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Figure 1: An example question that uses our scaffolded writing tool. In this screenshot, the student has already constructed part
of their response (shown in the grey box), and they can append to their response by clicking one of the possible next tokens
(shown in the black boxes). The set of possible next tokens is generated based on an instructor-defined context-free grammar.
Students’ responses are restricted to sentences that can be generated by this grammar. After the student completes and submits
their response, the autograder uses the grammar to parse the response and provide instantaneous feedback.

ABSTRACT
In technical writing, certain statements must be written very care-
fully in order to clearly and precisely communicate an idea. Students
are often asked to write these statements in response to an open-
ended prompt, making them difficult to autograde with traditional
methods. We present what we believe to be a novel approach for au-
tograding these statements by restricting students’ submissions to
a pre-defined context-free grammar (configured by the instructor).
In addition, our tool provides instantaneous feedback that helps
students improve their writing, and it scaffolds the process of con-
structing a statement by reducing the number of choices students
have to make compared to free-form writing. We evaluated our
tool by deploying it on an assignment in an undergraduate algo-
rithms course. The assignment contained five questions that used
the tool, preceded by a pre-test and followed by a post-test. We
observed a statistically significant improvement from the pre-test to
the post-test, with the mean score increasing from 7.2/12 to 9.2/12.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Theory of computation → Dynamic programming.
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1 INTRODUCTION
In computer science, large course enrollments are fueling a shift
towards more autograded assignments. This pressure could lead
instructors to design assignments based on what’s easy to grade
automatically and eschew pedagogically valuable questions that
ask students to respond in English. Our perceptions of this trend
led us to develop an automated system that can evaluate and give
useful feedback on English statements written by students.

One common technique used in algorithms problems is dynamic
programming. This is a technique that involves defining smaller
subproblems that have a recursive dependency on each other and
using these subproblems to build up to the final answer. In a dy-
namic programming solution, students are expected to identify
and describe these recursive subproblems in coherent and precise
English [1]. Formulating these descriptions clearly and precisely
is a crucial step of the problem-solving process that clarifies the
rest of the solution [3]. However, automatically grading this type of
free-form writing is beyond the state of the art, and manual grading
does not provide a quick feedback loop to facilitate improvement.

With this in mind, we set out to create a tool that can give
feedback focused on the English description of subproblems in a
dynamic programming solution. Using our tool, an instructor can
define a context-free grammar (CFG) and require that students’
submissions be contained in the CFG’s language. The tool enforces
this by providing a list of tokens to choose from instead of giving
students complete freedom to type anything (see Figure 1). The list
of options only contains tokens that are allowed to come next based
on the CFG. This means that the list of options updates dynamically
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as the response is being constructed. Clicking on a token causes
it to be appended to the end of the response and causes the list of
options to update.

When a student submits, the tool generates a parse tree of the
student’s submission based on the CFG provided by the instructor.
Then, an autograder (written by the instructor) checks for specific
features in the parse tree and assigns scores/feedback based on
whether or not these features are present.

In addition to providing instantaneous feedback, another benefit
of our tool is that it provides scaffolding by removing degrees of
freedom. By fixing the overall structure of the statement, we can
focus students’ attention towards a few important choices that still
need to be made without overwhelming them with an infinite space
of choices. The goal is that, with enough practice, students will
be able to write these English statements without the scaffolding
provided by a CFG.

In this paper, we describe the initial implementation of the scaf-
folded writing tool, and we conduct a research study to determine
whether the tool can help students improve their free-form writing
once the scaffolding is removed.

2 RELATED WORK
We will provide a brief overview of related work in this area by
discussing other approaches to autograding natural language re-
sponses in computer science and discrete math.

2.1 Statistical NLP Autograders
The problem we are addressing is an instance of automatic short an-
swer grading (ASAG). Currently, all competitive ASAG techniques
are based on machine learning [6], often involving statistical natu-
ral language processing (NLP). For example, Rus et al. (2013) built
conversational intelligent tutoring systems using a statistical NLP
approach that takes an expert answer and measures the semantic
similarity to the student answer bymodeling it as a quadratic assign-
ment problem [13]. In CS, Fowler et al. created an autograder for
“Explain in Plain English” questions based on a logistic regression
model with bag-of-words and bigram features [5].

