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Time-Inhomogeneous Diffusion Geometry and Topology*
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Abstract. Diffusion condensation is a dynamic process that yields a sequence of multiscale data representations
that aim to encode meaningful abstractions. It has proven effective for manifold learning, denoising,
clustering, and visualization of high-dimensional data. Diffusion condensation is constructed as a
time-inhomogeneous process where each step first computes a diffusion operator and then applies it
to the data. We theoretically analyze the convergence and evolution of this process from geometric,
spectral, and topological perspectives. From a geometric perspective, we obtain convergence bounds
based on the smallest transition probability and the radius of the data, whereas from a spectral
perspective, our bounds are based on the eigenspectrum of the diffusion kernel. Our spectral results
are of particular interest since most of the literature on data diffusion is focused on homogeneous
processes. From a topological perspective, we show that diffusion condensation generalizes centroid-
based hierarchical clustering. We use this perspective to obtain a bound based on the number
of data points, independent of their location. To understand the evolution of the data geometry
beyond convergence, we use topological data analysis. We show that the condensation process itself
defines an intrinsic condensation homology. We use this intrinsic topology, as well as the ambient
persistent homology, of the condensation process to study how the data changes over diffusion time.
We demonstrate both types of topological information in well-understood toy examples. Our work
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gives theoretical insight into the convergence of diffusion condensation and shows that it provides a
link between topological and geometric data analysis.

Key words. diffusion, time-inhomogeneous process, topological data analysis, persistent homology, hierarchical
clustering

MSC codes. 57M50, 57R40, 62R40, 37B25, 68

DOI. 10.1137/21M1462945

1. Introduction. Graph representations of high-dimensional data have proven useful in
many applications, such as visualization, clustering, and denoising. Typically, a set of data
points is described by a graph that uses a pairwise affinity measure, whose values are stored
in an affinity matrix. With this matrix, one can define the random walk operator, or the
graph Laplacian, and use numerous tools from graph theory to characterize the input data.
Diffusion operators are closely related to random walks on a graph, as they describe how
heat (or gas) propagates across the vertices. Using powers of this operator yields a time-
homogeneous Markov process, which has been extensively studied. Most notably, Coifman
and Lafon [9] proved that, under specific conditions, this operator converges to the heat kernel
on an underlying continuous manifold. Manifold learning methods like diffusion maps [9] define
an embedding via the eigendecomposition of the diffusion operator. Other methods, such as
PHATE [27], embed a diffusion-based distance by multidimensional scaling. Various clustering
algorithms rely on the eigendecomposition of this operator (or the resulting Laplacian) [24, 34].
However, this homogeneous process requires a bandwidth in order to fix and determine the
scale of the captured data manifold. If we are interested in considering multiple scales of
the data [2, 21], or if the data is sampled from a time-varying manifold [25], we need a
time-inhomogeneous process.

In this paper, we focus on the time-inhomogeneous diffusion process for a given initial set
of data points. This process is known as diffusion condensation [2] and yields a representa-
tion of the data by a sequence of datasets, each at a different granularity. This sequence is
obtained by iteratively applying a diffusion operator. It has proven effective for tasks such as
denoising, clustering, and manifold learning [2, 21, 25, 31, 32]. In this work, we study theoret-
ical questions of diffusion condensation. Thus, we define conditions on the diffusion operators
such that the process converges to a single point. The convergence to a point is a valuable
characteristic, as it is a necessary condition for any process that sweeps a complete range
of granularities of the data. We present this analysis from both a geometric and a spectral
perspective, addressing different families of operators. We also study how the intrinsic shape
of the condensed datasets evolves through condensation time using tools from topological data
analysis. In particular, we define an intrinsic filtration based on the condensation process,
resulting in the notions of persistent homology and condensation homology, for studying in-
dividual condensation steps or for summarizing the entire process, respectively. Making use
of a topological perspective, we also prove the relation between diffusion condensation and
various types of hierarchical clustering algorithms.

The paper is organized as follows. In section 2, we present an overview of diffusion
condensation. In section 3, we develop a geometric analysis of the process; most importantly,
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348 HUGUET ET AL.

we prove its convergence to a point. In section 4, we study the convergence of the process
from a spectral perspective. In section 5, we present a topological analysis of the process and
relate diffusion condensation to existing hierarchical clustering algorithms.

2. Diffusion condensation. In order to establish the setup and scope for our work, we
first formalize the diffusion condensation framework and provide a unifying view of design
choices and algorithms used to empirically evaluate its efficacy in previous and related work.

2.1. Notation and setup. Let X = \{ x(j) : j = 1, . . . ,N\} \subset Rd be an input dataset of N
data points in d dimensions. Given a symmetric nonnegative affinity kernel k :Rd \times Rd\rightarrow R,
with 0 \leq k(x, y) = k(y,x) \leq 1, x, y \in Rd, we define an N \times N kernel matrix \bfK with entries
\bfK (i, j) := k(x(i), x(j)), which can be regarded as a weighted adjacency matrix of a graph
capturing the intrinsic geometry of the data. Furthermore, the kernel and resulting graph
are often considered as providing a notion of locality in the data, which can be tuned by a
kernel bandwidth parameter \epsilon . We defer discussion of specific k dependent on \epsilon to subsection
2.5 but mention that it can be regarded as a proxy for the size or (local) radius of the
neighborhoods defined by the kernel. The diffusion framework for manifold learning [9, 27]
uses this construction to define a Markov process over the intrinsic structure of the data by
normalizing the kernel matrix with a diagonal degree matrix \bfD := diag(d(1), d(2), . . . , d(N))
where d(i) :=

\sum 
j \bfK (i, j), resulting in a row stochastic Markov matrix \bfP :=\bfD  - 1\bfK , known as

the (discrete) diffusion operator . Traditionally, time-homogeneous diffusion processes leverage
powers \bfP \tau of this diffusion operator, for diffusion times \tau \in N, to capture underlying data-
manifold structure in X and to organize the data along this structure [9, 27].

Here, on the other hand, we follow the diffusion condensation approach [2] and use a time-
inhomogeneous process, where the diffusion operator (and underlying finite dataset) vary over
time. We consider a sequence of datasets Xt = \{ xt(j) : j = 1, . . . ,N\} , ordered along diffusion
condensation time t\in N, with corresponding diffusion operators \bfP t, each constructed over the
corresponding Xt. With a slight abuse of notation, we often refer to Xt as a set or as an N \times d
matrix, where xt(j) is the j th row or, equivalently, the j th element of the set. At time t= 0
we consider the input dataset, with its (traditional) diffusion operator, while for each t > 0 we
take Xt :=\bfP \tau 

t - 1Xt - 1, with the usual matrix multiplication. Then, instead of powers of a single

diffusion operator, the t-step condensation process is defined via \bfP (t - 1) := \bfP \tau 
t - 1 \cdot \cdot \cdot \bfP \tau 

0 , and

thus we can also directly write Xt =\bfP (t - 1)X0. Note that \bfP (t - 1) is constructed from a collection
of operators based on different datasets, and potentially different bandwidth parameters or
kernels, which therefore makes the process time-inhomegeneous. For simplicity, we keep the
diffusion time \tau , but it could also depend on the condensation time t. Finally, we use the
notation X(T ) :=X0,X1, . . . ,XT for a sequence of datasets up to finite time T , and denote the
diameter of the dataset at time t as diam(Xt) :=maxx,y\in Xt

\| x - y\| 2.

2.2. Related work using diffusion condensation for data analysis and open questions.
The diffusion condensation algorithm first proposed in Brugnone et al. [2] has been applied
for data analysis in a number of areas. Moyle et al. [28] applied diffusion condensation
to the study of neural connectomics between species and to identify biologically meaningful
substructures. Kuchroo et al. [21] applied diffusion condensation to embedding and visual-
izing single-cell proteomic data to explore the effect of COVID-19 on the immune system.
Kuchroo et al. [20] applied diffusion condensation to single-nucleus RNA sequencing data
from human retinas with age-related macular degeneration (AMD) and found a potential
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 349

drug target by exploring the topological structure of the resulting diffusion condensation
process. Van Dijk et al. [32] applied one step of diffusion condensation (T = 1) with high \tau to
single-cell RNA sequencing data to impute gene expression. They showed that high \tau im-
proves the quality of downstream tasks such as gene-gene relationships and visualization.
These works demonstrate the empirical utility of diffusion condensation in a number of set-
tings, specifically when multiscale clustering and visualization is needed and the data lies on a
manifold.

The diffusion condensation process is a particular type of time-inhomogeneous diffusion
process. General time-inhomogeneous diffusion processes over time-varying data were studied
in [25], where it was proposed to use the singular value decomposition of the operator \bfP (t)

to embed an arbitrary sequence of datasets X(T ) according to their space-time geometry.
Additionally, in the case when those datasets X(T ) are sampled from a manifold (\scrM , g(t))
with time-varying metric tensor g(t), it was shown in [25] that as N,T \rightarrow \infty , the operator
\bfP (t) converges to the heat kernel of (\scrM , g(t)). We also note a resemblance to the mean shift
algorithm [14, 7], which relies on a kernel-based estimation of \nabla log p(x), where p(x) is the
unknown density from which the points are sampled. The processed dataset is recursively
updated via xt+1(i) = xt(i)+ \epsilon \nabla log p(x), which effectively moves all points toward a mode of
the distribution, which hence creates clusters.

Motivated by these empirical successes and inspired by the general theoretical results on
time-inhomogeneous diffusion processes, we consider two open questions specific to the diffu-
sion condensation process. Under what conditions does the diffusion condensation algorithm
converge? How can the topology of the diffusion condensation process be understood?

