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Single-cell analysis reveals inflammatory
interactions driving macular degeneration
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Due to commonalities in pathophysiology, age-related macular degeneration
(AMD) represents a uniquely accessible model to investigate therapies for
neurodegenerative diseases, leading us to examine whether pathways of dis-
ease progression are shared across neurodegenerative conditions. Here we
use single-nucleus RNA sequencing to profile lesions from 11 postmortem
human retinas with age-related macular degeneration and 6 control retinas
with no history of retinal disease.We create amachine-learning pipeline based
on recent advances in data geometry and topology and identify activated glial
populations enriched in the early phase of disease. Examining single-cell data
from Alzheimer’s disease and progressive multiple sclerosis with our pipeline,
we find a similar glial activation profile enriched in the early phase of these
neurodegenerative diseases. In late-stage age-related macular degeneration,
we identify a microglia-to-astrocyte signaling axis mediated by interleukin-1β
which drives angiogenesis characteristic of disease pathogenesis.We validated
this mechanism using in vitro and in vivo assays in mouse, identifying a pos-
sible new therapeutic target for AMD and possibly other neurodegenerative
conditions. Thus, due to shared glial states, the retina provides a potential
system for investigating therapeutic approaches in neurodegenerative
diseases.

AMD is a neurodegenerative disease of the retina that affects 196
million individuals worldwide and has a significant impact on patient’s
quality of life1. Similar to other neurodegenerative diseases of the
central nervous system (CNS), such as Alzheimer’s disease (AD) and
progressive multiple sclerosis (MS), AMD can be categorized into
stages. Initially, in the early, ‘dry’ stage of AMD, extracellular amyloid-
beta containing deposits known as drusen accumulate in the retina,
leading to the activation of glia2. In advanced, ‘neovascular’ AMD,
angiogenesis and fibrosis driven by vascular endothelial growth factor

(VEGF) cause photoreceptor and vision loss3. In MS and AD, glial dys-
regulation is associated with neuronal damage and progressive neu-
rologic impairment4,5. This raises the question of whether pathogenic
glia activation states are shared across neurodegeneration, and whe-
ther the human retina can be used as a model for interventions tar-
geting glial for similar neurodegenerative diseases.

While single-cell transcriptomics has given insight into the cel-
lular perturbations in AD and MS4–7, a single-cell transcriptomic
analysis of AMD has not been performed. To identify cell types and
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states enriched across stages of AMD, we performed massively par-
allel microfluidics-based single nucleus RNA-sequencing (snRNA-seq)
to create a single-cell transcriptomic dataset of AMD pathology,
comprising 70,973 cells across multiple stages of disease. In such
large datasets, identifying cellular populations that drive disease and
could be targeted for therapeutic benefit remains a challenge with
current approaches. This often occurs because pathogenic popula-
tions may be a small subset of a recognized compartment of the
tissue. Thus, it can be challenging to identify such populations
among the noise and complexity present in single-cell data. To
address this, we developed a topologically inspiredmachine-learning
suite of tools called Cellular Analysis with Topology and Condensa-
tion Homology (CATCH). At the center of this framework is a
pathogenic-population discovery pipeline whose key component is a
method called diffusion condensation8. Diffusion condensation
identifies groups of similar cells across scales systematically to dis-
cover subpopulations of interest within a data diffusion framework.
In this approach, cells are iteratively pulled towards the weighted
average of their neighbors in high-dimensional gene space, slowly
eliminating variation. When cells come close to each other, diffusion
condensation merges them together, creating a new cluster. When
combined with a single-cell differential abundance method MELD9,
diffusion condensation can identify distinct subpopulations asso-
ciated with disease progression. This represents an improvement
over clustering tools that partition the data based on metrics of
cluster interconnectedness. Since this approach identifies specific
disease-enriched populations, condition-specific signatures can be
built and compared across neurodegenerative conditions, helping
build a common understanding of shared disease mechanisms.

Using the CATCH pipeline, we identified two populations of
activated glia, one microglial subset and one astrocyte subset, enri-
ched in the early phase of dry AMD. These subsets were characterized
by signatures of phagocytosis, lipid metabolism and lysosomal func-
tions. By reapplying our pipeline to AD4 and MS5 single-cell datasets,
we identified the same signatures in the early phases of multiple
neurodegenerative diseases, indicating a commonmechanism for glial
activation in the early phase of neurodegeneration. The microglia and
astrocyte expression signatures were validated in human retinal and
brain tissue. In late-stage, neovascular AMD, CATCH identified an
inflammasome expression signature in microglia as well as a pro-
angiogenic signature in astrocytes. Through computational receptor-
ligand interaction analysis, we identified a key signaling axis between
microglia-derived IL-1β and pro-angiogenic astrocytes, the driver of
neovascularization and photoreceptor loss in advanced disease in
AMD3. Through a combination of human inducedpluripotent stem cell
(iPSC)-derived astrocyte stimulation assays, in vivo mouse experi-
ments, and analysis of postmortem human AMD retinal samples, we
validated this pro-angiogenic microglial-astrocyte axis mediated by IL-
1β in late-stage neovascular AMD. As inflammasome and glial IL-1β
signaling are important in AD and MS10–12, these pathways represent
glial molecular signatures shared between neurodegenerative condi-
tions that affect the retina and the brain. This study offers both a
framework for identifying disease-affected cellular populations and
disease signatures from complex single-cell data aswell as key insights
into the shared drivers of neurodegeneration.

Results
CATCH efficiently identifies, characterizes, and compares
disease-enriched populations in complex single-cell tran-
scriptomic data
As parts of the central nervous system (CNS), the retina containsmany
different functional layers and distinct strata that are occupied by a
highly diverse set of cell types and states (Fig. 1A). Furthermore, as a
component of the CNS, the retina shares features with the brain at the
level of cell biology and degenerative pathology (Fig. 1B). Similar to

AMD, MS and AD have defined disease phases, each with an early or
acute active, and a late or chronic inactive disease stage13–15. To identify
pathogenic cellular states enriched in AMD, and relate them to states
found in AD and MS, we performed massively parallel microfluidics-
based snRNA-seq to profile lesions from the macula of 11 retinas with
varying degrees of AMD pathology and 6 control samples, creating a
single-cell view of AMDpathology.We then applied a pipeline, CATCH,
to parse this dataset intomeaningful groupings of cell-types and states
to identify pathogenic mechanisms of disease, which may be shared
across neurodegenerative conditions. We used snRNA-seq for our
analysis, which has been shown to performwell for sensitivity and cell-
type classification as compared to scRNA-seq16. snRNA-seq has the
added advantages that itminimizes gene expression changes resulting
from tissue dissociation aswell asminimizes challenges in dissociation
for tissues such as the retina and brain

Cells can exist in various transcriptional states, which naturally
fall into a hierarchy or organization. Within this hierarchy, cells of a
moresimilar functionalniche, for instancemicrogliaandastrocytes,
aremorecloselyrelatedtooneanotherthancellsofamoredisparate
niche, for instance microglia and endothelial cells. Learning this
hierarchy fromdata is important to thedevelopmentof a systematic
understanding of biological function and can provide insight into
mechanisms of disease pathogenesis. As cell types may be differ-
entially affected by disease, the simultaneous identification and
characterizationof abundant classesof cells at coarsegranularity as
well as rare cell types or states at fine granularity provides a com-
prehensive framework for defining, modeling, and understanding
specific cellular pathways in disease. While biological data has
structure at many different levels of granularity, most clustering
methodsofferoneor just a few levelsofgranularity. These few levels
of granularity can create inaccurate identifications of disease-
associated cellular states. To address this, we developed CATCH, a
framework that combines the principles of datamanifold geometry
with computational topology to create a better understanding of
cellular states across granularities. While the core component of
CATCH, diffusion condensation8, and its mathematical properties17

have been established and used to identify multigranular structure
in biomedical datasets18, it has not been applied to single-cell tran-
scriptomic data. Here, we adapted and built a pipeline around dif-
fusion condensation to systematically sweep through all possible
granularities of the cellular hierarchy to identify pathogenic popu-
lations and infer mechanisms of neurodegeneration.

To learn the cellular hierarchy from complex single-cell tran-
scriptomic data, we adapted diffusion condensation to efficiently
move cells towards their most similar neighbors in terms of their
transcriptomic profile across successive iterations.When cells collapse
into one another, diffusion condensation merges them together,
thereby clustering them at a specific level of granularity (Fig. 1C). By
slowly condensing and then merging similar cells, diffusion con-
densation effectively learns how cells relate to one another over hun-
dreds of levels of granularity. Since diffusion condensation does not
force cells to merge at any given iteration, as done by other hier-
archical clustering approaches, the length of time a cell, or cluster of
merged cells, remains persistent denotes not only their transcriptomic
interrelatedness but also their uniqueness from other cells. Cells that
take only a few iterations to merge are very similar to one another,
while cells that take a significant number of iterations to merge are
more different in their overall transcriptomic profile. This approach is
fundamentally separate frompopular community detection clustering
methods basedmetrics such asmodularity and silhouette score, which
optimize cluster labels based on network interconnectedness. Diffu-
sion condensation is a coarse graining approach which slowly merges
similar populations together across scales. This feature of the algo-
rithm allows us to perform downstream analysis and identify popula-
tions enriched in disease states.
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The CATCH framework utilizes the persistence characteristic of
diffusion condensation to learn and analyze the cellular hierarchy to
identify pathogenic transcriptomic states and to create robust sig-
natures of disease from single-cell data. The cellular hierarchy is
visualized to identify the hierarchical and persistence structure of the
data (Fig. 1D-i). Meaningful granularities of the cellular hierarchy are
identified through topological activity analysis, an analysis that iden-
tifies highly persistent and stable granularities for downstream char-
acterization (Fig. 1D-ii). With this analysis, we identify clusters that
isolate cells found disproportionately in pathogenic or healthy sam-
ples using the single-cell enrichment analysis method MELD9 (Fig. 1D-
iii). Finally, we create rich signatures of disease by identifying differ-
entially expressed genes in pathogenic populations of cells using a fast
modification to Earth Mover’s Distance (EMD) that leverages the cel-
lular hierarchy (Fig. 1D-iv).

For additional details on each component of the CATCH
pipeline, including the adaptions to diffusion condensation,
visualization of the cellular hierarchy, topological activity analysis
and our implementation of differential expression analysis, see
methods section.

Comparison to other clustering algorithms on synthetic and real
single-cell data. We benchmarked our CATCH approach against
existing clustering strategies applied to single-cell data. Using a com-
bination of 40 synthetic single-cell datasets as well as real single-cell
and flow cytometry data, we compared the clustering performance of
our adapted implementation of diffusion condensation against Lou-
vain and Leiden, multigranular clustering techniques often applied to
single-cell data in packages in Monocle 3, as well as Seurat’s Shared
Nearest Neighbors clustering algorithm and FlowSOM, state-of-art

Fig. 1 | Overview of neurodegenerative disease processes and the topological
diffusioncondensationapproach. A Sketchof retina cross-section showing layers
and major cell types. B Illustration of the role of innate immune cells in neurode-
generative disease pathogenesis. In the dry stage of AMD, there is accumulation of
extracellular drusen debris between Bruch’s membrane (BM) and the retinal pig-
ment epithelium (RPE), leading to activation of glia. In the neovascular late-stage of
AMD, VEGF-mediated choroidal neovascularization (CNV)develops, which can lead
to vision loss through rod and cone photoreceptor cell death. Accumulation of
extracellular plaques and intracellular neurofibrillary tangles in Alzheimer’s disease
and myelin damage in progressive multiple sclerosis are both accompanied by
microglia (blue) and astrocyte (orange) activation. C Visual description of cellular
condensation process undertaken by diffusion condensation across four

granularities. Points are moved to and merged with their nearest neighbors as
determined by a weighted randomwalk over the data graph. Overmany successive
iterations, cells collapse, denoting cluster identity at various iterations. D The
coarse grainingprocessdescribed inC createshundredsof granularities of clusters,
which can be analyzed in meaningful ways: (i) we can visualize the hierarchy of
clusters computed by diffusion condensation, to identify the merging behavior
across granularities; (ii) we can identifymeaningful, persistent partitions of the data
by performing topological activity analysis; (iii) in conjunction with MELD9, we can
scan across these meaningful granularities to identify resolutions that optimally
split disease-enriched populations of cells from healthy populations of cells and
finally; (iv) we can compute differentially enriched genes between populations of
interest.
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methods for clustering single-cell transcriptomic and flow cytometry
data, respectively.

Splatter is a simulator of realistic single-cell data where
ground truth cluster labels are known19. Using these ground truth
labels, we generated increasingly noisy single-cell datasets with
two different types of biological noise: variation and drop out
(Supplementary Fig. 1A). With each of these datasets, we follow
the CATCH framework: first we compute and visualize the con-
densation homology (Supplementary Fig. 1B) before performing
topological activity analysis to identify the top four most persis-
tent granularities (Supplementary Fig. 1C) and then finally com-
puting adjusted rand index, a common measure for determining
clustering accuracy against a set of ground truth cluster labels
(Supplementary Fig. 1D), keeping the highest score from our
comparisons. Intriguingly, the most persistent population (iv),
nearly always had the highest adjusted rand index score. Using
this comparison approach we compared diffusion condensation
to Louvain, Leiden, and Seurat’s Shared Nearest Neighbors clus-
tering algorithms across 40 synthetic single-cell datasets. For
Louvain and leiden of the comparison approach, four different
resolutions of clusters were computed and compared, keeping
only the comparison, which produced the highest adjusted rand
index. Across both increasing levels of drop out and increasing
amounts of variation, CATCH performed better than Louvain,
Leiden, and Seurat’s Shared Nearest Neighbors clustering algo-
rithms across 10 different simulations. As noise increased to 0.7
and 0.9 drop out and 0.3 and 0.4 variation, CATCH out-
performed other approaches in a statistically significant manner
(p < 0.05, ANOVA with post hoc two-sided Student’s t-tests with
multiple comparisons correction) (Supplementary Fig. 1E).

Next, we compared CATCH against Louvain and Leiden clustering
approaches on real single-cell data where multigranular clusters had
been identified by an biological expert20,21. First, we analyzed real
single-cell transcriptomic data generated from a developing zebrafish
with known cell-type cluster ground truths20. We organized these
cluster labels into multigranular cluster labels by first aggregating 18
cell types found in four tissue types before aggregating them into
three germ layers. In this manner, we produced ground truth cluster
labels across granularities. We then compared the top four most per-
sistent CATCH granularities against multigranular clusters computed
using Louvain and Leiden, again tuning the resolution parameter to
produce ten different cluster labels. At all granularities of ground truth
cluster labels, CATCH out-performed Louvain and Leiden despite
more granularities being computed for the comparison approaches
(Supplementary Fig. 3B).

Finally, as flow cytometry gating analysis has long been held
as the gold-standard for cell-type identification and comparison,
we compared CATCH to other clustering approaches on flow
cytometry data. Using 1.3 million cells generated from 30
patients, we compared the performance of CATCH to louvain,
leiden and the flow cytometry clustering gold-standard
FlowSOM21. Across all 30 comparisons, CATCH significantly out-
performed other comparisons in a statistically significant way
(two-sided t-test between CATCH and each of the other clustering
approaches, p-value < 0.01) (Supplementary Fig. 3A). All of these
comparisons establish that CATCH identifies known populations
of cells in synthetic and real signal cell data better than estab-
lished techniques, particularly when there is a high degree of
biological noise and variation. Furthermore, CATCH computes a
complete hierarchy of cellular states when identifying popula-
tions, allowing for subclustering groups of cells rapidly to identify
activation states of interest. These subpopulation of cells are a
direct subclustering of the coarser grain cluster of interest,
allowing for comparison of cellular activation states. While one
can repeatedly change parameters of other techniques to acquire

finer or coarser grain clusters, these clusterings would be dis-
connected from one another, meaning a complete hierarchy is
not captured and cellular groups across runs can shift dramati-
cally. CATCH solves this problem by identifying clusterings across
granularities within a single framework.

