
Submitted to Statistical Science

Measurement error models: from
nonparametric methods to deep
neural networks
Zhirui Hu, Zheng Tracy Ke and Jun S Liu

Abstract. The success of deep learning has inspired a lot of recent interests
in exploiting neural network structures for statistical inference and learning.
In this paper, we review some popular deep neural network structures and
techniques under the framework of nonparametric regression with measure-
ment errors. In particular, we demonstrate how to use a fully connected feed-
forward neural network to approximate the regression function f(x), explain
how to use a normalizing flow to approximate the prior distribution of X ,
and detail how to construct an inference network to generate approximate
posterior samples of X . After reviewing recent advances in variational in-
ference for deep neural networks, such as the importance weighted autoen-
coder, doubly reparametrized gradient estimator, and non-linear independent
components estimation, we describe an inference procedure built upon these
advances. An extensive numerical study is presented to compare the neu-
ral network approach with classical nonparametric methods, which suggests
that the neural network approach is more flexible in accommodating differ-
ent classes of regression functions and performs superior or comparable to
the best available method in many settings.

Key words and phrases: Doubly reparametrized gradient estimator, error-in-
variables, fully connected feed-forward neural network, importance weighted
autoencoder, normalizing flow, SIMEX, variational autoencoder.

1. INTRODUCTION

The nonparametric regression with measurement errors is a classical topic in statistics and
has received much attention (Carroll et al., 2006). In a common setting, the response Y 2 R
satisfies that E[Y |X] = f(X), where X 2 Rd contains the covariates and f : Rd ! R is an
unknown regression function. The covariates are observed with additive errors: we observe

Zhirui Hu is PhD graduate from Department of Statistics, Harvard University, Cambridge, U.S.
(e-mail: zhiruihu33@gmail.com). Zheng Tracy Ke is Assistant Professor, Department of Statistics,
Harvard University, Cambridge, U.S. (e-mail: zke@fas.harvard.edu). Jun S Liu is Professor,
Department of Statistics, Harvard University, Cambridge, U.S. (e-mail: jliu@stat.harvard.edu).

1

https://imstat.org/journals-and-publications/statistical-science/
mailto:zhiruihu33@gmail.com
mailto:zke@fas.harvard.edu
mailto:jliu@stat.harvard.edu

2

W = X + U instead of X , where U is a mean-zero random vector whose distribution is
known. The goal is estimating the nonparametric function f from observations of (W,Y).

Nonparametric and semiparametric methods are popular for fitting measurement error
models. Some notable examples include the deconvolution method (Fan and Truong, 1993),
the simulation extrapolation method (Carroll, Maca and Ruppert, 1999), and the estimating
equation method (Jiang, Ma and Carroll, 2018). These methods usually enjoy nice theoretical
properties but they only apply to particular smooth function classes of f . Bayesian methods
are also widely used. In a Bayesian framework, the joint distribution of (X,W,Y) is fully
specified, and unknown parameters are estimated by maximizing the marginal likelihood of
(W,Y) (Richardson and Gilks, 1993; Dellaportas and Stephens, 1995). These methods are
flexible in accommodating various types of response variables and measurement errors that
arise in real applications, but they are usually computationally expensive. If the distribution
of U is unknown but there exists an observed variable T that is dependent of X and indepen-
dent of U , the instrumental variable approach can be employed for measurement error models
(Carroll and Stefanski, 1994). We will review all these existing methods in Section 2.

Recently, the success of deep learning in artificial intelligence has inspired a surge of in-
terests in exploiting neural network structures for statistical inference and learning. Fan, Ma
and Zhong (2021) give a nice review of common neural network models and training tech-
niques from a statistical perspective. It is widely observed, empirically and theoretically, that
neural networks have the ability of representing a variety of function classes (Mhaskar, 1996;
Maiorov and Meir, 2000; Rolnick and Tegmark, 2018) and that the neural-network-based
methods tend to be resistant to overfitting and have a good generalization power (Bauer and
Kohler, 2019; Schmidt-Hieber et al., 2020). These nice features motivate us to consider a new
direction of fitting measurement error models — by exploiting neural network structures.

However, the neural network models and methods reviewed in Fan, Ma and Zhong (2021)
are for the nonparametric regression with error-free covariates. When there are measurement
errors, the neural network modeling and training become very different. The purpose of this
paper is three-fold. First, we investigate and discuss different ways to exploit neural network
structures in the nonparametric regression with measurement errors. We also propose an ap-
proach that integrates the fully-connected feed-forward neural networks (FNNs) and the nor-
malizing flow (Tabak and Turner, 2013) into the Bayesian framework of fitting measurement
error models. This is presented in Section 3. Second, we demonstrate how to apply the vari-
atonal autoencoder (Kingma and Welling, 2014) to train the above neural network models.
In the usual nonparametric regression setting, the training is via stochastic gradient descent
algorithms. However, with the presence of measurement errors, we face a hierarchical model
with latent variables, and we have to use variational inference techniques. This is presented
in Section 4, where we review the recent developments in variational inference for neural net-
works, especially the importance weighted autoencoder (Burda, Grosse and Salakhutdinov,
2016) and the doubly reparametrized gradient estimator (Tucker et al., 2018), and use them
to design training algorithms. Last, we compare the neural network approach with existing

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 3

nonparametric/semiparametric methods on simulated data and two real data sets. These are
presented in Sections 5-6.

How to use neural network techniques in measurement error models is not straightforward.
We propose a Bayesian framework for fitting measurement error models, the Neural Network
method for Measurement Error models (NNME), where, in contrast to standard Bayesian
methods, we replace (i) the class of f , (ii) the model for the prior distribution of X , and (iii)
the inference procedure, by their respective neural network counterparts. Components (ii)-
(iii) are not needed for developing neural network approaches to the nonparametric regression
with error-free covariates, hence not covered in the review of Fan, Ma and Zhong (2021). We
point out that (ii) is connected to using normalizing flows to estimate nonparametric densities
and (iii) is connected to using variational autoencoder to train deep generative models. There
is a nascent literature on these directions in deep learning, but they are not yet familiar to the
statistics community. The description of our NNME model and its training technique serves
to review and elaborate these ideas from a statistics perspective.

Our numerical exploration suggests that the neural network approach to fitting measure-
ment error models is promising. Thanks to the representation power of neural network func-
tion classes, this approach is flexible to accommodate various classes of f without requiring
prior knowledge. It is also convenient to deal with multiple covariates (d > 1): switching from
d= 1 to d > 1, nonparametric methods often need special treatments (e.g., in the kernel/spline
construction), but the neural network approach does not, as the code is identical for d= 1 and
d > 1. In the case of multiple covariates, the neural network approach is also computationally
fast. In contrast, even for d= 2, we find that the available code of several other methods ei-
ther does not work or run very slowly. Tuning in the neural network approach is mainly about
selecting the network architecture, such as the number of layers and the number of nodes per
layer. Thanks to the resistance-to-overfitting of neural network structures, we can set these
numbers properly large without fine tuning. On the other hand, neural networks need a large
sample size to train, so that its advantage is seen only when n is properly large. Compared
with existing methods (especially nonparametric methods), the neural network approach is
more suitable if we face a complicated f to estimate but also have a large number of samples.
This scenario is common in modern big data applications, making the exploitation of neural
network structures in measurement error models a very promising direction.

The remaining part of this article is organized as follows: Section 2 reviews some existing
methods for treating measurement error models. Section 3 describes a neural network-based
Bayesian framework for estimating measurement error models. Section 4 reviews the litera-
ture of variational auto-encoders and proposes an algorithm for training the neural network
model. Section 5 compares neural network approaches with classical ones for measurement
error models via simulated data. Section 6 presents the application in two real datasets, and
Section 7 concludes with a few remarks.

4

2. CLASSICAL METHODS FOR NONPARAMETRIC MEASUREMENT ERROR MODELS

Let Y 2 R be the response, and let W 2 Rd be the vector of error-prone covariates. We
assume that

(1) Y = f(X) + ✏, W =X +U,

where (X,U, ✏) are independent of each other, with U being the unobserved measurement
error, E[✏] = 0, and E[U] = 0. By convention, the measurement error distribution pU (u) is
assumed known (in practice, it is often estimated or determined by the prior data or knowl-
edge) since otherwise the regression function would be unidentifiable. This assumption can
be relaxed, however, if some instrumental variables uncorrelated with the measurement error
are available (see Section 2.3). Given independent and identically distributed realizations of
(W,Y), {(wi, yi), i= 1,2, ..., n}, our goal is to estimate the regression function f .

2.1 Nonparametric methods

Such methods typically start from an existing nonparametric method for the error-free case,
and aim to address the bias caused by replacing X with W in the presence of measurement
errors. The deconvolution approach builds on local smoothing estimators for nonparamet-
ric regression in the error-free case. A local smoother takes the form f̂(x) =

Pn
i=1 `i(x)yi.

Given a kernel function K(·) and a bandwidth h, the Nadaraya-Watson estimator corre-
sponds to taking `i(x) =K(xi�x

h)/[
Pn

j=1K(xj�x
h)]. In the presence of measurement errors,

{K(xj�x
h)}nj=1 are unobserved. Fan and Truong (1993) proposed to replace K(xj�x

h) by
L(wj�x

h), such that E[L(wj�x
h)|xj] =K(xj�x

h). The function L(·) is defined by

L(x) =
1

2⇡

Z
e�

p
�1 tx �K(t)

�U (t/h)
dt,

(
�K(t) : Fourier transform of K(·),
�U (t) : characteristic function of U.

This approach is called ‘deconvolution’ for it is connected to density deconvolution (Carroll
and Hall, 1988; Stefanski and Carroll, 1990). Similar ideas can be developed to combine with
other local smoothing estimators, such as the local polynomial estimator (Delaigle, Fan and
Carroll, 2009). A nice property of the deconvolution approach is that it requires no struc-
tural assumption on f(·), except the smoothness. Another nice property is that it attains the
minimax rate of convergence (Fan and Truong, 1993). On the other hand, its numerical per-
formance relies on the selection of bandwidth h. How to select h in the presence of mea-
surement errors is a challenging problem and not well studied in the literature. One notable
work is Delaigle and Hall (2008), where they combined cross-validation with the simulation
extrapolation idea (to be introduced below) for bandwidth selection.

The regression spline approach approximates f(·) by spline bases. Different from the
error-free case, fitting splines with measurement errors requires either estimating the pos-
terior distribution of X or calculating an unbiased score function. Carroll, Maca and Ruppert
(1999) assumed that f(x) has an expansion on the truncated power basis {1, x, . . . , xp, (x�
⇠1)

p
+, . . . , (x� ⇠k)

p
+}, where ⇠1, ⇠2, . . . , ⇠k are the fixed knots. They replaced the unobserved

quantities, xmi and (xi � ⇠j)m+ , by E(xmi | w1, . . . ,wn) and E[(xi � ⇠j)m+ | w1, . . . ,wn], re-
spectively. To compute these conditional moments, they assumed that the distribution of X is

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 5

a mixture of normals and developed a Gibbs sampling algorithm to estimate the posterior dis-
tribution of the xi’s. Jiang, Ma and Carroll (2018) assumed that f(x) has an expansion on the
B-spline basis and proposed an estimating equation method. Denote by � the spline coeffi-
cients and let S⇤

�(W,Y,�) be the gradient of the log-likelihood of (W,Y), assuming a working
density for X . This method estimates � by solving

Pn
i=1{S⇤

�(wi, yi,�)� g(wi, yi,�)}= 0,
where g(w,y,�) is a function such that E[S⇤

�(W,Y,�)� g(W,Y,�) |X] = 0. The spline ap-
proach attains a faster rate than the minimax one if the density of X has a compact support.
For Gaussian measurement errors, when f(·) has a continuous kth derivative, the minimax
rate for the mean squared error is as slow as log(n)�k (Fan and Truong, 1993). In comparison,
assuming a compact support for X , the spline approach can attain the standard nonparamet-
ric rate n� 2k

2k+1 (Hall and Qiu, 2005; Jiang, Ma and Carroll, 2018). The spline approach still
requires choosing tuning parameters— knots in the spline construction. Following Eilers and
Marx (1996), one can use a large number of equally spaced knots and add a penalty on the dif-
ference of coefficients of adjacent splines. It reduces to choosing the penalization parameter
�, which can be done by using doubling smoothing (Carroll, Maca and Ruppert, 1999).