2.3. Theoretical contributions. The main contribution of this paper is to address these
open questions and establish the underpinnings of diffusion condensation. Our investigation
is divided into three perspectives. First, we investigate the convergence properties of diffu-
sion condensation under various parameter regimes from a geometric perspective in section 3,
i.e., arrangement of data points in spatial coordinates. This geometric perspective gives an
intuitive sense of convergence for a large family of kernels with minimum tail bounds. Next,
in section 4 we investigate convergence from a spectral graph theory perspective and prove
convergence in terms of the spectral properties of the kernel, viewing diffusion condensation
as a nonstationary Markov process. A spectral perspective gives bounds in terms of the eigen-
values of the kernel, which can give better rates of convergence depending on considered data.
Finally, in section 5 we investigate the topological characteristics of diffusion condensation.
Here we describe both the structure of the dataset at each condensation step individually via
its persistent homology and the topology of the condensation process itself, which we refer to
as condensation homology . Additionally, we link the topology of the diffusion condensation
process to hierarchical clustering and prove how it generalizes centroid linkage.

2.4. Algorithm. The diffusion condensation algorithm summarizes input data with a se-
ries of representations, organized by condensation time, with earlier representations providing
low level, microscopic details, and later representations providing overall, macroscopic sum-
marizations. Each time step of diffusion condensation can be broken up into five main steps
as follows:

1. Construct a kernel matrix \bfK t summarizing similarities between points.
2. Construct a Markov normalized diffusion operator \bfP t.
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350 HUGUET ET AL.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfone Diffusion condensation.

1: Input: Dataset X0, initial kernel parameter \epsilon 0, diffusion time \tau , and merge radius \zeta 

2: Output: Condensed datasets X(T )

3: \bff \bfo \bfr t\in \{ 0,1, . . . , T  - 1\} \bfd \bfo 
4: \bfK t\leftarrow kernel(Xt, \epsilon t)

5: \bfP t\leftarrow \bfD  - 1
t \bfK t

6: Xt+1\leftarrow \bfP \tau 
tXt

7: \epsilon t+1\leftarrow update(\epsilon t,Xt+1)
8: \bff \bfo \bfr xt(i), xt(j)\in Xt \bfd \bfo 
9: merge(xt(i), xt(j)) if \| xt(i) - xt(j)\| 2 < \zeta 

10: \bfe \bfn \bfd \bff \bfo \bfr 
11: \bfe \bfn \bfd \bff \bfo \bfr 

12: X(T )\leftarrow \{ X0,X1, . . . ,XT \} 

3. Diffuse the data coordinates for \tau steps using \bfP \tau 
t .

4. Update the kernel bandwidth \epsilon according to some update function.
5. (Optionally) merge points within distance \zeta .

Algorithm 2.1 shows pseudocode for this process. At each time step, the positions of points
are updated based on the predefined kernel through \tau steps of diffusion. Intuitively, this
can be thought of as moving each point to a kernel-weighted average of its neighbors, The
condensation process will behave differently depending on the choice of kernel, the kernel
bandwidth, the diffusion time, and the merging threshold.

Figure 1 depicts the differences between time-homogeneous condensation, time-
inhomogeneous condensation, and a mixture of the two. Greater values of \tau encourage the
process to condense along the manifold, in contrast with other hierarchical clustering algo-
rithms that are not able to do so. Comparing only inhomogeneous condensation \bfP 3i (top row)
with a mixture of homogeneous and inhomogeneous condensation \bfP 3

i (middle row), we see
that the mixture condenses the moon structures along the manifold rather than shattering
them. Both of these are able to separate out the two clusters. In contrast, the fully time-
homogeneous condensation process \bfP 3i (bottom row) eventually mixes the two moons. For
the rest of the paper, we let \tau = 1, but our results are valid for any \tau \in N. It is only for the
spectral part that we need to consider a slight nuance, which we discuss in Remark 4.8.

Remark 2.1. The time-homogeneous equivalent of the condensation process would be to
recursively apply the same diffusion operator \bfP 0 on the initial dataset X0. After t iterations,
the new dataset would simply be \bfP t

0X0. This constrasts with the time-inhomegeneous version
where we create a new diffusion operator at each iteration. Concequently, after t iterations,
the new dataset is \bfP t - 1 . . .\bfP 1\bfP 0X0. By using a time-inhomogeneous process, we gain more
control over the convergence behavior. Indeed, since we allow for modifications of the diffusion
probabilities, we can define a schedule for the parameters that could either promote or slow
down the convergence of the process. Here, for simplicity, we assumed \tau = 1, but the same
remark follows for any diffusion time \tau \in N.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 351

Figure 1. Shown are the effects of powering the diffusion operator with a power \tau before condensing on the
moons dataset. Shown from top to bottom row are the time-inhomogeneous process with \tau = 1 and with \tau = 3,
and the time-homogeneous process with T = 1 while varying \tau . For step i this corresponds to comparing the
applications of \bfP 3i, \bfP 3

i , and \bfP 3i to the data. \bfP 3i eventually merges but has a semistable state of six points
after shattering the moons. \bfP 3

i correctly identifies the two clusters of the data efficiently by first condensing
along the moons individually into points. Time-homogeneous condensation \bfP 3t mixes the two moons.

Figure 2. An example of different kernels (rows) and how they affect convergence behavior for the ``petals""
dataset. Convergence speed is highest in the box kernel (15 iterations), followed by the Gaussian kernel (25
iterations), and the \alpha -decay kernel (40 iterations, \alpha = 10.0), whereas the Laplace kernel requires 491 iterations
to converge.

2.5. Kernels for diffusion condensation. Here, we review specific kernel constructions
used to study condensation properties in later sections. In Figure 2, we present a few iterations
of the condensation process, depending on the choice of kernel used to construct the diffusion
matrix.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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352 HUGUET ET AL.

Definition 2.2 (box kernel). The box kernel of bandwidth \epsilon is

(2.1) k\epsilon (x, y) =

\Biggl\{ 
1 if \| x - y\| 2 \leq \epsilon ,
0 else.

The box kernel is arguably the simplest and most interpretable kernel, leading to inter-
esting data summarizations, including an instance of agglomerate clustering depending on
the bandwidth as a function of time. However, first we note some simple cases of bandwidth
settings. Consider a case where kt(x, y) = 1 for all x, y \in X0. This can be thought of as a
box kernel with bandwidth greater than diam(X0). Using this kernel, after a single step of
diffusion condensation, all points converge to the mean data point, 1

n

\sum 
i xt(i). This mean data

point is a useful, if trivial, summarization of the data. Next, consider the opposite extreme,
a box kernel with infinitely narrow bandwidth, kt(x, y) = \{ 1 if x= y else 0\} . In this case, we
have Xt =X0 for all t > 0, resulting in another trivial result, i.e., no data summarization over
diffusion condensation time. Of more interest are bandwidths between these two extremes,
providing hierarchical sets of summarizations. Next, we consider smoother kernels.

Definition 2.3. The \alpha -decay kernel [27] of bandwidth \epsilon is k\epsilon ,\alpha (x, y) = exp( - \| x - y\| \alpha 2 /\epsilon \alpha ).
The \alpha -decay kernel was used in [21] along with anisotropic density normalization (see Def-

inition 2.6), which was shown to empirically speed up convergence of diffusion condensation.

Definition 2.4. The Gaussian kernel of bandwidth \epsilon is k\epsilon (x, y) = exp( - \| x - y\| 22/\epsilon ).
The Gaussian kernel was used in [2], employing density normalization and a merging

threshold of 10 - 4, with a bandwidth of \epsilon t doubling whenever the change in position of points
between t - 1 and t dropped below a separate threshold. This kernel and setting of \epsilon t ensure
that the datasets converge to a single point in a reasonable amount of time in practice.

Another kernel that exhibits interesting behavior is the Laplace kernel; it is noteworthy
since it is positive definite for all conditionally negative definite metrics [13].

Definition 2.5. The Laplace kernel of bandwidth \epsilon is k\epsilon (x, y) = exp( - \| x - y\| 2/\epsilon ).
Note that this is the same as the \alpha -decay kernel, with \alpha = 1. In fact, the Gaussian

and Laplace kernels can be generalized to the \alpha -decay kernel, which interpolates between the
Gaussian kernel when \alpha = 2 and the box kernel as \alpha \rightarrow \infty .

Definition 2.6 (anisotropic density normalized kernel [9]). For a rotation invariant kernel
k\epsilon (x, y), let q(x) =

\int 
X k\epsilon (x, y)q(y)dy; then a density normalized kernel with normalization

factor \beta is given by k\epsilon ,\beta (x, y) =
k\epsilon (x,y)

q\beta (x)q\beta (y) .

3. Geometric properties of the condensation process. We first examine the time-varying
nature of the data geometry along the diffusion condensation process. Since this process results
in a sequence of finite datasets Xt, organized along condensation time, pertinent questions
are how their underlying geometric structure changes as local variability is eliminated by the
diffusion process and whether it eventually converges to a stable one as t\rightarrow \infty . In this section,
we study these questions by considering two geometric characteristics (namely, convex hull
and diameter) of the data, establishing their monotonic convergence, and determining their
relation to the tail behavior of the kernel utilized in the construction of the diffusion process.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 353

Our main result here is that, with appropriate kernel choice, the condensation process
converges to a point, with the time to convergence being dependent on the shape of the
kernel. That is, for all \zeta > 0, there exists an M \in N such that for all t \geq M , we have
\| x  - y\| < \zeta for all x, y \in Xt. Intuitively, we can make all the points arbitrarily close by
iterating the process. It is important to note that this result requires some assumptions on
the kernel in order to avoid pathological cases where the process may converge, but not to
a single point. For instance, using the box kernel on a dumbbell dataset, each sphere would
converge to a point, but for a certain threshold these points would not be connected. Hence,
the process would reach a stable state, i.e., there exists M \in N such that \bfP MXM =XM , but it
would not converge to a point (see Figure 3 for an illustration). One of our goals is to define
the conditions on the kernels for the process to converge to a single point (see Figure 4 for an
example).

