenue for future research.

The remainder of this article is structured as follows. In section 2 we introduce the
two models of rapid-turn multi-field inflation that we study. In section 3 we first provide a
short review of GPP, and then we present the results of our numerical study, which take the
form of comoving number density spectra of gravitationally produced particles. In section 4
we assess whether GPP provides a viable explanation for the origin of dark matter, and
we illustrate the various observational constraints in the parameter space of our model.
Finally we summarize and discuss our results in section 5. The article is extended by
four appendices: appendix A contains an analytical analysis of GPP; appendix B contains
additional details relating to the isocurvature calculation; appendix C contains a derivation
of the relic abundance in terms of comoving number density; and appendix D contains a
brief discussion to contrast our results with the familiar model of quadratic inflation.

Conventions. We denote the reduced Planck mass by Mp; = (87TGN)_1/2 = 2.435 x
10'® GeV. We adopt the Landau-Lifshitz timelike conventions for the signature of the metric:
(—,+,+) in the introductory material in Misner, Thorne, and Wheeler [54].

2 Rapid-turn multifield inflation

The conventional wisdom is that inflation with e = —H /H < 1 may be achieved by taking
a sufficiently flat potential for the inflaton field, i.e. ey = (M3/2)(V'/V)? < 1. Indeed,
quadratic inflation with V(¢) oc ¢? implies ¢ = €, during the slow-roll phase. However,
rapid-turn multifield inflation provides an exception to conventional wisdom. As emphasized
in ref. [55], theories with more than one inflaton field admit an alternative class of dynamics:
in a two-field model with one ‘radial’ field and one ‘angular’ field, inflation with ¢ <« 1
can occur even for ey 2 1. This is made possible by an angular momentum in field space,
and the corresponding evolution of the fields in the direction orthogonal to the gradient of
the potential. As stated in the introduction, there are by now many model realizations of
this idea [42—48]. In the remainder of this section, we summarize two models of rapid-turn
multifield inflation that are consistent with the dS Swampland conjecture.

2.1 Class 1: hyperbolic inflation

Multifield inflation in hyperbolic inflation was proposed in refs. [42], [44], and [45], going by
the names hyperinflation, angular inflation, and sidetracked inflation, respectively. (See
also refs. [43, 47, 48, 56, 57].) A generic feature of these models is that the isocurvature
perturbations can have a negative mass-squared, i.e., can be tachyonic, due to the curva-
ture of the field space manifold, a feature first emphasized in the context of “geometric



destabilization” [58]. Indeed, hyperinflation and sidetracked inflation are characterized
by isocurvature perturbations that grow outside the horizon, seeding a growing curvature
perturbation. Angular inflation differs from these by a careful cancellation between positive
and negative contributions, leading to stable isocurvature perturbations at all times during
the angular inflation phase, however the supergravity analysis of ref. [50] suggests that
tachyonic isocurvature is a generic feature of rapid-turn models. Guided by this, in what
follows we focus on the simple case of hyperinflation [42, 43], which is itself a special case
of sidetracked inflation (see ref. [56]).
We study a specific realization of hyperinflation [42] with two fields ¢! = ¢ and ¢* =

whose dynamics are governed by an action of the form

S = [t =5 56100 -V (6)] . (2.1)

We take the field space metric to be

Grs(9) = ((1) L2 smho2(¢/L)> ’ (2:2)

which corresponds to a hyperbolic space H? where ¢ and @ are the respective ‘radial’ and
‘angular’ coordinates. The field space is characterized by a scalar curvature Rfeld—space =
—2/L?, which is controlled by the parameter L.

The hyperinflation background dynamics are relatively insensitive to the choice of
potential. For concreteness, we take the scalar potential to be

V(¢) = Vj tanh? ((ﬁf”) *é/Me1, (2.3)

This toy model is chosen for simplicity of the dynamics and observables. During inflation the
inflaton field amplitude is large, |¢ — v| > f, and the potential is nearly exponential, V' ~
Vo eX/Mp1 Rapid-turn inflation on an exponential potential has been studied previously [59],
and it is known to lead to constant-roll evolution of the Hubble parameter de/dN = 0,
allowing for simple analytic expressions for the spectral index and other observables. After
inflation, the inflaton field amplitude settles to a local minimum at ¢ = v, and since
V(v) =0, the dS swampland conjecture (1.1) is still satisfied. The inflationary observables
are insensitive to v and f since ¢ ~ Mp) > v, f during inflation.

In an Friedmann-Lemaitre-Robertson-Walker (FLRW) universe, (ds)? = (dt)? —
a(t)?|dz|?, the action (2.1) for the homogeneous part of the inflaton fields is governed by

S = / d*z a® Bqﬁz + %LQ sinh? (%)9‘2 - V(M . (2.4)

The corresponding equations of motion are written as

$+3H$ - gsinh (%) 62 = —V'(¢)

and % (a3J) =0 where J = sinh? (%) 9,



The radial field ¢(¢) obeys a Klein-Gordon equation, while the angular field 6(¢) obeys an
equation expressing the conservation of field-space angular momentum J. The Friedman
equation is

¢

1., 1 .
BMpH? = 6% + 5L sinh (Z) 02 + V(¢) (2.6)

where the energy density of both fields contribute.
This model exhibits inflation (e = —H/H? < 1) even for a steep potential, V'/V > Mp.
For a potential satisfying the steepness condition

V'(¢)
3H

> 3HL, (2.7)

the model has a slow-roll (e < 1) inflation solution given by

$=—3HL

Lsinh (%) 0 = \/L8¢V — (3HL)?. (2.8)

This solution is a local attractor in field space [49, 57]. From eq. (2.8), one may infer the
duration of slow-roll inflation in terms of the number of e-folds Ny defined by dN = Hdt,
as Niot ~ ¢;/3L where ¢; is ¢ at the beginning of inflation, which must be at least
¢; = 180L. It follows that the initial angular momentum is exponentially enhanced
J; = sinhQ(d)i /L) 0; ~ eSNwt g, and it continues to have an important impact on the
dynamics despite the exponential redshifting during expansion, J(t) oc a(t)™3 ~ e73H?,

As a fiducial example, we consider the model specified by the parameters

A=2, L=0.0054Mp;, Vo =2.6x107CM3, v=f=10"2Mp,. (2.9)

These parameters are chosen to match the measured CMB observables, discussed further
below.