To further validate the computational analysis, we perform
ablation studies on each component of the CATCH pipeline (Sup-
plementary Fig. 2). Finally, we show the ability of this pipeline to
identify rare cell types (Supplementary Fig. 5) and signatures of
disease populations in real single-cell data (Supplementary Fig. 10).
For an overview of computational analysis and additional compar-
isons, see methods section.

Single-nucleus RNA-seq analysis of the macula in human indivi-
dualswith AMDpathology. We applied CATCH to the AMD snRNA-
seq dataset to identify the major cell types present in the control
and AMD samples. We performed topological activity analysis and
identified three granularities of the cellular hierarchy for down-
stream analysis (granularities with low activity and high persis-
tence). We visualized the snRNA-seq dataset using PHATE and the
CATCH-defined clusters at the coarsest two identified granula-
rities (Fig. 2A). When visualizing the third granularity, we
observed a number of clusters, which we categorized as cell types
based on the expression of previously established cell-type-
specific marker genes22 (Supplementary Fig. 4A) (see Methods).
Using this approach, we identified neuronal cell types, including
retinal ganglion cells, horizontal cells, bipolar cells, rod photo-
receptors, cone photoreceptors, and amacrine cells, as well as
rare non-neuronal cell types, including microglia, astrocytes,
Müller glia, and vascular cells (Fig. 2B, C). To determine if these
populations could be found with established approaches, we
applied Louvain23 clustering to the AMD single-cell data. Louvain
revealed 22 populations at coarse granularity, and 40 populations
at fine granularity (Supplementary Fig. 5A, B). Across both reso-
lutions, however, rare innate immune cell types such as microglia,
astrocytes and Müller glia, were not identified with the Louvain
method, with markers specific for these cell types not localizing
to any one cluster. Finally, to demonstrate the ability of CATCH to
identify meaningful populations of cells across granularities, we
further explored subtypes of bipolar cells, a diverse set of inter-
neurons that transmits signals from rod and cone photoreceptors
to retinal ganglion cells24–26. By analyzing a coarse granularity of
the bipolar cells, we identified the first two major subtypes, ON-
center and OFF-center (Supplementary Fig. 4B). By analyzing a
finer granularity, we identified all 12 major subtypes of cells based
on the expression of cell subtype-specific marker genes (Supple-
mentary Fig. 4C–E).

To identify cell types implicated in AMD pathogenesis in an
unbiased manner, we applied condensation-based differential
expression analysis to the CATCH-identified cell types. By comparing
the cells that originated from retinas with either dry or neovascular
AMD to the cells from control retinas, we identified differentially
expressed genes using Earth Mover’s Distance within each cell type
(set FDR corrected p-value < 0.1 across all comparisons)27. By ana-
lyzing the number of differentially expressed genes across all cell
types, we found that vascular cells, microglia, and astrocytes had the
greatest number of differentially expressed genes across stages of
AMD compared to control samples (Fig. 2D). Furthermore, we per-
formed abundance analysis to identify if certain cell types were sig-
nificantly more enriched in either dry or neovascular AMD. This
analysis revealed a statistically significant increase in the proportion
of microglia and astrocyte nuclei from donors with both dry and
neovascular AMD compared to control samples (two-sided multi-
nomial test, p-value < 0.01) (Fig. 2E). Furthermore, there was a sta-
tistically significant enrichment of vascular cells in neovascular AMD,
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highlighting the importance of vascular cells in the development of
pathological angiogenesis present at that stage of disease (two-sided
multinomial test, p-value < 0.01). There was a relative decrease in
abundance of both rod and cone photoreceptors in advanced neo-
vascular AMD, consistent with the known loss of photoreceptors in
the advanced stage of disease (two-sided multinomial test, p-
value < 0.01)(Fig. 2E). These findings suggest that non-neuronal cell
types including microglia, astrocytes, and vascular cells are impor-
tant cell types in AMD pathogenesis, with not only the most

transcriptional alterations but also changes in abundance during
AMD progression.

Microglial activation signature identified in dry AMD is shared
across the early phase of multiple neurodegenerative diseases
While microglia activation states and their dynamics have been iden-
tified in mouse models of AD7 and related expression states found in
humans28, it is not well understood to what extent these states and
dynamics are shared across human neurodegenerative diseases. The

Fig. 2 | Single-nucleus RNA-seq profiling of themacula fromhuman individuals
with varying stages of AMD pathology. A (left) Topological activity analysis of
human retina single-cell data across all condensation iterations. By computing
gradients on topological activity (see Methods), we identify three granularities at
which persistent partitions of the data occur (represented by resolutions i, ii and
iii), and select them for downstreamanalysis. (right) Condensation process of AMD
single-cell data visualized across iterations (from bottom to top) with the most
coarse-grained granularity clusters visualized on PHATE embedding: resolution i.
represents the most coarse-grained clusters and resolution ii. represents the sec-
ond most coarse-grained clusters. B Populations identified at the finest granularity
identified by topological activity analysis (resolution iii.) were visualized and all
populations were assigned a cell type based onwhich cell-type gene signature they
displayed the highest expressionof.CCell-type-specific genes visualized alongwith
average normalized expression of known cell-type-specificmarker genes. All major
retinal cell types were identified by CATCH process described in A, B.

D Differentially expressed genes identified by Wasserstein Earth Mover’s Distance
(EMD) between cells from early-stage dry and late-stage neovascular AMD lesions
and cells from control retinas on a cell-type-specific basis. Number of significantly
differentially expressed genes between control and AMD cells reported in a cell
type and stage-specific manner (FDR corrected p-value < 0.1). Cell types sorted by
most differential genes between dry AMD and control comparison. Vascular cells,
microglia and astrocytes have the most differentially expressed genes in dry AMD
compared to control samples. E Bar chart indicates the contribution of cell types in
each cluster from control, dry AMD and neovascular AMD samples. Microglia and
astrocytes are the most statistically significantly enriched cell types in AMD, while
rods and cones are themost depleted cell types in neovascular AMD. Vascular cells
are themost enriched cell type in the neovascularAMDcondition. All statisticswere
computed using two-sided multinomial tests with multiple comparisons correc-
tion (*p <0.1).
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study of microglia in the CNS has been difficult due to their rarity,
requiring focused enrichment strategies7,28. With the ability of CATCH
to sweep across all hierarchies of clusters, we can identify sub-
populations of rare cell types at fine granularity to perform a rigorous
and in-depth analysis of cellular states. To identify microglial sub-
populations enriched in specific phases of AMD and build tran-
scriptomic signatures of disease, we identified CATCH granularities
that isolated high MELD-likelihood scores computed for control, dry,
and neovascular AMD conditions. We computed MELD-likelihood
scores for each condition on all microglia in AMD (Fig. 3A). Next, we
identified a granularity highlighted by topological activity analysis that
partitioned regions of high disease likelihood from regions of low
disease likelihood (see Methods). With this approach, we identified
three clusters, each enriched for a different condition: a cluster enri-
ched for cells from control samples, a cluster enriched for cells from
early, dry AMD samples, and a cluster enriched for cells from late-
stage, neovascular AMD samples (Fig. 3A).

To identify signatures of AMD present in microglia during the
early stage of dry disease pathogenesis, a phase in which microglia
have been previously implicated2, we performed differential expres-
sion analysis between control-enriched and the dry AMD-enriched
clusters. Analyzing the top most differentially expressed genes (FDR
corrected p-value < 0.1) between these subpopulations, a clear activa-
tion signature appeared in the early, dry AMD-enriched cluster,
includingAPOE,TYROBP, and SPP1 (Fig. 3D), genes known to play a role
in neurodegeneration7. The association of TYROBP and APOE were
validated on sections of human retinal macula by simultaneous
immunofluorescence for IBA1, a microglia-associated gene, and in situ
hybridization for TYROBP and APOE. On sections of human retinal
macula, IBA1-positive cells from patients with dry AMD showed
enrichment relative to controls for gene transcripts from TYROBP and
APOE, indicating polarization of a subset of microglia towards the
neurodegenerative microglial phenotype in early disease (Fig. 3G).
Increased expression of TYROBP and APOE in microglia was also
identified using in situ hybridization on lesions from human brain
tissue with early-stage AD and early progressive MS compared with
controls (Supplementary Fig. 7C).

Owing to the similarity between this activation state and a pre-
viously defined disease-associated microglial state described in
mice7,29, we performed a comprehensive analysis ofmicroglial states in
two other neurodegenerative diseases, AD and progressive MS.
Applying the CATCH approach to snRNA-seq data from AD4 and MS5,
we identified all major cell types based on the expression of cell-type-
specific marker genes (Supplementary Fig. 6A–D). As in AMD, enrich-
ment analysis revealed thatmicroglia were significantly enriched inAD
and MS when compared to control brain tissue (Supplementary
Fig. 6E, F). Similar to our analysis of AMD identifying disease-phase-
specific transcriptomic states, we applied MELD and topological
activity analysis to microglia in the AD and MS datasets and identified
three clusters of microglia in each disease: a cluster enriched for cells
from control brain tissue; a cluster enriched for cells from early-stage
AD tissue or acute active MS lesions; and a cluster enriched for cells
from late-stage AD tissue or chronic inactive MS lesions (Fig. 3B, C).
Differential expression analysis between the control-enriched and the
early-disease-enriched clusters yielded a common shared activation
profile in all three diseases when analyzing the top differentially
expressed genes (Fig. 3D, middle and right panels) (FDR corrected
p-value < 0.1)).

To understand the early-disease-enriched microglial populations,
we visualized themicroglial activation signature (CD74, SPP1, VIM, FTL,
B2M) (APOE, TYROBP, CTSB) (C1QB and C1QC) as well a homeostatic
signature (P2RY12, P2RY13, andOLFML3) on control-enriched andearly-
disease-enriched clusters from neurodegenerative diseases (Fig. 3E). A
clear divergence is seen between the expression pattern of the
homeostatic signature in control-enriched populations and early-

disease-enriched populations across conditions. With higher expres-
sion of activation genes and lower expression of homeostatic genes,
the early activated population of microglia display a divergent polar-
ization state. We built a composite microglial activation signature and
mapped it onto the clusters along with a previously described disease-
associatedmicroglia signature found in anADmousemodel7. The early
stage of neurodegenerative disease-enriched clusters displayed higher
expression of both signatures compared with the control-enriched
clusters (Fig. 3F with expression values ranging from 5 to 25 for our
activation signature and 7 to 26 for DAM signature).

This shared neurodegenerative microglial phenotype across
AMD, MS, and AD involves upregulation of multiple genes implicated
in studies of neurodegenerative disease risk. These includeAPOE, a key
regulator of the transition between homeostatic and neurotoxic states
inmicroglia30 strongly implicated in risk for AD31,32 and AMD33; TYROBP
that encodes the TREM2 adaptor protein DAP12, mutations of which
are implicated in a frontal lobe syndromewith AD-like pathology34 and
expression of which is upregulated in white matter microglia in MS
lesions; SPP1 (osteopontin), implicated in microglial activation in
brains affected by MS35 and AD36; and CTSB, encoding the major pro-
tease in lysosomes cathepsin-B, which is upregulated in microglia
responding to β-amyloid plaques in AD36. Initiation of the pathologic
accumulation of extracellular material occurs by different means in
these three neurodegenerative diseases. However, the finding that
microglial phagocytic, lipid metabolism, and lysosomal activation
pathways are upregulated in the early or acute active stage of all three
diseases suggests a convergent role for dysregulation in microglia
directed towards clearance of extracellular deposits of debris.

Astrocyte activation signature identified in dry AMD is shared
across the early phase of multiple neurodegenerative diseases
While astrocyte transcriptomic states and dynamics have been estab-
lished in mouse models of AD, astrocyte profiles have not been pro-
filed in human AMD lesions at a single-cell resolution6. As our initial
analysis implicated astrocytes in disease pathogenesis (Fig. 2D, E), we
performed similar cross-disease analysis within the astrocyte popula-
tions using the CATCH method. Using MELD and topological activity
analysis, we identified four clusters of astrocytes at fine granularity
within the diffusion condensation hierarchy: a cluster enriched for
cells from control samples, a cluster enriched for cells from patients
with early, dryAMD, a cluster enriched for cells frompatientswith late-
stage neovascular AMD and a cluster with equal numbers of cells from
all three conditions (Fig. 4A). When comparing the transcriptomic
profiles of cells within the dry AMD-enriched and control-enriched
astrocyte populations, key activation and degeneration-associated
genes, such as GFAP, VIM, and B2M were upregulated (Fig. 4D).

Using MELD and topological activity analysis, we identified clus-
ters that isolated stage-specific populations within MS and AD astro-
cytes. In both diseases, we identified three clusters: a cluster enriched
for cells from control brain tissue, a cluster enriched for cells from
early-stage AD tissue or acute activeMS lesions, and a cluster enriched
for cells from late-stage AD tissue or chronic inactive MS lesions
(Fig. 4B, C). By comparing the control-enriched and early-disease-
enriched clusters within each dataset using condensed transport, we
identified a shared gene signature enriched in the early-stage neuro-
degenerative disease subcluster across all three diseases (Fig. 4E). The
integrated gene signature included markers of activated astrocytes,
including VIM, GFAP, CRYAB, and CD8137,38, major histocompatibility
complex (MHC) class I (B2M)39,40, iron metabolism (FTH1 and FTL), a
water channel component implicated in debris clearance (AQP4)41,
along with lysosomal activation and lipid and amyloid phagocytosis
(CTSB, APOE). Of interest, many upregulated genes were shared
between themicroglial and astrocyte early-stage activation signatures,
suggesting common glial stress pathways become activated in
neurodegeneration.
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Similar to microglia, we mapped homeostatic (GPC5, LSAMP,
TRPM3) and composite activation signatures (B2M, CRYAB, VIM, GFAP,
AQP4, APOE, ITM2B, CD81, FTL) to early-disease-enriched and control-
enriched astrocyte clusters across neurodegenerative diseases. Similar

to microglia, the composite activation signature and homeostatic
signatures were divergently expressed by early enriched clusters
(Fig. 4E, F upper with expression values ranging from 0 to 17). Using a
recently published disease-associated astrocyte signature established

Fig. 3 | Fine grain analysis of microglia reveals a shared activation signature
enriched in the earlyphase of threedifferent neurodegenerative diseases. A 141
microglia identifiedbydiffusion condensation at coarse granularity (upper left) can
be further subdivided into three clusters at fine granularity, each enriched for cells
from a different disease state. Disease state enrichment was calculated usingMELD
(right) for each condition: Control (top), dry AMD (middle) and neovascular AMD
(bottom), with higher MELD likelihoods shown with darker colors. A resolution of
the condensationhomology,whichoptimally isolatedMELD-likelihood scores from
each condition was identified using topological activity analysis. Microglia are
revisualized using PHATE.B As in panelA, three subsets of 288microglia are found
in AD with diffusion condensation and topological activity analysis, each enriched
for cells from a different stage of pathology as computed byMELD (right). Cells are
revisualized with PHATE. C As in panel A, three subsets of 1263microglia are found
in MS with diffusion condensation and topological activity analysis, each enriched
for cells from a different stage of disease as computed by MELD (right). Cells are
revisualized with PHATE. D Differential expression analysis between control-
enriched and early or acute active disease-enriched microglia across neurodegen-
erative diseases reveals a shared activation pattern in early disease (increased
expression of TYROBP, B2M, APOE, CD74, SPP1, HLA-DR, C1QB, C1QC). Significant
differentially expressed genes are visualized in dark gray (two-sided EMD test with
FDR corrected p-value < 0.1 as described in methods). E Heatmap demonstrating
differences in expression of the neurodegenerative shared activation pattern and a

homeostatic signature between control-enriched and early or acute active disease-
enrichedmicroglia across neurodegenerative diseases. Color conventions are as in
panels A–C. Rows correspond to genes and columns represent individual cells. We
have plotted 40 cells from each dataset selected through random sampling to
reveal the difference between control-like and early disease-like cellular states. (F,
upper) Composite microglial activation signature for the neurodegenerative
shared activation pattern in control-enriched and early or acute active disease-
enriched microglia across neurodegenerative diseases (y-axis—gene expression of
signature). (F, lower) Disease-associated microglia (DAM) signature (from ref. 7)
for control-enriched and early or acute active disease-enriched microglia across
neurodegenerative diseases. Color conventions are as in panels A–C (y-axis—gene
expression of signature). Details on statistics are available in methods section.
G Micrographs of combined in situ RNA hybridization and IBA1 immuno-
fluorescence demonstrating elevated expression of key components of the neu-
rodegenerative shared activation pattern (TYROBP and APOE) in IBA1-positive cells,
a marker of microglia, from retinas with dry AMD (right group) compared to
control retinas (left group). All scale bars = 10μm. The average number of puncta
identified per IBA1-positive cell for TYROBPwas 0.28 ± 0.05 in dry AMD (n = 191) vs.
0.02 ± 0.01 for control (n = 464; p < 1e-10; Chi-square test for 0 vs. >0). The average
number of puncta identified per IBA1-positive cell for APOE was 0.57 ± 0.09 in dry
AMD vs. 0.14 ± 0.03 for control (p < 1e-08; Chi-square test for 0 vs. >0).
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in an ADmouse model6, we built a composite activation signature and
mapped that onto the early-disease and control-enriched clusters
across conditions. The early-disease-enriched clusters displayed
higher expression of the disease-associated astrocyte (DAA) gene sig-
nature in addition to the composite activation signature (Fig. 4F, lower
with expression values ranging from 0 to 16).