3.1. Diameter and convex hull convergence. Intuitively, one can consider each diffu-
sion condensation iteration as eliminating local variability in data [2, 21]. While empirical
results presented in previous work indicate the condensation process can accentuate separa-
tion between weakly connected data regions, they also indicate that the process has a global
contraction property due to the elimination of variability in the data. Thus, it appears that
diffusion condensation coarse-grains data by sweeping through granularities, from each point
being a separate entity to all data points being in a single cluster. To establish this contractive
property and formulate a notion of data geometry (monotone) convergence associated with it,
we characterize the geometry of each Xt via its diameter and convex hull, whose convergence
under the condensation process is shown in the following theorem.

Remark 3.1. The diffusion condensation process is not a contractive mapping in the strict
sense. During individual iterations, distances are not generally all decreasing, i.e., there exist
points xt(i) and xt(j) such that \| xt(i) - xt(j)\| 2 < \| xt+1(i) - xt+1(j)\| 2.

Theorem 3.2. Let (Xt)t\in N and (\bfP t)t\in N be, respectively, the sequence of datasets and diffu-
sion operators generated by diffusion condensation. If the kernel used to construct each \bfP t is
strictly (pointwise) positive, then

1. their convex hulls form a nested sequence with

lim
t\rightarrow \infty 

conv(Xt) =

\infty \bigcap 
t=1

conv(Xt) \not = \emptyset and convex.

t = 0 t = 5 t = 10 t = 20 t = 27

Figure 3. Convergence behavior of a ``dumbbell"" dataset for different iterations of a box kernel with fixed
bandwidth. The process converges to two points that are not connected.
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354 HUGUET ET AL.

Figure 4. The convergence behavior of a hyperuniform circle---a circle with equally spaced points around
its circumference---using a Gaussian kernel.

t = 1 t = 2 t = 3 t = 4 All convex hulls

Figure 5. Illustration of Theorem 3.2. We depict four time steps of the condensation process of a simple
dataset. The convex hull of the points is shown in gray, with the diameter of Xt shown as a dotted line. As t
progresses, convex hulls shrink, with conv(Xt+1)( conv(Xt). The rightmost figure shows all convex hulls of all
time steps with lighter shades indicating later condensation time steps.

2. the diameters form a convergent monotonically decreasing sequence with

lim
t\rightarrow \infty 

diam(Xt) = inf
t\geq 1

diam(Xt)\geq 0.

Further, diam(Xs+1) = diam(Xs) if and only if diam(Xs) = 0, i.e., for s \in N such that
diam(Xs)> 0, we have diam(Xs+1)< diam(Xs).

3. if there exists k \in N such that \bfP kXk = Xk, then conv(Xk) = \{ xk\} , i.e., the process
converged to a single point.

Prior to proving Theorem 3.2, we first require the following technical lemma about poly-
topes, which can also be found in standard literature [22]. Its proof is provided in the sup-
plementary material (supplementary material dc.pdf [local/web 321KB]) for completeness.

Lemma 3.3. Let X \subset Rd be a set of points and C := conv(X) be their convex hull. Then
every extremal point vj \in C satisfies vj \in X. Thus, the extremal points of C are a subset of X.

With Lemma 3.3, we are now ready to prove Theorem 3.2 as follows (see Figure 5 for an
illustration of the arguments in the proof).

Proof of Theorem 3.2. Denote the interior of the convex hull of X as int(conv(X)). We
start by proving the following:

(a) If diam(Xt)> 0, then conv(Xt+1)\subseteq int(conv(Xt));
(b) diam(Xt) = 0 if and only if \bfP tXt =Xt.
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To prove (a), we note that since the entries of \bfP t are positive and its rows sum to 1, each
element of Xt+1 is a convex combination of the original data points. That is, xt+1(i) =
\bfP t(i, \cdot )Xt, with \bfP t(i, j)> 0 for all j \in \{ 1, . . . ,N\} , and

\sum 
j \bfP t(i, j) = 1. As a consequence, Xt+1

will be formed by convex combinations, so all points in Xt+1 lie in the interior of conv(Xt),
which is not empty since diam(Xt)> 0. From Lemma 3.3, we know that the extremal points
of conv(Xt+1) also lie in the interior of conv(Xt). Hence conv(Xt+1) \subseteq int(conv(Xt)), which
proves (a). To prove (b), we assume diam(Xt) = 0. By construction of \bfP t, we get \bfP tXt = Xt.
Now if we assume \bfP tXt = Xt, we have conv(Xt+1) = conv(\bfP tXt) = conv(Xt). If diam(Xt)> 0,
this would contradict (a), and hence diam(Xt) = 0. Steps (a) and (b) show that the convex
hulls are a nested sequence, so conv(Xt)\rightarrow \cap \infty t=1conv(Xt). Since the intersection of convex sets
is convex, the limiting set is also convex. Finally, we use Helly's theorem [22], which states
that if an infinite collection of compact convex subsets in Rd has a nonempty intersection
for every d+ 1 subsets, then the collection of all subsets has a nonempty intersection. Here,
because of the nesting property, every subcollection has a nonempty intersection. Moreover,
the convex hulls of finite sets are compact, and hence we conclude that \cap \infty t=1conv(Xt) is not
empty.

Finally, (a) and (b) imply diam(Xt+1) < diam(Xt) if diam(Xt) > 0, and diam(Xt+1) =
diam(Xt) if diam(Xt) = 0. Thus, the diameters form a monotonically decreasing sequence,
which converges since the sequence is nonnegative.

3.2. Convergence rates. Theorem 3.2 applies for all strictly positive kernels. While it
is only established in terms of the diameter and convex hull of the data, this result extends
to showing pointwise convergence of the diffusion condensation process if we make further
assumptions on the rate at which the diameter sequence decreases, or if we establish bounds
on this rate based on the specific kernel used in the diffusion construction. We next proceed
with such an in-depth analysis, focusing on strictly positive kernels, while noting that later,
in subsection 5.4, we will also show a convergence result for a kernel with finite support (i.e.,
where the discussion here is not valid). We begin with the following result relating the rate
of convergence to the minimum value of the kernel over the data.

Lemma 3.4. If there exists a nonnegative constant \delta , such that 0< \delta \leq \bfK t(i, j)\leq 1 for all
t \in N, then the diameter sequence (diam(Xt))t\in N decreases at a speed of at least 1  - \delta , i.e.,
diam(Xt+1)\leq (1 - \delta )diam(Xt).

Proof. Here we present the key ideas of the proof, and we refer the reader to the supple-
mentary material (supplementary material dc.pdf [local/web 321KB]) for the detailed ver-
sion. The assumption on \bfK t gives the elementwise lower bound \bfP t \geq \delta /N , and we show that
dTV (\bfP t(i, \cdot ),\bfP t(j, \cdot ))\leq 1 - \delta , where dTV is the total variation distance. Next, using a coupling
\xi with marginals \bfP t(i, \cdot ) and \bfP t(j, \cdot ), we can write

\| xt+1(i) - xt+1(j)\| 2 = \| (\bfP t(i, \cdot ) - \bfP t(j, \cdot ))Xt\| 2 = \| 
\sum 
i,j

\xi (i, j)(xt(i) - xt(j))\| 2

\leq 
\sum 
i,j

\xi (i, j)\| xt(i) - xt(j)\| 2 \leq 
\sum 
i\not =j

\xi (i, j)diam(Xt).

We conclude with the coupling lemma, which guarantees the existence of a coupling such that\sum 
i\not =j \xi (i, j) = dTV (\bfP t(i, \cdot ),\bfP t(j, \cdot )), and thus diam(Xt+1)\leq (1 - \delta )diam(Xt).
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Given this result for general kernels whose tails can be lower bounded by some constant,
we can further state a union bound result on kernels that maintain this lower bound over the
entire diffusion condensation process. We recall at this point the \epsilon update step that is typically
used to expedite the condensation process when it reaches a slow contraction metastable state.
Previous work implemented this step with heuristics for updating the \epsilon metaparameter. Here,
we provide further insight into the impact of this update step to both justify it and suggest
an update schedule that provides certain convergence guarantees via the following theorem.

Theorem 3.5. For some nonnegative constant \delta , if there exists an \epsilon t schedule such that
0 < \delta \leq \bfK t(i, j) \leq 1 for all t \in N, then for any merge threshold \zeta > 0, diffusion condensation

converges to a single point in t\ast =
\Bigl\lceil 
\mathrm{l}\mathrm{o}\mathrm{g}(\zeta ) - \mathrm{l}\mathrm{o}\mathrm{g}(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(X0))

\mathrm{l}\mathrm{o}\mathrm{g}(1 - \delta )

\Bigr\rceil 
steps.

Proof. Repeated application of Lemma 3.4 yields diam(Xt+1)\leq (1 - \delta )tdiam(X0). Solving
for the t\ast such that diam(Xt\ast )< \zeta , we have that diam(Xt\ast )\leq (1 - \delta )t\ast diam(X0)< \zeta . Since t\ast 

is an integer, the ceiling suffices.

Remark 3.6. Theorem 3.5 shows one advantage of using a time-inhomogeneous process,
since for a given \delta we can find a schedule for \epsilon t such that 0 < \delta \leq \bfK t(i, j) \leq 1 and thus
control the rate of convergence. This is in contrast with the time-homogeneous process, where
condensation would be defined using the same kernel, and hence the benefit of an adaptive \epsilon 
would be lost.

For specific forms of kernels, this result can be translated to suggest concrete ways of
setting the kernel parameters at each time step such that this bound holds and diffusion
condensation achieves well-behaved linear convergence.