We numerically solve egs. (2.5) and (2.6) to find the evolution of the homogeneous field
backgrounds ¢(t), 6(t), and a(t). The initial conditions are chosen to be ¢; = 180L and
#; = 0, which ensures 50 e-foldings of inflation, and the initial field velocities are set by
eq. (2.8). We present our results in figure 1, which shows the evolution of the fields near
the end of inflation N = 0. We also show the evolution of the equation of state parameter
w = p/p, with p and p given by

p= %&2 + %L2 sinh2 (%) 0% + V()
(2.10)
p= %¢2 + %Lz sinh? (%) 02 —V(¢).

During inflation the V(¢) terms dominate and w ~ —1 corresponding to the quasi-de
Sitter phase. After inflation the 62 terms dominate, since § must grow to maintain angular
momentum conservation, and w & 1 corresponds to a phase of kination (kinetic energy
domination). This is a hallmark feature of hyperbolic inflation, which distinguishes it from
models of single-field slow-roll inflation that typically have w ~ 0 after inflation, while the
inflaton oscillates about a quadratic minimum of its potential.
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Figure 1. Evolution of the homogeneous background fields ¢(t) and 6(t) for a fiducial model of
hyperbolic inflation. Time is parametrized by the number N of e-folds in the scale factor, normalized
to N = 0 at the end of inflation. Left: the field amplitudes are shown, normalized to their values ¢,
and 6, at the end of inflation. The radial field variable ¢ decreases monotonically throughout inflation,
becoming fixed to ¢ = v after inflation; whereas the angular field variable 6 grows monotonically,
completing many 27 cycles. The evolution is consistent with the conservation of angular momentum
a®J ~ e3Ne29/L). Right: the evolution of the equation of state w(t) reveals a transition from a
quasi-de Sitter phase of inflation (w &~ —1) to a post-inflationary phase of kination (w = 1).

Inflationary observables are derived from the spectrum of perturbations in the inflaton
fields. Perturbations in multifield inflation are discussed in detail in ref. [60], while pertur-
bations in rapid-turn multifield models are discussed in ref. [49]. In this class of models, the
evolution of perturbations is governed by an effective mass matrix that depends on both
derivatives of the potential and on the Riemann tensor on field space (see ref. [60]). Due
in part to the hyperbolic field space, and its negative curvature Rfeld—space = —2/ L?, the
model exhibits a tachyonic mode (i.e., with negative effective mass p2 < 0). This growth of
the tachyonic mode in turn exponentially enhances the curvature perturbations. To ensure
that the observed amplitude of scalar perturbations is predicted, a commensurate reduction
in the inflationary Hubble scale is required.

Using the software package PyTransport [61], we numerically solve for the evolution
of perturbations during inflation and derive predictions for inflationary observables. Our
results for the observables reproduce that given in [59] for the case of an exponential
potential. The model specified by eq. (2.9) yields an amplitude Ay = 2.1 x 10~? and spectral
tilt ng = 0.97 of the scalar power spectrum that is consistent with the measured values [3].
The tensor-to-scalar ratio is predicted to be exponentially small, 7 ~ (Vo /Mg,)/As ~ 10725,
putting a primordial B-mode signal out of reach. The non-Gaussianity was argued in ref. [42]
to satisfy the usual consistency relation fi; o< (ns — 1); though interesting phenomenology
is possible [62].



In particular, note that a particularly low energy scale of inflation is needed in order to
reproduce the measured A;. We take Vol/ t e 1072 Mp; ~ 10% GeV corresponding to a Hubble
scale at the end of inflation of H, ~ 1 GeV, or a maximum possible reheat temperature
of Tax ~ \/H,Mp) ~ 10° GeV. A small V; is required because the scalar perturbations
grow exponentially in models of hyperbolic inflation, and an over-production of unwanted
curvature perturbations is avoided by lowering the inflationary scale by a commensurate
factor. The small 1} is notable, since classic models of large-field inflation with Planck-
scale excursions for the inflaton field typically provide a much larger VOI/ 1 10'6Mp) and
H ~ 10™ GeV. Moreover, studies of gravitational dark matter production during inflation
typically assume H > GeV, and we will see that hyperbolic inflation’s low inflationary
Hubble scale leads to a strong suppression of gravitational particle production.

Finally, we note the consistency of this model with the de Sitter Swampland conjec-
ture. For the model parameters in eq. (2.9), we calculate V'/V = 2/Mp at large values
of the inflaton field ¢. Consequently, the model is consistent with the dS swampland
conjecture (1.1).

2.2 Class 2: monodromy inflation

As a second class of rapid-turn multifield inflation, we consider the models studied in
refs. [46, 63]. Unlike hyperbolic inflation, the field-space manifold is flat and the isocurvature
perturbations are stable. Akin to the “monodromy” model of axion inflation [64, 65], the
scalar potential carries an explicit dependence on the angular field variable, which induces an
angular momentum. However, unlike hyperbolic inflation, the angular momentum remains
approximately constant during slow-roll inflation.

We consider a two-field model with ‘radial’ field ¢(x) and ‘angular’ field 0(x), whose
dynamics are governed by the action

S = / d'z /=g B(a@? + 56200 ~V(0,0)| (2.11)

In ref. [63] the scalar potential is taken to be Vo—af#+(m?/2)(¢—¢o)?. The linear dependence
on 6 is reminiscent of the original proposal of axion monodromy inflation [64, 65]. The
parameter « can be positive or negative; the sign of a merely sets the sign of 6 during
slow-roll inflation. Since this potential is unbounded from below in the 6 direction, but we
seek to study post-inflationary dynamics, we instead consider the potential,

V(6,6) = Vo om0/ Vo tank?® (6/f) + S (6 60)?, (212)

which has been modified to introduce a minimum for 6. After inflation both fields ¢ and 6
reach a local quadratic minimum of the scalar potential, which is a rather generic feature of
scalar potentials.

Assuming an FLRW spacetime, we derive the equations of motion for the homogeneous
background fields ¢(t) and 6(t), as well as the scale factor a(t); these equations are found



to be
¢+ 3Ho — ¢0%> + m*(¢p — ¢o) =0,
. . 2.. 108V
0+3H9+$¢9+ﬁ%207 (2.13)
SMAH? = L3+ S0 4V (0,0).