To validate the astrocyte signature in tissue, we performed
simultaneous GFAP immunofluorescence and RNA in situ hybri-
dization for B2M, a component of MHC-I and member of the
shared gene signature on sections of the human macula. The
retinal layers occupied by GFAP-positive astrocytes (inner plexi-
form layer to inner limiting membrane) contained a higher

Fig. 4 | Fine grain analysis of astrocytes reveals a shared activation signature
enriched in the early phase of neurodegenerative diseases. A 474 astrocytes
identified by diffusion condensation at coarse granularity (upper left) can be fur-
ther subdivided into three clusters at fine granularity, each enriched for cells froma
different stage of neurodegenerative disease. Disease state enrichment was calcu-
lated using MELD (right) for each condition: Control (top), dry AMD (middle) and
neovascular AMD (bottom), with higher MELD likelihoods shown with darker col-
ors. A resolution of the condensation homology, which optimally isolated MELD-
likelihood scores from each condition was identified using topological activity
analysis. Astrocytes are revisualized using PHATE. B As in panel A, three subsets of
2361 astrocytes are found in AD with diffusion condensation and topological
activity analysis, each enriched for cells from a different stage of AD disease as
computed by MELD (right). Astrocytes are revisualized with PHATE. C As in panel
A, three subsets of 5469 astrocytes are found in MS with diffusion condensation
and topological activity analysis, each enriched for cells from a different stage of
MS as computed by MELD (right). Astrocytes are revisualized with PHATE.
D Differential expression analysis between control-enriched and early stage of
neurodegenerative disease-enriched clusters across neurodegenerative diseases
reveals a shared activation pattern in the early stage of disease. This signature
includes B2M, CRYAB, VIM, GFAP, AQP4, APOE, ITM2B, CD81, FTL. Significant

differentially expressed genes visualized in dark gray (two-sided EMD test with FDR
corrected p-value < 0.1 as described in methods). E Heatmap demonstrating dif-
ferences in astrocyte expression of the neurodegenerative shared activation pat-
tern and a homeostatic signature between control-enriched and early or acute
active disease-enriched astrocytes across neurodegenerative diseases. Color con-
ventions are as in panels A–C. Rows correspond to genes and columns represent
individual cells. We have plotted 40 cells from each dataset selected through ran-
dom sampling to reveal the difference between control-like and early-disease-like
cellular states. F Composite astrocyte activation signature (top) and disease-
associated astrocyte signature (DAA) for the neurodegenerative shared activation
pattern in control-enriched cluster and early-disease-enriched cluster across neu-
rodegenerative diseases. Color conventions are as in panels A–C (y-axis—gene
expression of signature). Details on statistics are available in methods section.
G Micrographs of combined in situ RNA hybridization and GFAP immuno-
fluorescence showing more abundant B2M expression in astrocyte-rich retinal
layers fromdry AMD retinawhen compared to control. All scale bars = 10μm.HBar
plot showing density of B2M transcripts in the astrocyte-rich inner plexiform layer,
retinal ganglion cell layer, and nerve fiber layers in retina samples affected by dry
AMD (n = 8 cells) and control (n = 10 cells). Data are presented as mean values ±
SEM; *p < 1e-03; Welch Two Sample t-test.
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density of B2M transcripts in retinas affected by dry AMD relative
to control retina (p-value < 1e-03, two-sided Student’s t-test)
(Fig. 4G, H).

Microglia display inflammasome activation signature and
astrocytes display pro-angiogenic signature in late-stage neo-
vascular AMD
While glial activation signatures are shared during the early phase of
multiple neurodegenerative disease, it is of interest to understand if
they persist or evolve in the late-stage of neurodegenerative diseases.
To understand these glial activation dynamics across stages of AMD,
AD, and MS, we performed differential expression analysis between
the early stage of neurodegenerative disease-enriched clusters and the
late-stage of neurodegenerative disease-enriched clusters of astro-
cytes and microglia. Across both comparisons, molecular signatures
present in the early stage of AMD, MS, and AD are not detected in
microglia and astrocytes during the late-stage of neurodegeneration
(Supplementary Fig. 9A, B), indicating transcriptional changes in glia
during disease progression.

To examine the transcriptional changes in glia during progression
fromearly dry to late-stage neovascular AMDpathology,weperformed
snRNAseq on three additional retinas from human donor retinas with
neovascularAMD,andappliedtheCATCHanalysisto46,783nucleiwhen
combined with the previously sequenced samples. We identified a
granularity of the CATCH hierarchy with low topological activity and
assigned cell-type labels based on the expression of cell-type-specific
gene signatures (Fig. 5A, B). Following the fine grained CATCH analysis,
we identified two clusters of microglia: one cluster enriched for cells
from control retinas and one cluster enriched for cells from late-stage,
neovascular AMD retinas (Fig. 5C). To identify cell-type-specific tran-
scriptional changes in the subpopulation of microglia enriched in late-
stage neovascular AMD pathology, we performed condensation-based
differential expression analysis between the control-enriched and the
neovascular AMD-enriched clusters. Analysis of the top differentially
expressed genes between these subpopulations (FDR corrected p-
value < 0.1) revealedan inflammasome-related signature including IL1B,
NOD2, and NFKB1. The pro-IL-1β protein requires both cleavage and
release via inflammasome-mediated caspase activation and pyroptosis
for bioactivity42. Here, activation of inflammasome sensors and oligo-
merization intoproteolytically active complexesmayoccur in response
to a significant and lasting drop in oxygen tension or chronic lipid
exposure42,43, both known to drive inflammasome activation via NLRP3
(NOD-, LRR- and pyrin domain-containing 3) (Fig. 5D). In late-stage AD
andMSalternativecellularstress-associatedpathwayswereupregulated
includingtranscriptionalregulatorsoftheERstressresponse(XBP1)and
their target genes involved in protein folding and transport (HSPA1A,
HSPA1B, HSP90AA1) and glycosylation (ST6GAL1 and ST6GALNAC3), as
well as regulators of autophagy and proteostasis (ATG7, MARCH1,
USP53). These signatures highlight a shared cellular stress induction.

UsingthefinegrainedCATCHworkflow,weidentifiedtwoastrocyte
subpopulations: one cluster enriched for cells from control retinal
samples and one cluster enriched for cells from late-stage, neovascular
AMD retinal samples (Fig. 5E). To identify signatures of AMDpresent in
astrocytes during the late-stage of disease pathogenesis, weperformed
condensation-based differential expression analysis between control-
enrichedand theneovascularAMD-enrichedclusters.Analyzing the top
differentially expressed genes (FDR corrected p-value <0.1) between
these subpopulations revealed elevation of VEGFA, NR2E1, and HIF1A
expression (Fig. 5F), all of which are regulators of cellular responses to
low oxygen tension44–46. While VEGFA is known to be an important
mediator of the abnormal blood vessel growth that characterizes late-
stage neovascular AMD and is the target of current therapies for the
treatment of disease33,47,48, our data demonstrate in humans a specific
subpopulation of retinal astrocytes that are a source of this signal.

Microglia-derived IL-1β drives pathologic neovascularization via
astrocytes
As microglia are known to influence astrocyte functional states
through the secretion of soluble factors, we wanted to determine if
microglia-derived cytokines could drive VEGFA expression from ret-
inal astrocytes49–51. Since CATCH was able to isolate astrocyte and
microglial states, we utilized CellPhoneDB interaction analysis52 to
create a putative list of possible microglia-derived cytokines that may
interact with astrocytes to drive VEGFA expression (Fig. 6A). From this
analysis, the neovascular-enriched microglia cluster interacted most
significantly with astrocytes through IL-1β and IL-6, while in controls,
microglia-astrocyte interaction was primarily mediated by IL-4. Fur-
thermore, IL-1β interacted most significantly with the neovascular-
enriched astrocyte subpopulation. Using conditional-Density Resam-
pled Estimate of Mutual Information (DREMI), a method to identify
non-linear associations in data53, we find that IL-1β signaling on astro-
cytes was most significantly associated with astrocyte production of
VEGFA.Meanwhile IL-4 signalingwasmost significantly associatedwith
a decrease in astrocyte VEGFA production (Fig. 6B).We then set out to
validate the cytokine regulators of astrocyte VEGFA production in an
unbiased manner.

Cytokines are a part of a complex network of proteins that can
produce additive, synergistic, or antagonistic effects. To demonstrate
this relationship, we used two screening methods. We first used a
combinatorial screening approach utilizing all cytokines identified in
our snRNAseq dataset, removing one at a time to test its necessity in
creating a VEGFA expressing astrocyte. Screening with human iPSC-
derived astrocytes demonstrated that IL-1β, IL-10, and IL-17 arepositive
regulators of VEGFA production in these cells as their subtraction
causes decreased VEGFA compared to human iPSC-derived astrocytes
stimulated with all cytokines (Fig. 6C). We then tested the sufficiency
of someof these cytokines being able to regulate VEGFAproductionby
completing a single protein stimulation and noted that only IL-1β
caused astrocyte VEGFA secretion (Fig. 6D). Across both analyses, IL-1β
positively regulated induction of VEGFA from astrocytes both in vitro
(Fig. 6C, D) and in silico (Fig. 6B). Our analysis of VEGFA regulation
validated the computational prediction of IL-4 being a negative reg-
ulator of VEGF-A production (Fig. 6B, C), showing the utility of our
approach in identifying signaling interactions between cellular subsets
identified with CATCH.

With identification of cytokine mediators of astrocyte VEGFA
production, we validated our findings in vivo by injecting IL-1β
intravitreally in a mouse. This resulted in upregulation of VEGFA
(Fig. 6E, F). Not only was there an increase in the amount of
VEGFA (Fig. 6G, right), there was an increase of overlapping sig-
nals of GFAP and VEGFA, indicative of astrocyte VEGFA activation
and secretion (Fig. 6G, left), along with VEGFA expression
extending from ganglion cell layer localization down to other
layers of the retina. A similar trend was also observed in the
adjacent retinal pigment epithelium (RPE), but did not reach
statistical significance (Supplementary Fig. 8), likely due to var-
iation in intrinsic autofluorescence among RPE cells. Altogether,
this demonstrated the sufficiency of cytokines such as IL-1β to
induce VEGFA secretion in astrocytes in vitro and in vivo. Cyto-
kines such as IL-1β are increased in the vitreous of patients with
neovascular AMD54, but source and the role of these cytokines in
angiogenesis has not been explored. We undertook immunohis-
tochemical staining for IL-1β in retinal samples from the macula
of patients with AMD and healthy controls, observing that there
was an increased amount of IL-1β intensity in the inner retinal
layers, where astrocytes reside (Fig. 6I). Furthermore, upregula-
tion of VEGFA was seen in these areas (Fig. 6G), indicating that
the phenomenon we observe in vitro and in mice likely occurs in
human neovascular AMD as well (Fig. 6G–I).
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Discussion
Here, we used snRNA-seq to generate a single-cell transcriptomic atlas
of AMDduring pathological progression, aswell as develop amachine-
learning pipeline that allows formeaningful comparisons between cell
types and states across diseases and phases. To generate rich sig-
natures for cross-disease comparison among rare cellular subpopula-
tions, we developed a topology-inspired suite of machine-learning
tools for single-cell analysis, ‘CATCH’, a tool that identifies cellular

subpopulations enriched in a specific condition by computing the
complete hierarchy of cellular states using ‘diffusion condensation.’
This pipeline identified cell states enriched in disease, characterized
pathogenic expression signatures, and predicted cellular interactions
between pathogenic populations, uncovering potential therapeutic
targets.

Using CATCH, we identified and characterized specific sub-
populations of microglia and astrocytes enriched in the early stage of

Fig. 5 | Cell-type-specific changes in gene expression during AMD disease
progression. A PHATE visualization of 46,783 nuclei isolated from neovascular
AMD and control retinas65. CATCH analysis identified a resolution of the con-
densation homology, which isolated cell types. As in Figure 3, each cellular cluster
was assigned a cell-type identity based on which gene signature it expressed at the
highest level. B CATCH-identified cell types, as shown by the average normalized
expression of known cell-type-specific marker genes. C Disease state enrichment
was calculated using MELD (right) for each condition: Control (top), and neovas-
cular AMD (bottom), with higher MELD likelihoods shown with darker colors. A
resolution of the condensation homology, which optimally isolated MELD-
likelihood scores from each condition was identified using topological activity
analysis. Microglia are revisualized using PHATE. Two subsets of microglial cells,
one enriched for microglia from retinas with neovascular AMD and another from
control retinas. D Differential expression analysis between control-enriched and
neovascular disease-enriched microglial clusters revealed a different activation
pattern in late disease. Significant differentially expressed genes visualized in dark

gray (two-sided EMD test with FDR corrected p-value < 0.1 as described in meth-
ods). This signature includes NFKBIB, IL1B, NOD2, FLT1, HSP90B1, RIPK2, NFKB1,
HSP90AA1, HIF1A, BCL2L1, P2RX7, TAB2, HSP90AB1. E Disease state enrichment was
calculated using MELD (right) for each condition: Control (top) and neovascular
AMD (bottom)with higherMELD likelihoods shownwithdarker colors. A resolution
of the condensation homology, which optimally isolated MELD-likelihood scores
from each condition was identified using topological activity analysis. Astrocytes
are revisualized using PHATE. CATCH-identified three subsets of astrocyte cells,
one enriched for astrocytes from neovascular retinas, another from control retinas
and a third equally split between conditions. F Differential expression analysis
between the control-enriched and neovascular disease-enriched astrocyte clusters
reveals a different activation pattern in late-stage neovascular disease. Significant
differentially expressed genes visualized in dark gray (two-sided EMD test with FDR
corrected p-value < 0.1 as described in Methods section). This signature includes
NR2E1, EPAS1, VEGFA, HIF1A, HIF3A.