The upside of these NLP approaches is that they allow the stu-
dent complete freedom in constructing their response, which most
closely mimics what the student will have to do in the context of a
summative evaluation.

Three downsides, however, are notable. First, they are not 100%
accurate; for example, Fowler et al.’s model only achieved an accu-
racy of 87-89% [5]. Second, these statistical NLP approaches require
a training data set, which involves a significant amount of manual
grading and labeling. Third, these existing systems don’t generate
useful feedback beyond whether or not the answer is correct. Doing
so would require designing/training additional models.

2.2 Parsons Problems and Proof Blocks
Parsons problems are a scaffolded exercise where students are asked
to assemble prewritten lines of code into a correct program [9].
Another more recent tool inspired by Parsons problems is Proof
Blocks, in which students drag and drop prewritten lines of a proof
into a complete proof [10].

Parsons problems and Proof Blocks both provide scaffolding
by taking a free-form writing task (e.g., writing a proof or pro-
gram from scratch) and removing degrees of freedom from that
task. Research on Parsons problems has shown that this scaffold-
ing significantly accelerates the learning process for beginners [4].
Furthermore, in both Parsons problems and Proof Blocks, the scaf-
folding reduces the space of possible answers, which makes them
more straightforward to grade compared to their free-form counter-
parts [2, 10]. Because our tool also provides scaffolding by removing
degrees of freedom from a free-form writing task, we believe that
the benefits discussed above should apply to our tool as well.

An important difference between our tool and these existing
tools is that our tool doesn’t provide students with a static bank of
options; instead, it presents a context-dependent list of options that
changes as the student composes their answer. We believe that this
context-dependent behavior is better suited to our application than
to Parsons problems or Proof Blocks. If we presented a static bank
of options in our tool, students would need to filter out options
which don’t grammatically make sense, which is not part of the skill
that the tool is trying to teach. With context-dependent behavior,
students would be presented with a list of options that fit into the
sentence grammatically, and they could focus all of their attention
on analyzing which option contributes the correct meaning to the
sentence. On the other hand, for writing code or proofs, determining
which options are “grammatically” allowed to come next (i.e., which
lines are syntactically or logically valid) is actually part of the skill
that the tool is trying to teach. Thus, in these situations, it makes
sense to present all of the options regardless of context.

3 IMPLEMENTATION
To explain the implementation of the tool, wewill use the problem in
Figure 2a as our running example. The solution to this problem is the
subproblem definition shown in Figure 2b. A review of subproblem
definition construction can be found online [17].

Our tool requires the design of a context-free grammar (see Fig-
ure 2c) that can generate the correct answer and also generate
compelling distractors. This is a manual, creative process that ben-
efits from an understanding of common student mistakes (which
can be used as inspiration for distractors).

Now, there are two main tasks that our tool needs to accomplish
using this CFG, which we will describe in the following subsections.

3.1 Generating Possible Next Tokens
The problem that we need to solve in this section can be formally
described as follows:

Given a context-free grammar (CFG) 𝐺 and a list
of terminals 𝑡1, 𝑡2, . . . , 𝑡𝑖 that is a prefix of some sen-
tence produced by𝐺 , find all terminals1 𝑡𝑖+1 such that
𝑡1, 𝑡2, . . . , 𝑡𝑖 , 𝑡𝑖+1 is still the prefix of some sentence
produced by 𝐺 .