During slow-roll inflation, the solutions of these equations are well approximated by

¢ =/ %ﬁ; and f=—m, (2.14)

which results in J = (;529 ~ const. This solution branch corresponds to a < 0, and there is

another branch with o > 0 and § = +m. This describes circular motion in field space at a
constant radius and angular frequency.
As a fiducial example, we consider the model with parameters given by

Vo =749 x 107" Mp;, 6; = 2000, o= —5.05x 107 Mp,
f=10, b0 = 6.80 x 107 *Mp), m =4.00 x 10~*Mp; . (2.15)

We solve the equations of motion numerically to study the evolution of the homogeneous
background fields ¢(t), 6(t), and scale factor a(t). The initial conditions are given by
eq. (2.14). We present our numerical results in figure 2, which shows the evolution of the
field amplitudes and effective equation of state near the end of inflation. During inflation
¢ remains approximately constant while  decreases. At the end of inflation, ¢ receives a
‘kick’ and subsequently both fields oscillate rapidly. The effective equation of state oscillates
between w = —1 and 1, such that it time averages to (w) = 0, and the FLRW cosmology is
effectively matter dominated.

We calculate the inflationary observables numerically and validate these results with
the analytic expressions provided in ref. [63]. Unlike hyperbolic inflation, this model
does not exhibit a tachyonic instability for the isocurvature perturbations. The fiducial
parameters in eq. (2.15) lead to ng = 0.97 and Ay = 2.1 x 1077, which are consistent
with cosmological observations. Mapping on to an effective single-field model with sound
speed c; via the expression Pr = H?/(8m%ec;) [63] we find the squared sound speed is
c2 = 0.04. Ref. [63] provides an expression for the tensor-to-scalar ratio r, which evaluates to
r =~ 16ecs =~ 0.02, and which is below the Planck+BICEP /KECK upper bound r < 0.044 [66],
while remaining within reach of future experiments [67]. The non-Gaussianity is peaked
in the equilateral configuration, and ref. [63] finds the relation f5} ~ —80¢?/r? ~ —10,
which is well within the Planck constraint f}' = —26 £ 47 [68] while remaining in reach
of near-term future experiments [67]. The Hubble parameter at the end of inflation is
H, ~ 58 x 1075Mp; ~ 1.4 x 10'3 GeV, which sets a maximum reheat temperature of
Tmax ~ 1016 GeV.

Finally, we note the compatibility of this model with the de Sitter swampland conjecture.
During inflation the gradient of the scalar potential is Mp,'|V'/V| ~ m¢/Vy ~ 2, which is
O(1) and therefore consistent with the dS swampland conjecture (1.1).
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Figure 2. Evolution of the homogeneous background fields ¢(t) and 6(t) for a fiducial model of
flat-field-space inflation. The notation here is the same as in figure 1. Inflation ends when 6 crosses
the minimum of its potential, triggering a recoil in ¢ followed by oscillations about the minimum.
The equation of state following inflation has time-averaged value (w) = 0, corresponding to matter
domination.

3 Gravitational particle production

Gravitational particle production (GPP) is a mechanism by which particles are produced
via their interactions with gravity. Particularly, during cosmic inflation, quantum fields
can be excited as a result of the expansion of the universe, which at late times may
be interpreted as particle production. GPP has been studied in great detail, beginning
historically with refs. [69-74] and more recently in e.g., refs. [75-77]. While GPP is an effect
of tiny magnitude, it is possible for the energy density of particles produced gravitationally
to be large at late times in comparison to other fields. In this case, these particles may
constitute the observed dark matter. Since the original works [17-23], many such dark
matter candidates have been proposed [24-41].

In what follows we provide a short review of the framework of gravitational particle
production, focusing on a scalar spectator field.

3.1 Lightning review

Consider a real scalar field ¢(x) with mass m, that interacts only gravitationally. The
dynamics of this field and the metric g, (z) are governed by the action

1 1 1 1
[ (), g ()] = / d4m\/fg[2MglR + 30000 — 5P + SERY| . (31)

The dimensionless parameter ¢ parametrizes the scalar field’s coupling to gravity [78-86],
and £ # 0 is considered a ‘nonminimal’ coupling. Even if £ vanishes at tree-level, a non-
vanishing value is generically induced by loop corrections [79-88]. Moreover, the nonminimal

~10 -



coupling is a dimension-4 operator consistent with the symmetries of the action, and thus
should be included from the perspective of effective field theory.

Specializing to a spatially-flat FLRW spacetime ds? = a(n)?[dn? —|dx|?] with conformal
time 7, the action is expressed as

Sl(n,x)] = /dn d’z BaQ (8n1/1)2 — %aQ (VI/J)Q — %a4m2¢2 + %a‘lflﬁbz} . (3.2)

The kinetic term is canonically normalized in terms of a comoving field variable x(n,x) =
a(n)y(n, ). As a quantum operator, the comoving field is expressed as a Fourier expansion

X(mw)Z/g:;,(

where modes are labeled by a comoving wavevector k. The annihilation and creation

r () €7 + ), i (n) e ) (3.3)

operators, d and d};, satisfy the canonical commutation relations. The mode function x(n)
for wavevector k is only a function of the comoving wavenumber k = |k|, and it solves the
equation of motion

() +wi(n) xx(n) =0, (3.4)

where the comoving squared angular frequency is

W2 = K2 + a2(n) <m2 + éa _ 6£)R(77)> , (3.5)

and R(n) the Ricci scalar. We are interested in the solution that is the positive-frequency
mode at asymptotically early time, which corresponds to the Bunch-Davies vacuum initial

1 —ikn
Xk (1) m \/ ﬂe )

p (3.6)
Oyxk(n) —— —i\/ge_“m .

conditions:

nN——00

The amount of particle production is related to the amplitude of the negative-frequency mode
at late time, which is proportional to the coefficient §; of the Bogoliubov transformation
that links the two bases [82]. One can calculate |Si| by solving eq. (3.4) and evaluating

Wk

2

2 ‘871Xk|2 _ 1

|Br|* =

In the late-time limit (n — 400), the comoving particle number density is given by
s 1 /dl k h e |Bx| (3.8)

Ny’ = ——— ogkn where ng = —= . .
X apgs | TOBE k= onz !tk

The spectrum of produced particles ny gives the comoving number density of particles with
comoving wavenumber k. The contribution to GPP from inflaton dynamics after inflation
can also be described as a scattering process [89-92]; i.e., inflaton field oscillations in a
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quadratic potential correspond to a condensate of cold inflaton particles that may annihilate
via gravity to a dark sector.
A quick diagnostic probe of particle production is given in terms of the dimensionless
adiabaticity parameter Ay, which we define as,
Opwi;
Ap = —5—. (3.9)

Wi

Adiabatic evolution, under which a positive-frequency mode at early times evolves to a
positive-frequency mode at late times without any mixing of positive and negative frequency
modes, occurs provided that Ay is small at all times:

|Ax] < 1 (Adiabatic evolution). (3.10)

The efficiency of gravitational particle production is enhanced when adiabaticity is more
strongly violated, i.e., if |Ax| = 1 at some intermediate time.