Article https://doi.org/10.1038/s41467-023-37025-7

Nature Communications | (2023)14:2589 10



Fig. 6 | Identifying cytokine regulators of astrocyte VEGFA secretion.
A Interaction analysis between diffusion condensation identified subtypes of
astrocytes and neovascular-enriched microglia (detailed in Fig. 5) computed with
CellPhoneDB52. Interactions between cytokines produced from neovascular-
enriched microglia were computed against cytokine-receptors on astrocyte sub-
types. Interactions between specific cytokine-receptor pairs were added to pro-
duce a single cytokine interaction value for control and neovascular astrocyte
subtypes. B DREMI association analysis between astrocyte VEGFA expression, IL-1β
signaling score, and IL-4 signaling score. Signaling scores for IL-1β and IL-4 were
computing by adding receptor expression of IL-1β and IL-4, respectively,
neovascular-enriched astrocytes from Fig. 5. C Conducted negative screen in
human iPSC-derived astrocytes 24h after stimulation, subtracting one cytokine
(e.g., 'negIL2') from the combinatorial pool to test its necessity in generating a
VEGFA-producing astrocyte compared to vehicle control (ctrl). All represents sti-
mulation with amixture of cytokines (IL-1β, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-15, IL-
17, IL-22, IL-23, IFNγ, TNF). VEGFA protein is measured using enzyme-linked
immunosorbent assay (ELISA). Data were evaluated using one-way ANOVA with
multiple comparisons correction using Dunnetts. D Conducted single cytokine
positive screen in human iPSC-derived astrocytes to test the sufficiency of each

cytokine to stimulate astrocyte VEGFA production. VEGFA protein levels are mea-
sured using ELISA 24 h after stimulation with each cytokine compared to vehicle
control (ctrl). Data were evaluated using one-way ANOVA with multiple compar-
isons correction using Dunnetts. E IL-1β or PBS was injected intravitreally into a
mouse eye. Retinas were collected 72 h later for immunofluorescent imaging. GCL:
ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer
plexiform layer; ONL: outer nuclear layer. PBS phosphate-buffered saline (control).
Experiments were repeated at least three independent times with similar results.
F Zoomed in images of regions indicated in E. G Quantification of mean fluores-
cence intensity (MFI) of VEGFAafter injection of IL-1βorPBS in themouse eyes after
72 h (left) and quantification of amount of VEGFA and GFAP overlap in the ganglion
cell layer of themouse retina after injection of IL-1β or PBS (right). The center of the
error bars is the mean. A two-sided Student’s t-test was performed. **** represents
p <0.0005. H Immunofluorescence imaging of human postmortem control and
neovascular AMD retinas. Experiments were repeated at least three independent
timeswith similar results. IQuantificationof IL-1β intensity in the ganglion cell layer
(GCL) over the outer nuclear layer (ONL) of the retina from F. Data are presented as
mean values ± SEM; ****p <0.0005; two-tailed unpaired Student’s t-test.
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dry AMDdisplaying activation signatures related to phagocytosis, lipid
metabolism, and lysosomal function. We found similar populations of
microglia and astrocytes in analyses of previously published AD and
MS single-cell data. While initial inciting events likely differ between
neurodegenerative conditions, lipid-rich extracellular plaques play a
prominent role in each condition. It is likely that glial cells coordinate
clearance of extracellular debris and, in turn, become activated. While
the initial phagocytic clearance may be beneficial, glial activation has
been shown to play a role in degeneration in AMD, AD, andMS. In later
stages of disease, this shared activation landscapeevolves. In advanced
neovascular AMD, our analysis identified a microglia inflammasome-
related signature that drives pro-angiogenic astrocyte polarization and
pathologic neovascularization. Microglial inflammasome activation
and subsequent IL-1β release could be mediated by a variety of sig-
naling sensors. The NLRP3 sensor may be activated in response to a
variety of stress signals, including extended lipid exposure or pro-
longed hypoxia, and has been previously implicated as a microglial
driver of neurodegenerative immunopathology, making it a likely
candidate55. Microglia are highly mobile cells and responsive to a wide
variety of stimuli. While lineage tracing that definitively differentiates
mononuclear phagocyte origin into circulating macrophages, tissue
resident macrophages, and microglia remains challenging, it is
believed that the mononuclear phagocytes found at the apical side of
the RPE in the vicinity of drusen, which induce activation of the
inflammasome, come from all three populations56. Furthermore,
emerging data suggests that the inflammasome and IL-1β have critical
roles in promoting degeneration in MS and AD10–12. IL-1β treatment of
RPE cells in vitro results in upregulation of VEGFA expression57. Thus,
our results implicate this immune sensor in AMD as well.

This set of analyses has clear implications for potential ther-
apeutics for AMD and other neurodegenerative diseases. Currently,
anti-VEGF therapy is the primary intervention approved to treat AMD
and is only effective in the most advanced stage of disease. Our
unbiased analysis not only identified the cell-type specificity of
VEGFA expression but also identified pathogenic signaling interac-
tions that promote AMD disease progression. Given that VEGFA is a
freely diffusible glycoprotein, its production from retinal astrocytes
can induce angiogenesis from the choroid. Currently, therapies that
inhibit IL-1β are available and used in clinical practice for the treat-
ment of other diseases. Inhibiting microglia-derived IL-1β in neo-
vascular AMD could provide therapeutic benefit, preventing further
neovascularization in advanced patients, or even preventing neo-
vascularization before it begins in patients with earlier stages of
disease. Since these mechanisms are shared across MS and AD, it is
plausible that these interventions could provide benefit to patients
suffering from other neurodegenerative conditions as well. Identi-
fying promising therapeutic candidates to test in neurodegenerative
disease clinical trials remains important, and our data suggest that
approaches targeting glia may be broadly applicable to multiple
neurodegenerative diseases.

Methods
Ethics statement
This study, acquisition, and use of postmortem human retinal
samples was approved by the Yale Human Research Protection
Program’s Institutional Review Board (Yale Protocol Number
2000028616). We complied with all relevant ethical regulations
for work with human participants. All human tissue samples were
obtained with informed consent prior to tissue collection from
participants if enrolled antemortem or legal guardians if post-
mortem. Mouse experimental protocols were approved by Yale
University’s Institutional Animal Care and Use Committee (Yale
Protocol Number 2022-20275). All experiments were performed
in accordance to the guidelines outlined by Yale University’s
Institutional Animal Care and Use Committee.

CATCH analysis details
The CATCH framework constitutes a group of topologically inspired
machine-learning tools to identify, characterize and compare
condition-enriched populations of cells across the cellular hierarchy.
This framework is centered around the diffusion condensation pro-
cess, which learns the structure of data across granularities. Beyond
making significant adaptions to diffusion condensation, we have
introduced tools to help analyze the rich amount of multigranular
information produced by diffusion condensation: cellular hierarchy
visualization, topological activity analysis, automated cluster char-
acterization and differential expression analysis.

In the following sections, we provide a thorough description of
each aspect of CATCH. This includes detailed descriptions of the dif-
fusion condensation process as well as its relationship with MELD,
Wasserstein earth mover’s distance (EMD) and topological activity
analysis. We complete this section with a rigorous set of comparisons
to benchmark our method.

Background in manifold learning and diffusion filters. Many of the
core concepts in diffusion condensation and its adaptions presented
here are based on advances in manifold theory and graph filters.
Typically, n-dimensional data X = {x1,…, xN} can be modeled as origi-
nating from a d-dimensional manifold Md collected via a non-linear
function xi = f(zi). This is because data collection strategies (such as
single-cell RNA-sequencing) create high-dimensional observations
even when the intrinsic dimensionality is relatively low. Algorithms
that use this manifold assumption58–61 leverage the intrinsic, low-
dimensional geometry of themanifold to explore relationships in data.
Diffusion maps59 presented a framework that captures intrinsic mani-
fold geometry using random walks that aggregate local relationships
between data points to reveal non-linear geometries. These local
relationships, known as affinities, are constructed using a Gaussian
kernel function:

Kðxi, xjÞ= exp �k xi � xjk2
ε

 !
ð1Þ

where K is an N ×N Gram matrix and bandwidth parameter ε, which
controls locality. A diffusion operator is defined as the row normal-
ization of the N ×N Gram matrix K:

P=D�1K ð2Þ

where D(xi, xi) =∑jK(xi, xj). The diffusion operator matrix P represents
single-step transition probabilities for a Markovian random walk or
diffusion process. Furthermore, as shown in59, powers of this diffusion
operator P (represented as Pt where t >0) represent a t-step
random walk.

Recent works in data diffusion27,62–64 have shown that this frame-
work proposed by59 can be used as a low-pass filter when the operator
P is directly applied to data features, effectively moving data points
close to their diffusion neighbors on the manifold. This low-pass fil-
tering process effectively removes high-frequency variation, or noise,
andmaintains only the principle low-dimensional geometry of the data
manifold.

Overview of diffusion condensation and its limitations. Diffusion
condensation is a dynamic process that builds upon previously
established concepts in diffusion filters, diffusion geometry and
topological data analysis. The algorithm slowly and iteratively
moves points together in a manner that reveals the topology of
the underlying geometry. The diffusion condensation approach
involves two steps that are iteratively repeated until all points
converge:
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1. Compute a time inhomogeneousMarkov diffusion operator from
the data;

2. Apply this operator to the data as a low-pass diffusion filter,
moving points towards local centers of gravity.

As established in prior work8,17,27, the application of the
operator P to a vector v averages the values of v over small
neighborhoods in the data. When applied directly to a coordinate
function, this application condenses points towards local centers
of gravity as determined by bandwidth parameter ε, creating a
filtered set of coordinates. In this process, if X(0) = X is the ori-
ginal dataset with diffusion operator P0 = P, then
X ð1Þ= �X =X ð0Þ*P0. While previous applications of diffusion filters
simply apply one iteration of this diffusion filtering process to
data, we can iterate this process to further reduce the variability
in the data by computing the Markov matrix P1 using the
coordinate-filtered X(1). A new filtered coordinate representation
X(2) is obtained by applying P1 to the coordinate functions of X(1).
Initial applications of the diffusion operator P to X dampens high-
frequency variations in the coordinate function, efficiently mov-
ing similar points close to one another. Later applications dam-
pen low-frequency variation, moving similar groups of points
towards one another. A more complete explanation of diffusion
condensation and its mathematical properties can be found in
ref. 8 and ref. 17.

In its original form, the diffusion condensation process cannot be
applied to scRNAseq data. While useful for general data analysis tasks,
this process has limitations:

1. the approach does not work in the non-linear space of the single-
cell transcriptomic manifold;

2. does not scale to even thousands of data points;
3. does not identify granularities of the topology, which mean-

ingfully partition the cellular state space and
4. does not identify pathogenic populations implicated in disease

processes.

In this work, we address each of these limitations and further
extend the framework to efficiently perform key single-cell analysis
tasks such as cluster characterization and differential expression
analysis.

To address these concerns, we have made the following sig-
nificant adaptions for application to single-cell data:

1. Dynamically learn the geometry of the single-cell manifold with
each diffusion filter using t-step random walks optimized with
spectral entropy;

2. Visualize learned hierarchy via embedding the condensation tree;
3. Use topological activity to identify meaningful granularities for

downstream analysis;
4. Implement diffusion operator landmarking, weighted ran-

dom walks and data merging to efficiently scale to thousands
of cells;

5. Implement diffusion condensation with alpha-decay kernel for
automated cluster characterization and efficient computation of
differentially expression genes.

Manifold-intrinsic diffusion condensation learns cellular hierarchy
from single-cell transcriptomic data. Box 1

Algorithm 1. Manifold-intrinsic Diffusion Condensation
Input: Cell-by-PC data matrix X, initial kernel bandwidth para-

meter ε0 and merge threshold ζ
Output: cluster labels by iteration
1: X0←X, i←0

2: while number of points in Xi > 1
3: Merge data points a, b if ∣∣Xi(a) −Xi(b)∣∣2 < ζ, where Xi(a)

is the a-th row of Xi

4: Update the cluster assignment for each original data point
based on merging

5: Di← compute pairwise distance matrix from Xi

6: Ki← alpha-decay kernel affinity(Di, εi)
7: Pi← row normalize Ki to get a Markov transition matrix

(diffusion operator)
8: ti← spectral entropy of Pi

9: Xi + 1  Pti
i Xi

10: εi+1← update(εi)
11: i = i + 1
12: end while

Our implementation of diffusion condensation algorithm takes a
cell-by-principal component matrix X (typically first 50 components)
and computes a diffusion operator P, representing the probability
distribution of transitioning from one cell to another in a single-step
using a α-decay kernel function with fixed bandwidth ε (Alg. 1: Steps 5-
7). While other manifold-learning techniques abstract the data to a
point where derived manifold-intrinsic features have an unclear rela-
tionship with gene expression, our approach learns themanifoldwhile
working in principal components, which have a clear relationship with
genes. By using the principal components as the substrate for con-
densation, we can easily characterize clusters and perform differential
expression analysis in gene expression space in downstream analysis.

Another key improvement we make in the condensation algo-
rithm is raising P to the power of t (rather than 1 as in8), simulating a t-
step random walk over the data. This approach adaptively denoises
and refines these transition probabilities across iterations such that
transitions occur on the non-linear single-cell manifold27,59,65. This
t-step diffusion operator Pt are applied to the input data, acting as a
manifold-intrinsic diffusion filter, effectively replacing the coordinates
of a point with the weighted average of its t-step diffusion neighbors.
We track the values of t computed across iterations and perform an
ablation study to show the necessity of adaptively tuning t in each
iteration of the manifold-intrinsic diffusion condensation (Supple-
mentary Fig. 2A, B). See Alg. 1 for pseudocode of this algorithm. When
the distance between two cells falls below a distance threshold ζ, cells
are merged together, denoting them as belonging to the same cluster
going forward (Alg. 1: Steps 3,4). It is important to note that in the
original work,8 did not merge points. This process is then repeated
iteratively until all cells have collapsed to a single cluster. Thismerging
step, implemented in our manifold-intrinsic diffusion condensation
approach, allows for the fast computation of the cellular hierarchy
during coarse graining.When applying thismanifold-intrinsic diffusion
condensation process to single-cell transcriptomic data, we can see
cells condense to cluster centroids across iterations, efficiently and
rigorously learning the hierarchy of single-cells (Fig. 1C). Finally,
through scalable implementation tricks, such as diffusion operator
landmarking66 and weighted random walks, we have allowed diffusion
condensation to scale to thousands of single cells (Supplementary
Fig. 2F). Additional details on the selection of t as well as scalable
implementation tricks can be found below.

Learning manifold geometry dynamically with spectral entropy
and t-step diffusion filters. While the initial implementation of diffu-
sion condensation was created to understand multigranular structure
of linear data, single cells occupy a highly non-linear space requiring
manifold-learning strategies27,59,65. In single-cell data, technical noise,
such as drop out and variation, creates measurement artifacts. When
building diffusion probabilities on this sort of noisy data, high transi-
tion probabilities can be calculated between unrelated cells inappro-
priately. Thus, directly working with P, fails to acknowledge non-
linearities and technical artifacts present within single-cell data.
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Previous work in data diffusion has shown that raising the diffusion
operator P to the power of t refines these transition probabilities,
increasing the chance of transitioning to more related cells27,59,65. This
powering step allows learning of the relevant non-linear geometry of
the data manifold, allowing us to ignore spurious neighbors found in
the ambient measurement space of cells and instead finding diffusion
neighbors that lie on the single-cell manifold.

As single-cell datasets can often suffer from different types and
scales of noise, previous approaches have found that the correct
number of t-steps to take must be computed adaptively in a data
dependent manner27,67. Previously proposed strategies to select t
however, are often slow, as they require trial-and-error approach,
which rely upon the structure of the underlying dataset. In diffusion
condensation, however, the structure of the underlying dataset con-
tinuously shifts between granularities due to the repeated application
of diffusion filters, making the repeated computation of t necessary
and through these techniques computationally unwieldy. Therefore,
we propose to select t adaptively at each condensation iteration by
using a spectral entropy-based approach. Previously, it has been shown
that powering the diffusion operator P differentially effects the
eigenvectors of the powered matrix. While the noisy, high-frequency
eigenvectors rapidly reduce to zero, the more informative, low-
frequency eigenvectors diminish much less rapidly27. We reason that
there is a value of t, which optimally reduces the noisy information
from the high-frequencyeigenvectorswhilemaintaining themaximum
information from the low frequency, informative eigenvectors. To
identify this point, we compute the spectral entropy of the diffusion
probabilities P when powered to different levels of t.