The simulation extrapolation (SIMEX) approach builds upon an arbitrary nonparametric
regression method for the error-free case. For every �> 0, it constructs wi(�) =wi+�0

p
��i,

1  i  n, where �i ⇠ N (0,1) independent of data, and �2
0 is the variance of the measure-

ment error U in model (1). Let f̂(x;�) be the estimated nonparametric regression function
with {wi(�)}1in being used as covariates. In a linear measurement error model, f̂(x;�)
gives a consistent estimator of the true f(x) when being extrapolated to � = �1 (Cook and
Stefanski, 1994). This idea was generalized by Carroll, Maca and Ruppert (1999) to nonpara-
metric measurement error models: It first estimates f̂(x;�) for a few values of � � 0 using
an available nonparametric regression method, fits a quadratic curve of � using the values
of f̂(x;�), and then extrapolates the fitting to � = �1. SIMEX provides a super convenient
way to extend an arbitrary nonparametric regression method from the error-free case to the
error-in-variable case. But its consistency needs strong assumptions such as the variance of
U converging to zero as n ! 1 (Cook and Stefanski, 1994). SIMEX needs to select tun-
ing parameters in the original nonparametric regression method. Staudenmayer and Ruppert
(2004) introduced the empirical bias bandwidth selector (EBBS), which estimates the bias of
SIMEX for each fixed h and selects h that minimizes the mean-squared error.

Nonparametric methods were mostly studied for d = 1. When d > 1, they have natural
extensions, but the computational cost and the selection of bandwidth or knots can be much
more challenging. One of our motivations of introducing the neural network approach in
Section 3 is to provide a computationally cheaper solution for d > 1.

2.2 Bayesian methods

Bayesian methods are also widely used for estimating measurement error models. These
methods typically assume that the regression function f , the prior distribution of X , and the
distribution of ✏ are all from some restrictive families. The marginal likelihood of (W,Y) is

L(↵,�,�;W,Y) =

Z
pU (x�W) · pX(x;�) · p✏

�
Y � f(x;↵);�

�
dx,

6

where f(·;↵) is the regression function, pX(·;�) and p✏(·;�) are parametric densities, and
pU (·) is assumed known. The parameter estimation and inference are usually conducted by
Markov chain Monte Carlo (MCMC) (Crainiceanu, Ruppert and Wand, 2005) or the Monte
Carlo EM algorithm (Ganguli, Staudenmayer and Wand, 2005).

Different Bayesian methods differ in their choices of the model families for f , pX , p✏,
and pU . The choices of p✏ and pU are typically motivated by the application in considera-
tion. For f(·), earlier works used linear functions (Richardson and Gilks, 1993) or parametric
nonlinear functions (polynomial regression, segmented regression or other forms for specific
scientific applications) (Dellaportas and Stephens, 1995). High-degree polynomials can be
unstable especially at the boundaries. Later works used better nonparametric function ap-
proximations such as penalized splines (Berry, Carroll and Ruppert, 2002; Ruppert, Wand
and Carroll, 2003) to reduce the estimation instability. For the model of pX(·), some assumes
it to be a multivariate normal distribution with unknown parameters (Richardson and Gilks,
1993). However, this simple prior can be too restrictive in many real applications, resulting in
non-negligible biases for estimating the regression function. Others employed more flexible
models such as a k-component Gaussian mixture (Carroll, Roeder and Wasserman, 1999),
a Dirichlet process Gaussian mixture (Müller and Roeder, 1997), or a discrete distribution
(Gustafson, Le and Vallée, 2002).

A main advantage of Bayesian methods is that it is flexible in accommodating both continu-
ous and discrete response variables and various kinds of measurement errors, such as discrete
errors for categorical covariates (Gustafson, 2003) (e.g., in case-control studies), multiplica-
tive errors (where log(W) = log(X) +U), Berkson errors (Dellaportas and Stephens, 1995),
or a mixture of different types of errors from several measuring instruments (Mallick, Hoff-
man and Carroll, 2002). Other advantages include the convenience of incorporating multiple
sources of information as priors to improve parameter estimation and the possibility of com-
bining different experimental designs in a single framework (e.g., repeated measures, the
existence of a validation group where error-free covariates are observed, or the existence of
ancillary data from a separate source) (Gilks and Richardson, 1992).

On the other hand, Bayesian methods require the user to specify every component of the
full model. It is sometimes unclear how to decide their forms when limited information is
available. Sensitivity analysis is often needed to check the robustness of model assumptions.
Bayesian methods are also computationally much more expensive than nonparametric meth-
ods, as they often require using expensive MCMC algorithms for posterior inference. The
neural network framework described in Section 3 can be viewed as a new form of the Bayesian
nonparametric method, in which function f and the prior of X are modeled by neural net-
works. Instead of using MCMC, we employ variational inference and gradient descent to
achieve fast computation in complex models.

2.3 Instrumental variable methods

If the data contains observations on an instrumental variable T for the covariates, instru-
mental variable methods are commonly used for measurement error models when the mea-
surement error variance is unknown (Carroll et al., 2006). Although T does not need to be

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 7

a replicate measurement, T has to depend on X , and is uncorrelated (or independent in the
nonlinear setting) with the measurement error U and the response error ✏.

In the linear regression setting with classical measurement errors, the instrumental variable
estimate can be constructed as �̂IV = (⌃̂T

TW ⌃̂TW)�1⌃̂T
TW ⌃̂TY , where ⌃̂TY and ⌃̂TW are the

sample covariance matrices between the instrumental variables T and the response variable
Y and the covariates W , respectively. The matrix inverse can be replaced by the generalized
inverse if we have more instrumental variables than the number of covariates.

The instrumental variable method can be extended to generalized linear models in which
the mean and the variance of the response depend on a linear combination of the covari-
ates. Regression calibration approximations are commonly used given that T and X have an
approximately linear relationship (Carroll and Stefanski, 1994). Assuming that E(Y |X) =

f(�X) and E(Y |T) ⇡ f(�E(X|T)) ⇡ f(��T), regression calibration methods first run a
linear regression between W and T to obtain �̂, then perform a generalized linear regres-
sion of Y on �̂T to get �̂IV . When the relationship between T and X is nonlinear, Buz as
(1997) developed an adjusted score method for certain generalized linear models with scalar
X , and Schennach (2007) developed hybrid classical and regression calibration approaches.
Carroll et al. (2004) used instrumental variables to estimate the variance of the measurement
error and combined it with a nonparametric regression method for measurement error models
with known variance. Bayesian methods can be used to study non-linear or nonparametric
regression when instrumental variables are available (Carroll et al., 2004).

However, those requirements for a variable T to be an instrumental variable are difficult
to validate in practice and limit the applicability of instrumental variable methods. Also, the
estimates tend to have a large variation if the dependence between T and X is weak and could
be biased if T is correlated with any of the errors.

3. NEURAL NETWORK MODELING FOR MEASUREMENT ERRORS

Using neural networks for nonparametric estimation has received much recent interest (see
Fan, Ma and Zhong (2021) for a nice review). In these works, a nonparametric function f is
approximated by a feed-forward neural network (FNN). As depicted in Figure 1, an L-layer
FNN is a composition of simple nonlinear functions:

(2) f(x) = h(L) � h(L�1) � . . . � h(1) � h(0)(x),

where h(`) is a mapping from Rd` to Rd`+1 , with d0 = d and dL+1 = 1. Let �(·) : R! R be
an almost-everywhere differentiable function, called the activation function in the literature.
For any vector u 2Rd, we denote by �(u) 2Rd the vector of applying �(·) entry-wise. Each
h(`) has the form

(3) h(`)(u) = �
�
A(`)u+ b(`)

�
, where A(`) 2Rd`+1⇥d` , b(`) 2Rd`+1 ,

except that the last layer h(L) is a linear mapping. The rectifier linear unit (ReLU) func-
tion, �(x) = max{x,0}, is a popular activation function. Other choices include the sigmoid
function and the tanh function. Let ✓ = {A(`), b(`)}0`L denote the parameters of an FNN.
Following the statistical tradition, we write f = f✓ . The nonparametric estimation of f now

8

X1

Y

input

X3

hidden layers output

X2

!(#!$ + &)

Fig 1: An example of an FNN with L= 2 and d= 3.

reduces to the estimation of ✓ of the FNN, which is often achieved by minimizing an empirical
loss function, such as the residual sum of squares plus a regularization term.

It has been shown that the multi-layer FNN class defined in (2)-(3) can provide satisfactory
approximations to a wide range of continuous functions (Lin, Tegmark and Rolnick, 2017;
Rolnick and Tegmark, 2018; Bauer and Kohler, 2019; Schmidt-Hieber et al., 2020). At the
same time, although deep FNN’s have a large number of parameters to estimate, FNN-based
algorithms typically do not suffer much from over-fitting. This is hard to explain by classi-
cal learning theory, and many recent theoretical studies have been devoted to understanding
this phenomenon. One explanation is the norm regularization. In the training of neural net-
works, it is common to add penalties on the norms kA(`)kF . Assuming that these norms are
properly bounded, the Rademacher complexity of the FNN function class can be nicely con-
trolled (Golowich, Rakhlin and Shamir, 2018). Another explanation hinges on properties of
the stochastic gradient descent (SGD) algorithm for training neural networks. Instead of con-
sidering the global minimum of the empirical loss, such theory focuses on local minimums
found by SGD and shows that these solutions are properly regularized. Related works include
the mean field approximation (Mei, Montanari and Nguyen, 2018), stability of SGD (Hardt,
Recht and Singer, 2016), and implicit regularization of SGD (Gunasekar et al., 2018).

The representation power of FNN and the resistance to over-fitting of neural network train-
ing together motive us to use them for measurement error models. Specifically, we will model
the regression function f in a measurement error model by an FNN as defined in (2)-(3).
However, unlike the nonparametric regression, the measurement error model is a hierarchical
model with latent variables. We face extra challenges when using neural networks. First, the
prior distribution pX(·) is unknown. We wish to also use a neural network to approximate
pX(·), but it cannot be a regular FNN since pX(·) needs to be a valid density. Second, follow-
ing a conventional Bayesian framework (see Section 2.2), we should use the marginal log-
likelihood as the empirical loss. Then, the standard SGD is not directly applicable because
the objective function involves an integral with respect to the density of X . In Section 3.1
below, we resolve the first challenge by approximating pX(·) with a normalizing flow, and
resolve the second challenge by employing the variational auto-encoder for inference.