Proposition 3.7. For the following kernels, the specific bandwidth update suffices for the
result in Theorem 3.5 to hold:

1. For the \alpha -decay kernel, exp( - \| x  - y\| \alpha 2 /\epsilon \alpha ), \epsilon t \geq  - diam(Xt)
\alpha / log(\delta ) suffices. For

\alpha = 2, this defines the scheduling for the Gaussian kernel. For \alpha = 1, this defines a
scheduling for the Laplace kernel.

2. For the density normalized kernel k\epsilon ,\beta (x, y) combined with the \alpha -decay, we define \epsilon \alpha t \geq 
 - diam(Xt)

\alpha / log(N2\beta \delta ), and \epsilon t \geq  - diam(Xt)
2/ log(N2\beta \delta ) for the Gaussian kernel.

Then, Theorem 3.5 holds for all \delta \in (0,1/N2\beta ). The same holds if we replace N with
qmax,t :=max q(i).

Proof. To show part 1 we need to define a scheduling of \epsilon t such that minx,y\in Xt
k\epsilon (x, y)\geq 

\delta > 0. For the \alpha -decay kernel, we have minx,y\in Xt
k\epsilon (x, y) = exp( - (diam(Xt)/\epsilon t)

\alpha ) \geq \delta =\Rightarrow 
\epsilon \alpha t \geq  - diam(Xt)

\alpha / log(\delta ). To show part 2, we need \epsilon t such that minx,y k\epsilon ,\beta (x, y) \geq \delta . We
remark that q(i) \leq qmax,t \leq N , and hence minx,y k\epsilon ,\beta (x, y) \geq minx,y k\epsilon (x, y)/N

2\beta . Therefore,
we find \epsilon t such that minx,y k\epsilon (x, y)\geq N2\beta \delta and conclude in the same way as for part 1.

Remark 3.8. We note that to ensure a constant rate of convergence in the diameter, the
kernel bandwidth \epsilon t in Proposition 3.7 shrinks over time proportional to the square of the
diameter. This is in contrast to previous work [2] where a doubling schedule was used.

Remark 3.9. The previous results also hold for \bfP \tau 
t with \tau > 1, as long as there exists \delta > 0

such that all entries \bfP \tau 
t (i, j) > \delta /N . Moreover, the rate of convergence with \bfP \tau 

t cannot be
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 357

slower than with \bfP t, because we can always write Xt+1 =\bfP \tau 
tXt =\bfP \tau  - 1

t \bfP tXt. Finally, for some
\bfP t that includes zero probabilities, it is possible for \bfP \tau 

t to be strictly pointwise positive, and
hence Theorem 3.2 could be used for the process defined with \bfP \tau 

t instead of \bfP t.

4. Spectral properties of the condensation process. We complement the geometric per-
spective of condensation from the previous section with a spectral one based on the idea of
using an orthonormal basis to express any function f : X \rightarrow R (abbreviated f \in RN ) as a
weighted sum of the eigenvectors of \bfP t for all t. This sum is then divided into two terms: a
constant term and a nonconstant one. The former corresponds to the lowest frequency of a
function; it is constant for all x \in Xt and for all t. The nonconstant term represents the rest
of the frequencies; it can vary depending on the eigenvectors of \bfP t. We extend this reasoning
to the time-inhomogeneous diffusion \bfP (t)f . Our main result is Theorem 4.4, which provides
an upper bound on the norm of the nonconstant term. For a specific choice of kernel and by
using the coordinate function, this bound will converge to zero, and hence in Corollary 4.6 we
show how condensation converges to a single point. Before presenting the main theorem, in
subsection 4.1 we introduce a simpler example to give insight into the structure and challenges
of the proof.

4.1. A simple condensation process. We consider a symmetric transition matrix \bfA t

based on Xt, and the coordinate functions fi(x) which return the ith coordinate of x. In
that case, \bfA t is known as a bistochastic matrix, and its stationary distribution is the uniform
distribution. Since \bfA t is symmetric, its eigenvectors \{ \phi t,i\} Ni=1 form an orthonormal basis of
RN . Moreover, its ordered eigenvalues \{ \lambda t,i\} Ni=1 are less than or equal to one, with \lambda t,1 = 1.
Because \bfA t is row stochastic, and \lambda t,1 = 1, we can define \phi t,1 =N - 1/21 where 1 is a vector of
ones of size N . Given these properties, we can write any function f \in RN as

f =

N\sum 
k=1

\langle f,\phi t,k\rangle \phi t,k.

By splitting this sum into two terms, we define the constant terms Lt(f) := \langle f,\phi t,1\rangle \phi t,1 =
(1/N)\langle f,1\rangle 1 and Ht(f) :=

\sum 
k\geq 2\langle f,\phi t,k\rangle \phi t,k, and hence f =Lt(f)+Ht(f). After one conden-

sation step, we get

\bfA 0f = \langle f,\phi 0,1\rangle \phi 0,1 +
N\sum 
k=2

\lambda 0,k\langle f,\phi 0,k\rangle \phi 0,k,

since \lambda 0,1 = 1. Moreover, we note L0(f) = L0(\bfA 0f), which is therefore invariant through
the iterations of condensation. We note the resemblance to the graph Fourier transform,
which uses the eigendecomposition of the Laplacian and treats the eigenvalues as frequencies
and the eigenvectors as harmonics. Here, Lt can be thought of as the lowest frequency term
of the function. Whereas Ht varies depending on the eigenvectors, it can be seen as the
higher frequencies of the function. Since Lt(f) is constant during condensation, showing the
convergence of the process is equivalent to showing that \| Ht(\bfA 

(t)f)\| 2 tends to zero as t tends
to infinity. Indeed, if this is true, by using the coordinate function fi we have
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358 HUGUET ET AL.

lim
t\rightarrow \infty 

L0(\bfA 
(t)fi) = \langle fi,N - 1/21\rangle N - 1/21=

\left[  (1/N)

N\sum 
j=1

fi(x0(j))

\right]  1,

and thus the process converges to the mean of the N data points. What is left to show is that
the norm of the term Ht(\bfA 

(t)f) indeed converges to zero as t goes to infinity. After the first
condensation step, we have the bound

\| H0(\bfA 0f)\| 22 =
N\sum 
k=2

\lambda 20,k| \langle f,\phi 0,k\rangle | 2 \leq \lambda 20,2
N\sum 
k=2

| \langle f,\phi 0,k\rangle | 2 = \lambda 20,2\| H0(f)\| 22 \leq \lambda 20,2\| f\| 22,

and it can be deduced that \| Ht(\bfA 
(t)f)\| 22 \leq 

\prod t
i=0 \lambda 

2
i,2\| f\| 22. Hence, by showing that

\prod t
i=0 \lambda 

2
i,2

tends to zero as t tends to infinity, we could conclude that the process converges to a point.
Our situation is more complex since many kernels are not symmetric, so their eigenvectors

do not form an orthonormal basis of RN . Here, we also benefited from the fact that the
kernels were bistochastic, and hence they all had the same (uniform) stationary distributions.
Generally, each kernel \bfP t has a different stationary distribution. This will be reflected in
the upper bound, as we have to consider the distance between two consecutive stationary
distributions.

4.2. A general condensation process. In general, we consider the broader class of diffu-
sion operators defined in subsection 2.1 by \bfP t =\bfD  - 1

t \bfK t. We recall that \bfK t is symmetric with
0\leq \bfK t(i, j)\leq 1, and the diagonal degree matrix is \bfD t := diag(dt) where dt(i) :=

\sum 
j \bfK t(i, j).

Moreover, the stationary distribution associated to \bfP t is \pi t(i) = \| dt\|  - 1
1 dt(i), and \bfP t is dt-

reversible, i.e., dt(i)\bfP (i, j) = dt(j)\bfP (j, i). Thus, its associated operator

(4.1) \bfP tf(x(i)) :=

N\sum 
j=1

\bfP t(i, j)f(x(j))

is self-adjoint with respect to the dot product \langle f, g\rangle dt
=

\sum 
x f(x(i))g(x(i))dt(i). Denote

\{ \psi t,i\} Ni=1 as the eigenvectors of \bfP t and \{ \lambda t,i\} Ni=1 as its eigenvalues arranged in decreasing
order. Because \bfP t is self-adjoint with respect to \langle \cdot , \cdot \rangle dt

, its normalized eigenvectors are such
that \langle \psi t,i,\psi t,j\rangle dt

= \delta ij , where \delta ij = 1 if i = j and 0 otherwise. Therefore, we can write any

function f \in RN as f =
\sum N

k=1\langle f,\psi t,k\rangle dt
\psi t,k. Following the same steps as in subsection 4.1, we

want to find a constant term of the function. Since \bfP t is row stochastic, and because \lambda t,1 = 1,
we get \psi t,1 = c1 where c is a constant. We can solve for c using \langle \psi t,1,\psi t,1\rangle dt

= \langle c1, c1\rangle dt
= 1,

which yields c2 = [
\sum 
dt(i)]

 - 1 = | | dt| |  - 1
1 . Hence, we define the constant term as

Lt(f) := \langle f,\psi t,1\rangle dt
\psi t,1 = | | dt| |  - 1

1 \langle f,1\rangle dt
1= \langle f,1\rangle \pi t

1,

and the nonconstant term as the rest of the sum, which varies depending on the eigenvectors,

Ht(f) :=

N\sum 
k=2

\langle f,\psi t,k\rangle dt
\psi t,k.
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 359

We can write \bfP tf = \langle f,1\rangle \pi t
1+

\sum 
k \lambda t,k\langle f,\psi t,k\rangle dt

\psi t,k by using the facts that \bfP t is self-adjoint
and \lambda t,1 = 1. Most importantly, we note that the constant term of the function is not affected
by condensation, i.e., Lt(\bfP tf) = Lt(f). Consequently, to show that the condensation process
converges to a single point, it is sufficient to show

(4.2) lim
t\rightarrow \infty 
\| Ht(\bfP 

(t)fi)\| 2 = 0.