Spectral entropy is defined as the Shannon entropy of normalized
eigenvalues, i.e.,

SðP, tÞ= �
X
i

ψt
i logðψt

i Þ, ð3Þ

As there is a degree of information loss with each increasing value
of t, we try to identify the point at which this information loss curve
stabilizes. While powering to low values of t rapidly decreases spectral
entropy as large amount of noise diminish, powering to higher values
of t only slowly reduces entropy due to the slower removal of infor-
mation from informative, low-frequency eigenvectors. Taking the
point at which this stabilization occurs as done in ref. 65, optimally
allows us to adaptively select a value of t at each diffusion condensa-
tion iteration, allowing us to produce a diffusion filter, which has
learned the single-cell manifold.

In fact, deriving t adaptively in a data-driven manner is critical to
learning the multigranular cluster structure of data. In order to illus-
trate this point,wegenerated synthetic single-cell data using Splatter19.
As can be seen, across differing amounts of variational and drop out
noise, optimally selecting t via spectral entropy produces a better set
of cluster labels thanwhen setting t in afixed, user-determinedmanner
(Supplementary Fig. 3B). In fact, we can see that setting t to 1 does not
learn the data manifold or the cluster structure of even fairly noiseless
single-cell data, revealing the need for selecting a high level of t in an
adaptable, data-driven manner. Finally, we see that over successive
condensation steps, the complexity of the data decreases and thus
requires lower levels of t to learn (Supplementary Fig. 3A).

Improving scalability with weighted random walks, landmarked
diffusion operators and merged data points. Repeated computation
of a diffusion operator from high-dimensional single-cell data, pow-
ering of this diffusion operator to identify the optimal value of t fol-
lowed by diffusion filter application via matrix multiplication is
computationally expensive. Repeating these computations, poten-
tially hundreds of times, as done by diffusion condensation is
unwieldy. In fact, this approach, in its most basic implementation,

scales very poorly to high-dimensional single-cell data with tens of
thousands of features and potentially hundreds of thousands of cells.
To improve computational efficiency, we perform the following steps:

1. Merge points together that fall belowapreset distance threshold ζ
to create a cluster and weighting randomwalks tomaintain effect
of data density;

2. Compute compressed diffusion operator through landmarking66

to efficiently compute spectral entropy as done in ref. 65.

Collectively, these advances drastically improve the computa-
tional speed of diffusion condensation (Supplementary Fig. 2F). In
practice, a complete cellular hierarchy of a 13,000 cell dataset can be
analyzed within 6min in a Google Colaboratory notebook (a service
which provides 4-core 2-GHz CPU and 20 GB of RAM for free).

Visualizing and analyzing condensation tree with topological
activity analysis to identify meaningful granularities for down-
stream analysis. Topological data analysis (TDA) is a powerful fra-
mework that learns and analyzes data across granularities. In TDA, one
identifies related data points by identifying all pairs whose distance
falls below a distance threshold δ in a distance matrix D. Any pair of
points that falls below this threshold is deemed to be part of the same
connected component or cluster. As δ increases, more cell pairs will be
connected, quickly creating fewer connected components, or fewer
larger clusters, at coarser granularities. In topological data analysis,
persistent homology is a principled approach to track the connected
components that are created and destroyed across a range of granu-
larities. While diffusion condensation learns the multigranular struc-
ture of data through a cascade of non-linear diffusion filtration
approach instead of an increasing distance threshold, these approa-
ches are intuitively related.

We can study this diffusion condensation process either in a hol-
isticmanner, evaluating all granularities simultaneously, or in a detailed
manner, by evaluating meaningful granularities independently. At a
high level, the cellular hierarchy can be studied by visualizing the cel-
lular hierarchy, containing all merges across all granularities. As
manifold-intrinsic diffusion condensation operates in PCA dimensions,
we practically implement this visualization by stacking the first two
axes of Xi→Xi+1⋯XI, creating a hierarchical tree that summarizes the
cluster structure of the data across granularities (Fig. 1D-i).

For more detailed analysis, we can cut this hierarchical tree at
meaningful levels to identify granularities of clusters that optimally
partition cells into meaningful clusters based on the data geometry.
Using persistent homology, we define a topological activity analysis, a
technique to analyze the creation and destruction of clusters across
consecutive iterations (Xi→Xi+1) of the manifold-intrinsic diffusion
condensation process. Topological activity analysis is a variation of the
total persistence summary statistic often used to characterize topo-
logical activity in classical topological data analysis68. In this analysis
framework, we summarize the merging of points during the con-
densation process and assign each cluster a topological ‘prominence’
value known as persistence. Highly persistent components are taken to
represent groups of cells that are similar in their transcriptional profile
and distinct from other cells. These clusters, and their associated
persistence values, are best represented using a ‘persistence barcode.’
This is a visualization69 consisting of horizontal bars of different
lengths; each bar corresponds to one topological feature—a subgroup
of cells in our case—while the lengthof eachbardepicts thepersistence
of that feature, directly indicating to what extent the feature is pro-
minent. Assuming that the persistence barcode consists of a set of bars
with end coordinates B : = fb1, . . . ,bkg, we calculate an activity curve
A: R→N defined by AðiÞ : = ∣fb 2 B∣b ≤ ig∣, i.e., the number of topolo-
gical features (cell clusters) that are active and independent at a given
iteration i. This activity curve, first proposed by70 and implemented
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by71, allows us to identify iterations of rapid condensation as well as
iterations of relative inactivity through the gradient of A. Specifically,
we are interested in contiguous segments in the preimage of ∂A/∂i =0,
which we refer to as i-segments. The length of an i-segment is the
number of iterations for which there is no change in topological
activity. Thus, the number of iterations for which ∂A/∂i =0 provides a
principled way of selecting meaningful condensation granularities
computed by the diffusion condensation process. Inspired by the
nomenclature of persistent homology, we refer to the length of a i-
segment of no topological activity as its persistence, meaning that we
are looking for the most persistent of such topological activity
segments.

Identification of disease-enriched populations in conjunction with
MELD. While analysis of the cellular hierarchy will identify populations
of related cells in an unbiased and multigranular manner, it does not
use condition of origin information to identify cellular populations
that are enriched in disease conditions of interest. While we can inte-
grate cells from different disease conditions in our analysis, cells of a
certain pathogenic transcriptomic state may be over represented in a
submanifold of a given cell type. By comparing the cells of a particular
type directly to each other based on condition of origin, we dilute out
this enrichment information and lose important signal. In fact, identi-
fying these pathogenic states and comparing them directly with clus-
tering and differential expression tools has been shown to be a more
powerful method to identifying condition-enriched cell states and
expression signatures9,72. We explore this point later in this section.

To take condition-specific information into consideration, we use
MELD to identify cellular populations that are enriched or depleted in
different disease phases9. MELD is amanifold-geometry-basedmethod
of computing a likelihood score for each cell, indicating whether it is
more likely to be seen in the normal or diseased sample. Finding a
clustering method that separates these condition-enriched groups is a
difficult problem that needs to be performed to identify discrete cel-
lular populations, which can be thoroughly described. To rigorously
identify cell populations with strong disease-specific enrichment sig-
nals, we combine this cell-level MELD score with information from our
topological activity analysis to identify resolutions that produce stable
clusters. Then within this stable clustering, we identify populations
that are enriched in differing disease conditions.

Automated cluster characterization via manifold-intrinsic diffusion
condensation. While identification of pathogenic cellular states is
critical, biologists are more interested in what defines these popula-
tions.Mostmanifold-learningmethods visualize or cluster populations
of interest, requiring further expensive computation to characterize
cell populations and discover differentially expressed genes. As our
approach continuously condenses the transcriptomicprofiles of single
cells to local cluster centroids in manifold space, at any iteration, the
transcriptomic states of the condensed data can be extracted at no
additional computational cost. To enhance this convergence to cen-
troids we implement our diffusion condensation process with an α-
decay kernel (Supplementary Fig. 2C). This kernel more strongly
thresholds the conversion of distances to affinities, closely resembling
the box kernel, which accurately computes cluster centroids over the
course of main point merges. When diffusion condensation merges
two cells together at a particular iteration, the newly formed point lies
close to the centroid of the original two cells in transcriptomic space.
Under specific conditions, the new point is exactly the cluster centroid
as delineated in the Proposition below. First, we define the α-decay
kernel as:

Kαðxi, xjÞ= exp �k xi � xjkα
εα

� �
, i, j = 1, . . . ,N: ð4Þ

The standard Gaussian kernel function as shown in equation (1)
has anαof2. Thedefaultα-decay kernelmeanwhileuses amuchhigher
value (default in our implementation is 40), which converts close
distances into affinities much more stringently (Supplementary
Fig. 2C). As α increases to infinity, this kernel function converges
almost completely to the box kernel. With this kernel, we are ready to
state a set of conditions under which the diffusion condensation
process can be easily characterized.

Proposition 1. Assume there exists a unique global minimumnon-zero
distance δibetweenpoints xa, xb at each iteration i, with thenext pairof
points at distance at least δi + τi with 0 < τi. Note that xa, xb could have
multiplicity greater than 1, representing clusters of size > 1. Then set
the bandwidth to ϵi: = δi + τi/2 at each iteration of the condensation
process. For a large enough α, the diffusion condensation process will
maintain two invariants for the first N − 1 steps:

1. The number of points will be N − i;
2. Unique points will be located at the centroid of their cluster.

Proof. It is easy to verify (1) and (2) hold for step zero. For all i <N and
for sufficiently large α, Kα(xk, xj) becomes arbitrarily close to 1 for (k,
j)∈ {(a, a), (a, b), (b, a), (b, b)} and 0 otherwise. Exactly one merge
occurs at each timestep between points at xa and xb. Given Pi as
described above, they merge to the point ∣xa ∣xa + ∣xb ∣xb

∣xa ∣+ ∣xb ∣
, i.e., the cluster

centroid. By induction (1) and (2) hold for all i <N. □
In this setting, the condensation process always converges in

exactly N − 1 steps. In practice, we aim for much shorter convergence
times as there aremany fewer thanN − 1 interesting levels of clustering.
For 50,498 cells,wefind a set of parameters that allow for convergence
in 150 steps. For this reason we use a larger bandwidth ϵi, which leads
tomuch faster convergence and gives cluster centers at each level that
are close to but not exactly the cluster centroids of the points they
represent. Another factor is the setting of the α parameter. Since,
manifold-intrinsic diffusion condensation operates in PC dimensions,
the complete gene expression profile of cluster centroid xab can easily
extracted by inverting the PC dimensions. We show that this point is
not only mathematically true but also empirically true in practice
(Supplementary Fig. 3C).

Differential expression analysis via approximation of gene Was-
serstein distance. Beyond cluster characterization, differential
expression analysis is a critical method to identify signatures of
pathogenic populations. Earth Mover’s Distance (EMD), also known as
‘optimal transport’, typically manifested in 1D-Wasserstein distance, is
a popular and established method to extract differentially expressed
genes between clusters27,73–75. EMD, however, is computationally
expensive, as it computes an optimal mapping between points, run-
ning in ~Oðn3Þ time. Previously, tree-based implementations like
FlowTree76 and QuadTree77 have been able to closely approximate
ground truth Wasserstein distance while significantly improving run-
time by constraining the transport of points through the branches of a
hierarchical tree78. Since diffusion condensation too produces a tree
embedding of the data, we utilize tree-based transport for differential
expression.

EMD, or 1-D Wasserstein distance, is a measure of distance
between two distributions. For a given ground distance, the Wasser-
stein distance between distributions can be thought of as the minimal
total distance needed tomove one distribution to the other. Let μ, ν be
two distributions on a measurable space Ω with metric d( ⋅ , ⋅ ), and
Π(μ, ν) be the set of joint distributions π on the spaceΩ ×Ω, such that
for any subset ω⊂Ω, π(ω ×Ω) = μ(ω) and π(Ω ×ω) = ν(ω). The
1-Wasserstein distance Wd also known as the earth mover’s distance
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(EMD) is defined as:

Wdðμ, νÞ : = inf
π2Πðμ, νÞ

Z
Ω×Ω

dðx, yÞπðdx,dyÞ: ð5Þ

When μ, ν are discrete distributions over points in Rd , of size m, n,
respectively, this can be equivalently expressed in matrix notation as:

Wdðμ, νÞ : = min
Π≥0

Pm
i = 1

Pn
j = 1

Πijdðxi, xjÞ

Pm
i= 1

Πij = νj, 8j 2 f1, . . . ,ng

subject to:
Pn
j = 1

Πij =μj , 8i 2 f1, . . . ,mg

ð6Þ

For general ground distances this is computable using the Hungarian
algorithm in ~Oðn3Þ time. Intuitively, the difficulty in computing the
optimal transport is finding themapΠ, which optimizes the costwithin
the constraints. However, for a tree metric, this optimal map is easy to
compute in closed form because there is only a single path (through
the tree) between pairs of points. This single path between pairs of
points results in a reduced computational complexity of ~OðnÞ. This is
best understood using the Kantorovich-Rubinstein dual form of the
Wasserstein distance:

Wdðμ, νÞ= sup
f :kf kL ≤ 1

Z
Ω
f ðxÞdμ�

Z
Ω
f ðxÞdν ð7Þ

where the witness function f : Ω! R and ∥ ⋅ ∥L denotes the Lipschitz
norm. This dual form holds under a few minor conditions, which hold
for the spaces considered here. For more information see79.

Given some rooted tree Twith strictly non-negative edge lengths,
we define the natural tree metric dT(x, y) as the length of the unique
path between nodes x, y. We denote the mass of a distribution on a
subtree Tr rooted at node r as μðTrÞ=

P
x2Tr

μðxÞ. For each node v∈ T
we denote its associated parent edge as ev with weight wv. In this
setting, it is easy to construct the optimal witness function in eq. (7).
Without loss of generality, one starts at the root r and builds f such that
f(r) = 0 and for each edge e(u, v) where u is a parent of v,
f(v) = f(u) +we ⋅ sign(μ(Tv) − ν(Tv)). Given this construction, it is easy to
see that the Wasserstein distance with tree ground distance has the
following closed form:

WdT
ðμ, νÞ=

X
v2T

wv∣μðTvÞ � νðTvÞ∣: ð8Þ

Thequestion then comes to: what are useful treemetrics?An ideal
treemetric that has low distortion of Euclidean space and is scalable to
high dimensions. QuadTree77 is a tree metric algorithm designed to
approximate the optimal transport distance between discrete mea-
sures with Euclidean ground distance by recursively partitioning space
into hypercubes, but does not scale well with dimension. Specifically,
assume, without loss of generality, that the data lies in the [0, 1]d

hypercube, then at each level h∈ [0,H) divide the space into 2d
h

hypercubes with side length 2−h. This forms an H-level tree with each
node representing a hypercube.

If the center of the hypercube is randomly shifted, then the
QuadTree distanceWdQT

has distortion at mostOðd log 1=τÞ where τ is
the minimum distance between data points, i.e.

c � ðd log τÞWdQT
ðμ,νÞ≤W k�k2 ðμ,νÞ≤C � ðd log τÞWdQT

ðμ,νÞ ð9Þ

for some constants c,C in expectation77.
However, QuadTree distance scales poorly as it is computed in

OðNd � logðd1=τÞÞ. In the high-dimensional setting, such as snRNAseq

data, the poor scaling with respect to d both computationally and in
the approximation is undesirable. In this setting78 suggests sampling
trees using furthest point clustering80. Furthermore,76 implements
FlowTree, a small modification to QuadTree that makes tree Wasser-
stein distances significantly more accurate with the addition of small
additional computational cost.