We use a standard algorithm [14] to convert our CFG 𝐺 to a
non-deterministic pushdown automaton (PDA). Then, we simulate
this PDA reading the terminals 𝑡1, . . . , 𝑡𝑖 , which potentially creates

1Note that for our purposes, “terminal” is synonymous with “token”.
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SENTENCE  ->  "Define"  FUNCTION_DECLARATION  "to  be  the"  FUNCTION_OUTPUT  "."
FUNCTION_DECLARATION  ->  "the  subproblem"  |  "DP(i)"  |  "DP(i,  j)"  |  "MinCost(i)"  |  "MinCost(i,  j)"
FUNCTION_OUTPUT  ->  EXTREMAL_ADJ  NOUN  SITUATION
EXTREMAL_ADJ  ->  EPSILON  |  "minimum"  |  "maximum"
NOUN  ->  "answer"  |  "cost"  |  "hotels"  |  "coupons"
SITUATION  ->  MENTION_PARAMS_WITHOUT_EXPLAINING  |  "of"  SUBARRAY_RESTRICTION  ADDITIONAL_RESTRICTION
MENTION_PARAMS_WITHOUT_EXPLAINING  ->  "for  i"  |  "for  i  and  j"
SUBARRAY_RESTRICTION  ->  "traveling  from"  ORIGIN  "to"  DESTINATION
ORIGIN  ->  LOCATION
DESTINATION  ->  LOCATION
LOCATION  ->  "the  current  location"  |  "Hotel  1"  |  "Hotel  i"  |  "Hotel  j"  |  "Hotel  k"  |  "Hotel  n"
ADDITIONAL_RESTRICTION  ->  EPSILON  |  "using"  COMPARISON_OPERATOR  COMPARISON_RHS  NOUN
COMPARISON_OPERATOR  ->  "at  least"  |  "at  most"  |  "exactly"
COMPARISON_RHS  ->  "0"  |  "1"  |  "i"  |  "j"  |  "k"  |  "n"

You are planning a road trip along a highway with �푛 evenly-spaced hotels. These hotels have varying costs; the costs of staying overnight at 
each of the hotels are provided in the array �퐻�표�푡�푒�푙�퐶�표�푠�푡�푠 [1..�푛], where �퐻�표�푡�푒�푙�퐶�표�푠�푡�푠[�푖] is the cost of Hotel �푖.  Each day, you can either travel to the 
next hotel, or you can skip a hotel and travel forward by two hotels. Each night, you  must stay at a hotel. Furthermore, you have �푘 coupons that 
allow you to stay at a hotel for free. Describe a dynamic programming algorithm to determine the minimum possible cost of traveling from 
Hotel 1 to  Hotel �푛. 

Define �푀�푖�푛�퐶�표�푠�푡(�푖, �푗) to be the minimum cost of traveling from Hotel �푖 to Hotel �푛 using at most �푗 coupons.

a

b

c

Figure 2: Example problem. (a) problem statement, (b) solution: subproblem definition, (c) instructor-designed CFG

multiple branches2 of computation (since the PDA is nondetermin-
istic). Next, we inspect all of the branches that have been created;
if a branch has a terminal at the top of its stack, then we add this
terminal to the set of possibilities for 𝑡𝑖+1. Finally, we return this
set of possible next terminals to display to the student.

This part of the functionality is implemented entirely on the
frontend using JavaScript. Since it runs in the client’s web browser,
it does not contribute any load to the grading servers and is very
responsive. Note that this design is not susceptible to cheating.
Although the frontend has access to the CFG, it does not know
which sentences generated by the CFG are correct. Thus, even if
students inspect the frontend source code, they won’t gain access
to any information that they shouldn’t have.

On an abstract level, the PDA works by expanding the grammar
lazily. We only need to expand variables3 at the top of the stack
until we get a terminal at the top of the stack. Variables that aren’t
at the top of the stack can be left alone, allowing us to avoid an
exponential explosion in the number of branches.

For example, given the CFG for the hotel costs problem, the PDA’s
stack would start out as [SENTENCE]. Then, it would get replaced
by the RHS of the production rule for SENTENCE, so the stack would
change to ["Define", FUNCTION_DECLARATION, "to be the",
FUNCTION_OUTPUT, "."]. (The top of the stack corresponds to the
left side of the array.) Now, since the terminal "Define" is at the
top of the stack, it is the only possible next token.

Once the user selects "Define" as the next terminal, it gets
popped off the stack, leaving us with [FUNCTION_DECLARATION,

2Each “branch” explores a different way to expand the context-free grammar.
3“Expanding a variable” refers to replacing a variable with the RHS of its production
rule. If a variable’s production rule has 𝑛 potential right-hand sides, this creates 𝑛
branches, where each branch explores a different RHS for that variable.