3.2 GPP in rapid-turn inflation models

In what follows, we numerically solve eq. (3.4) for the evolution of the mode functions,
construct the Bogoliubov coefficients () using eq. (3.7), and compute the spectrum ny, using
eq. (3.8).

To build intuition for these results, we consider an illustrative numerical example
showing the interplay of adiabaticity and particle production. We consider GPP in hyperbolic
inflation with a scalar spectator having mass m, = 0.1H,., comoving wavenumber k =
0.lacH., and conformal coupling £ = 1/6. We show w,% in figure 3 along with the adiabaticity
parameter Ag(n) and the comoving number density ng(n) of gravitationally produced
particles. The dispersion relation (3.5) evolves from w,% ~ k? at very early times to
w,% ~ a’m? at late times. The transition between these two regimes corresponds to a spike
in the adiabaticity parameter Ag(n), which in turn leads to a sharp rise in ng(n), followed
by damped oscillations to an asymptotic late-time value, which determines the particle
number of that k-mode.

Following the procedure described above, we numerically calculate the spectrum ny of
gravitationally produced particles for the two models of rapid-turn multifield inflation and
for several models of scalar spectator. These results are summarized in figure 4. Several

notable features are worthy of further discussion.

Low-mass behavior. Comparing the two top panels of figure 4 allows us to contrast the
efficiency of gravitational particle production for low spectator masses, p = m, /H. < 1, in
the two models of inflation. For hyperbolic inflation (top-left panel) the spectrum nj becomes
insensitive to m,, for m, < H., whereas for monodromy inflation (right-panel) the spectrum
grows like (m,/H.)~!. This difference can be traced to the post-inflationary dynamics:
hyperbolic inflation is followed by a phase of kination (w = 1) whereas monodromy inflation
is followed by a phase of matter domination (w = 0). As we show in appendix A, the
different redshifting factors account for the different scaling with m,.
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Figure 3. An illustration of non-adiabatic mode evolution leading to gravitational particle produc-
tion. For this example we take an FLRW background driven by hyperbolic inflation with Hubble
parameter H, ~ 1.8 GeV and scale factor a = a. at the end of inflation, we take the scalar spectator
mass to be m, = 0.1H,, we take £ = 1/6 corresponding to a conformal coupling with gravity, and
we take a Fourier mode with comoving wavenumber k = 0.1a.H.. We show the evolution, near
the end of inflation, of the comoving squared angular frequency w?, the adiabaticity parameter
Ap, = Opwi/wy, and the comoving number density spectrum ny. For this example, the ‘sudden’
change in wy at the end of inflation a/a. = 1 induces a large non-adiabaticity |Ax| > 1 and an
associated particle production ny # 0.

IR behavior. The infrared (IR) modes (k < a.H.) exhibit a qualitatively different
behavior as the spectator mass m, and gravitational coupling § are varied. For large
masses m, 2, H. the spectrum is blue-tilted (dlogny/dlogk > 0), whereas for m, < H,
the spectral tilt is dictated by . A conformally-coupled scalar’s spectrum (£ = 1/6, bottom
panels) is blue-tilted, whereas a minimally-coupled scalar’s spectrum (£ = 0, top panels)
is nearly scale invariant and slightly red tilted — a result which parallels the familiar
calculation of inflaton fluctuations (see e.g., ref. [93]). A red-tilted spectrum can lead to an
over-production of dark matter-photon isocurvature, which we discuss further below. For
the range of masses that we consider (m,/H, > 1072), we have numerically verified that
¢ 2 0.05 is sufficient to yield a blue-tilted spectrum.

UV behavior. The ultraviolet (UV) modes (k 2 a.H.) exhibit a suppression of gravita-
tional particle production, as n; decreases toward high k in each panel of figure 4. This
behavior can be understood analytically, since wy = k for large k, which corresponds to
nearly adiabatic mode evolution with Ay, — 0 as k — oc.
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Figure 4. The spectrum of gravitationally produced spin-0 particles arising in models of rapid-turn
multifield inflation. In each panel we show the late-time comoving number density spectrum ny as
a function of the comoving wavenumber k. Modes with k/a.H. = 1 are on the horizon scale at
the end of inflation. We study two models of rapid-turn multifield inflation: a model of hyperbolic
inflation (left panels) and a model of monodromy inflation (right panels). We study two models for
the scalar spectator field: a minimal coupling to gravity (top panels) and a conformal coupling to
gravity (bottom panels). Within each panel, the various curves correspond to different choices for
the mass of the scalar spectator in terms of H., where H. is the Hubble parameter at the end of
inflation (H. ~ GeV in hyperbolic inflation and H, ~ 10'2 GeV in monodromy inflation).

Model dependence. At minimal coupling, £ = 0, the number of produced particles in
monodromy inflation is orders of magnitude larger than in hyperbolic inflation, while at
conformal coupling £ = 1/6 the number density of particles is comparable. In the dispersion
relation (3.5) the Ricci-dependent term drops out for £ = 1/6, which indicates that the
dramatic difference between the two models at minimal coupling & = 0 is due to the different
behavior of the Ricci scalar after inflation: R oc —1/a® following monodromy inflation and
R o< —1/a® following hyperbolic inflation.

Some aspects of our numerical results can also be understood from simple analytical
estimates, and we provide a detailed analysis in appendix A. The strategy is to break up
the evolution of a mode function into several time intervals where approximate analytical
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solutions are available. Then the late-time solution is obtained by imposing continuity of
the approximate solutions at the boundary of the intervals. This approach has been utilized
in e.g., refs. [30, 32] where it was shown to capture the salient features.