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 9

3.1 A neural network structure for measurement error models

We assume that ✏ is normally distributed in this section, although the normal family can be
easily replaced by any given parametric family. Let f = f✓ be parametrized by FNN as in (2).
We re-write the measurement error model as

Y = f✓(X) + ✏, ✏⇠N (0,�2) and X ⇠ pX(x),

W =X +U, U ⇠ pU (u).(4)

We use a normalizing flow (Tabak and Turner, 2013; Papamakarios, Pavlakou and Murray,
2017; Rezende and Mohamed, 2015) to represent the prior distribution pX . A normalizing
flow is a sequence of transformations g1, g2, . . . , gm, where each gj :Rd !Rd is an invertible
mapping parametrized by a few neural network layers and m is a tuning integer (adequate
to have m � 3 (Dinh, Krueger and Bengio, 2015)). Let V 2 Rd be a random vector whose
density has a simple analytic form (e.g., V ⇠N (0, Id)). We assume that

X =G�1
� (V), where G� = gm � gm�1 � . . . � g1,

with � denoting the parameters employed in the mappings. Let J(x) denote the Jacobian of
the mapping G� . Then, the implied distribution for X is pX(x) = pV (G�(x)) · |detJ(x)|.
Intuitively, this strategy obtains the target prior pX(·) by transforming a simple analytic den-
sity (e.g., normal) via a “flow” of invertible mappings. A specific simple flow called the
Non-linear Independent Components Estimation (NICE) (Dinh, Krueger and Bengio, 2015)
is employed in our framework. NICE parametrizes each invertible mapping v = gj(x) as fol-
lows: vIj1 = xIj1 and vIj2 = xIj2 +h(xIj1), where {Ij1, Ij2} is a partition of {1, . . . , d} and h

is a neural network with |Ij1| input units and |Ij1| output units. Such a mapping has a trivial
inverse and the identity Jacobian regardless of the choice of h. Different gj corresponds to
different partitioning {Ij1, Ij2}. It thus follows that

(5) pX(x) = pV (G�(x)),

where � denotes the parameters of NICE. We call the fitting based on (2), (4), and (5) the
neural network method for measurement error models (NNME).

Under the NNME, the joint density of (W,Y,X) can be expressed explicitly:

(6) p(w,y,x;✓,�,�2) = pV (G�(x))⇥ pU (w� x)⇥ p✏(y� f✓(x);�
2).

In a similar spirit as empirical Bayes methods, we estimate the parameters (✓,�,�2) by max-
imizing the marginal log-likelihood of the observed variables:

(7) L(✓,�,�2)⌘ log

Z
p(w,y,x;✓,�,�2)dx.

The likelihood is an integral over the latent variable x and cannot be evaluated analytically. We
follow the idea of variational auto-encoder (VAE) (Kingma and Welling, 2014; Rezende, Mo-
hamed and Wierstra, 2014) to pair this model with another neural network for conducting vari-
ational inference, which can be viewed as a generalization (or relaxation) of the EM algorithm
(Dempster, Laird and Rubin, 1977). More specifically, we consider a “proposal” distribu-
tion for the latent variables X given (W,Y), that is X | (W,Y)⇠N (µ�(W,Y),⌃�(W,Y)),

10

W

y

μɸ

fθ(X)X=μɸ+Σɸ1/2Z

Σɸ

Z∼N(0,Id)

!ɸ

"

"!($)

Fig 2: A neural network structure for NNME. The input is w and y, and the output is the
estimated regression function f✓(x). The left green block is an encoder, which consists of
several fully connected layers with ReLU activation functions and the last layer with a linear
function; the output of the encoder are parameters for the proposal distribution. The right
green block is a decoder, which has the same network structure as the encoder; the input are
random samples of x, and the output are estimated values of f✓(x). The top green block is
another decoder, which consists of a few coupling layers of a normalizing flow; the input are
random samples of x, and the output is the estimated prior density of X .

where µ� and ⌃� are represented by a neural network with parameter �. Let q�(x | w,y)
denote this distribution. By Jensen’s inequality, the log-likelihood in (7) has a lower bound:

(8) QVAE(✓,�,�
2,�) =

Z
log

✓
p(w,y,x;✓,�)

q�(x|w,y)

◆
q�(x|w,y)dx,

which is often called the evidence lower bound (ELBO) in the literature (Blei, Kucukelbir
and McAuliffe, 2017). The key idea of variational inference is to maximize this ELBO si-
multaneously over both the model parameters (✓,�,�2) and the parameters � of the proposal
distribution. Note that distribution q�(x | w,y) is not part of our model since x’s conditional
distribution is already implied by the joint distribution in (6). The role of q�(x |w,y) is purely
computational, being analogous to the trial distribution in an importance sampling approxi-
mation. In fact, it is useful to realize that ELBO (8) is derived by applying Jensen’s inequality
to an importance sampling expression of (7). With q�(x | w,y) and its associated ELBO, the
optimization task is easier to carry out. See Section 4 for more detailed discussions.

The neural network structure is shown in Figure 2. The FNN parameterized by � is called
an encoder or an inference network. It takes data (W,Y) and outputs the parameters (µ�,⌃�)

of the proposal distribution for generating latent variable X . The FNN parameterized by ✓

and the normalizing flow parameterized by � are both called decoders or generative networks.
They take the random samples of X from the proposal distribution and outputs the estimated
f✓(x) and pX(x) at those random samples.

3.2 Other neural network models

There are other ways to incorporate neural networks in a measurement error model. The
first alternative is to ignore the measurement error and treat the problem as a standard non-

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 11

parametric regression with a neural network representing f (we abbreviate this approach as
NN). When the variance of U is properly small, NN may have a reasonably good performance.
The second approach is to use a parametric density for pX(·) while keeping other components
of NNME unchanged. Consequently, in Figure 2, the decoder (generative network) for p�(x)
becomes an explicit function. This is a simplified version of NNME (we still call it NNME). It
works well when true prior distribution can be well approximated by a parametric family. The
third approach is to use a similar encoder-decoder structure as in NNME but to maximize the
joint likelihood of (X,W,Y) instead of the marginal likelihood (7), abbreviated as MJL. Let
x̂i(�;wi, yi) = h�(wi, yi), 1  i  n, where h� is a function parameterized by the encoder.
The joint likelihood is eL(✓,�,�2 |w,y) = pU

�
w�h�(w,y)

�
·p✏

�
y�f✓(h�(w,y)); �2

�
. The

parameters are estimated by alternating between computing xi from the encoder and updating
(✓̂, �̂, �̂2) by maximizing eL. MJL is easier to implement than NNME, as the objective has no
integral, but it may lose efficiency for not using the prior information.

A numerical comparison. We compare different neural-network-based approaches, NN,
MJL, and several versions of NNME, in a setting with d= 2 and f generated from a Gaussian
process (see Appendix C for details). Let

(9) X ⇠ 0.7 · N
 "

�0.4

0.2

#
,

"
0.22 0

0 0.32

#!
+ 0.3 · N

 "
0.2

0.4

#
,

"
0.32 0

0 0.22

#!

and U ⇠N (0,�2
0I2). NNME-true denotes the benchmark resulting from using the true data-

generating prior pX(x). NNME-GM2, NNME-GM4, and NNME-tdist approximate pX by a
2-component Gaussian mixture, 4-component Gaussian mixture, and t-distribution, respec-
tively. NNME-NICE is as in Section 3.1. For all methods, we use 9 hidden layers for en-
coders and 5 hidden layers for decoders, with 32 nodes per layer (see Appendix C for varying
the numbers of layers). The performance is measured by the integrated squared error (ISE)
R
[�1,0.2]⇥[�1,0.5][[�0.5,1]⇥[�0.2,1][f✓̂(x)�f✓(x)]2dx; the integral is restricted to a region where

very few training xi’s fall outside this region.
The results are shown in Figure 3. When the measurement error is small (�0 = 0.05, top

panels) and the sample size is large, NN has a reasonable performance; but for all the other
cases, NN is considerably worse than NNME. This suggests that ignoring measurement errors
is unsatisfactory. MJL and NNME both account for measurement errors, but NNME has a
much better performance, especially when n is large (see Appendix B for more explanations).
When the measurement error is small, the performance is insensitive to the chosen model
of X . In this case, the posterior of the xi’s are mainly determined by the wi’s. When the
measurement error is large (�0 = 0.2, bottom panels) using the correct parametric model
(i.e., GM2) yields a similar performance as using the true model. For the two misspecified
parametric models, GM4 performs as well as (sometimes even better than) the true model,
but the (unimodal) t-distribution performs unsatisfactorily. The NICE model performs near-
optimally in all settings, demonstrating the robustness of the normalizing flow approach. In
summary, the experiment suggests to use either NICE or a Gaussian mixture with a reasonably
large number of components for modeling X .

12

N
N

M
JL

N
−t
ru
e

N
−G

M
2

N
−G

M
4

N
−t
di
st

N
−N

IC
E

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

IS
E

N
N

M
JL

N
−t
ru
e

N
−G

M
2

N
−G

M
4

N
−t
di
st

N
−N

IC
E

0.2
0.4
0.6
0.8
1.0
1.2
1.4

IS
E

N
N

M
JL

N
−t
ru
e

N
−G

M
2

N
−G

M
4

N
−t
di
st

N
−N

IC
E

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

IS
E

N
N

M
JL

N
−t
ru
e

N
−G

M
2

N
−G

M
4

N
−t
di
st

N
−N

IC
E

0.2
0.4
0.6
0.8
1.0
1.2
1.4

IS
E

N
N

M
JL

N
−t
ru
e

N
−G

M
2

N
−G

M
4

N
−t
di
st

N
−N

IC
E

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

IS
E

N
N

M
JL

N
−t
ru
e

N
−G

M
2

N
−G

M
4

N
−t
di
st

N
−N

IC
E

0.2
0.4
0.6
0.8
1.0
1.2
1.4

IS
E

Fig 3: Comparison of different neural network models. X-axis: the neural network structure
(see the main text); Y-axis: box plots of ISE based on 10 repetitions. The standard deviation of
measurement errors is set as 0.05 (top panel) and 0.2 (bottom patel, respectively; the sample
size is (from left to right) 1000, 4000, and 8000, respectively. “N-” stands for “NNME-". The
dash line represents the median ISE resulting from NNME-true.

4. TRAINING AND INFERENCE FOR THE NEURAL NETWORK MODEL

The training of NNME is more complicated than a typical Bayesian approach because the
standard MCMC is hard to implement. We have to use the variational auto-encoder (VAE).
In this section, we review some recent developments of VAE and propose an algorithm for
training NNME. For simplicity, we tentatively drop �2 from the optimization (and thus from
all the expressions of densities), but we will estimate �2 along with training in Section 4.4.
We also write p(w,y,x;✓,�,�2) in (7) as p✓,�(w,y,x) for short.

4.1 Variational auto-encoder

ELBO in (8) is connected to the marginal likelihood (7) by

(10) QVAE(✓,�,�) = L
�
✓,�)�KL(q�(· |w,y)kp(· |w,y)

�
,

where KL(qkp) denotes the Kullback-Leibler divergence between distributions q and p. A
key insight of variational inference (Jordan et al., 1999) is that, by optimizing � jointly with
other parameters, we force the proposal distribution q� to be close to the true conditional
distribution of X , which is the one used in the standard EM algorithm.

In a stochastic gradient ascent algorithm to maximize QVAE, one first approximates QVAE

by its Monte Carlo estimate and then computes the gradient of bQVAE(✓,�,�). Such a gradient
estimate is called the REINFORCE gradient estimator (Williams, 1992). Training with the
REINFORCE update rule is usually slow, because the effect of � in the Monte Carlo approxi-
mation error is not taken into account in the gradient. Kingma and Welling (2014) introduced
a re-parametrization trick by writing the samples from the proposal distribution as a deter-
ministic function of some auxiliary variable z. Namely, x= x(�, z), where the distribution of
z is fixed (e.g., N (0, Id)) and x(�, ·) is a non-stochastic function. Then, q�(x |w,y) becomes

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 13

q�(x(�, z) | w,y), and (8) is re-written as QVAE(✓,�,�) = Ez⇠pZ(·)
⇥
log

�p✓,�(w,y,x(�,z))
q�(x(�,z)|w,y)

�⇤
.