"to be the", FUNCTION_OUTPUT, "."]. Next, since the pro-
duction rule for FUNCTION_DECLARATION has five potential right-
hand sides, the PDA splits into five branches. In each branch,
FUNCTION_DECLARATION is replaced with a different RHS:

• ["the subproblem", "to be the", FUNCTION_OUTPUT,
"."]

• ["DP(i)", "to be the", FUNCTION_OUTPUT, "."]
• ["DP(i,j)", "to be the", FUNCTION_OUTPUT, "."]
• ["MinCost(i)", "to be the", FUNCTION_OUTPUT, "."]
• ["MinCost(i,j)", "to be the", FUNCTION_OUTPUT, "."]

Each branch’s stack has a different terminal at the top, so there
are five possible next tokens for the user to select. This process
continues until the stack is empty, at which point the user is allowed
to submit their response.

3.2 Automated Grading/Feedback
The first step in the grading process is to use the CFG to transform
the student’s submission into a parse tree.4 This transformation is
illustrated in Figure 3.

Once we have have obtained a parse tree, the autograder uses
constraint-based modeling to evaluate the response and give feed-
back to the student. Constraint-based modeling allows the instruc-
tor to specify a set of domain principles that must be satisfied in
order for a response to be considered correct [8]. Each constraint
consists of logic that checks for the presence of specific structures in
the parse tree. Furthermore, each constraint can generate feedback
whenever it is violated, allowing us to provide students with tar-
geted and actionable feedback. The domain constraints that we used
in our model are listed below (in the order that they are checked):
4We used Python’s nltk module to accomplish this.
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SENTENCE

“Define” FUNCTION_DECLARATION

“MinCost(i,j)”

“to  be  the” FUNCTION_OUTPUT

EXTREMAL_ADJ NOUN SITUATION

“minimum” “cost”

“.”

“of” SUBARRAY_RESTRICTION ADDITIONAL_RESTRICTION

“traveling  from” ORIGIN “to” DESTINATION

LOCATION

“Hotel  i”

“using” COMPARISON_OPERATOR

“at  most”  “j” “coupons”

NOUN

LOCATION

“Hotel  n”

COMPARISON_RHS

Figure 3: Parse tree for a correct response to the hotel costs problem (generated by the CFG in Figure 2)

• Declare Function: The definition must declare a function
with a descriptive name and parameters that can be memo-
ized.5

• Clearly State Output: The definition must clearly state
what quantity the function outputs.

• Explain Parameters: The definition must explain how the
function’s input parameters affect the output of the func-
tion. Furthermore, all variables mentioned in the definition
must either be defined in the original problem or declared
as function parameters.

• Can Compute Final Answer: We can compute the final
answer requested by the original problem using these sub-
problems. (This can either involve a single subproblem func-
tion call that directly returns the final answer, or combining
together multiple function calls to obtain the final answer.)

• Reduces Recursively: Each subproblem can be reduced to
smaller problems that are also handled by the subproblem
definition. In other words, it must be possible to write a
recursive formula for computing the function declared in
the subproblem definition.

The rationale behind this ordering of constraints is that they
represent the priority of the issues that need to be fixed. For instance,
if a submission doesn’t pass the “Declare Function” constraint,
then it doesn’t make sense to give feedback on any of the later
constraints; the student hasn’t even declared a function, and all of
the later constraints refer to properties of this nonexistent function.
Similarly, “Can Compute Final Answer” comes before “Reduces
Recursively” because it doesn’t make sense to discuss writing a
recursive formula to compute the function if this function is useless
for solving the original problem.

Another design choice we made in our constraint-based model is
that, in some cases, we will intentionally let an incorrect submission
pass a constraint if a later constraint can provide feedback that is
more relevant to the submission’s issue.