Indeed, if (4.2) holds, then for a constant C, we get limt\rightarrow \infty \bfP (t)fi(x) = C for all coordinates
i\in \{ 1, . . . , d\} , and every x\in X0. To achieve our goal, in Theorem 4.4 we find an upper bound on
\| Ht(\bfP 

(t)f)\| 2, which we use in Corollary 4.6 to show convergence of the condensation process.
Before presenting these results, we introduce several lemmas, whose proofs are provided in
the supplementary material (supplementary material dc.pdf [local/web 321KB]). Lemma 4.1
is the same as the upper bound we found in subsection 4.1 and will be beneficial when used
recursively. Lemma 4.2 is necessary since each \bfP t possibly has a different degree dt, and
it enables a change of measure to \| \cdot \| ds

from \| \cdot \| dt
. Lastly, Lemma 4.3 is beneficial when

combined with the observation that Ht(f) =Ls(f) - Lt(f) +Hs(f).

Lemma 4.1. For the operator \bfP t and its second largest eigenvalue \lambda t,2, we have the follow-
ing bound on the norm \| Ht(\bfP tf)\| dt

\leq \lambda t,2\| Ht(f)\| dt
for all functions f \in RN .

Lemma 4.2. For all functions f \in RN , and two operators \bfP t and \bfP s, the following inequal-
ities hold: \| f\| 2dt

\leq \| dt/ds\| \infty \| f\| 2ds
\leq (\| dt  - ds\| 2 + 1)\| f\| 2ds

.

Lemma 4.3. For all f \in RN , \| Lt(\bfP tf) - Ls(\bfP tf)\| dt
\leq \lambda t,2N1/2\| ds  - dt\| 2\| Ht(f)\| dt

.

We are now ready to state and prove the main theorem of this section, providing an upper
bound on the norm of the nonconstant part of a function. The upper bound mainly depends
on two terms: the second largest eigenvalue of each condensation operator, and the distance
between their stationary distributions. The convergence proof relies on this theorem.

Theorem 4.4. For a condensation step t and a collection of diffusion operators \{ \bfP k\} tk=0,
we have the following bound on the norm of the nonconstant term of the function \bfP (t)f :

\| Ht(\bfP 
(t)f)\| 2 \leq \| d0\| 1/2\infty 

\Biggl[ 
t - 1\prod 
i=0

\lambda i,2

\Biggr] \Biggl[ 
t - 1\prod 
i=0

(1 +N1/2\| di  - di+1\| 2)2
\Biggr] 
\| f\| 2.

Proof. We start by proving the following inequality:

(4.3) \| Ht(\bfP 
(t - 1)f)\| dt

\leq 

\Biggl[ 
t - 1\prod 
i=0

\lambda i,2

\Biggr] \Biggl[ 
t - 1\prod 
i=0

(1 +N1/2\| di  - di+1\| 2)2
\Biggr] 
\| f\| d0

.

We will prove (4.3) by induction. For t= 1, using Lemma 4.2 we obtain

(4.4) \| H1(\bfP 0f)\| d1
\leq (1 +N1/2\| d0  - d1\| 2)\| H1(\bfP 0f)\| d0

.

Moreover, using the fact that H1(f) =L0(f) - L1(f) +H0(f), we write

\| H1(\bfP 0f)\| d0
\leq \| L0(\bfP 0f) - L1(\bfP 0f)\| d0

+ \| H0(\bfP 0f)\| d0

\leq \lambda 0,2N1/2\| d0  - d1\| 2\| H0(f)\| d0
+ \lambda 0,2\| H0(f)\| d0

(4.5)

\leq \lambda 0,2(1 +N1/2\| d0  - d1\| 2)\| f\| d0
,(4.6)
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where the inequality (4.5) is obtained by Lemmas 4.3 and 4.1. Combining (4.4) and (4.6)
yields \| H1(\bfP 0f)\| d0

\leq \lambda 0,2(1 +N1/2\| d0  - d1\| 2)2\| f\| d0
. We have shown that (4.3) is true for

t= 1. Now assume it is true up to t - 1; we want to show that this implies that it is true for t.
The proof is similar to the base case. From Lemma 4.2, we obtain

(4.7) \| Ht(\bfP 
(t - 1)f)\| dt

\leq (1 +N1/2\| dt - 1  - dt\| 2)\| Ht(\bfP 
(t - 1)f)\| dt - 1

.

Moreover, following the same steps as in (4.6) with Lemmas 4.3 and 4.1, we obtain
\| Ht(\bfP 

(t - 1)f)\| dt - 1
\leq \lambda t - 1,2(1+N1/2\| dt - 1 - dt\| 2)\| Ht - 1(\bfP 

(t - 2)f)\| dt - 1
. Combining this last in-

equality with (4.7) yields \| Ht(\bfP 
(t - 1)f)\| dt

\leq \lambda t - 1,2(1+N
1/2\| dt - 1 - dt\| 2)2\| Ht - 1(\bfP 

(t - 2)f)\| dt - 1
,

and we prove (4.3) by applying the inductive hypothesis. We can now conclude the proof by
showing

\| Ht(\bfP 
(t)f)\| 2 \leq \| 1/dt\| 1/2\infty \| Ht(\bfP 

(t)f)\| dt
\leq \| Ht(\bfP 

(t)f)\| dt
(4.8)

\leq \lambda t,2\| Ht(\bfP 
(t - 1)f)\| dt

\leq \| Ht(\bfP 
(t - 1)f)\| dt

(4.9)

\leq 

\Biggl[ 
t - 1\prod 
i=0

\lambda i,2

\Biggr] \Biggl[ 
t - 1\prod 
i=0

(1 +N1/2\| di  - di+1\| 2)2
\Biggr] 
\| f\| d0

(4.10)

\leq \| d0\| 1/2\infty 

\Biggl[ 
t - 1\prod 
i=0

\lambda i,2

\Biggr] \Biggl[ 
t - 1\prod 
i=0

(1 +N1/2\| di  - di+1\| 2)2
\Biggr] 
\| f\| 2,

where the inequalities (4.8) and (4.9) are obtained by Lemma 4.2 and Lemma 4.1, and the
inequality (4.10) is justified by (4.3), which we have just shown. Finally, the last inequality is
due to Lemma 4.2.

Remark 4.5. Theorem 4.4 is valid for a general collection of diffusion operators constructed
from a kernel like the ones presented in subsection 2.5. In particular, this collection includes
operators created by the diffusion condensation algorithm and the time-homogeneous process.
For the latter, the product

\prod 
(1 + N1/2\| di  - di+1\| 2)2 is equal to one, and thus the rate of

convergence only depends on the second largest eigenvalue of the diffusion operator. Allowing
for time-inhomogeneity enables controlling the eigenvalue during the process, for example, by
defining an adaptive bandwidth parameter, but comes at the cost of having to consider the
rate of change of the degrees.

We recall our initial argument that to show the convergence of the condensation process,
it is sufficient to use the coordinate function fi and to show that the norm of the nonconstant
term \| Ht(\bfP 

(t)fi)\| 2 converges to zero. This is achieved in the next corollary, for which we
require the following assumption on successive degree functions:

(4.11)

\infty \sum 
k=0

\| dk  - dk+1\| 2 <\infty .

Corollary 4.6. For a family of diffusion operators \{ \bfP t\} t\in N defined by (4.1) such that their
second largest eigenvalues are all less than or equal to 1 - \delta , where \delta \in (0,1), and that (dt)t\in N
respects (4.11), the condensation process converges to a (single) point as t tends to infinity.
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Proof. Using the coordinate function fi and the upper bound from Theorem 4.4, we have

(4.12) \| Ht(\bfP 
(t)fi)\| 2 \leq \| d0\| 1/2\infty [ 1 - \delta ]t

\Biggl[ 
t - 1\prod 
k=0

(1 +N1/2\| dk  - dk+1\| 2)2
\Biggr] 
\| fi\| 2,

since \lambda t,2 \leq 1 - \delta for all t. Note that the quantities \| d0\| 1/2\infty and \| fi\| 2 are both finite. Further-
more, by assumption, the sequence (dt)t\in N satisfies (4.11), and thus

lim
t\rightarrow \infty 

t - 1\prod 
k=0

(1 +N1/2\| dk  - dk+1\| 2)2 <\infty .

The upper bound converges to zero since limt\rightarrow \infty [ 1  - \delta ]t = 0, and because limt\rightarrow \infty \bfP (t)fi =
\langle fi,1\rangle \pi 1, we conclude that all points have the same ith coordinate for all i\in \{ 1, . . . , d\} .

We conclude this section by identifying kernels for which we can find analytic conditions
that respect the assumptions of the previous corollary and hence produce a condensation
process that converges to a single point. First, we introduce the following lemma regarding
the degrees assumption (4.11).

Lemma 4.7. If limk\rightarrow \infty dk exists, and the degrees are such that dk(i) \leq dk+1(i) except for
a finite number of condensation steps, then assumption (4.11) is verified.

Proof. We note d\infty := limk\rightarrow \infty dk and recall 1\leq dk(i)\leq N . Without loss of generality, we
assume that all degrees after \ell condensation steps respect the monotonic assumption, since
\| \cdot \| 2 \leq \| \cdot \| 1, we will show

\sum \infty 
k=\ell \| dk  - dk+1\| 1 <\infty to complete the proof. We have

\infty \sum 
k=\ell 

N\sum 
i=1

| dk(i) - dk+1(i)| =
N\sum 
i=1

\infty \sum 
k=\ell 

dk+1(i) - dk(i) =
N\sum 
i=1

d\infty (i) - d\ell (i)\leq 
N\sum 
i=1

(N  - 1)\leq \infty ,

where the first equality comes from the increasing degrees assumption and by interchanging
the order of summation, and the second equality is due to the telescoping sum.