Now, if we approximate QVAE by its Monte Carlo estimate and then take the gradient, such
a gradient estimate is called the re-parametrized gradient estimator. Compared to the REIN-
FORCE gradient, this gradient estimator has a smaller variance and speed up the training.

In the setup of NNME, we let the proposal distribution be a multivariate normal distri-
bution, i.e., q�(x | w,y) is the density function of N

�
µ�(w,y),⌃�(w,y)

�
. Using the re-

parametrization trick, we write

(11) x(�, z) = µ�(w,y) + [⌃�(w,y)]
1/2z, where z ⇠N (0, Id).

The re-parametrized VAE objective is

(12) QVAE(✓,�,�) = Ez⇠N (0,Id)


log

✓
p✓,�(w,y,x(�, z))

q�(x(�, z)|w,y)

◆�
.

4.2 Importance weighted auto-encoder

The disadvantage of VAE is that it relies on a strong assumption that the true conditional
distribution of X can be approximated well by the simple proposal distribution (in our case,
a multivariate normal distribution). Burda, Grosse and Salakhutdinov (2016) proposed an im-
provement of VAE, called the importance weighted auto-encoder (IWAE). It aims to resolve
this issue by borrowing ideas from importance sampling.

Instead of having one latent x drawn as in (11), we consider K latent samples:

(13) x(�, zk) = µ�(w,y) + [⌃�(w,y)]
1/2zk, where z1, z2, . . . , zK

iid⇠ N (0, Id).

Here, z1, z2, . . . , zK are called importance samples or particles. The IWAE objective is

(14) QIWAE(✓,�,�)⌘ Ez1:K⇠N (0,Id)

"
log

1

K

KX

k=1

p✓,�
�
w,y,x(�, zk)

�

q�
�
x(�, zk)|w,y

�
!#

.

By Jensen’s inequality,

QIWAE(✓,�,�) log

Ez1:K⇠N (0,Id)

"
1

K

KX

k=1

p✓,�
�
w,y,x(�, zk)

�

q�
�
x(�, zk)|w,y

�
#!

= log

Z
p✓,�(w,y,x)dx= L(✓,�).

Hence, QIWAE(✓,�,�) is also an ELBO of the marginal log-likelihood. IWAE trains the neural
networks by maximizing this objective.

The advantage of IWAE over VAE is seen from the tightness of the ELBO. Burda,
Grosse and Salakhutdinov (2016) showed that, for any fixed (✓,�,�), under mild conditions,
QIWAE(✓,�,�) increases monotonically with K and converges to L(✓,�) as K !1. In (12),
QVAE corresponds to K = 1. Hence, IWAE provides a tighter lower bound of the marginal
log-likelihood. A tighter ELBO generally makes the training of the generative network (or the
estimation of (✓,�)) more efficient.

The advantage of IWAE also lies in the increase of expressiveness of the inference network
(or the proposal distribution). As argued in Burda, Grosse and Salakhutdinov (2016), the VAE
optimizes the ELBO in (8), which effectively favors parameter values that make the posterior
distribution of X as similar to the proposal (i.e., the multivariate normal) as possible, which

14

reduces the expressive power of the model. An inference network that places only a small
fraction of its samples in the region of high posterior probability may still be sufficient for
performing accurate inference. In the gradient of r�QIWAE, the contribution of each particle
zk is re-weighted by the likelihoods, giving more flexibility to train a generative network
so that the resulting posterior distribution of X is not forced to fit the restrictive proposal
distribution used in VAE. This was further made rigorous by Cremer, Morris and Duvenaud
(2017), where they showed that IWAE can be equivalently viewed as a standard VAE using a
much broader class of distributions to approximate the posterior.

The IWAE objective has a similar decomposition as in (10). Le et al. (2018) showed that

QIWAE(✓,�,�) = L(✓,�)�KL[QIS(· |w,y)kPIS(· |w,y)] ,

where QIS(x1:K |w,y) is the joint density of x1, . . . , xK given (w,y) under the proposal distri-
bution and PIS(x1:K | w,y) = 1

K

PK
k=1

h
p(xk |w,y)

Q
6̀=k q�(x` |w,y)

i
. They also showed

that QIS = PIS if and only if q�(x |w,y) = p(x |w,y) for all x. Therefore, by optimizing over
� jointly with other parameters, IWAE also encourages the proposal distribution to be close
to the true posterior.

4.3 Doubly reparametrized gradient estimators

From now on, we write Q(✓,�,�) =QIWAE(✓,�,�) for short. The IWAE objective is often
maximized via a gradient ascent algorithm. The gradient can be written as

(15) rQ(✓,�,�) = Ez1:K⇠N (0,Id)

"✓
�kPK
`=1 �`

◆
r log

✓
p✓,�(w,y,x(�, zk))

q�(x(�, zk)|w,y)

◆#
,

where �k = p✓,�(w,y,x(�, zk))/q�(x(�, zk)|w,y), for 1 k K . By (15), we write rQ=

Ez1:K [h(z1, z2, . . . , zK)], for a function h(z1:K). The L-sample Monte Carlo estimate is

(16) drQ=
1

L

LX

l=1

h
⇣
z(`)1 , z(`)2 , . . . , z(`)K

⌘
,

where {z(`)1:K}L`=1 are L independent copies of z1:K . Since the re-parametrization trick (13)
has already been employed, the drQ based on (15) is the re-parametrized gradient estimator.

When K is large in IWAE, this gradient estimator is unsatisfactory for updating � (Rain-
forth et al., 2018), as its variance is too large. Tucker et al. (2018) proposed an alternative form
of the gradient by applying the reparametrization trick twice, called the doubly reparametrized
gradient (DReG), which results in a smaller Monte Carlo variance.

To see the idea, we first re-write (15) as follows: Let xk = x(�, zk) and �k be the same as
above. Note that q�(xk | w,y) and �k are functions of (�, xk). We use d

d� to denote the full
derivative and use @

@� to represent the derivative without treating xk as a function of �. By the
chain rule,

r�Q(✓,�,�) = Ez1:K

"
KX

k=1

✓
�kPK
`=1 �`

◆✓
� @

@�
log

�
q�(xk)

�
+

@ log(�k)

@xk

dx(�, zk)

d�

◆#
.

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 15

The term @
@� log(q�(xk)) leads to a large variance in the Monte Carlo estimate (Roeder, Wu

and Duvenaud, 2017). Noting that, for k 2 [1 :K],
(17)

Ez1:K

"✓
� �kPK

`=1 �`

◆
@

@�
log

�
q�(xk)

�
#
=Ez�k

(
Ezk

"✓
� �kPK

`=1 �`

◆
@

@�
log

�
q�(xk)

�
#)

=Ez�k

(
Exk

"✓
� �kPK

`=1 �`

◆
@

@�
log

�
q�(xk)

�
#)

,

Tucker et al. (2018) applied the re-parametrization trick again to rewrite (17) as

(18) Ez�k

(
Ezk

"
@

@x

✓
� �kPK

`=1 �`

◆
dx(�, z)

d�

#)
,

because of the general re-parametrization formula that, for any differentiable function g,

Ex⇠q�(x)


g(x,�)

@

@�
log q�(x)

�
= Ez


@g(x,�)

@x

dx(�, z)

d�

�
.

Inserting (18) back to r�Q, Tucker et al. (2018) obtained an alternative form of the gradient:

(19) r�Q(✓,�,�) = Ez1:K⇠N (0,Id)

"
KX

k=1

✓
�kPK
`=1 �`

◆2

· @ log(�k)
@xk

dx(�, zk)

d�

#
.

We now have r�Q= Ez1:K [h
⇤(z1:K)], for a function h⇤ different from the h in (15). The two

are equivalent in the population form, but they lead to different Monte Carlo estimates in (16),
because the function h has changed.

For IWAE, a larger K yields a tighter ELBO and should perform better. However, this is
often not true in practice if we use (15) to approximate the gradient. Rainforth et al. (2018)
shows that, when K is large, the magnitude of r�Q becomes small and can be easily dom-
inated by the noise in the Monte Carlo estimate. It is thus crucial to use a gradient estimator
with a smaller variance. Using DReG is especially helpful in this case.

4.4 An algorithm for training NNME

We combine the aforementioned ideas to design an algorithm to train NNME. Our objec-
tive function is QIWAE plus an L2-penalty term, �0k✓k2 + �1k�k2 + �2k�k2, which helps to
stabilize the performance. This objective is optimized by using Adam (Kingma and Ba, 2014),
a variant of the stochastic gradient ascent. Adam has adaptive learning rates and only requires
estimates of the gradients. Monte Carlo estimates (16) of the gradient are used, where h is
from (15) for (✓,�) and from (19) for �. Variance �2 is estimated along with the training.

Training algorithm for NNME: For epoch = 1 to Max_Epoch, run the following steps to
obtain (✓̂, �̂, �̂, �̂2):

• Draw Monte Carlo samples {zik}1in,1kK IID from N (0, Id).
• Estimate the gradients: Compute the Monte Carlo estimate [r✓Q and [r�Q for the re-

parametrized gradient (15). Compute [r�Q for the doubly re-parametrized gradient
(19). Let [r✓Q⇤ = [r✓Q + 2�0✓, [r�Q⇤ =

[r�Q + 2�2� and [r�Q⇤ =
[r�Q + 2�1�

(to account for the L2 penalty).

16

1 10 50 100 200 1 10 50 100 1 10 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Number of MC Samples

IS
E

VAE IWAE IWAE+DReG

1 10 50 100 200 1 10 50 100 1 10 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Number of MC Samples

IS
E

VAE IWAE IWAE+DReG

1 10 50 100 200 1 10 50 100 1 10 50 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Number of MC Samples

IS
E

VAE IWAE IWAE+DReG

(a) The univariate example, where f(x) = sin(⇡x). From left to right, n= 1000,2000,5000.

1 10 50 100 1 10 50 100 1 10 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Number of MC Samples

IS
E

VAE IWAE IWAE+DReG

1 10 50 100 1 10 50 100 1 10 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Number of MC Samples

IS
E

VAE IWAE IWAE+DReG

1 10 50 100 1 10 50 100 1 10 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Number of MC Samples

IS
E

VAE IWAE IWAE+DReG

(b) The trivariate example, where f(x) = (x1x2 + x3)
2. From left to right, n= 1000,2000,5000.

Fig 4: Comparison of different training algorithms for NNME. X-axis: number of Monte
Carlo samples at each iteration (i.e., L in VAE and K in IWAE and IWAE+DReG); Y-axis:
box plots of ISE based on 50 repetitions. In each plot, the dash line is the median ISE for
IWAE+DReG with K = 100.

• Plug the above gradient estimators into Adam to update (✓̂, �̂, �̂).
• Let �ik be the �k in (15)-(19) evaluated using importance samples drawn for the ith

observation, for 1 k K and 1 i n. Update �̂2 by

(20) �̂2 =
1

nK

nX

i=1

KX

k=1

(yi � f✓(xik))
2 �ikPK

`=1 �i`
,

More details are given in Appendix A, where we describe how to initialize and how to choose
the architecture of neural networks and the tuning parameters.