Let’s take a closer look at the “Can Compute Final Answer”
constraint in order to examine how the logic in each individual

5Memoization is the optimization technique that allows dynamic programming algo-
rithms to run in polynomial time instead of exponential time. It stores the results of
function calls into a table/array so that they don’t have to be recomputed. In order
to use this technique, the parameters of the function must be valid indexes into the
memoization table. In other words, each parameter must be an integer that lies within
some fixed domain (or an enum type that can be converted to an integer).

constraint is implemented. This constraint requires that we must be
able to compute the final answer requested by the original problem
using the subproblems defined by the student. In the hotel costs
problem, the original problem requests that at most 𝑘 coupons are
used, so the subproblem definition must provide a way to impose
this restriction. In order to ensure that this constraint is satisfied,
the autograder checks for the following conditions:

• The parse tree contains the path
ADDITIONAL_RESTRICTION -> NOUN -> "coupons".

• The child of COMPARISON_OPERATOR is "at most".6
• The child of COMPARISON_RHS is "i", "j", or "k".7

We can verify that the correct response in Figure 3 satisfies all three
of these conditions. If the student’s response violates any of these
conditions, the constraint would generate the following feedback:8

Your subproblem definition does not allow us to com-
pute the final answer requested by the original prob-
lem. The problem requires that at most 𝑘 coupons are
used, but there is no way to impose this requirement
using your subproblem definition.

Note that searching for specific structures in the parse tree is
more powerful and expressive than performing simple string match-
ing on the student’s response. For example, in the constraint de-
scribed above, we need to check that the definition places a restric-
tion on the correct noun ("coupons"). We do this by checking that
the path

ADDITIONAL_RESTRICTION -> NOUN -> "coupons"

is present in the parse tree of the student’s response. Simply check-
ing whether the student’s response contains the token "coupons"
would not achieve the same effect, because the student may have
used "coupons" as the noun to describe the FUNCTION_OUTPUT
without using it in the ADDITIONAL_RESTRICTION section, and this
match would show up as a false positive.
6In practice, we also accept "exactly" instead of "at most" because if the definition
says “minimum cost of . . . using exactly 𝑖 coupons”, we can still compute the minimum
cost using at most 𝑘 coupons by trying all 𝑖 ∈ {0, 1, . . . , 𝑘 } and taking the minimum.
7Using "k" would lead to an unviable subproblem definition because the subproblems
won’t reduce recursively (see website [CITE] for more elaboration). However, it still
satisfies the “Can Compute Final Answer” constraint, so it should not trigger this
constraint’s feedback. The issue with this definition will be detected by the “Reduces
Recursively” constraint later in the grading process, and that constraint will generate
more appropriate feedback for addressing this issue.
8This feedback is written beforehand by the instructor.
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Maximize Sum (Version 1)
Maximize Sum (Version 2) 
Maximize Sum (Version 3)

Minimize Time on Homework
Maximize Burr’s Profit

Pre-Test
(free response)

Post-Test
(free response)

Treatment
(CFG-based
Autograder)

Maximize Sum (Version 1)
Maximize Sum (Version 2) 
Maximize Sum (Version 3)

Minimize Time on Homework
Maximize Burr’s Profit

Version A Version B

Maximize Halloween Profit

Minimize Color Changes Maximize Halloween Profit

Minimize Color Changes

Figure 4: The question order in the two versions of the assign-
ment. Manually-graded questions were used as a pre- and
post-test, and autograded questions provided students with
instantaneous feedback using the scaffolded writing tool.

4 EXPERIMENTAL METHOD
We evaluated our tool by deploying it on an assignment in an in-
troductory algorithms course taught in Spring 2022 at a large U.S.
public university. This course is taken by more than 300 students
each semester. Most students are sophomores or juniors and take
the course as part of their computer science or computer engineer-
ing major (it is required for both majors). The prerequisites are a
discrete mathematics and a data structures course. Major topics
covered by the course include finite automata, recursive algorithms,
dynamic programming, graph algorithms, undecidability, and NP-
completeness.

In this study, we were primarily investigating the effective-
ness of the tool as low-stakes formative guidance, not the accu-
racy/reliability of the tool on a high-stakes summative assessment.