To highlight the power of this analytical analysis, we provide here an example where we
seek to show why nj becomes insensitive to m, for hyperbolic inflation with a light scalar
spectator m, < H, that is minimally coupled to gravity £ = 0. For the remainder of this
section we use the notation o = a/a., pu = mX/He, and we set a.H., = 1. We focus on modes
with comoving wavenumber k£ < 1 that have left the horizon during inflation. Modes that
were initialized in the Bunch-Davies vacuum state inside the horizon, evolve towards a scale
invariant spectrum outside the horizon, and at the end of inflation the mode function becomes

lim xef? o 1. (3.11)

The subsequent evolution, after inflation, is qualitatively different for our two models
of rapid-turn multifield inflation. Here we focus on hyperbolic inflation, for which the
post-inflationary dynamics have w = 1, and the dispersion relation is given by

1
wi =k + S+ o?u?, (3.12)

which controls the mode function evolution through 8%)@ = —w%x;c. Consider the range of

k specified by u4/ 3

< k < 1. For these modes, the mode function evolution can be broken up
into three time intervals, corresponding to which of the terms in wg is dominant. At first, the
k% term dominates, and the modes are roughly constant in time |xz| oc a®. At a threshold
time a = v/k the Ricci scalar term (>R o 1/a*) comes to dominate and the mode functions
grow as |yx| o< a. Finally, the mass term becomes relevant at o = k/pu, at which point the
modes begin to decay as | x| ~ 1/+/c. Enforcing continuity of the mode function across the

boundary between these time intervals leads to a solution during the final phase given by,

1
2

X . 3.13
ol o g (313)
From this expression one may compute late-time (but still within the w = +1 phase) particle

number as,

1

li ~ ’~_— (h lic inflati 14
o m wi | xx| 5.2 (hyperbolic inflation) (3.14)

where we have used w;, — o?u? at late times. One may appreciate that the dependence
on both the comoving wavenumber k and the spectator mass m, = uH. have completely
cancelled. This is in agreement with the top-left panel of figure 4, which shows a nearly
scale invariant spectrum for low-mass models p = m, /H. < 1. By contrast, a model of
inflation that has w = 0 for the post-inflationary dynamics, such as quadratic or monodromy
inflation, would lead instead to ny o 1/u for the IR modes k < a.H, and p < 1.

4 Dark matter and observable constraints

We now relate the GPP spectra, figure 4, to the present relic abundance. We will then
proceed to map out the parameter space of the model that produces the observed dark
matter abundance.
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4.1 Relic abundance

We define the relic abundance of x particles as €, = p, 0/pc where py o is the energy
density of y particles today, p. = 3M§1Hg is the cosmological critical density, and Hy =
100~ km/sec/Mpc is the Hubble constant. For the model parameters that we study, the x
particles become nonrelativistic long before today, which lets us approximate p, o ~ myn,.o

with n, o their present-day number density. If the comoving number density is conserved,
3

)

which is the case if the y particles only interact gravitationally, then we have nxvoa% =n,a
which can be evaluated using eq. (3.8).2 We calculate the relic abundance assuming that the
spectator field becomes non-relativistic before the universe becomes radiation-dominated
at reheating, i.e., the so-called ‘late reheating’ scenario ref. [32], and the details of this
calculation appear in appendix C. Models of rapid-turn multifield inflation are distinguished
by the equation of state during reheating, which is w = 1 for hyperbolic inflation and w = 0
for monodromy inflation. For each of these models we find the relations (see appendix C)

2 -1 3 3/,3 1753
{h ~ (2.5x107%) (mx>( i ) ( A ) (nxa /aeHe) (hyperbolic inflation)

0.12 H, 109 GeV GeV 10-°
(4.1)
Qh2  [my Tin He \(na®/alH? o
o~ <He) (109 GeV) (1012 GeV) ( 105 ) (monodromy inflation).
(4.2)

We have normalized QXhQ to the measured dark matter relic abundance Qpyh? ~ 0.12. The
relation in eq. (4.2) is familiar from earlier studies of gravitational particle production with
a w = 0 post-inflation phase.

It is illuminating to compare egs. (4.1) and (4.2). For the fiducial parameters shown
here, the monodromy model of inflation yields a relic abundance that is comparable to the
observed dark matter relic abundance. For hyperbolic inflation, the inflationary Hubble
scale is much lower H, = O(GeV), and for typical parameters we find that hyperbolic
inflation significantly under-produces the dark matter.

4.2 Isocurvature

Gravitational particle production leads to an approximately homogeneous distribution of
x energy density, but the inherently quantum nature of this production mechanism also
generates inhomogeneities that do not align in space with the curvature perturbations
generated by the inflationary sector. If x plays the role of dark matter, then this misalignment
corresponds to a dark matter-photon isocurvature. Measurements of the cosmic microwave
background radiation are consistent with the absence of isocurvature, and these observations

2There is another potential contribution to ny from thermal freeze in [94-97], e.g., reactions involving
standard-model initial states, like SM + SM — x + x via an s-channel graviton mediator. This contribution
depends on the mass of the dark matter particle and the reheat temperature, and in the parameter regime
we consider is always subdominant to gravitational production. Post-inflation production via the inflaton
condensate, e.g., inflaton + inflaton — x + x [98, 99] is automatically accounted for in the Bogouliov
approach taken here [92].
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impose constraints on an additional isocurvature component. These constraints are expressed
as an upper limit on the dimensionless isocurvature parameter fiso = As/Ar where As
and Agr are the amplitudes of the comoving isocurvature and curvature perturbation

dimensionless power spectra at the CMB pivot scale. Measurements by the Planck satellite
CDM

impose Bz < 0.038 at the 95% CL [3], assuming that isocurvature and curvature
perturbations are uncorrelated. In the models that we study, isocurvature is second-order
in the field perturbations S o< dp, ~ m?(dx)?, and the isocurvature power spectrum (SS)
involves integrals over four x mode functions [40], which can be challenging to compute.
In lieu of calculating the isocurvature power spectrum, we apply the following two
diagnostic tests to assess the compatibility of our models with CMB data. First, we calculate
the x relic abundance and impose Qxh2 < 0.12 to ensure that y does not over-produce
dark matter. Second, we calculate the spectral tilt ng — 1 = dlogng/dlogk of the low-k
power law and impose ns — 1 > 0.2. If the spectrum ny is sufficiently blue-tilted, then the
associated isocurvature power spectrum (SS) is also blue-tilted, and CMB constraints on
dark matter-photon isocurvature are evaded; see appendix B for additional details. Since
Q,h? is primarily sourced by particles modes with k ~ a.H. (see figure 4), while CMB
isocurvature constraints are primarily sensitive to kcyp ~ e ??a.H,, any small amount of
blue-tilt is sufficient to render the amplitude of isocurvature on CMB scales well below the
CMB constraint. We impose ns —1 > 0.2, which ensures that the amplitude of isocurvature
at the CMB scale is suppressed by a factor of e~!0 relative to its value at k ~ aoH,, which

is a priori suppressed by virtue of being second-order in perturbations (S o (6x)?).