A numerical experiment. We compare three training algorithms: VAE, IWAE (using (15)
for r�Q), and IWAE+DReG (using (19) for r�Q). We use L Monte Carlo samples for
gradient estimation (see (16)). For VAE, we tried L 2 {1,10,50,100,200}. For IWAE and
IWAE+DReg, we fixed L = 1 and tried K 2 {1,10,50,100}. In Setting 1, d = 1, f(x) =
sin(⇡x), X ⇠ unif(�2,2), and ✏,U ⇠N(0,0.12). In Setting 2, d= 3, f(x) = (x1x2+x3)2,
X1,X2,X3

iid⇠ unif(�1,1) and ✏ ⇠ N(0,0.12),U ⇠ N (0,0.12I3). We measure the perfor-
mance by the integrated squared error. The results are shown in Figure 4.

There are a few noteworthy observations. For Setting 1, VAE and IWAE+DReG have sim-
ilar performances when n= 5000, but VAE is much worse for n 2 {1000,2000}. Increasing
L in VAE yields no significant improvement. This suggests that IWAE is indeed a better
ELBO to optimize. IWAE and IWAE+DReG maximizes the same ELBO but uses different
gradient estimates. When K = 1, the two have similar performances, but when K is large,

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 17

IWAE+DReG performs much better. This shows that, without the doubly reparametrized tech-
nique in gradient estimation, the advantage gained by increasing K is counterbalanced by the
large variance in gradients. For Setting 2, the disadvantage of VAE is much more apparent.
In VAE, the proposal distribution is a multivariate normal with a diagonal covariance matrix
(i.e., a product measure on the two entries of X), which is quite far from the true condi-
tional distribution of X . It is thus crucial to use the IWAE objective for training to relax this
restrictive proposal choice in VAE.

5. COMPARISON OF CLASSICAL METHODS AND NEURAL NETWORK METHODS

We compare NNME with a few classical methods in nonparametric and semi-parametric
statistics for analyzing measurement error models (see Table 1). We recall that ‘deconv’ is the
method in Fan and Truong (1993), ‘lpoy’ is from Delaigle, Fan and Carroll (2009), ‘BSSP’ is
from Jiang, Ma and Carroll (2018), and ‘SIMEX’ is from Carroll, Maca and Ruppert (1999).
‘Pspline’ and ‘NN’ ignore measurement errors and represent f by splines and FNN, respec-
tively. ‘KILE’ and ‘KALE’ (Cressie and Kornak, 2003) are kriging methods for Gaussian
process regression (i.e., f(x) is assumed to be randomly generated from a stationary Gaus-
sian process; see Appendix E), without and with measurement errors, respectively. We include
‘KILE’ and ‘KALE’ partially because they are fast to compute for d > 1 while other classical
methods in Table 1 are computationally expensive for d > 1.

TABLE 1
Methods included in numerical experiments.

Method Description Method Description

deconv deconvolution SIMEX simulation extrapolation
lpoly local polynomial deconvolution KILE kriging with a radial basis kernel (⇤, †)

KALE kriging, accounting for measurement errors (†) Pspline penalized regression splines (⇤)
NN neural networks for regression (⇤) BSSP B-splines for measurement error model

NNME neural networks for measurement error model
⇤: ignoring measurement errors. †: assuming a priori that f follows a Gaussian random field.

5.1 Example 1: Deterministic functions

We consider a smooth function, f(x) = sin((3x�1.5)⇡)
1+4(6x�3)2[sgn(2x�1)+1] for x 2R, used in the sim-

ulation study of Berry, Carroll and Ruppert (2002), and generate data as in model (4), where
U ⇠ N (0,�2

0), ✏ ⇠ N (0,�2), and either X ⇠ Unif[0,1] or X ⇠ Beta(2,2). Two scenarios
are considered: (a) large response error and small measurement error, (�,�0) = (0.3,0.1);
(b) small response error and large measurement error, (�,�0) = (0.1,0.2). For each sce-
nario, we let n range in {500,1000,2000}. The performance is measured by the ISE,
R 1
0 [f̂(x)� f(x)]2dx, computed as the Riemann sum over 1000 equally spaced points.

Several methods in Table 1 have tuning parameters. For classical nonparametric methods,
how to select data-driven tuning parameters is largely unclear. We instead use the ideal tun-
ing parameters that minimize the true loss function (e.g., the ISE), which biases in favor of
these methods. In Pspline and BSSP, we use cubic B-splines with equally spaced knots, with
numbers of knots ranging from 5 to 30. The one that minimizes the true ISE is finally chosen.

18

TABLE 2
Example 1 (smooth function), small measurement error (�0 = 0.1, � = 0.3). The ISE and its standard deviation

(in brackets) are based on 50 repetitions.

X ⇠Uniform(0,1) X ⇠Beta(2,2)

n=500 n=1000 n=2000 n=500 n=1000 n=2000

BSSP .026 (.003) .020 (.003) .013 (.002) .055 (.005) .051 (.005) .045(.004)
Pspline .050 (.002) .048 (.001) .047 (.010) .089 (.003) .089 (.002) .085 (.002)
SIMEX .015 (.001) .009 (.001) .006 (.000) .025 (.002) .020 (.002) .016 (.001)
deconv .033 (.002) .027 (.001) .021 (.001) .055 (.005) .045 (.005) .036 (.004)
lpoly .039 (.002) .034 (.001) .029 (.001) .077 (.003) .077 (.003) .071 (.002)

KALE .052 (.012) .098 (.017) .250 (.012) .076 (.006) .078 (.006) .102 (.009)
KILE .050 (.002) .048 (.001) .046 (.001) .086 (.002) .085 (.002) .082 (.002)
NN .047 (.002) .045 (.001) .045 (.001) .092 (.003) .081 (.002) .082 (.002)

NNME .013 (.001) .008 (.001) .005 (.000) .024 (.004) .015 (.003) .011 (.001)

TABLE 3
Example 1 (smooth function), large measurement error (�0 = 0.2, � = 0.1). The ISE and its standard deviation

(in brackets) are based on 50 repetitions.

X ⇠Uniform(0,1) X ⇠Beta(2,2)

n=500 n=1000 n=2000 n=500 n=1000 n=2000

BSSP .164 (.007) .170 (.005) .168 (.005) .279 (.007) .270 (.005) .259 (.006)
Pspline .185 (.003) .179 (.002) .178 (.001) .247 (.003) .246 (.003) .242 (.002)
SIMEX .125 (.006) .112 (.004) .111 (.002) .215 (.006) .208 (.005) .197 (.004)
deconv .140 (.006) .127 (.005) .125 (.004) .209 (.007) .213 (.006) .194 (.005)
lpoly .155 (.005) .150 (.004) .151 (.003) .229 (.005) .237 (.003) .228 (.003)

KALE .236 (.007) .229 (.009) .227 (.009) .273 (.005) .283 (.005) .282 (.005)
KILE .185 (.003) .179 (.002) .180 (.001) .241 (.003) .243 (.002) .243 (.002)
NN .174 (.003) .173 (.003) .175 (.001) .239 (.005) .244 (.003) .239 (.002)

NNME .021 (.003) .019 (.002) .014 (.001) .059 (.005) .058 (.004) .045 (.003)

BSSP requires initial estimates of spline coefficients. We initialize by fitting B-splines on the
observed data, ignoring measurement errors. In SIMEX, the nonparametric method to plug
in is the regression spline on truncated power bases. The selection of knots and penalization
parameter, as well as the initialization of the coefficients, are similar to that for BSSP. In
‘deconv’, we set the bandwidth as �0[log(n)]�1/2 (�2

0 is the known variance of measurement
errors), the theoretically optimal one for density deconvolution under Gaussian errors (Stefan-
ski and Carroll, 1990). In ‘lpoly’, we set the polynomial degree as 1. We run the methods for
5 bandwidth values near 1.06�0n�1/5 and select the one that minimizes the ISE. For NNME,
we use 6 layers in the decoder and 3 layers in the encoder, where each layer has 32 nodes.
After centering and scaling data, we use 2 · t3 to model the prior distribution of X . We set the
L2-regularization parameters as �0 = �1 = 10�5 and �2 = 0.

The results are in Tables 2-3. When the measurement error is small (Table 2), NNME
and SIMEX have comparable performances and attain the smallest ISE in all settings. BSSP,
deconv, and lpoly perform similarly, among which BSSP is the best when X ⇠Unif[0,1] and
deconv is the best when X ⇠ Beta(2,2). The two methods that ignore measurement errors,
Pspline and NN, are significantly worse than their counterparts that account for measurement
errors. KILE and KALE have unsatisfactory performances, especially for large n. This is not
surprising as these kriging methods assume a different model on f(x). When the measurement
error is large (Table 3), NNME is significantly better than all other methods. It is worth noting

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 19

that the performance of NN is comparable to other methods, suggesting that the advantage of
NNME indeed comes from a proper account of measurement errors.

5.2 Example 2: Functions generated from a Gaussian process

We consider an example where f(x) is generated from a Gaussian process (GP) on [0,1]

with two different radial basis function (RBF) kernels on intervals [0,0.5] and [0.5,1], respec-
tively. Both kernels are squared exponential kernels of the form K`(x, y) = exp(��`|x�y|2),
where �1 = 16 and �2 = 64. A GP with a squared exponential kernel has mean squared deriva-
tives of all orders and is smooth with high probability (Rasmussen, 2003). Therefore, f(x) is
smooth within [0,0.5] and [0.5,1], but not at 0.5. In simulations, we let n= 2m be even and
generate f(x) as follows: (i) sample {xi}ni=1 uniformly from [0,1] and relabel them so that
x1 < . . . < xn; (ii) sample {f(xi)}1im from the first GP and {f̃(xi)}min from the sec-
ond GP; (iii) define f(xi) = f̃(xi)+ f(xm)� f̃(xm) for i 2 [m : n] to make f(x) continuous
at xm (with high probability, xm is located near 0.5). Examples of f(x) from simulations are
shown in Figure 5 by solid black curves. Clearly, the first and second half of the curve have
different smoothness, and the connection at the middle is erratic. Given {(xi, f(xi))}ni=1,
we obtain {(wi, yi)}ni=1 by generating ui

iid⇠ N (0,�2
0). We fix � = 0.2 and let �0 range in

{0.02,0.05,0.1,0.2}. For each �0, we consider n 2 {500,1000,2000}.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

true
BSSP
SIMEX
deconv
KILE
NNME

(a) (�,�0)=(0.2,0.05), n=500.
0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

y

true
BSSP
SIMEX
deconv
KILE
NNME

(b) (�,�0)=(0.2,0.05), n=2000.
0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

y

true
BSSP
SIMEX
deconv
KILE
NNME

(c) (�,�0)=(0.2,0.1), n=2000.

Fig 5: Functions generated from GP with a mixture of two kernels as described in Section 5.2.

The results are in Table 4. SIMEX is the best for �0 = 0.02, and NNME is the best for
other values of �0. KALE is significantly worse than the other methods, because the model of
KALE does not hold exactly (f is not from a single GP). NN, Pspline, and KILE are methods
that ignore measurement errors; they perform well when �0 = 0.02 but unsatisfactorily for
larger �0. We overlay the estimated curves in Figure 5. On panel (b) of Figure 5, the classical
methods (deconv, BSSP, and SIMEX) fail to capture the local curvature around x = xn/2

and oversmooth in the second half interval, but NNME fits the true curve very well. When
the sample size reduces to 500 (see panel (a)), NNME fits the true curve well except at the
boundary; in this case, there are fewer samples at the boundary, and NNME produces a nearly
linear curve at the boundary as a result of using the ReLU activation function. When �0

increases to 0.1 (see panel (c)), NNME fits well each half of the curve but misses the curvature
around x = xn/2; in this case, the large measurement error mask the local curvature of the

20

TABLE 4
Example 2 (function from Gaussian process). The ISE and its standard deviation (in brackets) is shown.