Drawing from both FlowTree and QuadTree, CATCH implements
a new formulation of EMD over the diffusion condensation tree. For
two diffusion condensation clusters a, b located at Ca,Cb, respectively,
we define the condensation-based Wasserstein approximation distance
between them as:

WCT ða,b,TÞ= k Ca � Cbk2 +
X

eðu,vÞ2Ta

we � aðTvÞ+
X

eðu,vÞ2Tb

we � bðTvÞ

ð10Þ

where we : = 2−h∥Cv −Cu∥2 for edge e(u, v) at depth h and a(x),b(x) are
defined as indicator functions of their respective clusters.

This leads to the following proposition stating that nomatter how
close we are to the settings in Proposition 1,WCT still represents a valid
tree Wasserstein distance between clusters.

Proposition 2. The condensation-based Wasserstein distance approx-
imation distanceWCT, for any diffusion condensation tree T, defines a
valid Wasserstein distance over a tree ground distance for any two
clusters in that tree.

Proof. We show this by constructing the associated tree metric dCT on
an arbitrary condensation tree TCT and conclude by showing that
WdTCT

is equivalent to WCT. Begin by rooting the tree at a node
representing Cawith two children, the root of Ta named ra and Cb. The
edge e(Ca, ra) has weight 0 and the edge (Ca,Cb) has weight ∥Ca −Cb∥2.
The nodeCbwill have a single childnode the root ofTanamed rb, and is
connected by an edge of length zero. All other nodes will be defined as
in Ta and Tb with associated edge weights.

It is easy to verify that the path measure over TCT construction
represents a valid distance dCT. Finally, we verify that the Wasserstein
distance with a ground distance of dCT is equivalent toWCT as defined
in eq. (10). Indeed, because we added a skip connection in the tree to
directly connect nodes a, bwith an edge of length ∥Ca −Cb∥2 and since
a(Tv) for v∈ Tb is always zero and vice versa, we have

WdCT
ða,bÞ=

X
eðu,vÞ2TCT

we∣aðTvÞ � bðTvÞ∣

=weðCa ,CbÞ∣aðTCb
Þ � bðTCb

Þ∣+
X

eðu,vÞ2Ta

we∣aðTvÞ � bðTvÞ∣+
X

eðu,vÞ2Tb

we∣aðTvÞ � bðTvÞ∣

= k Ca � Cbk2∣0� 1∣+
X

eðu,vÞ2Ta

we∣aðTvÞ � 0∣+
X

eðu,vÞ2Tb

we∣0� bðTvÞ∣

= k Ca � Cbk2 +
X

eðu,vÞ2Ta

we � aðTvÞ +
X

eðu,vÞ2Tb

we � bðTvÞ

=WCT ða,b,TÞ:

ð11Þ

Note that WCT does not calculate the Wasserstein distance over
the same tree for each set of clusters, and as shown in76 this often
improves the accuracy as compared. In addition, it is useful con-
ceptually but not essential that the cluster centers Ca,Cb are near the
cluster centroids. In Proposition 1 we delineated the setting where this
holds exactly, but these parameters are impractical for our efficient
computation requiring n − 1 diffusion steps. Instead, we are satisfied
with centers that are close to the centroids but are efficiently com-
putable inmany fewer diffusion steps. Our formulation is similar to the
standard Wasserstein distance with tree ground distance as in eq. (8),
but simplified and optimized for the case of comparing clusters, which
are elements of the tree metric. We make two changes. First, we add a
skip connection in the tree to directly connect nodes a, bwith an edge
of length ∥Ca −Cb∥2 as in ref. 76, which is empirically more faithful in
their experiments andours. Next, we note thata(Tv) for v∈ Tb is always
zero and vice versa, thus simplifying the second and third terms. These
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two optimizations give us an algorithm that is efficient in high
dimensions and is effective empirically (Supplementary Fig. 1E and
(Supplementary Fig. 2D) across granularities (Supplementary Fig. 2E).

Using this intuition, CATCH is able to rapidly perform differential
expression analysis by approximating theWassersteinmetric on a per-
gene basis along the hierarchies generated by manifold-intrinsic dif-
fusion condensation. Leveraging our approach’s ability to summarize
transcriptomic landscapes with the α-decay kernel, we use multiple
granularities of the cellular hierarchy to accurately approximate
ground truthWasserstein distance between genes and identify cluster-
specific expression signatures78 (Fig. 1D-iv). We show that this is
empirically true with our comparisons (Supplementary Fig. 2D and
Supplementary Fig. 1F).

Inspired by previous statistically sound methods of identifying
differentially expressed genes, we implement a resampling-based
approach to identify true differentially expressed genes73,81. In this
approach, we estimate false-discovery rate (FDR), which is the expec-
ted proportion of rejected null hypotheses falsely for each gene’s test
statistic at a given significance level73,81. To calculate FDRs from our
Wasserstein values, we generate a null distribution by permuting the
cluster labels (in practice 1000 times) and compute Wasserstein dis-
tance between the permuted classes each time. Using the median of
permuted Wasserstein distances for each gene, we create a null dis-
tribution from which we can compute p-values per-gene. The attained
p-values are corrected using the Benjamini–Hochberg procedure82.

Automated cluster characterization and Earth Mover’s Distance
between genes in synthetic and real single-cell data. While
manifold-intrinsic diffusion condensation implemented with an α-decay
kernel can theoretically approximate ground truth cluster character-
izations and compute differentially expressed genes, we wanted to
demonstrate this reasoning in synthetic and real single-cell data. To
empirically show that out condensation-based approach approximates
EMD between two clusters, we compute EMD values between genes
using Wasserstein optimal transport as well as out approximate
approach on synthetic and real data using Gaussian and α-decay kernel
implementations of diffusion condensation. Using single-cell data gen-
erated from splatter, we compute diffusion condensation and identified
the granularity with the highest topological persistence using topolo-
gical activity analysis.We then computed ground truth and approximate
differential expression values by comparing every cluster at this gran-
ularity with every other cluster. In our analysis, a total of 12,130,200 and
4,535,640 gene comparisons were computed using Gaussian and α-
decay approaches, respectively. Comparing both Gaussian and α-decay
approximate Wasserstein distances against ground truth per-gene
Wasserstein values, we can see the value in our α-decay approach
(Supplementary Fig. 2D) as it approximates ground truth Wasserstein
distance with a correlation coefficient of 0.979. Furthermore, our
approach computed all 4,535,640 gene comparison in 63 s while ground
truth values were computed in 43,125 s, equating to a 684 fold increase
in computational speed.

We repeated our comparison in real single-cell data, again com-
paring both approaches to ground truth Wasserstein EMD values, this
time across 10 granularities identified by topological activity analysis.
As previously performed, at each granularity, all clusters were com-
pared to all other clusters using each approach. Across all compar-
isons, a total of 10,166,640 and 2,541,660 comparisonswere computed
for the Gaussian and α-decay implementations, respectively. Again we
see that α-decay is critical to accurately capturing ground truth EMD
values,with ourα-decay approach correlating highlywith ground truth
EMD while Gaussian approach was less correlated (Supplementary
Fig. 1F). Furthermore, we again see an increase in computational speed
with our condensation-based approach. In our weighted imple-
mentation, we are able to compute all 2,541,660 comparisons in 32 s,
while ground truth EMD values were computed in 27,517 s, equating to

a similar 860 fold increase in computational speed. Next, we show that
this correlation between ground truth EMD and condensation-based
Wasserstein distance approximation is not a feature of cluster granu-
larity as defined by number of cluster (Supplementary Fig. 3D). Finally,
we also use α-decay and Gaussian implementations to compute and
compare cluster characterizations to ground truth in real single-cell
data. Using the same set of clusters and granularities as previously
computed, we see that α-decay kernel again more accurately char-
acterizes clusters than a Gaussian kernel (Supplementary Fig. 3C).

CATCH identifies differentially expressed genes from noisy single-
cell data. Previously, disease signatures within a cell type have been
determined by comparing cells’ gene expression profiles based on
their condition of origin. For instance, microglia would be separated
into twogroups based on condition of origin, either diseaseor healthy,
which would then be compared. We believe that CATCH improves on
this framework by first identifying disease-enriched states and then
identifying differentially expressed genes between these states. This is
because our procedure accounts for significant noise that can appear
in single-cell data to more purely identify cell states enriched in par-
ticular disease settings. In fact, previous studies have validated that
this approach identifies biological processes better than previous
‘condition-of-origin’ comparison approaches9.

To illustrate this point in real single-cell data, we performed
differential expression analysis between microglia based on their
condition of origin across all three neurodegenerative disease
datasets. We reason that if our approach is more sensitive to iden-
tify differentially expressed genes, a less sensitive approach would
not find as strong of a shared signature. After setting significance
cutoffs based on our per-gene false-discovery rates, we identified
significantly enriched genes in the early or acute active phase of
each disease (Supplementary Fig. 10a). However, across all com-
parisons, we identified significantly fewer differentially expressed
genes in this cell-type analysis (135, 68, and 416) than with our
pipeline (618, 795, and 1551 for AMD, AD, and MS, respectively),
indicating that the identification of pathogenic cellular subtypes
with CATCH before comparison increases our ability to detect dif-
ferentially expressed genes. In cross-disease comparisons among
early-stage neurodegenerative microglia, only 17 common genes
were found, significantly less than the 168 common genes found
with our pipeline. Of the common genes, only half of the activation
signature was found (APOE, B2M, FTH1, FTL, SPP1). Similar to our
coarse-grained microglial comparison, we compared the strength
of our approach in astrocytes. After setting significance cutoffs
based on our per-gene q-values, we identified significantly fewer
enriched genes (221, 271, and 886) than we found with our analysis
(1444, 680, and 2278 genes for AMD, AD, and MS, respectively)
(Supplementary Fig. 10b). In our cell-type level analysis, only 28
common genes were found, significantly less than the 630 common
genes found with our pipeline. Of the common genes, only half of
the activation signature was found (AQP4, CD81, CRYAB, GFAP).

Collectively, these comparisons reveal the sensitivity of this dis-
covery pipeline for finding gene signatures and biologically mean-
ingful relationships in noisy single-cell gene expression data.

Other computational methods details
Single-nucleus AMD RNA sequencing and pre-processing. snRNA-
seq data from macular samples, were processed according to the fol-
lowing steps. Sample demultiplexing and read alignment to the NCBI
reference pre-mRNA GRCh38 was completed to map reads to both
unspliced pre-mRNA and mature mRNA transcripts using CellRanger
version 3.1.0. Gene and cell matrices from retinaswith dry AMD (n = 4),
neovascular AMD (n = 7), or controls with no known retinal disease
(n = 6) were then combined into a single file. We prefiltered using
parameters in scprep (v1.0.3, https://github.com/KrishnaswamyLab/
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scprep).Cells that contained at least 1400unique transcriptswere kept
for further analysis to generate a cell by genematrix containing 70,973
cells. Normalization was performed using default parameters with L1
normalization, adjusting total library side of each cell to 1000. Any cell
with greater than 200 normalized counts of mitochondrial mRNA was
removed. Batch correction was performed using Harmony (https://
github.com/immunogenomics/harmony) to align batch effects intro-
duced by sequencing batch, postmortem interval, sample acquisition
location and 10X sequencing chemistry83. Raw data files for human
snRNA-seq data will be available for download through GEO under an
accession number to be assigned with no restrictions on data
availability.

Single-nucleus AD and MS RNA-sequencing pre-processing.
snRNA-seq data for AD andMSwas acquired frompublished sources4,5.
Cells that contained at least 1000 unique transcripts were kept for
further analysis to generate a cell by gene matrix for each disease.
Normalization was performed using scprep default parameters with L1
normalization, adjusting total library side of each cell to 1000. Any cell
with greater than 200 normalized counts of mitochondrial mRNA was
removed. Batch correction was performed onMS data using Harmony
(https://github.com/immunogenomics/harmony) to align batch
effects introduced by sequencing batch, capture batch and sex.

Cell-type identification with CATCH. All cell types were identified by
performing topological activity analysis on the diffusion condensation
calculated condensation homology. In order to identify cell types, we
identified a resolutions with no topological activity, which partitioned
the cellular state space well and assigned each cluster to a cell type
based on cell-type-specific marker genes.

Interaction analysis. Cell–cell ligand-receptor analysis was conducted
on pre-processed snRNA expression data using the CellPhoneDB
python package (https://github.com/Teichlab/cellphonedb, v2.1.4)52.
Before conducting analysis, the package database of 834 curated
ligand-receptor combinations and multi-unit protein complexes was
supplemented with 2557 ligand-receptor interactions found in the
celltalker database (https://github.com/arc85/celltalker)84. The in-built
database-generate function was utilized to update the existing data-
base. Our comprehensive user-generated database was invoked in
each run of the CellPhoneDB statistical-analysis command function.

CellPhoneDB interaction maps were computed on differing
inputs. First, disease-phase enriched microglia and astrocytes
with subcluster identity were run to identify signaling interac-
tions between astrocyte and microglial activation states (Fig. 6B).
The number of permutations was set to 2000 and p-value
threshold was set to 0.01.

Biological methods details
Human tissues. Postmortem eyes for the Chromium Single Cell 3’
assay (n = 17) and medical records containing AMD disease stage were
obtained fromAdvancing Sight Network (Alabama), Lions Gift of Sight
Eye Bank (Minnesota), or the Yale Department of Pathology with a
maximum postmortem interval of 13 h. Globes were examined for
retinal disease by an ophthalmologist (B.P.H.) prior to dissection and
dissociation of the samples. Retina for snRNA-seq was obtained from
the unrelated human postmortem donors that included normal,
intermediate dry on AREDS2, and neovascular AMD stages (Supple-
mentary Table 1). For each sample we profiled themacula, which is the
region of the retina responsible for central vision and affected most
severely by AMD pathology. We identified four intermediate AMD
samples from patients taking the AREDS2 eye vitamin and mineral
supplement with drusen, a pathologic sign associated with the inter-
mediate dry stage of the disease. Seven postmortemAMD samples had
neovascularization in the advanced stage of the disease. Normal

donors had no historyof retinal disease. Additional clinical data for the
subjects is given in Supplementary Table 2.

Retinal dissection and isolation of nuclei from frozen retinal tissue.
Globeswere placed in RNAlater (ThermoFisher) and transported on ice.
Trephine punches (6 mm diameter) were used to isolate samples from
the macula in the central retina, located away from the optic disc and
major arterioles. For each punch of tissue, the retina was mechanically
separated from the underlying retinal pigment epithelium-choroid,
snap-frozen on dry ice and stored at –80 °C. Nuclei were isolated and
purified using the Nuclei EZ Prep Nuclei Isolation Kit (Sigma), following
the manufacturer’s protocol, with some modification. All procedures
were carried out on ice or at 4°C. Briefly, frozen retinal tissue was
subjected to dounce homogenization (25 times with pestle A followed
by 25 times with tight pestle B) using the KIMBLE Dounce Tissue
Grinder Set (Sigma) in 2mL EZ Lysis buffer. The sample was transferred
to a 15ml tube with an additional 2mL EZ lysis buffer and incubated on
ice for 5min. Following incubation, the sample was centrifuged at
500x g, 5min at 4°C. Supernatants were discarded, and the isolated
nuclei were resuspended in 4mL EZ lysis buffer, incubated for 5min on
ice and centrifuged at 500 x g for 5min at 4 °C. Next, the nuclei were
washed with 4mL ice-cold Nuclei Suspension Buffer (1x phosphate-
buffered saline (PBS) containing 0.01% BSA and 0.1% RNase inhibitor),
resuspended in 1mL Nuclei EZ Storage buffer and passed through a
40μM nylon cell strainer. The nuclei suspensions were counted with
trypan blue prior to loading on the microfluidics platform.