4.1 Assignment Setup
The study was performed through a single assignment (see Figure 4)
using PrairieLearn [15, 16] that consisted of a pre-test question,
five CFG scaffolded writing questions, and a post-test question. The
pre-test and post-test questions asked students to specify subprob-
lem definitions as they would on an exam, by writing free-form
responses. These responses were typed into a blank input box and
were manually graded by the first author after the assignment’s
due date. Students were forced to complete all seven questions in
order.9 Thus, any difference between pre-test and post-test scores
can largely be attributed to the scaffolded writing questions, which
were autograded and provided instant feedback. All of the questions
and their interactive graders can be found online [17].

Because we expected students to complete the assignment in
a single sitting, we decided to use two different questions for the
pre-test and post-test to avoid a prior exposure effect. Furthermore,
to distinguish the relative difficulty of these two questions from
any effect of the treatment, we used two versions of the assignment
(see Figure 4). The versions were identical, except the pre-test and
post-test questions were swapped. Each version was assigned to a
random half of the class.

9They could not modify their pre-test response after seeing any of the later questions,
and they could not submit a post-test response before completing all of the earlier
questions.

4.2 Manual Grading
The manual grading was performed by the first author. Before
grading began, the submissions from Version A and Version B were
mixed together into the same spreadsheet in a randomized order,
and then the version labels were hidden from the grader. This avoids
subconscious bias from the grader knowing which submissions are
pre-tests and which submissions are post-tests.

For the manually-graded questions, we designed a rubric that
produces scores on a scale of 0 to 12, with points allocated as follows:

• Declare Function: 3 points
– Deduct all 3 points if no function is declared at all
– Deduct 1 if the function does not have a descriptive name
– Deduct 1 point if the function’s parameters are not mem-
oizable (see Footnote 5)

– Deduct 1 point if the function reuses variables defined in
the original problem as function parameters

• Clearly State Output: 2 points
– Deduct both points for not stating the correct noun out-
putted by the function

– Deduct 1 point for not having the correct extremal adjec-
tive in front of the noun

• Explain Parameters: 2 points
– Deduct 1 point for each insufficiently explained parameter

• Can Compute Final Answer: 1 point
– Deduct 1 point if the subproblems can’t be used to compute
the final answer

• Reduces Recursively: 4 points
– Deduct 1 point for a minor error/typo that prevents the
subproblem from reducing recursively

– Deduct 2 points for each major oversight that prevents
the subproblem from reducing recursively

4.3 Data Handling and IRB Approval
We received IRB approval for this research study. Students were
presented with an informed consent form and given the opportunity
to opt-out of the study. Participating students’ data was anonymized
before it was shared with the research team for analysis.

5 RESULTS
After receiving the anonymized data, we filtered out students who
didn’t submit both the pre-test and the post-test. This left us with
288 students in our dataset (144 from each version of the assign-
ment). Out of these students, 172 of them earned a strictly higher
score on the post-test than on the pre-test, and only 63 students
received a lower score on the post-test. The mean score on the pre-
tests was 7.2/12, and the mean score on the post-tests was 9.2/12. A
more detailed breakdown of the scores is shown in Figure 5.

To perform an analysis encompassing the pre-/post-test scores
from both versions of the assignment, we fit an ordinary least
squares (OLS) model of the form

𝑠𝑖 𝑗 = 𝜎 𝑗 + 𝛽𝐴𝑖 𝑗 ,

where 𝑠𝑖 𝑗 is the score that student 𝑖 received on question 𝑗 , 𝐴𝑖 𝑗 is 1
if student 𝑖 had question 𝑗 as a post-test (0 otherwise), and 𝜎 𝑗 and 𝛽
are the parameters we want to estimate, which can be interpreted
as:



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Jason Xia and Craig Zilles

0 1 2 3 4 5 6 7 8 9 10 11 12

Score (out of 12)

0

20

40

60

80

100

120

F
re

q
u

en
cy

Score Frequencies

Pre-test Scores

Post-test Scores

Figure 5: Histogram of scores from the manually-graded
questions. The improvement from pre- to post-test results
from solving five problems using our tool.

• 𝜎 𝑗 : the mean score of question 𝑗 ,
• 𝛽 : the score improvement resulting from the intervention
(i.e., the scaffolded writing tool).