4.3 Quantitative results

Hyperbolic inflation. In hyperbolic inflation, we find Qxh2 < 0.12 for all values of m,,
and £, and thus the model cannot match the observed dark matter abundance through
gravitational production. The small relic density may be easily deduced from eq. (4.1),
and the fact that H, ~ GeV and thus Tyy is at most O(10°GeV), in hyperbolic inflation.
Therefore, it is always the case that too little dark matter is produced to match observations.
We reiterate that the low scale of inflation is necessary to match the Planck constraint
on the amplitude A, of the primordial power spectrum, despite the exponential growth of
perturbations [59]. Thus this underproduction of dark matter is an unavoidable consequence
of hyperbolic inflation satisfying CMB constraints.

One might wonder if particle production in hyperbolic inflation could be amplified in
some region of parameter space, enough to compensate the low scale of inflation and match
the observed abundance. However, we find numerically and show analytically in appendix A
that ny converges to a fixed form for small m, and £ = 0, limiting the number of particles
that can be produced. This prevents the particle production from being amplified enough
to compensate the small scale of inflation.

Monodromy inflation. In the monodromy inflation model, the inflationary Hubble
scale is H, = O(10'2GeV), and it is possible for enough dark matter to be produced. In
this case, Qxh2 = 0.12 acts as a constraint on m,, § and Tyy. In figure 5 we present
the relic abundance of dark matter for varying m, and &, expressed as a function of
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(£2,h?/0.12)(10° GeV /Tyy), using eq. (4.2). We focus solely on the region that satisfies
Planck constraints on isocurvature (see section 4.2), and we do not calculate the relic
abundance of dark matter in the region defined by ns — 1 < 0.2; this region appears in
figure 5 as empty black pixels. To further illuminate these results, in the bottom panel
of figure 5 we also display contours of constant Ty that give the observed dark matter
abundance, Qpyh? = 0.12, i.e., curves of (Qxhz/O.12)(1O6 GeV /Tpy) = 1073,1072,1071, 1,
and 10, for Ty = 10 GeV, 108 GeV, 107 GeV, 10° GeV, 10° GeV, respectively.

From figure 5 one may appreciate that the observed abundance of dark matter can
be realized for a wide range of values of the coupling £ and reheat temperature Tgy. Of
particular note is that at minimal coupling (£ = 0), the observed DM abundance is realized
for m, = O(H.) but only for Tiy = O(10% GeV). Thus, minimal coupling requires an
extended period of matter domination, or rather, a delayed onset of radiation domination.
Meanwhile, at conformal coupling ({ = 1/6) the observed DM abundance may be realized
for Ty = 10° GeV and mass m < H,.

To contextualize these results, in appendix D we perform an identical analysis of GPP
in m2?¢? inflation, see figure 10. To allow for an ‘apples-to-apples’ comparison between
the two models, we adjust the parameter m to provide an H, that matches that in the
rapid-turn multifield inflation model. Comparing figure 10 with figure 5, one may see that
at any point (£, m,/H.) the reheating temperature differs from the multifield case by a
factor of less than 10. Additionally the two plots show almost identical qualitative behavior.
This is a non-trivial check given the marked difference in the Ricci scalar R in the two
models; see figure 11 in appendix D.

We extend our analysis to super-Hubble masses, m, /H, > 1, in figure 6. We consider
only minimal coupling (§£ = 0) and a small range of m, /H. due to the significant com-
putational expense of each computation of Qth. From figure 6 one may appreciate the
weak dependence of Tyy on m, for m,/H. > 1. We leave an investigation of the regime
my/He > 1 to future work.

5 Discussion

In this work we have studied the gravitational production of spin-0 particles during the
epoch of cosmological inflation and reheating by employing a recently-developed class
of models, so-called rapid-turn multifield inflation. The predictions of these models for
the amplitude and spectrum of primordial curvature perturbations are consistent with
cosmological observations, such as measurements of the CMB furnished by the Planck
satellite telescope. Additionally, models of rapid-turn inflation are theoretically compelling,
because they naturally satisfy the de Sitter swampland conjecture, which would naively
forbid slow-roll inflation. We have demonstrated that the phenomenon of gravitational
particle production in the context of rapid-turn monodromy inflation may be responsible
for the origin of dark matter if the dark matter is made up of massive spin-0 particles that
couple only to gravity (either minimally or for a range of non-minimal couplings).

We have not attempted to perform a comprehensive scan of parameter space, either of
the rapid-turn inflation models themselves or of the dark-matter model parameters (the
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Figure 5. Predicted relic abundance over the parameter space. The gravitational production of a
scalar field x with mass m, and non-minimal coupling to gravity £ is studied, and the present-day
relic abundance Q,h? is calculated as a function of these parameters. Cosmological inflation is
described by a model of rapid-turn monodromy inflation such that H, ~ 1.4 x 10™ GeV at the end of
inflation and the plasma is reheated to a temperature of Tpy. Top: for Tyy = 106 GeV the predicted
relic abundance €2, h? is shown. Along the white band, x production saturates the observed dark
matter relic abundance, Q,h? ~ Qpyh? ~ 0.12, while the green and pink regions correspond to
over-production and under-production, respectively. Bottom: values of £ and p allowed by the relic
abundance constraints, in monodromy inflation, for selected values of Tyy.
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Figure 6. Constraints on the super-Hubble-mass parameter space imposed by 2, < Q. Gravita-
tional production of a minimally-coupled (§{ = 0) scalar spectator field x with mass m, leads to a
relic abundance Qxh2 of non-relativistic particles that must not be larger than the observed dark
matter relic abundance Qpyh% ~ 0.12. For a model of rapid-turn monodromy inflation with the
Hubble expansion at the end of inflation taken to be H, ~ 1.4 x 10'3 GeV, we obtain an upper limit
on the post-inflationary reheating temperature Tgy.

dark-matter mass m, and the nonminimal coupling §). Instead, we have taken representative
rapid-turn inflation models and fiducial inflation model parameters that yield observables
consistent with Planck, and studied the feasibility of gravitational production of dark matter
in these models. We find that rapid-turn inflation in monodromy inflation can produce the
observed DM abundance for a wide range of masses and couplings, while rapid-turn inflation
in a hyperbolic field generally can not. These analyses demonstrate the compatibility
of rapid-turn multifield inflation with gravitational production of dark matter, and by
extension, the compatibility of the dS swampland conjecture with the same.