Droplet-based microfluidics snRNA-seq. Isolated nuclei from each
macular sample were processed through microfluidics-based single
nuclear RNA-seq. Single-cell libraries were prepared using the Chro-
mium 3’ v2 and v3 platforms (10x Genomics) following the manu-
facturer’s protocol. Briefly, single nuclei were partitioned into Gel
beads in Emulsion in the 10x Chromium Controller instrument fol-
lowed by lysis and barcoded reverse transcription of RNA, amplifica-
tion, shearing and 5’ adapter and sample index attachment. On
average, 7000 nuclei were loaded on each channel that resulted in the
recovery of 4000 nuclei. Libraries were sequenced on the Illumina
NextSeq 500 platform. Raw sequence data was aligned to GRCh38-
3.0.0 human genome using STAR aligner, and Cell Ranger software
(v3.1.0, 10x Genomics) was used to demultiplex reads and assign read
counts to individual cells. (After quality control pre-processing,
snRNA-seq profiles were used in subsequent analyses. This dataset was
corrected for batch effects across samples using the Harmony
algorithm83.

In situ RNA hybridization and immunofluorescence. To validate the
gene expressiondifferences, in situ hybridizationwas performedusing
RNAscopeMultiplex Fluorescent V2 Assay (AdvancedCell Diagnostics,
Hayward, CA, USA). Macula dissected from whole human globes were
fixed in 4% paraformaldehyde (PFA) at 4°C overnight. Tissues were
sequentially dehydrated with 15% sucrose, then 30% sucrose before
embedding in OCT, and frozen on dry ice. OCT molds were sectioned
at 10μmthickness. RNA in situ hybridizationwasperformed according
to the manufacturer’s protocol. Briefly, fixed frozen sections were
baked at 60°C for 1 h prior to incubation in 4% PFA for 10min and
protease digestion pretreatment. Target probes were hybridized to an
HRP-based temperature sensitive signal amplification system, fol-
lowed by color development. Housekeeping genes POLR2A, PPIB, and
UBC were used as internal-control mRNA (Supplementary Fig. 7); if
probes for these mRNAs were not visualized, the sample was regarded
as not available for gene expression study. The probes used include
APOE, TYROBP, B2M, VEGFA, and HIF1A (Advanced Cell Diagnostics,
Hayward, CA, USA). The slides were counterstained with DAPI during
immunofluorescence protocol (see below). Positive staining was
determined by fluorescent punctate dots in the appropriate channels
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in the nucleus and/or cytoplasm. Following RNA in situ hybridization
protocol, fixed frozen sections were blocked with animal serum and
incubated overnight at 4°C with primary antibodies (see antibody
segment below). Secondary antibody incubation was for 1 h at room
temperature and cell nuclei were counterstained with DAPI. Images
were captured immediately using a confocal microscope (Zeiss
LSM800, Jena, Germany). The following antibodies against human
antigens were used: GFAP (1:500, MA5-12023, Invitrogen) and Iba1
(1:500, 019-19741, Fujifilm). Antibodies were visualized with Alexa
Fluor 488 (1:200, A-11001/A-21208, Invitrogen).

Mice. Four- to 8-week-old mixed sex C57BL/6 mice were purchased
from the National Cancer Institute and subsequently bred and housed
at Yale University. All procedures used in this study (sex-matched, age-
matched) complied with federal guidelines and the institutional poli-
cies of the Yale School of Medicine Animal Care and Use Committee
(IACUC approved protocol #2022-20275) governing animal welfare
and ethical treatment.

Cells. IPSC-derived astrocyte cells were purchased fromBrainxell.com
(Catalog number BX-0600; Brainxell, Madison Wisconsin). Cells were
cultured according to provider’s guidelines using 1:1 DMEM/F12 and
Neurobasal medium with N2 supplement (1x), Glutamax (0.5mM),
Astrocyte supplement (1x), Fetal bovine serum (1%).

Cell culture. IPSC-derived astrocyte cells were cultured to a fully dif-
ferentiated state before cytokine stimulation. Cytokines, (IL-1β, IL2,
IL4, IL6, IL7, IL10, IL12, IL15, IL17, IL22, IL23, IFNG, TNF) were all pur-
chased from PeproTech.com (Peprotech, Cranbury, NJ). For single
cytokine stimulation, cells were stimulated with each cytokine at a
concentration of 100ng/mL for 24 h. For combinatorial cytokine sti-
mulation, cocktail of all cytokinesminus cytokine of interest wasmade
with each cytokine concentration at 50ng/mL. Cells were stimulated
for 24 h before media was collected. Collected media was centrifuged
at 1000 x g to remove any cells and debris before performing an ELISA.

Enzyme-linked immunosorbent assay. Enzyme-linked immunosor-
bent assay (ELISA) was performed using a mouse VEGF-A ELISA Kit
(Cusabio LLC) following the manufacturer’s instructions. Briefly, two
wells in a PVC microtiter plate were coated with 100μL of antigen
(10μg/mL in PBS), after which the plate was sealed and incubated for
2 h at room temperature. Following three washes with PBS and appli-
cation of blocking buffer (5% dry milk in PBS) the plate was resealed
and incubated for 2 h a room temperature. The plate waswashed twice
with PBS, and anti-VEGF-A antibody in blocking buffer was added to
the wells. After another incubation for 2 h at room temperature, the
plate waswashed 5 timeswith PBS and 100μL of the substrate solution
was added to the wells. Stop solution was added to the wells and
absorbance at 450nm was recorded in a plate reader.

Intravitreal injection. Mice were anaesthetized using a mixture of
ketamine (50mg/kg) and xylazine (5mg/kg), injected intraper-
itoneally. Mice eyes were sterilized using betadine. A small hole was
made at the lateral aspect of the limbus was made using a 33 gauge
insulin syringe. Using a blunt endHamilton syringe, 1μL of PBS or IL-1β
(100 ng) was injected at a 45 degree angle at the limbus intravitreally.
Once the infusion was finished, syringe was left in place for a minute
before removal of the syringe. Injection site was washed with sterile
PBS and puralube vet ointment was applied to the eyes. Mice were
monitored until full recovery.

Mice tissue processing and microscopy. Retinas were dissected,
fixed in 2% PFA for 1 h and immediately processed in a blocking solu-
tion (10% normal donkey serum, 1% bovine serum albumin, 0.3% PBS-
Triton X-100) for overnight incubation at 4∘C. After incubation, a

subset of retinas for RPE imaging were bleached with treatment with
2mL 30% H2O2 + 8 mL PBS + 2 NaOH pellets until optically cleared
(30min). Primary antibodies (VEGFA; Invitrogen cat#MA5-13812) were
applied and sectionswere incubatedovernight at4 ∘C, thenwashedfive
times at room temperature in PBS and 0.5% Triton X-100, before
incubationwith afluoro-conjugated secondary antibodydiluted inPBS
and 0.5% Triton X-100 for 2 h in room temperature. Sections were
washed five times at room temperature, stained with DAPI and
mounted before imaging. Confocal images were taken on a Leica SP8
microscope. Quantitative analysis was performed using either FIJI or
ImageJ image-processing software (NIH or Bethesda) or Imaris 8 soft-
ware (Oxford Instruments).

Statistics and reproducibility. When two independent groups were
compared, Welch t-test was used when unequal variances were
assumed, and Student’s t-test for presumed equal variance. All com-
parisons were made using two-tailed tests. Chi-square tests were used
for comparisons of proportions among two groups. In situ hybridiza-
tion experiments (as represented in Figs. 3G and 4G) were repeated
twice in each case. When three or more independent groups were
compared, two-sided multinomial tests with multiple comparisons
correction was used, where appropriate. Error bars plotted on visua-
lizations of means represent standard error of the mean. Differential
expression analysis as part of the CATCH algorithm includes a two-
sided Earth Mover’s Distance, i.e., 1-D Wasserstein distance, with sig-
nificance cutoffs established based on per-gene false-discovery rates
(two-sided EMD test with FDR corrected p-value < 0.1). In Fig. 3A 141
microgrlia were identified, with 30 found in healthy-enriched popula-
tion, 32 found in the dryAMD-enriched population and 79 found in the
wet neovascular AMD-enriched population. In Fig. 4A, 474 astrocytes
were identifiedwith 301 found in the equally proportioned population,
22 found in healthy-enriched population, 96 found in the dry AMD-
enriched population and 55 found in the wet neovascular AMD-
enriched population.

In Figs. 3f and 4f, the box andwhisker plots are defined as follows:
the whiskers contain the inner 95% confidence interval, the lower
boundof the box is the 25%andupper bound the 75%of values. Finally,
median in the center of the box denotes the 50%. In this figure, and
below, all values are reported in total normalized gene expression
values. In Figure 3, microglial activation signatures are presented in
microglia clusters across three neurodegenerative diseases. The AMD
control-enriched microglia have a minima signature of 7.3, a lower
whisker of 7.5, a lower boundof 7.9, amedianof 8.4, an upper boundof
8.8, an upperwhisker of 9.0 and amaximaof 9.4. ThedryAMDdisease-
enrichedmicroglia have aminimaof 6.6, a lower whisker of 7.0 a lower
Bound of 8.3, a median of 9.2, an upper bound of 10.2, an upper
whisker of 10.8 and a maxima of 11.9. In the Alzheimer’s disease
control-enriched cluster, this signature has a minima of 16.7, a lower
whisker of 17.0, a lower bound of 17.2, a median of 17.6, an upper
bound of 18.2, an upper whisker of 19.0, and a maxima of 20.1. In the
early-disease-enriched cluster, this signature has a minima of 16.3, a
lower whisker of 17.7, a lower boundof 20.5, amedian of 21.4, anupper
bound of 23.2, an upper whisker of 24.2, and a maxima of 25.6. In the
early progressive control-enriched MS cluster, this signature has a
minima of 11.7, a lower whisker of 12.5, a lower bound of 13.2, a median
of 13.8, anupper boundof 15.4, a upperwhisker of 17.3 and amaximaof
17.7. In the early progressive disease-enriched cluster, this signature
has a minima of 15.4, a lower whisker of 15.5, a lower bound of 17.9, a
median of 19.0, an upper bound of 19.9, an upper whisker of 21.4 and a
maxima of 21.6. In Fig. 4, astrocyte activation signatures are presented
for astrocyte clusters across all three diseases. The AMD control-
enriched astrocytes have a minima signature of 1.4, a lower whisker of
1.9, a lower bound of 2.5, a median of 3.0, an upper bound of 3.4, an
upper whisker of 4.3 and a maxima of 6.8. The dry AMD disease-
enriched astrocytes have a minima of 0.4, a lower whisker of 1.8, a
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lower bound of 2.5, a median of 3.1, an upper bound of 6.7, an upper
whisker of 9.2, and a maxima of 10.8. In the Alzheimer’s disease
control-enriched cluster, this signature has a minima of 6.6, a lower
whisker of 6.7, a lower bound of 8.8, a median of 9.3, an upper bound
of 10.1, an upper whisker of 12.5 and a maxima of 16.8. In the early-
disease-enriched cluster, this signature has a minima of 6.4, a lower
whisker of 6.5, a lower boundof 9.1, amedian of 9.5, an upper boundof
11.3, an upper whisker of 12.4, and a maxima of 14.1. In the early pro-
gressive MS control-enriched cluster, this signature has a minima of
3.2, a lower whisker of 3.5, a lower bound of 4.6, a median of 5.3, an
upper boundof 6.4, anupperwhisker of 7.9, and amaximaof 8.1. In the
early progressive disease-enriched cluster, this signature has aminima
of 4.3, a lower whisker of 4.4, a lower bound of 6.4, a median of 7.0, an
upper bound of 7.8, an upper whisker of 9.4 and a maxima of 14.6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided as a SourceData file. Rawand processed data
files for the snRNA-seq data used in this study are available for
download through GEO under the accession number GSE221042. Data
used in this study from ref. 4 is available on The Rush Alzheimer’s
Disease Center Research Resource Sharing Hub at https://www.radc.
rush.edu/docs/omics.htm or at Synapse (https://www.synapse.org/#!
Synapse:syn18485175) under the https://doi.org/10.7303/syn18485175.
Data used in this study from ref. 5 are available in the Sequence Read
Archive (SRA) under accession number PRJNA544731 (NCBI Bioproject
ID: 544731) or at https://ms.cells.ucsc.edu. Source data are provided
with this paper.

Code availability
The CATCH package, as implemented in python, is available for
download with a guided tutorial on the Krishnaswamy Lab Github
page: https://github.com/KrishnaswamyLab/CATCH.

References
1. Wong, W. L. et al. Global prevalence of age-related macular

degeneration and disease burden projection for 2020 and 2040: a
systematic review and meta-analysis. Lancet Glob. Health 2,
e106–e116 (2014).

2. Mitchell, P., Liew, G., Gopinath, B. & Wong, T. Y. Age-related
macular degeneration. Lancet 392, 1147–1159 (2018).

3. Bird, A. C. et al. An international classification and grading system
for age-related maculopathy and age-related macular degenera-
tion. The International ARM Epidemiological Study Group. Surv.
Ophthalmol. 39, 367–374 (1995).

4. Mathys, H. et al. Single-cell transcriptomic analysis of alzheimer’s
disease. Nature 570, 332–337 (2019).

5. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity
in multiple sclerosis. Nature 573, 75–82 (2019).

6. Habib,N. et al. Disease-associated astrocytes in Alzheimer’s disease
and aging. Nat. Neurosci. 23, 701–706 (2020).

7. Keren-Shaul, H. et al. A unique microglia type associated with
restricting development of Alzheimer’s disease. Cell 169,
1276–1290 (2017).

8. Brugnone, N. et al. Coarse graining of data via inhomogeneous
diffusion condensation. In 2019 IEEE International Conference on
Big Data (Big Data), 2624–2633 (IEEE, 2019).

9. Burkhardt, D. B. et al. Quantifying the effect of experimental per-
turbations in single-cell RNA-sequencing data using graph signal
processing. Nat. Biotechnol. 39, 619–629 (2020).

10. Lemprière, S. NLRP3 inflammasome activity as biomarker for pri-
mary progressive multiple sclerosis. Nat. Rev. Neurol. 16,
350–350 (2020).

11. Zhang, Y., Dong, Z. & Song, W. NLRP3 inflammasome as a novel
therapeutic target for alzheimer’s disease. Signal Transduct. Target.
Ther. 5, 37 (2020).

12. White, C. S., Lawrence, C. B., Brough, D. & Rivers-Auty, J. Inflam-
masomes as therapeutic targets for alzheimer’s disease. Brain
Pathol. 27, 223–234 (2017).

13. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive mul-
tiple sclerosis: from pathophysiology to therapeutic strategies.Nat.
Rev. Drug Discov. 18, 905–922 (2019).

14. Huang, W.-J., Chen, W.-W. & Zhang, X. Multiple sclerosis: pathol-
ogy, diagnosis and treatments. Exp. Ther. Med. 13,
3163–3166 (2017).

15. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-
related changes. Acta Neuropathol. 82, 239–259 (1991).

16. Ding, J. et al. Systematic comparison of single-cell and single-
nucleus RNA-sequencing methods. Nat. Biotechnol. 38,
737–746 (2020).

17. Huguet, G. et al. Time-inhomogeneous diffusion geometry and
topology. https://arxiv.org/abs/2203.14860 (2022).

18. Moyle, M. W. et al. Structural and developmental principles of
neuropil assembly in c. elegans. Nature 591, 99–104 (2021).

19. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-
cell RNA sequencing data. Genome Biol. 18, 174 (2017).

20. Wagner, D. E. et al. Single-cell mapping of gene expression land-
scapes and lineage in the zebrafish embryo. Science 360,
981–987 (2018).