In the following, we assume the conditions of Lemma 4.7 to be verified. This is consistent
with our experiments, as, after a few condensation steps, we observe that all pairwise distances
decrease, and hence each dimension of the degrees is increasing. For the assumption on \lambda i,2
we analyze the diffusion operator.

Since \bfP t is reversible with respect to \pi t, we can use Proposition 1 of Diaconis and Stroock
[10] to find an upper bound on the second largest eigenvalue. They show that \lambda t,2 \leq 1 - 1/\kappa t,
where

\kappa t :=max
i,j

\pi t(i)\pi t(j)

\pi t(i)\bfP t(i, j)
\leq max

i,j

dt(i)

\bfK t(i, j)
\leq dmax,t

mini,j \bfK t(i, j)
,

and dmax,t :=maxi dt(i). To respect the assumptions of Corollary 4.6, we define \epsilon t such that

\lambda t,2 \leq 1 - 
minx,y\in Xt

k\epsilon (x, y)

dmax,t
\leq 1 - \delta .
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362 HUGUET ET AL.

Thus, for the \alpha -decay kernel (Definition 2.3), we must define a schedule of the bandwidth
parameter \epsilon t, such that \epsilon \alpha t \geq  - diam(Xt)

\alpha /( - log(\delta dmax,t)), which extends schedules for the
Gaussian and Laplace kernels. For these kernels, we always need \delta \in (0,1/dmax,t), but we
note that dmax,t \leq N , which thus avoids the case where \delta tends to 0 as t tends to infinity. A
similar result is obtained for the density normalized kernel k\epsilon ,\beta (Definition 2.6), since

max
x,y\in Xt

\sum 
y

k\epsilon ,\beta (x, y)\leq N and min
x,y\in Xt

k\epsilon ,\beta (x, y)\geq 
minx,y\in Xt

k(x, y)

q2\beta max,t

.

Combining these two bounds yields the following requirement for the density normalized kernel

\lambda t,2 \leq 1 - minx,y k\epsilon (x, y)

Nq2\beta max,t

\leq 1 - \delta .

We can find a similar schedule for each of the previous kernels, since minx,y kt(x, y) can be lower

bounded by a function of the diameter. For instance, we find \epsilon t \geq  - diam(Xt)
2/ log(\delta Nq2\beta max,t)

for the anisotropic Gaussian kernel. This adaptive parametrization of the bandwidth param-
eter guarantees that the condensation process will converge to a point for these kernels.

Remark 4.8. These results can be generalized to \bfP \tau 
t , for any \tau \in N. We can write

\bfP \tau 
t f = Lt(f) +

\sum 
k \lambda 

\tau 
t,k\langle f,\psi t,k\rangle dt

\psi t,k, and hence \| Ht(\bfP 
\tau 
t f)\| dt

\leq \| Ht(\bfP tf)\| dt
\leq \lambda t,2\| Ht(f)\| dt

,
since | \lambda t,2| \leq 1. Thus, Theorem 4.4 can be used to prove convergence of the process.

Remark 4.9. Both Theorem 4.4 and Corollary 4.6 are valid for a broad class of diffusion
operators, in particular those with finite support or a wider family of random walks on a
graph. This differs from the geometric Theorem 3.2, which is restricted to strictly positive
kernels. It is also possible to leverage information from the underlying structure of the data
to characterize the convergence of the condensation process. For example, for a random walk
on a graph, the second-largest eigenvalue is influenced by the connectivity of the graph; a
highly connected graph would yield a small eigenvalue and hence converge faster. For the box
kernel, assuming monotone convergence of degrees, Corollary 4.6 can be used to analyze overall
convergence by evaluating the second-largest eigenvalue at different condensation times.

Remark 4.10. The degree convergence assumption (4.11) assumes that the process con-
verges to a stable representation XM , without any assumption on XM . In practice, since
transition operators are contractive, we observe that this assumption is easily respected (from
Lemma 4.7). It is worth noting that (4.11) can be controlled for random walks on k -nearest-
neighbor graphs (since dt(i) = k). Corollary 4.6, bounding the second-largest eigenvalue, then
guarantees that XM is a single point.

5. Topological properties of the condensation process. Having previously proved con-
vergence properties, we now take on a coarser perspective and characterize topological, i.e.,
structural , properties of the diffusion condensation process. To this end, we note that the
multiresolution structure provided by diffusion condensation naturally relates to recent ad-
vances in using computational topology to understand the ``shape"" of data geometry at varying
scales. To elucidate this connection, subsections 5.2 and 5.3 introduce two perspectives for
integrating topological information into the data geometry uncovered by the diffusion con-
densation process, i.e., (i) condensation homology for describing the topology of the diffusion
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 363

Figure 6. An illustration of condensation homology for the ``double annulus"" dataset, the ``hyperuniform
circle"" dataset where n points are evenly spaced around the circle with 2\pi 

n
radians between them, and the ``petals""

dataset. The top row depicts the original dataset at t = 0; the middle row depicts the condensation homology
barcode, i.e., a summary of topological activity over all condensation iterations; and the bottom row depicts
topological activity curves (cumulative sums of lengths in the condensation homology barcode).

condensation process itself, and (ii) persistent homology based on Vietoris--Rips complexes
for describing each step of the diffusion condensation process, thus closing the loop to the
previously provided geometric notions. We provide a brief review of relevant topological data
analysis (TDA) notions in subsection 5.1 and in the supplementary material (supplemen-
tary material dc.pdf [local/web 321KB]). Figures 6 and 7 depict the two types of topological
descriptions. Readers familiar with TDA may recognize that our two perspectives may also
be seen as slices of a special bifiltration, i.e., a filtration with two parameters. However, since
bifiltrations are known to be computationally more challenging [23], we defer their treatment
to future work.

5.1. A brief summary of persistent homology. Persistent homology [1, 12] is a method
from the field of computational topology, which develops tools for obtaining and analyzing
topological features of datasets. Given its beneficial robustness properties [8], persistent ho-
mology has received a large degree of attention from the machine learning community [17].

We first introduce the underlying concept of simplicial homology. For a simplicial complex
K, i.e., a generalized graph with higher-order connectivity information in the form of cliques,
simplicial homology employs matrix reduction algorithms to assign K a family of groups,
the homology groups . The dth homology group Hd(K) of K contains equivalence classes of
d-dimensional topological features, such as connected components (d = 0), cycles/tunnels
(d=1), and voids (d = 2). These features are also known as homology classes. Homol-
ogy groups are typically summarized by their ranks, thereby obtaining a simple invariant

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) (b)

Figure 7. (a) Persistent homology for the ``double annulus"" dataset. Following different steps in the diffu-
sion condensation process (top row), we obtain a sequence of persistence diagrams (bottom row) that summarize
the one-dimensional topological features, i.e., the cycles, in the dataset. (b) The condensation homology (top
row) and the topological activity curve (bottom row) of the dataset for comparison purposes.

``signature"" of a manifold. For instance, a circle in R2 has one feature with d = 1, i.e., a
cycle, and one feature with d = 0, i.e., a connected component. In practice, we are dealing
with a point cloud X and a metric, such as the Euclidean distance. In this setting, persistent
homology now creates a sequence of nested simplicial complexes, making it possible to track
the changes in homology groups---and thus the changes in topology---over multiple scales
(with the understanding that real-world datasets necessitate such a multiscale perspective, as
a single scale is too restrictive). This is achieved by constructing a special simplicial complex,
the Vietoris--Rips complex [33]. For 0 \leq \epsilon < \infty , the Vietoris--Rips complex of X at scale \epsilon ,
denoted by \scrV \epsilon (X), contains all simplices (i.e., subsets) of X whose elements \{ x0, x1, . . .\} satisfy
d(xi, xj)\leq \epsilon for all i, j. Calculating topological features of \scrV \epsilon results in a set of tuples of the
form (\epsilon i, \epsilon j , d), where \epsilon i \in R refers to a threshold at which a topological feature was ``created,""
i.e., the threshold at which it occurred for the first time in \scrV \epsilon . Likewise, \epsilon j \in R refers to
the threshold at which the feature was destroyed. Lastly, d indicates the dimension of the
respective feature. Together, the features of dimension d form the d-dimensional persistence
diagram, a topological descriptor containing the point (\epsilon i, \epsilon j) for every such tuple above. For
example, when d = 0, the threshold \epsilon j denotes at which distance two connected components
in a dataset are merged into one.

5.2. Condensation homology. The formulation of the diffusion condensation process,
with its merge step for close points, induces changes in the topological structure of the datasets.
This will result in one topological descriptor summarizing each dataset. We first define a
filtration, i.e., an ordering of subsets of the data, such that we obtain a sequence of nested
simplicial complexes that is intrinsic to the diffusion condensation process and compatible with
a citation of Algorithm 2.1. The filtration is based on the idea of first extracting subsets of the
data that satisfy a pairwise distance requirement---similarly to the Vietoris--Rips filtration,
which we shall describe in subsection 5.3---and assign them a weight based on the condensation
time t. This weight is used to track topological changes during the condensation process.
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 365

Definition 5.1 (condensation homology filtration). Given a merge threshold \zeta \in R>0, we
define the intrinsic condensation filtration for t\in N as the filtration arising from the sequence
of simplicial complexes

(5.1) \scrV t(X, \zeta ) := \{ \sigma \subseteq Xt | d(xt (i) , xt (j))\leq \zeta for all x(i), x(j)\in \sigma \} 
t - 1\bigcup 
t\prime =0

\scrV t\prime (X, \zeta ),

with \scrV 0(X, \zeta ) := \{ \sigma \subseteq X | d(x(i), x(j))\leq \zeta \} . The weight function w: 2X\rightarrow N for each \scrV t(X, \zeta )
is defined by setting w(\{ i\} ) := 0 for a 0-simplex \{ i\} , and by setting w(\{ i, j\} ) :=min\{ t | \{ i, j\} \in 
\scrV t(X, \zeta )\} for each 1-simplex \{ i, j\} , i.e., we use the first t such that the two points are in a \zeta -
neighborhood. The weight function can be extended to higher-dimensional simplices inductively
by taking the maximum.