There are many directions left for future work, such as an exploration of the model and
parameter space of rapid-turn inflation models, and of other dark matter candidates, such
as spin-1/2, spin-2, spin-3/2, or higher-spin. Also of interest is an exploration of the CMB
non-Gaussianity generated by dark matter production in these models. We leave these and
other exciting topics to future work.
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w a(n) R(n)/6H?
ds (n < 0) -1 (1—n)t -2
hyperbolic (n > 0) +1 V1+2n (1+42n)73
flat (n > 0) 0 <1 + 17])2 1 <1 + 177> -
2 2 2

Table 1. Toy model for the equation of state parameter w, the scale factor « = a/a., and the Ricci
scalar R as a function of conformal time 7 for hyperbolic inflation and monodromy inflation. We
assume instantaneous and late reheating.
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Figure 7. Phase diagram in «a and k for w = —1. The modes only go through I,—_; and II,,—_;.

A Analytic estimate of GPP in hyperbolic inflation

In the following are analytic approximations of nlgngo np as a function of k£ and p, for
monodromy inflation. We use the toy model presented in table 1. For simplicity, in this
appendix we set a.H, = 1 and we restrict to £k < 1 in what follows, i.e., modes that exit
the horizon by the end of inflation.

During the de Sitter phase wy in eq. (3.4) is given by

wi :lcz—i—oz2u2—|—oz2i = k2 + a2 (p? - 2) (A.1)
6H?2
where a = a/ac, p = my/H.. Assume that 1 < 1, in which case we need to consider the
two regions I,,—_1 and I[,,—_; shown in figure 7.
In each region, one of the terms in eq. (A.1) dominates and we ignore the other term.
In particular,

(A.2)

2 k2 a<k/VvV2 (Ly=1)
T 202 o> k/vV2  (Hy—_1).
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The EOM at « ~ 0 is then that of I,—_1
Xlkl + k2Xk =0 - Xk = Cleikn + Cgeiilﬂ7 . (A3)

Applying the Bunch-Davies initial condition as n — —oo gives in I,—_1

Xk = \/12»k€ik" =  |wl*= i x . (A.4)
Now moving on to II,—_1. The EOM is
YL = 2070 = X~ e = 0
(1—n)?
— r=c(l—n)?+ 16_7277 =cia 2 + e (A.5)

Keeping only the growing mode, xx = c2a, so during evolution through IL,— 1, |x#|? grows
as |xx|? o« a? from a = k/+/2 to a = 1. Therefore, as  — 0 (a — 1)

2
1 1 1
2
_ —— A6
Now look at the w = 1 phase. Using table 1, wy in (3.4) is given by

1
wi =k 4o + v (A.7)

Consider three regions I,,—1, II,,—1 and IIl,,—; shown in figure 8.
In each region, one of the terms in eq. (A.7) dominates and we ignore the other terms.
In particular,

k2 E>1/a? & k>ap (Ty=1)
wix{l/at k<1/a® & a<p P (L) (A.8)
2 k<ap & a>p P (L)
The EOM for I,—; is X} + k?xx = 0, with solution
Xk = c1e® + coem R — |xp]? . (A.9)
The EOM for I,—1 is X} + a~*xk = x{ + (1 + 2n)"2x, = 0, with solution
Xk = 11+ 20 + ca/1+ 2nlog(1 4 2n) = c1a + caalog(a?) = |xi|* x . (A.10)

The EOM for -1 is X} + o?u®xk = x4 + (1 + 2n)pu?xx = 0, with solution

2/3 2/3 1
Xk = c1Ai <—(g) a2> + c2Bi <—(g> a2> — x| x o (A.11)

where Ai and Bi are the Airy functions. In the last step we used the fact that for large =,
both Ai(—x?) and Bi(—z?) are proportional to 1/,/.

Now we can evolve |xz|? through de Sitter and kination to find the asymptotic value at
43 and k < pt/3.

In both cases at the end of the de Sitter phase |xx|> = k=3 (recall eq. (A.6)).

late time. When finding nli_}rgo ny, there are two cases to consider: k > u
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K- 4i3

Figure 8. Phase diagram in o and k for w = +1. For k > p*/3, the modes evolve in II,,—;, then
starting when a = 1/v/k the modes evolve through I,—; until o = k/p, then evolve in III,,—;. For
k < u*/3, the modes evolve in IL,_;, then starting at o = p~1/3, they evolve in ITT,,_;.

Case 1. k > p*/3. 1In this case, starting at a = 1 with |yx|? = k=2, the mode goes
through II,—; growing as o until o = 1/ V'k when it enters I,—; where it does not grow,
then enters 11,1 when a = k/u and thereafter it decreases as a~! (see figure 8). The
final result in IIT,,—; is

Ix |2 :ilk/iz 1
Moo = 43k "o Eua

(A.12)

Now, using that eq. (3.7) in the late-time limit |B¢|2_, o = wi|xx|?, and as a — oo, wi, — au,
we find
s K 1 1

k3
ng = 277r2|5k|a—>oo - 2771_2 ap k3,ua = 277T2 (A13)

Case 2. k < p*/3. 1In this case, again starting at o = 1 with |yz|? = k3, the mode goes
through II,—; growing as a2 until o = ,u_l/ 3 when it enters I11,—; where it evolves as a1

(again, see figure 8). The final result in IIL,—; is

~1/3
Xklomsoo = %(u’l/?’)Q”T = kglw (A.14)
which is the same result as Case 1.