�0 = 0.02 �0 = 0.05

n=500 n=1000 n=2000 n=500 n=1000 n=2000

BSSP .015 (.003) .012 (.002) .011 (.002) .035 (.006) .033 (.005) .031 (.005)
Pspline .004 (.001) .003 (.000) .002 (.000) .032 (.005) .031 (.005) .027 (.004)
SIMEX .003 (.000) .002 (.000) .001 (.000) .016 (.003) .012 (.002) .008 (.001)
deconv .018 (.002) .011(.002) .007 (.001) .028 (.005) .022 (.004) .016 (.003)
lpoly .014 (.002) .009 (.001) .006 (.001) .044 (.006) .024 (.004) .018 (.003)

KALE .055 (.034) .035 (.011) .070 (.030) .155 (.039) .181 (.055) .168 (.046)
KILE .004 (.000) .003 (.000) .002 (.000) .032 (.005) .030 (.004) .027 (.004)
NN .015 (.006) .009 (.003) .006 (.002) .039 (.016) .037 (.009) .036 (.006)

NNME .006 (.001) .003 (.000) .002 (.000) .016 (.003) .009 (.002) .006 (.001)

�0 = 0.1 �0 = 0.2

n=500 n=1000 n=2000 n=500 n=1000 n=2000

BSSP .103 (.017) .092 (.017) .092 (.016) .328 (.036) .328 (.039) .319 (.042)
Pspline .126 (.017) .121 (.015) .120 (.015) .352 (.037) .341 (.035) .332 (.036)
SIMEX .065 (.011) .052 (.008) .048 (.007) .264 (.033) .236 (.029) .221 (.028)
deconv .087 (.014) .079 (.011) .068 (.009) .277 (.033) .263 (.030) .247 (.030)
lpoly .094 (.015) .089 (.013) .081 (.011) .301 (.034) .295 (.031) .285 (.031)

KALE .193 (.028) .297 (.068) .341 (.060) .359 (.039) .397 (.056) .402 (.056)
KILE .136 (.018) .124 (.015) .122 (.015) .353 (.039) .341 (.036) .334 (.036)
NN .124 (.034) .121 (.028) .125 (.026) .342 (.206) .332 (.182) .331 (.157)

NNME .034 (.006) .028 (.004) .026 (.006) .206 (.037) .182 (.032) .157 (.030)

true curve. The classical methods (e.g., deconv, BSSP, SIMEX) may be improved by using
different bandwidths or knots in [0, xn/2] and [xn/2,1], but this requires prior knowledge of
xn/2. The neural network approach can adaptively impose different levels of smoothing in
two regions, without any prior knowledge.

5.3 Example 3: Two-dimensional functions

We consider f generated from a 2-dimensional Gaussian processes. Given � > 0, we first
draw {xi}1in from the distribution of X , then construct ⌃ 2Rn⇥n by ⌃ij = exp(��kxi�
xjk2), and finally draw (f(x1), f(x2), . . . , f(xn)) from N (0,⌃). We consider two settings.
In the first one, � = 16. In the second one, we generate f1(x) and f2(x) with � equal to 16
and 4, respectively, and let f(x) =max{f1(x), f2(x)}. An example of the realized f(x) from
the second setting is shown in Figure A6. For each setting, we set the distribution of X to be
a 2-component mixture of multivariate normal distributions, 0.7N (µ1,⌃1) + 0.3N (µ2,⌃2),
where (µ1,⌃1) and (µ2,⌃2) are the same as in (9). Given the xi and f(xi), we generate
wi and yi by adding Gaussian errors N (0,�2

0I2) and N (0,�2) respectively. We fix � = 0.2,
and consider �0 2 {0.05,0.1,0.2} and n 2 {500,1000,2000,4000,8000}. The performance
metric ISE is computed via a uniform grid on the union of two rectangular regions, [�1,0.2]⇥
[�1,0.5] [[�0.5,1]⇥ [�0.2,1] (we restrict to this region because there are too few training
xi’s outside this region). In NNME, we use 9 hidden layers in the decoder and 5 hidden
layers in the encoder, with 32 nodes per layer. More results about the sensitivity to tuning is
contained in Appendix D. How to choose the model for X was investigated in Section 3.2.
We explore two options: NNME_NICE uses the NICE model, and NNME_GM4 models X

by a 4-component Gaussian mixture distribution with unknown parameters.

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 21

TABLE 5
Example 3 (two-dimensional function from Gaussian processes). The ISE evaluated at a uniform grid, as well as
its standard deviation (in brackets), is shown. Top sub-table: f is from a Gaussian process with � = 16. Bottom

sub-table: f is the maximum of two Gaussian processes with � = 16 and � = 4, respectively.

n= 500 1000 2000 4000 8000

�0 = 0.05

KILE .219 (.019) .138 (.011) .103 (.008) - -
KALE .222 (.019) .136 (.011) .098 (.008) - -

NNME_GM4 .362 (.033) .248 (.016) .163 (.012) .110 (.009) .071 (.008)
NNME_NICE .346 (.036) .232 (.014) .177 (.017) .100 (.010) .079 (.006)

�0 = 0.1

KILE .415 (.021) .349 (.019) .280 (.015) - -
KALE .414 (.021) .335 (.019) .259 (.015) - -

NNME_GM4 .455 (.027) .364 (.024) .258 (.018) .167 (.019) .108 (.009)
NNME_NICE .483 (.049) .398 (.039) .250 (.020) .202 (.033) .124 (.014)

�0 = 0.2

KILE .773 (.040) .711 (.038) .682 (.042) - -
KALE .809 (.040) .748 (.038) .714 (.042) - -

NNME_GM4 .820 (.081) .696 (.066) .548 (.037) .389 (.024) .313 (.027)
NNME_NICE .815 (.065) .670 (.058) .459 (.050) .429 (.045) .350 (.035)

�0 = 0.05

KILE .126 (.011) .092 (.011) .063 (.005) - -
KALE .143 (.011) .104 (.011) .071 (.005) - -

NNME_GM4 .167 (.018) .112 (.011) .073 (.005) .047 (.004) .037 (.004)
NNME_NICE .205 (.024) .121 (.013) .080 (.007) .063 (.009) .040 (.005)

�0 = 0.1

KILE .226 (.020) .187 (.019) .150 (.009) - -
KALE .232 (.020) .187 (.019) .147 (.009) - -

NNME_GM4 .251 (.027) .169 (.019) .116 (.009) .079 (.005) .076 (.009)
NNME_NICE .303 (.030) .175 (.022) .140 (.013) .103 (.013) .072 (.010)

�0 = 0.2

KILE .376 (.037) .362 (.037) .351 (.034) - -
KALE .382 (.037) .371 (.037) .363 (.034) - -

NNME_GM4 .400 (.042) .321 (.028) .268 (.035) .192 (.027) .159 (.018)
NNME_NICE .442 (.042) .367 (.052) .300 (.055) .241 (.039) .181 (.021)

The results are in Table 5. The data generating process in the first setting is exactly the same
as the KALE model, and one would expect KALE to perform the best. This is true when the
measurement error is small (�0 2 {0.05,0.1}) or the sample size is small to moderate (n 2
{500,1000}). However, when the measurement error is large (�0 = 0.2) or the sample size is
n= 2000, NNME outperforms KALE. Between the two versions of NNME, NNME_NICE is
better. We note that the two kriging methods require to invert an n⇥n matrix. Therefore, they
do not scale to large n. In fact, we are not able to run these methods for n 2 {4000,8000}.
In the second setting, f is no longer from the KALE model. NNME uniformly outperforms
KILE and KALE when n > 500 and �0 > 0.05; in other cases, KILE performs the best.
Between the two versions of NNME, NNME_GM4 is better.

5.4 Summary

We compared NNME with classical nonparametric methods in settings where f is a smooth
or non-smooth function, and we also compared NNME with kriging methods when f is gen-
erated from a 2-dimensional Gaussian process. In classical nonparametric settings (e.g., Ex-
ample 1), the nonparametric methods indeed perform well (for example, SIMEX has the best
performance when measurement error is small). However, NNME attains comparable perfor-
mance, sometimes even better. One possible reason is that NNME maximizes the marginal
log-likelihood and can be more efficient than methods that do not use the likelihood. Another
reason is that the tuning parameter selection in classical methods is sometimes challeng-
ing (e.g., in Example 2, classical methods will improve if multiple bandwidths or unequally

22

spaced knots are used). Our numerical results do not contradict the minimax optimality of
classical methods, because the optimality there is about the “worst-case" performance. In the
settings where f is generated from a Gaussian process (Example 3), the kriging methods in-
deed perform well, but they work unsatisfactorily for other measurement error model settings
(e.g., Examples 1 and 2). NNME has reasonably good performance in all settings without
requiring any prior knowledge. Computationally it is also much more efficient than classical
methods when d > 1.

Due to space limit, we relegate some numerical results into the Appendix. In Appendix D,
we study choosing the numbers of layers in NNME by cross validation and provide sensitivity
analysis. In Appendix F, we present simulations with f generated by a neural network.

6. REAL DATA APPLICATIONS

6.1 Historical sea level estimation

The data set in Kemp et al. (2011) consists of measurements of relative sea level (RSL) in
North Carolina for the past 2000 years. Following Cahill et al. (2015), we use a measurement
error framework: let yi be the observed RSL, xi the true calendar year, and wi the estimated
calendar year. Let g(xi) be the ocean level at year xi. The true RSL is the ocean level minus
the land level, where by glacio-isostatic adjustment, the land level decreases at an annual rate
of 0.001r with known r (for this dataset, r = 0.9 or 1 depending on the measuring sites). The
model is

(21) wi = xi + ui, yi = g(xi)� [c0 + r · (2.010� xi)] + ✏i,

where the calendar years xi and wi have been divided by 1000 (e.g., year 1996 is written as
1.996) and c0 is the land level in 2010 AD. Both ui and ✏i are assumed to be normal:

(22) ui ⇠N
�
0,�2

ui

�
, ✏i ⇠N

�
0, ⌧2 + �2

✏i

�
,

where �2
ui

and �2
✏i are known for each observation. The data are {(wi, yi,�2

ui
,�2

✏i)}1in.
The goal is estimating the function g(x). Without loss of generality, we let c0 = 0, so that the
ocean level in 2010 AD is viewed as the baseline.