We find that 𝛽 = 2.014 (95% CI [1.513, 2.515], 𝑝 < 0.0001), mean-
ing that scores increased by roughly 2 points on a 12-point scale.

Some submissions received low scores (i.e., less than 6/12) be-
cause they were were completely off-track. Often, they tried to
explain how to implement a recursive function (essentially describ-
ing the code in English) instead of stating the function’s black-box
specification. One example of this (which received 4/12) is shown
below:

We define a function Paint(bool TileIsPainted[], int
currentTile, int m, int Color[], int currentColor) which
returns an int value that represents the minimum
number of color changes required. Every time we
change color, we add 1 to the recursive call and change
currentColor, TileIsPainted and increment currentTile.
Each time we paint incorrectly, we decrement m by 1.

From the histogram, we can see that these off-track submissions
were much more likely to correspond to pre-tests rather than post-
tests, suggesting that the scaffolded writing tool was effective at
getting students to correct major issues and understand the general
purpose of a subproblem definition.

However, even within the post-test pool, relatively few submis-
sions earned 100%. We believe this is due to the fact that each
problem has unique nuances that need to be dealt with when de-
signing the subproblem definition, and these nuances cannot nec-
essarily be learned by “pattern-matching” from previous examples.
Learning to deal with these nuances requires building up intuition
through working on many dynamic programming problems, and
we wouldn’t expect students to master this intuition after just five
autograded questions.

Often, these nuances are related to the “Reduces Recursively”
constraint, which results in a 2 point deduction according to our
rubric. This explains the large peak in post-test scores at 10/12.

For example, on the “Minimize Color Changes” question, many
students submitted something along the lines of:

Define𝑀𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠 (𝑖, 𝑗) to be the minimum number
of color changes required to paint Tiles 𝑖 through 𝑛

while making at most 𝑗 mistakes.
This subproblem does not reduce recursively because we need to
know the color that we start with in order to determine whether
the color that we choose for Tile 𝑖 counts as a color change. Thus,
submissions like this would receive a score of 10/12. Making the
definition viable requires adding another parameter, as follows:

Define𝑀𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑠 (𝑖, 𝑗, 𝑘) to be the minimum num-
ber of color changes required to paint Tiles 𝑖 through
𝑛 while making at most 𝑗 mistakes if we start with
Color 𝑘 on our brush/tray.

In general, it is hard to recognize violations of “Reduces Re-
cursively” constraint without actually attempting to write out the
recursive formula and realizing that some aspect of it doesn’t work.
Even though our tool did provide automated feedback explaining
why certain subproblem definitions wouldn’t reduce recursively,
we never explicitly asked students to write recursive formulas for
computing the subproblems that they defined during the study. The
lack of focus on this skill may be one reason why students were
still making mistakes and oversights on the post-test. Overall, these
types of oversights are still relatively minor compared to the issues
in the many pre-test submissions that were completely off-track.

6 CONCLUSION AND FUTUREWORK
We have developed a tool for autograding statements in mathemati-
cal writing using a novel approach based on context-free grammars.
Furthermore, we evaluated the efficacy of this tool within the con-
text of teaching dynamic programming in a large undergraduate
algorithms class, and this study produced promising results.

There are many potential directions for future work. Although
our study only focused on a specific task in a single course, we
believe that the scaffolded writing tool can be expanded to a variety
of tasks across a wide range of subjects. In fact, we have already
started incorporating the tool into different aspects of our algo-
rithms class such as NP-hardness reductions. More broadly, we
believe that the tool could be used to scaffold and autograde self-
explanation tasks, where students are asked to explain steps in an
expert solution. Self-explanation has been shown to facilitate ac-
quisition of knowledge and procedures [7, 11, 12], so having more
chances to practice it and receive instantaneous feedback could be
very beneficial for students.

In addition, there is room for improvement in the tool’s ease
of use. For instructors, it would be useful to provide assistance in
constructing the CFG, perhaps through a tool that could suggest
distractors by identifying common mistakes from student answers
to a free response form of the question. For students, we’d like to
provide a more convenient way to edit the middle of responses that
doesn’t require discarding everything past the edit point.
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