So in both cases ng — (272)~!, which has no dependence on k or x. That ny, asymptotes
to a constant for small ¢ and k£ can be readily observed in the numerics, see figure 4. This
prevents the particle production from being amplified enough to compensate the low scale
of inflation and match the observed abundance.
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B Dark matter isocurvature

Here we consider the isocurvature perturbations generated by gravitational production of
dark matter. We relate the spectral index of isocurvature perturbations to the spectrum of
produced particles ny.

The isocurvature power spectrum is given as ref. [23],

q3 lmf<

1 1 kuv
2 4 - X _ - 2 2 2
830 = gy e e |4 [ RIS (B

where p, is the average mass density. Consider the case that ) is peaked on length scale k.
that is very large relative to the CMB pivot scale ki, and assume that 3;, is monotonically
decreasing as k is made smaller, i.e., a blue-tilted spectrum with a constant spectral index.
Since k3|Bk|? drops off rapidly for k > k., we express the spectrum of £, for k < k, as

ng—1
k38> = Ag (:) ’ (k < k), (B.2)

(a blue spectrum corresponds to ng > 1). In this case we may write the momentum

integration as:
—2(ng—1 —24n —44n
/dkk2]ﬁk|2|ﬁ e = Ak (ms )/dk:k 2415 (k2 g2 —2kqz)(~Ha)/2 . (B.3)

Case 1. Consider the case that ng = 1 + € with € < 1. The integral is IR divergent and
we may approximate it as,

—2(ng—1 —1 -
/ dk k2|8 %8 MF ~ A3k, (ns VKT (K2 + 2 — 2kipgz) T2 (BL4)
Consider the case that kg < ¢ ~ kpiy. In this case we have
dk k2|82 8 2~ A2 po2ns—1) prs—1 —ding (B.5)
k k2+q272qu B IR q . :

We now can compute the spectral index of Ag as

ne 1= YogAs(a) _
S ~ dloggq dlog q

log (q3q_4+”5) =ng—1 (B.6)

Thus, for a slight blue spectrum of produced particles (1 < ng < 2), the comoving
isocurvature perturbation has the same spectral index as the produced particles, ns = ng.

Case 2. Consider the case that ng > 2. In this case the integral is dominated by the UV,
and thus by the peak in the spectrum of produced particles at k = k.. Since ¢ < ki, the
integral is independent of ¢, and we find

dlogAs(q) d 3
—1= = I =3 B.7
s dlog ¢ dlog q 8 (q ) (B.7)

Thus for ng > 2, the isocurvature spectrum has spectral index ns — 1 = 3.
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Figure 9. Spectral index of isocurvature perturbations spectrum versus £ and u. The spectral
index is calculated using the ratios of the values of nj at k = 10™* and k = 107°.

w a a H
K 1 |3 ] 28] 43

RD | 1/3 | t'/2 | t71/2 | o2

MD | o |23 |13 432

Table 2. Dependence of H on the scale factor a for kination (K), radiation domination (RD), and
matter domination (MD). a, @ and H are given up to a multiplicative constant.

Punchline. The comoving isocurvature perturbation § is blue-tilted provided that /~c36,§
is blue-tilted.

C Relic abundance calculations

The following is a derivation of eqgs. (4.1) and (4.2). We wish to determine the relic
abundance (2 of dark matter from the late time comoving number density na®. We use the
toy model for the equation of state parameter w from the end of inflation to today. Inflation
(w = —1) is followed by a kination (w = 1) or matter-dominated (w = 0) phase, then a
transition to radiation domination (w = 1/3) at reheating, then a transition to matter
domination (w = 0) at matter-radiation equality. Table 2 presents the dependence of H on
a for kination (K), radiation domination (RD), and matter domination (MD).
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We start with two expressions:

37,3173
Px,0 MxTx,0 [”xa /%He]
Qo= = and n,g= g% C.1
Y pe 3HgMp © ag/aH? (1)

The factor of [nya®/a®H3] comes from the GPP calculation; we assume that the comoving

3

number density n,a® is subsequently conserved (i.e., additional production, decay, or

annihilation processes are negligible). Now we outline the calculation of a?/a3. Start by

writing
3 3 3
a a a
—g = 36 X % (C.2)
ag  Qpry ag

After reheating entropy is conserved, so up to factors of gg,

3 3
Qry 15 (C
R, 20 .3)
aj T3,

The factor of ae/azy depends on whether the model is kination or matter dominated after
inflation and before reheating. From table 2

H,
i kination
a H,
¢ = (C4)
aL?R)H < HRH > 2 MD
H, '

The final step is to relate Hyy to Thy via 3HZ, M2, = (72g./30)T5%,. Using egs. (C.3)
and (C.4) along with the relationship between Hyy and Tgy, and putting in the numerical
factors results in eqs. (4.1) and (4.2).

D Dark matter production in quadratic inflation

Here we highlight the similarities between GPP of dark matter in the monodromy inflation
model (see section 4.3) and in m2¢? inflation with H, artificially rescaled to match that in
the multifield model. Figure 10 presents a plot identical to the bottom panel of figure 5
except that it is computed in m?¢? quadratic inflation with m chosen so as to provide the
desired H. = 5.8 x 107 Mp; ~ 1.4 x 101® GeV.

At any point (&, u) the reheating temperature differs from the multifield case by a
factor of less than 10. Additionally the two plots show almost identical qualitative behavior.
An observable difference is the behavior of the reheating temperature contours approaching
i = 1. For that reason we expect that the two plots would show more significant quantitative
differences at u > 1.

To highlight that the similarity in GPP of dark matter in monodromy inflation and in
m?2¢? inflation could not be known with certainty prior to our calculations, we compare in
figure 11 the evolution of the scale factor and Ricci scalar in both inflation models. Since
these two quantities govern through eq. (3.5) the evolution of dark matter mode functions
during inflation, their differences could have resulted in more severe disparities in GPP.
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Figure 10. Dark matter production in m2¢? inflation. Values of & and my/H, allowed by the relic
abundance constraints for selected values of Tyy. Cf., figure 5.
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Figure 11. Evolution of the scale factor a and Ricci scalar R in monodromy inflation versus m?¢?
inflation with H, rescaled to match the multifield model. For better comparison, both Ricci scalars
are normalized to —1 at n = —150. Both a and R are visibly different between the two models,
highlighting that the similarities in the GPP of dark matter we observe between the two models
were not known a priori.
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