Lemma 5.2. Using (5.1) results in a nested sequence of simplicial complexes. We thus
obtain a valid filtration from which we may calculate topological features.

Proof. The nesting property is achieved by taking the union in (5.1). Hence, \scrV t(X, \zeta )
can only grow, which ensures that consecutive complexes are nested. The weights are not
guaranteed to be unique, but we obtain a consistent ordering by using the indices of the
respective points.

Intuitively, the condensation homology filtration measures at which iteration step t two
points move into their \zeta -neighborhood for the first time. There are two differences between
this and the traditional Vietoris--Rips filtration used in subsection 5.3. First, we enforce the
nesting condition of a filtration by taking the union of all simplicial complexes for previous
time steps; this is necessary because, depending on the threshold \zeta , we cannot guarantee
that points remain within a \zeta -neighborhood.

1

The second difference is that we filter over
diffusion condensation iterations instead of distance thresholds, necessitating the use of an
additional weight function (as opposed to using the distances between points). Since diffusion
condensation results in changes of local distances, this filtration captures the intrinsic behavior
of the process. For now, we only add 1-simplices and 0-simplices to every \scrV t(X, \zeta ), but the
definition generalizes to higher-order simplices. We define condensation homology to be the
degree-0 persistent homology of \scrV t(X, \zeta ) under the weight function defined above.

Intuitively, we initially treat each data point xi as a 0-simplex, creating its own homology
class, and identify homology classes over different time steps t, i.e., the homology class of
xt(i) and xt\prime (i) for t \not = t\prime is considered to be the same. As the geometry of the underlying
point cloud changes during each iteration, points start to progressively cluster. Whenever
a merge event happens (see line 9 in the diffusion condensation Algorithm 2.1), we let the
homology class corresponding to the vertex with the lower index continue, while we destroy
the other homology class. Given our weight function, such an event results in a tuple of the
form (0, t), where t denotes the diffusion condensation iteration. This can also be considered
as a persistence diagram arising from a distance-based filtration of an abstract input dataset
(hence, every tuple contains a 0; all homology classes---i.e., all vertices---are present at the

1For readers familiar with computational topology, we want to remark that using zigzag persistent homology
[3], which does not require stringent nesting conditions for filtrations, would also be a possibility. We will
consider such a perspective in future work.
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0

20

t
(a) Gaussian kernel

0

25t

(b) α-decay kernel

Figure 8. Two dendrograms obtained on the ``petals"" dataset. The different condensation behaviors exhibited
by different kernels (see Figure 2) also manifests in the dendrograms.

start of the diffusion condensation process). Our weight function can be interpreted as a
``temporal distance""; the distance between pairs of vertices (i, j) is given by calculating the
value of t for which their spatial distance falls below the merge threshold \zeta for the first time,
i.e., d(i, j) :=min\{ t | d(xt(i), xt(j))\leq \zeta \} . A convenient representation can be obtained using a
persistence barcode [15], i.e., a representation in which the lifespan of each homology class is
depicted using a bar. Longer bars indicate more prominent clusters or groupings in data [20].
Figure 6 illustrates this for a ``double annulus"" dataset, which does not give rise to a complex
set of clusters, as indicated by the existence of few long bars in such a barcode.

Notice that the persistence pairing \scrP corresponding to the condensation homology carries
all the information about the hierarchy of merges obtained during the diffusion condensation
process. Specifically, \scrP consists of pairs of the form (\{ u\} ,\{ v,w\} ), where \{ u\} is a vertex and
\{ v,w\} is an edge between two vertices. We can use these edges to construct a tree of merges,
i.e., a dendrogram (see Figure 8). This perspective will be useful later on when we show how
diffusion condensation generalizes existing hierarchical clustering methods.

5.3. Persistent homology of the diffusion process. As a more expressive---but also more
complicated---description of topological features in the condensation process, we calculate
persistent homology of the input dataset X at every condensation iteration. To this end,
we calculate a Vietoris--Rips complex for each point cloud Xt of the diffusion condensation
process, denoting the Vietoris---Rips complex of X at diffusion time t as \scrV \zeta (X, t) := \{ \sigma \subseteq Xt | 
d(xt(i), xt(j)) \leq \zeta for all x(i), x(j)\in \sigma \} (this notation was chosen to contrast with \scrV t(X, \zeta )
from (5.1), in which t is varied as the filtration parameter while \zeta is kept fixed). In the
following, we will prove that the topological features of \scrV \zeta (X, t) converge as the diffusion
condensation process converges. To this end, we make use of the bottleneck distance d\mathrm{b}(\cdot , \cdot ),
a distance metric between persistence diagrams, defined as

(5.2) d\mathrm{b}(\scrD ,\scrD \prime ) = inf
\eta : \scrD \rightarrow \scrD \prime 

sup
x\in \scrD 
\| x - \eta (x)\| \infty ,

where \eta : \scrD \rightarrow \scrD \prime denotes a bijection between the point sets of both diagrams, and \| \cdot \| \infty refers
to the L\infty metric between two points in R2. Using the results from section 3, we can bound
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the topological activity and prove convergence in terms of topological properties. Specifically,
for the 0-dimensional persistence diagram of our input dataset at diffusion time t, which we
subsequently denote by \scrD Xt

, we prove that the bottleneck distance d\mathrm{b}(\scrD Xt
,\scrD Xt\prime ) to another

time step t\prime is upper-bounded by the respective diameters of the point clouds.

Theorem 5.3. Let t \leq t\prime refer to two iterations of the diffusion condensation process with
Xt,Xt\prime denoting their corresponding point clouds. If diam(Xt)\geq diam(Xt\prime ), then the persistence
diagrams corresponding to Xt and Xt\prime satisfy

(5.3) d\mathrm{b}(\scrD Xt
,\scrD Xt\prime )\leq diam(Xt) .

Proof. From Chazal et al. [4, 5], we obtain d\mathrm{b}(\scrD Xt
,\scrD Xt\prime )\leq 2d\mathrm{G}\mathrm{H}(Xt,Xt\prime ), where d\mathrm{G}\mathrm{H}(\cdot , \cdot )

denotes the Gromov--Hausdorff distance. According to M\'emoli [26, Proposition 5], we have
d\mathrm{G}\mathrm{H}(Xt,Xt\prime )\leq 1/2max\{ diam(Xt),diam(Xt\prime )\} , so we can simplify the bound to d\mathrm{b}(\scrD Xt

,\scrD Xt\prime )\leq 
max\{ diam(Xt),diam(Xt\prime )\} . As diam(Xt)\geq diam(Xt\prime ), we have d\mathrm{b}(\scrD Xt

,\scrD Xt\prime )\leq diam(Xt).

Under the conditions of Corollary 4.6, i.e., for a large family of diffusion operators, we
know that diffusion condensation converges to a point, thus implying limt\rightarrow \infty diam(Xt) = 0.
While we cannot guarantee that diam(Xt) \geq diam(Xt\prime ) for t \leq t\prime holds in general (in the
setting of Corollary 4.6, the diameter can increase; in the more restrictive setting of The-
orem 3.2, diameters would also be nonincreasing, but that theorem only applies to strictly
pointwise positive kernels), we know that there exists a subsequence of condensation steps
\{ \widetilde t\} such that the diameter is nonincreasing. For this subsequence, the bottleneck dis-
tance between consecutive datasets, i.e., d\mathrm{b}(\scrD X\widetilde t ,\scrD X̃

t+1
), also converges to 0. By contrast,

d\mathrm{G}\mathrm{H}(X\widetilde t, X̃t+1
)\geq 1/2| diam(X\widetilde t) - diam(X̃

t+1
)| (the bound being tight in certain cases), imply-

ing that the bottleneck distance between consecutive time steps is never zero if the diameter
changes. Since all point clouds are embedded into the same space, namely Rd, all preceding
statements apply, with the Hausdorff distance d\mathrm{H}(\cdot , \cdot ) replacing the Gromov--Hausdorff dis-
tance [6]. This distance has the advantage that we can easily evaluate it. We require one
auxiliary lemma to replace the diameter bound in the previous proof.

Lemma 5.4. Let X,Y be subsets of the same metric space, e.g., Rd, with conv(Y)( conv(X).
Then d\mathrm{H}(X,Y)\leq diam(X).

Proof. The Hausdorff distance is the smallest r-thickening required such that both X and
Y become subsets of each other, i.e., d\mathrm{H}(X,Y) := inf\{ r > 0 | Y \subseteq X(r) and X \subseteq Y(r)\} . Since
conv(Y)( conv(X), we have r\leq diam(X).

As a consequence of this lemma and the preceding proof, we obtain a bound in terms of
the Hausdorff distance and the diameter. For t\leq t\prime , we have

d\mathrm{b}(\scrD Xt
,\scrD Xt\prime )\leq 2d\mathrm{H}(Xt,Xt\prime )\leq diam(Xt).

Figure 9 shows empirical convergence behavior between consecutive time steps, illustrating
how different condensation processes are characterized by different diameter shrinkages.