Defining f(x) = g(x) � r(2.010 � x), we first apply NNME to estimate f(x) and then
convert it to an estimate of g(x). A minor difference from the previous measurement er-
ror models is that the variances of response errors and measurement errors are heteroge-
neous across observations. Since both �2

ui
and �2

✏i are known, we extend our algorithm by
incorporating (�2

ui
,�2

✏i , ⌧
2) into the marginal likelihood and modifying the gradient ascent

steps accordingly. We also modify (20) to an estimate of ⌧2 as ⌧̂2 = 1
n

Pn
i=1

�
1
K

PK
k=1(yi �

f(xik))2
�ikPK
`=1 �i`

� �2
✏i

, where xi1, xi2, . . . , xiK are importance samples for the ith observa-

tion and �ik is ratio between the complete likelihood and the density of proposal distribution,
similar to that in (20). We assume that X follows a 2-component mixture of Gammas a pri-
ori. We let the decoder and encoder have 5 and 3 hidden layers, respectively, with 32 nodes
per layer. The activation function is chosen as tanh in the decoder (to make f̂ smooth) and
ReLU in the encoder. Since the measurement error variances are small (from 2.5⇥ 10�7 to
0.009) compared to the date variances (about 0.33), we also add a direct link from W to µ� in

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 23

Figure 2 to accelerate the learning process. It means that the output of the encoder becomes
µ(w,y) = µ�(w,y) +w, where µ� is from a 3-layer FNN. Besides an estimate of f , we also
compute a 95% confidence band via a parametric bootstrap procedure. In the standard model-
based bootstrap, we should draw samples {(x⇤i ,w⇤

i , y
⇤
i)}ni=1 from the estimated model for X

and model (21)-(22) for (W,Y). However, the noise variances in covariates and responses
are only known at the observed sites. Hence, we cannot use the standard model-based boot-
strap. We instead fix x⇤i = µ(wi, yi), the estimated posterior mean of xi from the encoder, and
draw (w⇤

i , y
⇤
i) from model (21)-(22) using the known variances for the ith observation. The

resulting bootstrap confidence band can be viewed as conditioning on (estimates of) xi’s.
The left panel of Figure 6 shows the estimated ocean level, which is ĝ(x) = f̂(x) +

r(2.010� x). The right panel shows the estimated sea level change, which is the derivative
of ĝ. It is computed by a back propagation algorithm using estimated parameters. The confi-
dence band of ĝ is from a similar bootstrap procedure. We compare NNME with the approach
in Cahill et al. (2015), denoted as “GP”, which models the sea level change (i.e., derivative
of g) by a Gaussian process with measurement errors and uses Markov chain Monte Carlo
for estimation and inference. While it is based on Gaussian process, this method is different
from KALE. The estimated curves of sea level (left panel of Figure 6) by NNME and GP are
similar, except in the period between 1600 AD and 1800 AD. Both methods estimate the sea
level to decrease first and increase later in this period, but NNME estimates this “fluctuation”
to be less prominent. For GP, we plot the 95% Bayesian credible interval (Cahill et al., 2015).
Although the credible interval is not directly comparable with the confidence band, we may
still draw the conclusion from the plots that NNME gives less “confidence” on the fluctuation
of sea level between 1600 AD and 1800 AD. The estimated curves of sea level change (right
panel of Figure 6) are also similar. The curve by GP is smoother. A possible explanation is
that GP directly models the sea level change while NNME models the sea level.

−0.6

−0.4

−0.2

0.0

0 500 1000 1500 2000
year

se
a

le
ve

l method
GP
NNME

0

2

4

0 500 1000 1500 2000
year

R
at

e
(m

m
/y

r)

method
GP
NNME

Fig 6: Estimated sea level (left panel) and estimated rate of sea level change (right panel). The
95% confidence band for NNME and 95% credible interval for GP are shown.

Since there is no ground truth, we evaluate the performance by the prediction mean squared
errors (MSEs). Given f̂ and a testing w, we predict y by E[f̂(x) |w], where the expectation is
with respect to the posterior distribution of X given W . We use two ways to approximate the
posterior distribution of X . The first is N (w,�2

0), where �2
0 is the variance of measurement

24

TABLE 6
Prediction mean squared errors for each method in consideration on the sea level data set.

NNME_posterior1 NNME_posterior2 GP_posterior1 GP_posterior2 NN

1.387 (0.068) 1.402 (0.069) 1.499 (0.065) 1.503 (0.065) 2.478 (0.020)

errors in this observation. This ad-hoc approach can be viewed as imposing a flat prior on X .
The second is using the estimated prior distribution of X from NNME to derive the posterior
distribution of X . In the actual implementation, to obtain E[f̂(x) | w], we first draw samples
{x⇤i } from the conditional distribution of X given w, and then take a weighted average of
f(x⇤i), with weights proportional the prior density of x⇤i . For f̂ resulting from both NNME
and GP, we construct predictors using both ways, denoted as “_posterior1" and “_posterior2"
respectively. The prediction MSE of each method is estimated by a 5-fold cross-validation
procedure: we randomly partition data into 5 folds and then successively leave one fold out
for testing (i.e., computing the MSE between predictions and observations) with the other 4
folds used to train the model; we then average the 5 MSEs to arrive at the overall prediction
MSE. We repeat this procedure 10 times and report the mean and standard error of the predic-
tion MSEs. Table 6 shows the prediction MSEs for both NNME and GP, as well as NN. Since
NN ignores measurement errors in estimating f , it simply predicts f(x) by f̂(w). The per-
formance of NN is much worse than NNME, suggesting that the advantage of NNME comes
from not only using neural networks but also accounting for measurement errors. NNME per-
forms the best in terms of prediction MSE, and the one resulting from using a flat prior for X
appears to be slightly better.

6.2 Framingham Heart Study

The Framingham Heart Study is an ongoing cardiovascular study on residents of the town
of Framingham, Massachusetts. The dataset includes over 4,000 records and 15 attributes of
patients. We downloaded the data set from Kaggle (https://www.kaggle.com/dileep070/heart-
disease-prediction-using-logistic-regression). The covariate of special interest is the systolic
blood pressure (SBP). The long-term SBP is estimated from averaging the reads in several
clinic visits of the same patient and has measurement errors. Other covariates were assumed
error-free, except the total cholesterol level (Chol). We followed Carroll et al. (2006) to model
the measurement errors on log(SBP)� 50) and log(Chol) as bivariate Gaussian with a given
covariance matrix. We fit a nonparametric logistic regression for predicting the 10-year risk of
coronary heart disease (CHD): P(Y = 1|X) = L

�
�0+

P
j �jXj + f(XSBP ,XChol)

�
, where

L(x) is the logistic sigmoid function, Y 2 {0,1} indicates whether this patient has CHD in 10
years, Xj’s are error-free covariates, and for (XSBP ,XChol) only error-prone observations,
(WSBP ,WChol), are available. Previous studies used a linear logistic regression model with
measurement errors, but our approach can estimate the nonlinear, interaction effects.

We pre-processed data by dividing the variable age by 100 and then centering all variables
to have mean zero. We adapted NNME to the current setting by changing the form of the log-
likelihood. NICE is used to model the (prior) joint distribution of SBP and Chol. The training
is similar as that in Section 4.4 (IWAE+DReG). We used 3 hidden layers for both the decoder

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 25

and encoder, with 32 nodes per layer and ReLU as the activation function. To accommodate
the logistic model, we used the sigmoid function in the last layer of the decoder. The estimated
10-year risk of CHD, as a 2-dimensional function of SBP and Chol, is shown in Figure 7.

Fig 7: Estimated 10-year risk of CHD as a function of SBP and Chol, where other covari-
ates take the mean values. The contours are for a 2-dimensional function on (xSBP , xChol),
defined by L

�
�̂0 +

P
j �̂j x̄j + f̂(xSBP , xChol)

�
.

For comparison, we also analyze the data with SIMEX, which requires as the plug-in a non-
parametric logistic regression method that ignores measurement errors, for which we employ
PSpline (degree = 2, number of knots = 10) and use linear extrapolation. The code to im-
plement SIMEX basically allows for only 1 error-prone covariate; to apply it to 2 error-prone
covariates, we have to assume an additive model. Consequently, this approach does not model
interaction effects between SBP and Chol. In contrast, NNME includes a bivariate function
of SBP and Chol in the risk and is able to capture interaction effects. Previously in Section 5,
we also considered KALE for 2 error-prone covariates; unfortunately, KALE has no direct
extension to the logistic regression model. The estimated 10-year risks of CHD by NNME
and SIMEX are shown in Figure 7. For a better comparison, we also considered methods
that ignore measurement errors, NN and Pspline, as counterparts of NNME and SIMEX. The
comparison of risk contours of Pspline versus NN suggests that neural networks can capture
nonlinear, beyond-quadratic effects of both SBP and Chol, as well as the interaction effect
between two covariates. SIMEX generates more sophisticated risk contours than Pspline, but
SIMEX still does not model interaction effects. NNME is the only one among 4 methods that
accommodates measurement errors, nonlinear effects, and interaction effects.

To check whether NNME overfits, we evaluated the classification performance. Given an
estimated model, we classify a sample by thresholding E[Y | {Xj},WSBP ,WChol], where
the posterior distribution of (XSBP ,XChol) is obtained from the measurement error distri-
bution and the prior distribution from NICE. To avoid discussion of thresholds, we measure
the performance by the area under ROC curve (AUC). We randomly selected 20% of CHD
samples and 20% of non-CHD samples for testing and used the remaining samples for train-
ing. The mean and standard deviation of AUC, over 20 random splits of training and testing,
are: The AUCs of different methods are similar. At least, it suggests that the more sophis-
ticated models from neural networks are not due to overfitting. Additionally, accounting for
measurement errors barely improves the classification performance.

26

TABLE 7
Classification accuracy for each method in consideration on the Framingham data set.

Pspline SIMEX NN NNME

0.727 (0.005) 0.728 (0.005) 0.727 (0.005) 0.728 (0.005)

7. DISCUSSION

The use of neural networks in nonparametric statistics attracted a lot of recent attention,
with encouraging progress on density estimation and nonparametric regression. This paper is
an attempt to introduce neural networks to estimation of measurement error models, one of
the classical topics in nonparametric statistics (Carroll and Hall, 1988; Fan and Truong, 1993;
Carroll, Maca and Ruppert, 1999). We propose a neural network design, where the regression
function f(x), the prior distribution of X , and a “proposal distribution" that approximates
the posterior distribution of X under our model, which is used to derive the ELBO and direct
the training, are represented by three different neural networks. We estimate parameters of
these neural networks by maximizing ELBO, a lower bound of the marginal log-likelihood of
(W,Y), and solve the optimization problem by a stochastic gradient ascent algorithm, with
a doubly reparametrized gradient estimator. Our algorithm combines recent advancements
in neural network, including Burda, Grosse and Salakhutdinov (2016) on variational auto-
encoder, Tucker et al. (2018) on stochastic gradient descent, and Dinh, Krueger and Bengio
(2015) on normalizing flow.

Through extensive simulations and real data analysis, we demonstrate that the neural net-
work approach is a promising alternative to classical nonparametric methods for measurement
error models. The neural network approach is flexible in accommodating various classes of
functions (even non-smooth functions); its performance is relatively insensitive to tuning pa-
rameters; it is convenient to implement for dimension d > 1; and it has good scalability to a
large sample size. Additionally, our method can be easily extended to more general settings.
For example, if the noise in X or the noise in Y is non-additive, our method can be imple-
mented similarly, where we simply change the expression of the joint density of (X,W,Y).
In contrast, classical nonparametric methods are more restrictive on model assumptions. For
example, the deconvolution method (Fan and Truong, 1993) relies on the assumption that the
measurement error is additive.

Theoretical understanding of neural network methods is a trending topic. Many theoret-
ical frameworks have been proposed, such as size-independent complexity (Bartlett, 1998;
Golowich, Rakhlin and Shamir, 2018), implicit regularization (Soudry et al., 2018), seive
approximation (Chen and White, 1999), mean-field approximation (Mei, Montanari and
Nguyen, 2018), and so on. Whether or not these theoretical frameworks can be used to un-
derstand the behavior of our method for measurement error models is an open problem. We
leave it for future work.

We consider a fully nonparametric setting, where neither f nor the density of X is from a
parametric model. The semi-parametric setting where the density of X is nonparametric but
f is parametric has also been considered in the literature (Taupin, 2001; Butucea and Taupin,
2008). NNME could extend to this setting by replacing FNN by the given parametric model,

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 27

with other components (NICE and the inference network) unchanged. We also leave this to
future investigation.

ACKNOWLEDGEMENTS

The author gratefully acknowledge the support of NSF grants, DMS-1943902 to Z Ke, and
DMS-1903139 and DMS-2015411 to JS Liu.

SUPPLEMENTARY MATERIAL

Supplementary document. Appendix A to F.
().