5.4. Hierarchical clustering. In contrast to existing work on multiscale diffusion-based
clustering [29], diffusion condensation changes the underlying geometric-topological structure
of the data to extract hierarchical information. A topological perspective helps us elucidate
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Figure 9. 2Empirical convergence behavior of point cloud diameters (for the ``petals"" dataset at various
sample sizes n) and the Hausdorff distance between consecutive steps i, i+ 1 of the condensation process (used
as a proxy for the bottleneck distance). Convergence behavior with respect to the Hausdorff distance is not
uniform and characterized by some ``jumps"", indicating that the datasets change considerably between certain
time steps, before achieving a stable configuration.

connections to hierarchical clustering, a clustering method based on measuring dissimilarities
between clusters via linkage methods . While there are many linkage methods for measuring the
association between clusters in agglomerative hierarchical clustering, we focus on the centroid
method, as it is the most relevant to diffusion condensation. Agglomerative clustering, and
the centroid method specifically, is widely applied in phylogeny [11], sequence alignment [18],
and analysis of other types of data [19]. In the centroid method, the distance between any
two clusters a and b is defined as the distance between the centroids of the clusters. There are
two natural definitions of Euclidean centroids, leading to the unweighted pair group method
with centroid mean (UPGMC) [30] and to the weighted version (WPGMC), also known as
median linkage hierarchical clustering [16]. The unweighted centroid C\mathrm{U}\mathrm{P}\mathrm{G}\mathrm{M}\mathrm{C} is the centroid
of all points in the cluster:

(5.4) C\mathrm{U}\mathrm{P}\mathrm{G}\mathrm{M}\mathrm{C}(a) =
1

| a| 
\sum 
x\in a

x.

In contrast, the weighted version depends on the parent clusters: suppose cluster a is formed
by the merging of clusters b and c; then the centroid of a is defined as

(5.5) C\mathrm{W}\mathrm{P}\mathrm{G}\mathrm{M}\mathrm{C}(a) =
C\mathrm{W}\mathrm{P}\mathrm{G}\mathrm{M}\mathrm{C}(b) +C\mathrm{W}\mathrm{P}\mathrm{G}\mathrm{M}\mathrm{C}(c)

2
.

In either case, the distance between two clusters a and b is defined as the squared Euclidean
distance between their centroids, denoted by D(a, b) := \| C(a)  - C(b)\| 2. This is detailed in
Algorithm 5.1 (with \oplus referring to sequence concatenation). For a given dataset, the UPGMC
and WPGMC algorithms give a unique sequence of merges, provided that at each iteration
there exists a unique choice of centroids a\ast and b\ast that achieve the minimum distance between
clusters. These methods are similar to diffusion condensation and, in certain situations,
equivalent; our next theorem makes this more precise.
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\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffive .\bfone Centroid hierarchical agglomerative clustering.

1: Input: set of points X0

2: Output: the set of clusters at each level (L0,L1, . . . ,LN - 1)
3: L0\leftarrow \{ \{ x(1)\} ,\{ x(2)\} , . . . ,\{ x(N)\} \}  \triangleleft Initially, every point is its own cluster
4: \bff \bfo \bfr t\in \{ 1, . . . ,N  - 1\} \bfd \bfo 
5: a\ast , b\ast \leftarrow arg min(a,b)\in (Lt - 1)2D(a, b) s.t. a \not = b  \triangleleft Find centroids to merge

6: Lt\leftarrow (Lt - 1 \setminus a\ast ) \setminus b\ast \oplus (a\ast \cup b\ast )  \triangleleft Add new cluster with a\ast , b\ast merged
7: \bfe \bfn \bfd \bff \bfo \bfr 

Theorem 5.5. Let \zeta = 0, \epsilon t = minx,y\in Xt
\| x  - y\| 2 > 0, and kt(x, y) be the box kernel in

Definition 2.2. In this case, the diffusion condensation produces topological features equiva-
lent to centroid agglomerative clustering (UPGMC) in both diffusion homology and persistent
homology (for \zeta = 0), i.e., \scrV 0(X, t) = Lt for all t. Further, if \zeta : 0 < \zeta < \epsilon t, then diffusion
condensation is similarly equivalent in both condensation homology and persistent homology
to median linkage agglomerative clustering (WPGMC).

Proof. To show the equivalence of diffusion condensation to UPGMC algorithms, we show
that (i) centroids in the UPGMC algorithm correspond to points in the diffusion condensation
algorithm, and (ii) the same clusters---represented by their respective centroids---are merged
in each iteration, i.e.,\scrV 0(X, t) is a representation of the hierarchy of UPGMC at iteration t.

(i) We show the first claim by induction. For the condensation algorithm at t = 0, the
claim is trivially true, since all points are singletons and therefore centroids. By the
induction hypothesis, all points are centroids at time t, and we show that it still
holds at time t+ 1. Without loss of generality, we assume that only a single pair of
points achieves the minimal pairwise distance at time t, say (xt(k), xt(l)).

2

We have
\epsilon t =minx,y\in Xt

\| x - y\| 2 > 0, and by construction of the box kernel \bfK t(k, l) =\bfK t(l, k) = 1
and zero otherwise. Thus xt+1(k) = \bfP t(k, \cdot )Xt = \bfP t(l, \cdot )Xt = xt+1(l), and hence only
the two points with minimum distance will be merged at their midpoint (centroids),
creating a new centroid. Since \zeta = 0, this will create a sequence of merges.

(ii) Just like UPGMC, only centroids with minimal distance are merged at every iteration.
For each merge in the condensation algorithm, a tuple of the form (0, t) is created in
the condensation homology persistence diagram (and the respective pairs are created
in its persistence pairing). Therefore, points in the diffusion condensation process
are equivalent to centroids in the UPGMC algorithm, and the same merges happen
in each iteration. Hence, \scrV 0(X, t), the Vietoris--Rips complex of Xt at scale 0, is a
representation of the hierarchy of UPGMC at iteration t.

For the setting of \zeta : 0< \zeta < \epsilon t, the only difference is in the setting of the merge threshold. The
proof follows the same logic as in the previous theorem (assuming again that pairwise distances
in each step are unique) except that the centroid locations are updated as the average of two

2This is equivalent to assuming that all pairwise distances in the current diffusion condensation step are
unique. Said assumption also ensures that the selection of a\ast and b\ast in Algorithm 5.1 is unique, so it is a useful
requirement. It does not decrease the generality of our argumentation (in fact, a consistent ordering of merges
can always be achieved), but it simplifies notation and discussion.
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370 HUGUET ET AL.

points instead of a weighted average of all points in the two clusters, and hence we have the
equivalence with WPGMC.

Remark 5.6. Theorem 5.5 implies that diffusion condensation converges to a point in N - 1
iterations, as each iteration reduces the number of unique point locations by one. Extending
this logic to more general settings (where the number of unique points might not strictly
decrease in each iteration) is not trivial and is left to future work.

Remark 5.7. This theorem motivates interpreting diffusion condensation as a soft hierar-
chical clustering method, particularly with other kernels and in situations where the general
position assumption does not hold. When points are equally spaced and not naturally clus-
terable, we find diffusion condensation more appealing; for instance, consider the corners of a
k-dimensional simplex, with all distances between points being equal. The only two ``sensible""
clusterings are k clusters of single points, or one cluster with k points. Performing agglomer-
ative clustering on this dataset will result in an arbitrary binary tree over the data, where all
levels of the tree result in meaningless clusters. Diffusion condensation with any radial kernel,
\epsilon schedule, and merge threshold will result in exactly these two clusterings.

Remark 5.8. This soft clustering interpretation also hints at a convergence result with
potentially tighter bounds for general kernels. The geometric results in section 3 rely on a
pointwise lower bound of the kernel; this can lead to pessimistic convergence results on kernels
similar to the box kernel (for example, consider the \alpha -decay kernel with large \alpha ), which act
more like hierarchical clustering but have poor tail bounds. An interesting future direction
would be to explore geometric convergence for general kernels in terms of the number of unique
points rather than the diameter, following the line of reasoning in Theorem 5.5.

6. Discussion. Diffusion condensation is a process that alternates between computing a
data diffusion operator and reapplying the operator back on the data to gradually eliminate
variation. In this paper, we analyzed the diffusion condensation process from two main per-
spectives: its convergence and the evolution of its shape through condensation steps. We
found conditions guaranteeing the convergence of the process using both geometric and spec-
tral arguments. The geometric argument shows that the convex hull of each iteration of
data after condensation shrinks in comparison to the previous iteration. The spectral argu-
ment reasons that the second largest eigenvalues of the data graph bounds the result of any
function multiplied by the diffusion operator. Our spectral results are of particular interest
since they are valid for a broad family of diffusion operators creating a time-inhomogeneous
process.

Further, we used and extended tools from topological data analysis to characterize the
evolution of the shape of the datasets during the condensation process. In particular, we
defined the condensation homology filtration that operates on the data manifold and studied
the resulting condensation homology. This provides us with a summary of the topological
features during the entire process. Since the process is guaranteed to converge, the filtration
will sweep through the different resolutions of the data, hence providing meaningful details.
With the persistent diffusion homology, we studied the topological features for a given conden-
sation step, resulting in snapshots of topological characteristics of the process. Furthermore,
we provided experiments showcasing the relevance of our analysis, specifically comparing the
condensation and persistent homologies, and the usage of condensation for clustering purposes.
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TIME-INHOMOGENEOUS DIFFUSION GEOMETRY AND TOPOLOGY 371

We also showed that instances of diffusion condensation with the box kernel are equivalent
to hierarchical clustering algorithms. In future work we would like to extend this equivalence
result to other ``softer"" kernels. This could potentially give a tighter convergence bound
dependent on the concentration of a kernel and the number of points rather than its tail,
which can lead to pessimistic bounds on k -nearest-neighbor random walks. Additionally, we
would like to extend the definition of the intrinsic condensation filtration to multidimensional
filtrations, for instance, by identifying the cycles or considering path probabilities defined by
the diffusion kernel.
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