REFERENCES

BARTLETT, P. L. (1998). The sample complexity of pattern classification with neural networks: the size of the

weights is more important than the size of the network. IEEE Transactions on Information Theory 44 525-536.

BAUER, B. and KOHLER, M. (2019). On deep learning as a remedy for the curse of dimensionality in nonpara-

metric regression. The Annals of Statistics 47 2261–2285.

BERRY, S. M., CARROLL, R. J. and RUPPERT, D. (2002). Bayesian smoothing and regression splines for mea-

surement error problems. Journal of the American Statistical Association 97 160–169.

BLEI, D. M., KUCUKELBIR, A. and MCAULIFFE, J. D. (2017). Variational inference: A review for statisticians.

Journal of the American statistical Association 112 859–877.

BURDA, Y., GROSSE, R. and SALAKHUTDINOV, R. (2016). Importance weighted autoencoders. In International

Conference on Learning Representations.

BUTUCEA, C. and TAUPIN, M.-L. (2008). New M-estimators in semi-parametric regression with errors in vari-

ables. In Annales de l’IHP Probabilités et statistiques 44 393–421.

BUZ AS, J. S. (1997). Instrumental variable estimation in nonlinear measurement error models. Communications

in Statistics-Theory and Methods 26 2861–2877.

CAHILL, N., KEMP, A. C., HORTON, B. P. and PARNELL, A. C. (2015). Modeling sea-level change using errors-

in-variables integrated gaussian processes. The Annals of Applied Statistics 9 547–571.

CARROLL, R. J. and HALL, P. (1988). Optimal rates of convergence for deconvolving a density. Journal of the

American Statistical Association 83 1184–1186.

CARROLL, R., MACA, J. and RUPPERT, D. (1999). Nonparametric regression in the presence of measurement

error. Biometrika 86 541-554.

CARROLL, R. J., ROEDER, K. and WASSERMAN, L. (1999). Flexible parametric measurement error models.

Biometrics 55 44-54.

CARROLL, R. J. and STEFANSKI, L. A. (1994). Measurement error, instrumental variables and corrections for

attenuation with applications to meta-analyses. Statistics in Medicine 13 1265-1282.

CARROLL, R. J., RUPPERT, D., CRAINICEANU, C. M., TOSTESON, T. D. and KARAGAS, M. R. (2004). Non-

linear and nonparametric regression and instrumental variables. Journal of the American Statistical Association

99 736–750.

CARROLL, R. J., RUPPERT, D., STEFANSKI, L. A. and CRAINICEANU, C. M. (2006). Measurement error in

nonlinear models: a modern perspective. Chapman and Hall/CRC.

CHEN, X. and WHITE, H. (1999). Improved rates and asymptotic normality for nonparametric neural network

estimators. IEEE Transactions on Information Theory 45 682–691.

COOK, J. R. and STEFANSKI, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error

models. Journal of the American Statistical Association 89 1314–1328.

28

CRAINICEANU, C. M., RUPPERT, D. and WAND, M. P. (2005). Bayesian analysis for penalized spline regression

using WinBUGS. Journal of Statistical Software, Articles 14 1–24.

CREMER, C., MORRIS, Q. and DUVENAUD, D. (2017). Reinterpreting importance-weighted autoencoders. arXiv

preprint arXiv:1704.02916.

CRESSIE, N. and KORNAK, J. (2003). Spatial statistics in the presence of location error with an application to

remote sensing of the environment. Statistical Science 18 436 – 456.

DELAIGLE, A., FAN, J. and CARROLL, R. J. (2009). A design-adaptive local polynomial estimator for the errors-

in-variables problem. Journal of the American Statistical Association 104 348–359.

DELAIGLE, A. and HALL, P. (2008). Using SIMEX for smoothing-parameter choice in errors-in-variables prob-

lems. Journal of the American Statistical Association 103 280–287.

DELLAPORTAS, P. and STEPHENS, D. A. (1995). Bayesian analysis of errors-in-variables regression models.

Biometrics 51 1085–1095.

DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the

EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39 1–22.

DINH, L., KRUEGER, D. and BENGIO, Y. (2015). NICE: Non-linear independent components estimation. In

Workshop in International Conference on Learning Representations.

EILERS, P. H. C. and MARX, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science

11 89 – 121.

FAN, J., MA, C. and ZHONG, Y. (2021). A selective overview of deep learning. Statistical Science 36 264–290.

FAN, J. and TRUONG, Y. K. (1993). Nonparametric regression with errors in variables. The Annals of Statistics

21 1900–1925.

GANGULI, B., STAUDENMAYER, J. and WAND, M. P. (2005). Additive models with predictors subject to mea-

surement error. Australian & New Zealand Journal of Statistics 47 193-202.

GILKS, W. R. and RICHARDSON, S. (1992). Analysis of disease risks using ancillary risk factors, with application

to job–exposure matrices. Statistics in Medicine 11 1443-1463.

GOLOWICH, N., RAKHLIN, A. and SHAMIR, O. (2018). Size-independent sample complexity of neural networks.

In Conference On Learning Theory 297–299.

GUNASEKAR, S., LEE, J. D., SREBRO, N. and SOUDRY, D. (2018). Implicit bias of gradient descent on linear

convolutional networks. Advances in Neural Information Processing Systems 2018 9461–9471.

GUSTAFSON, P. (2003). Measurement Error and Misclassification in Statistics and Epidemiology. Chapman and

Hall/CRC.

GUSTAFSON, P., LE, N. D. and VALLÉE, M. (2002). A Bayesian approach to case–control studies with errors in

covariables. Biostatistics 3 229-243.

HALL, P. and QIU, P. (2005). Discrete-transform approach to deconvolution problems. Biometrika 92 135–148.

HARDT, M., RECHT, B. and SINGER, Y. (2016). Train faster, generalize better: Stability of stochastic gradient

descent. In International Conference on Machine Learning 1225–1234. PMLR.

JIANG, F., MA, Y. and CARROLL, R. J. (2018). A spline-assisted semiparametric approach to non-parametric

measurement error models. arXiv preprint arXiv:1804.00793.

JORDAN, M. I., GHAHRAMANI, Z., JAAKKOLA, T. S. and SAUL, L. K. (1999). An introduction to variational

methods for graphical models. Machine Learning 37 183–233.

KEMP, A. C., HORTON, B. P., DONNELLY, J. P., MANN, M. E., VERMEER, M. and RAHMSTORF, S. (2011).

Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sci-

ences 108 11017–11022.

KINGMA, D. P. and BA, J. (2014). Adam: A method for stochastic optimization. In International Conference on

Learning Representations.

KINGMA, D. P. and WELLING, M. (2014). Auto-encoding variational bayes. In International Conference on

Learning Representations.

LE, T. A., IGL, M., RAINFORTH, T., JIN, T. and WOOD, F. (2018). Auto-Encoding Sequential Monte Carlo. In

International Conference on Learning Representations.

DEEP NEURAL NETWORKS FOR MEASUREMENT ERROR MODELS 29

LIN, H. W., TEGMARK, M. and ROLNICK, D. (2017). Why does deep and cheap learning work so well? Journal

of Statistical Physics 168 1223–1247.

MAIOROV, V. and MEIR, R. (2000). On the near optimality of the stochastic approximation of smooth functions

by neural networks. Advances in Computational Mathematics 13 79–103.

MALLICK, B., HOFFMAN, F. O. and CARROLL, R. J. (2002). Semiparametric Regression Modeling with Mix-

tures of Berkson and Classical Error, with Application to Fallout from the Nevada Test Site. Biometrics 58
13–20.

MEI, S., MONTANARI, A. and NGUYEN, P.-M. (2018). A mean field view of the landscape of two-layer neural

networks. Proceedings of the National Academy of Sciences 115 E7665–E7671.

MHASKAR, H. N. (1996). Neural networks for optimal approximation of smooth and analytic functions. Neural

Computation 8 164–177.

MÜLLER, P. and ROEDER, K. (1997). A Bayesian semiparametric model for case-control studies with errors in

variables. Biometrika 84 523–537.

PAPAMAKARIOS, G., PAVLAKOU, T. and MURRAY, I. (2017). Masked autoregressive flow for density estimation.

In Advances in Neural Information Processing Systems 2338–2347.

RAINFORTH, T., KOSIOREK, A., LE, T. A., MADDISON, C., IGL, M., WOOD, F. and TEH, Y. W. (2018). Tighter

Variational Bounds are Not Necessarily Better. In International Conference on Machine Learning 4277–4285.

RASMUSSEN, C. E. (2003). Gaussian processes in machine learning. In Summer School on Machine Learning

63–71. Springer.

REZENDE, D. J., MOHAMED, S. and WIERSTRA, D. (2014). Stochastic Backpropagation and Approximate In-

ference in Deep Generative Models. In International Conference on Machine Learning 1278–1286.

REZENDE, D. and MOHAMED, S. (2015). Variational Inference with Normalizing Flows. In International Con-

ference on Machine Learning 1530–1538.

RICHARDSON, S. and GILKS, W. R. (1993). Conditional independence models for epidemiological studies with

covariate measurement error. Statistics in Medicine 12 1703-1722.

ROEDER, G., WU, Y. and DUVENAUD, D. K. (2017). Sticking the landing: Simple, lower-variance gradient

estimators for variational inference. In Advances in Neural Information Processing Systems 6925–6934.

ROLNICK, D. and TEGMARK, M. (2018). The power of deeper networks for expressing natural functions. In

International Conference on Learning Representations.

RUPPERT, D., WAND, M. P. and CARROLL, R. J. (2003). Semiparametric Regression. Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge University Press.

SCHENNACH, S. M. (2007). Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models. Econo-

metrica 75 201–239.

SCHMIDT-HIEBER, J. et al. (2020). Nonparametric regression using deep neural networks with ReLU activation

function. Annals of Statistics 48 1875–1897.

SOUDRY, D., HOFFER, E., NACSON, M. S., GUNASEKAR, S. and SREBRO, N. (2018). The implicit bias of

gradient descent on separable data. The Journal of Machine Learning Research 19 2822–2878.

STAUDENMAYER, J. and RUPPERT, D. (2004). Local polynomial regression and simulation-extrapolation. Jour-

nal of the Royal Statistical Society. Series B (Statistical Methodology) 66 17–30.

STEFANSKI, L. A. and CARROLL, R. J. (1990). Deconvolving kernel density estimators. Statistics 21 169–184.

TABAK, E. G. and TURNER, C. V. (2013). A family of nonparametric density estimation algorithms. Communi-

cations on Pure and Applied Mathematics 66 145–164.

TAUPIN, M.-L. (2001). Semi-parametric estimation in the nonlinear structural errors-in-variables model. The

Annals of Statistics 29 66–93.

TUCKER, G., LAWSON, D., GU, S. and MADDISON, C. J. (2018). Doubly reparameterized gradient estimators

for Monte Carlo objectives. In International Conference on Learning Representations.

WILLIAMS, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learn-

ing. Machine learning 8 229–256.

	Introduction
	 Classical methods for nonparametric measurement error models
	Nonparametric methods
	Bayesian methods
	Instrumental variable methods

	Neural network modeling for measurement errors
	A neural network structure for measurement error models
	Other neural network models

	Training and Inference for the Neural Network Model
	Variational auto-encoder
	Importance weighted auto-encoder
	Doubly reparametrized gradient estimators
	An algorithm for training NNME

	Comparison of Classical Methods and Neural Network Methods
	Example 1: Deterministic functions
	Example 2: Functions generated from a Gaussian process
	Example 3: Two-dimensional functions
	Summary

	Real Data Applications
	Historical sea level estimation
	Framingham Heart Study

	Discussion
	Acknowledgements
	Supplementary Material
	References