21. Aghaeepour, N. et al. Critical assessment of automated flow cyto-
metry data analysis techniques. Nat. methods 10, 228–238 (2013).

22. Menon,M. et al. Single-cell transcriptomic atlas of the human retina
identifies cell types associated with age-related macular degen-
eration. Nat. Commun. 10, 4902 (2019).

23. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast
unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, P10008 (2008).

24. Shekhar, K. et al. Comprehensive classification of retinal bipolar
neurons by (single-cell) transcriptomics. Cell 166,
1308–1323.e30 (2016).

25. Peng, Y.-R. et al. Molecular classification and comparative taxo-
nomics of foveal and peripheral cells in primate retina. Cell 176,
1222–1237.e22 (2019).

26. Yan, W. et al. Cell atlas of the human fovea and peripheral retina.
Sci. Rep. 10, 9802 (2020).

27. van Dijk, D. et al. Recovering gene interactions from single-cell data
using data diffusion. Cell 174, 716–729.e27 (2018).

28. Srinivasan, K. et al. Alzheimer’s patient microglia exhibit enhanced
aging and unique transcriptional activation. Cell Rep. 31,
107843 (2020).

29. Friedman, B. A. et al. Diverse brain myeloid expression profiles
reveal distinct microglial activation states and aspects of Alzhei-
mer’s disease not evident in mouse models. Cell Rep. 22,
832–847 (2018).

30. Krasemann, S. et al. The TREM2-APOE pathway drives the tran-
scriptional phenotype of dysfunctional microglia in neurodegen-
erative diseases. Immunity 47, 566–581 (2017).

31. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and
the risk of Alzheimer’s disease in late onset families. Science 261,
921–923 (1993).

32. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11
new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45,
1452–1458 (2013).

Article https://doi.org/10.1038/s41467-023-37025-7

Nature Communications | (2023)14:2589 20

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221042
https://www.radc.rush.edu/docs/omics.htm
https://www.radc.rush.edu/docs/omics.htm
https://www.synapse.org/#!Synapse:syn18485175
https://www.synapse.org/#!Synapse:syn18485175
https://doi.org/10.7303/syn18485175
https://ms.cells.ucsc.edu
https://github.com/KrishnaswamyLab/CATCH
https://arxiv.org/abs/2203.14860


33. Fritsche, L. G. et al. A large genome-wide association study of age-
related macular degeneration highlights contributions of rare and
common variants. Nat. Genet. 48, 134–143 (2016).

34. Satoh, J. I., Kino, Y., Yanaizu, M. & Saito, Y. Alzheimer’s disease
pathology in Nasu-Hakola disease brains. Intractable Rare Dis. Res.
7, 32–36 (2018).

35. van der Poel, M. et al. Transcriptional profiling of human microglia
reveals grey-white matter heterogeneity and multiple sclerosis-
associated changes. Nat. Commun. 10, 1139 (2019).

36. Sala Frigerio, C. et al. Themajor risk factors for Alzheimer’s disease:
age, sex, and genes modulate the microglia response to Aβ pla-
ques. Cell Rep. 27, 1293–1306 (2019).

37. Giovannoni, F. & Quintana, F. J. The role of astrocytes in CNS
inflammation. Trends Immunol. 41, 805–819 (2020).

38. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J.
Neurosci. 32, 6391–6410 (2012).

39. Bombeiro, A. L., Hell, R. C., Simões, G. F., Castro, M. V. &Oliveira, A.
L. Importanceofmajor histocompatibility complex of class I (MHC-I)
expression for astroglial reactivity and stability of neural circuits
in vitro. Neurosci. Lett. 647, 97–103 (2017).

40. Ransohoff, R. M. & Estes, M. L. Astrocyte expression of major his-
tocompatibility complex gene products in multiple sclerosis brain
tissue obtained by stereotactic biopsy. Arch. Neurol. 48,
1244–1246 (1991).

41. Xie, L. et al. Sleep drivesmetabolite clearance from the adult brain.
Science 342, 373–377 (2013).

42. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the
inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

43. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits
remyelination in the aged central nervous system. Science 359,
684–688 (2018).

44. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial
growth factor induced by hypoxia may mediate hypoxia-initiated
angiogenesis. Nature 359, 843–845 (1992).

45. Zeng, Z. J. et al. TLX controls angiogenesis through interaction with
the von Hippel-Lindau protein. Biol. Open 1, 527–535 (2012).

46. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-
inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer
regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92,
5510–5514 (1995).

47. Kliffen, M., Sharma, H. S., Mooy, C. M., Kerkvliet, S. & de Jong, P. T.
Increased expression of angiogenic growth factors in age-related
maculopathy. Br. J. Ophthalmol. 81, 154–162 (1997).

48. Wong, T. Y., Liew, G. & Mitchell, P. Clinical update: new treatments
for age-related macular degeneration. Lancet 370,
204–206 (2007).

49. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and
future directions. Nat. Neurosci. 24, 312–325 (2021).

50. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes drive neu-
ronal death after retinal injury. Cell Rep. 31, 107776 (2020).

51. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by
activated microglia. Nature 541, 481–487 (2017).

52. Efremova,M., Vento-Tormo,M., Teichmann, S. A. &Vento-Tormo, R.
CellPhoneDB: inferring cell–cell communication from combined
expression of multi-subunit ligand–receptor complexes. Nat. Pro-
tocols 15, 1484–1506 (2020).

53. Krishnaswamy, S. et al. Conditional density-based analysis of t cell
signaling in single-cell data. Science 346,
1250689–1250689 (2014).

54. Zhao,M.etal.Interleukin-1βlevelisincreasedinvitreousofpatientswith
neovascularage-relatedmaculardegeneration(nAMD)andpolypoidal
choroidal vasculopathy (PCV).PLoSONE 10, e0125150 (2015).

55. Heneka,M. T.,McManus, R.M. & Latz, E. Inflammasome signalling in
brain function and neurodegenerative disease. Nat. Rev. Neurosci.
19, 610–621 (2018).

56. Guillonneau, X. et al. On phagocytes and macular degeneration.
Prog. Retin. Eye Res. 61, 98–128 (2017).

57. Nagineni, C. N., Kommineni, V. K., William, A., Detrick, B. & Hooks, J.
J. Regulation of VEGF expression in human retinal cells by cyto-
kines: implications for the role of inflammation in age-related
macular degeneration. J. Cell. Physiol. 227, 116–126 (2012).

58. Moon, K. R. et al. Manifold learning-basedmethods for analyzing
single-cellrna-sequencingdata.Curr.Opin.Syst.Biol.7,36–46(2018).

59. Coifman, R. R. & Lafon, S. Diffusion maps. Appl. Comput. Harmon.
Anal. 21, 5–30 (2006).

60. Van Der Maaten, L., Postma, E. & Van den Herik, J. Dimensionality
reduction: a comparative. J. Mach. Learn Res. 10, 66–71 (2009).

61. Izenman, A. J. Introduction to manifold learning.Wiley Interdiscip.
Rev. Comput. Stat. 4, 439–446 (2012).

62. Lindenbaum, O., Stanley, J., Wolf, G. & Krishnaswamy, S. in
Advances in Neural Information Processing Systems, 1400–1411 (MIT
Press, 2018).

63. Gama, F., Ribeiro, A. & Bruna, J. Diffusion scattering transforms on
graphs. In International Conference on Learning Representations
(ICLR, 2019).

64. Gao, F., Wolf, G. & Hirn, M. Geometric scattering for graph data
analysis. To appear in the Proceedings of the 36th International
Conference on Machine Learning (PMLR, 2019).

65. Moon, K. R. et al. Visualizing structure and transitions in high-
dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

66. Gigante, S. et al. Compressed diffusion. In 2019 13th International
conference on Sampling Theory and Applications (SampTA)
(IEEE, 2019).

67. Batson, J., Royer, L. & Webber, J. Molecular cross-validation for
single-cell RNA-seq. https://www.biorxiv.org/content/early/2019/
09/30/786269. https://www.biorxiv.org/content/early/2019/09/
30/786269.full.pdf bioRxiv (2019).

68. Chen, C. & Edelsbrunner, H. Diffusion runs low on persistence fast.
In Proceedings of the IEEE International Conference on Computer
Vision (ICCV) 423–430 (Curran Associates, Inc., Red Hook, NY,
USA, 2011).

69. Ghrist, R. Barcodes: The persistent topology of data.Bull. Am.Math.
Soc. 45, 61–75 (2008).

70. Rieck, B., Sadlo, F. & Leitte, H. in Topological Methods in Data
Analysis and Visualization. (eds Carr, H., Fujishiro, I., Sadlo, F. &
Takahashi, S.) 87–101 (Springer, Cham, Switzerland, 2020).

71. O’Bray, L., Rieck, B. & Borgwardt, K. Filtration curves for graph
representation. In Proceedings of the 27th ACMSIGKDD International
Conference onKnowledgeDiscovery &DataMining (KDD). 1267–1275
(Association for Computing Machinery, New York, NY, USA, 2021).

72. Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. &
Marioni, J. C. Differential abundance testing on single-cell data
using k-nearest neighbor graphs. Nat. Biotechnol. https://doi.org/
10.1038/s41587-021-01033-z (2021).

73. Nabavi, S., Schmolze, D., Maitituoheti, M., Malladi, S. & Beck, A. H.
EMDomics: a robust and powerful method for the identification of
genes differentially expressed between heterogeneous classes.
Bioinformatics 32, 533–541 (2015).

74. Wang, T. &Nabavi, S. Differential gene expression analysis in single-
cell rna sequencing data. In 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) 202–207 (IEEE, 2017).

75. Orlova, D. Y. et al. Earth Mover’s Distance (EMD): a true metric for
comparing biomarker expression levels in cell populations. PLoS
ONE 11, e0151859 (2016).

76. Backurs, A., Dong, Y., Indyk, P., Razenshteyn, I. & Wagner, T. Scal-
able nearest neighbor search for optimal transport. https://arxiv.
org/abs/1910.04126 (2020).

77. Indyk, P. & Thaper, N. Fast image retrieval via embeddings. In 3rd
International Workshop on Statistical and Computational Theories of
Vision (IEEE Computer Society Press, 2003).

Article https://doi.org/10.1038/s41467-023-37025-7

Nature Communications | (2023)14:2589 21

https://www.biorxiv.org/content/early/2019/09/30/786269
https://www.biorxiv.org/content/early/2019/09/30/786269
https://www.biorxiv.org/content/early/2019/09/30/786269.full.pdf
https://www.biorxiv.org/content/early/2019/09/30/786269.full.pdf
https://doi.org/10.1038/s41587-021-01033-z
https://doi.org/10.1038/s41587-021-01033-z
https://arxiv.org/abs/1910.04126
https://arxiv.org/abs/1910.04126


78. Le, T., Yamada, M., Fukumizu, K. & Cuturi, M. in Advances in neural
information processing systems, 12304–12315 (Neural Information
Processing Systems Foundation, 2019).

79. Peyré, G. & Cuturi, M. Computational optimal transport. https://
arxiv.org/abs/1803.00567 (2019).

80. Gonzalez, T. F. Clustering to minimize the maximum intercluster
distance. Theor. Comput. Sci. 38, 293–306 (1985).

81. Storey, J. D. A direct approach to false discovery rates. J. R. Stat.
Soc. Ser. B (Stat. Methodol.) 64, 479–498 (2002).

82. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc.
Ser. B (Methodological) 57, 289–300 (1995).

83. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-
cell data with harmony. Nat. Methods 16, 1289–1296 (2019).

84. Ramilowski, J. A. et al. A draft network of ligand-receptor-mediated
multicellular signalling in human. Nat. Commun. 6, 7866 (2015).

Acknowledgements
We would like to thank the retina donors and their families for their
contribution to this work. Without their sacrifice, our study would not
have been possible. B.P.H. receives research funding from NEI K08-
EY026652, NEI R01-EY034234, the Thome Memorial Foundation, the
Doris Duke Charitable Foundation, the H. Eric Cushing Foundation, the
Nancy Lurie Marks Family Foundation, the C.J.L. Charitable Foundation,
the Reynold and Michiko Spector Award in Neuroscience, and
Hoffmann-La Roche Pharmaceuticals. M.K. receives research support by
NIAID training grant 1F30-AI157270.M.D. receives research support from
the NCI training grant K12CA215110 and Robert E. Leet and Clara Guthrie
Patterson Trust. S.K. receives research support from NIAID 5U19-
AI089992-08. S.K. and G.W. receives research support from NIGMS
1RO1-1355929. G.W. receives funding from Canada CIFAR AI (CCAI)
NSERC Discovery grant 03267. L.Z. receives research funding from NIA
R56-AG074015 and NIDA DP2-DA056169. A.H.S. receives funding from
the Yale School of Medicine Office of Student Research. We thank the
Advancing Sight Network and the Lions Gift of Sight Eye Bank for timely
retrieval of donor eyes.

Author contributions
Conception: M.K., M.M., S.K., B.P.H. ; Design of work: M.K., M.D., E.C.,
S.K. B.P.H. ; Acquisition of data: M.D., E.C., M.I., L.Z., M.M., Y.X., B.P.H.,
E.S., A.M., G.M.; Analysis of data: M.K., M.D., E.C., A.H.S., R.M.D., B.P.H. ;

Interpretation of data: M.K., M.D., E.C., A.S., B.R.; G.W.; S.K.; B.P.H ;
Creation of new software: M.K., S.G., J.H., A.T., A.G., H.S., G.H., J.N., K.Y.,
M.H., B.R., G.W. ; Writing—drafting: M.K., M.D., E.C., B.R., B.P.H., S.K. ;

Competing interests
Dr. Krishnaswamy is on the scientific advisory board of KovaDx and AI
Therapeutics. Dr. Hafler receives research funding from Nayan Ther-
apeutics and Hoffmann-La Roche Pharmaceutical. Dr. Hafler is on the
scientific advisory board of Carmine Therapeutics. All other authors
declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-37025-7.

Correspondence and requests for materials should be addressed to
Smita Krishnaswamy or Brian P. Hafler.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

1Department of Neuroscience, Yale University, New Haven, CT, USA. 2Department of Pathology, Yale University, New Haven, CT, USA. 3Department of
Ophthalmology and Visual Science, Yale University, New Haven, CT, USA. 4Department of Neurology, Yale University, New Haven, CT, USA. 5Yale School of
Medicine, New Haven, CT, USA. 6Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK. 7Department of
Computer Science, Yale University, New Haven, CT, USA. 8Department of Applied Math, Yale University, New Haven, CT, USA. 9Computational Biology,
Bioinformatics Program, Yale University, New Haven, CT, USA. 10Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
11Mila—Quebec AI institute, Montréal, QC, Canada. 12Department of Mathematics and Statistics, Université deMontréal, Montréal, QC, Canada. 13Department
of Computer Science, Rutgers University, New Brunswick, NJ, USA. 14Department of Genetics, Yale University, New Haven, CT, USA. 15Department of
Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA. 16Department of Mathematics, Michigan State
University, East Lansing,MI, USA. 17Department of BiosystemsScience and Engineering, ETHZurich, Zurich, Switzerland. 18Broad Institute ofMIT andHarvard,
Cambridge, MA, USA. 19These authors contributed equally: Manik Kuchroo, Marcello DiStasio, Eric Song. 20These authors jointly supervised this work: Smita
Krishnaswamy, Brian P. Hafler. e-mail: smita.krishnaswamy@yale.edu; brian.hafler@yale.edu

Article https://doi.org/10.1038/s41467-023-37025-7

Nature Communications | (2023)14:2589 22

https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/1803.00567
https://doi.org/10.1038/s41467-023-37025-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:smita.krishnaswamy@yale.edu
mailto:brian.hafler@yale.edu

	Single-cell analysis reveals inflammatory interactions driving macular degeneration
	Results
	CATCH efficiently identifies, characterizes, and compares disease-enriched populations in complex single-cell transcriptomic data
	Comparison to other clustering algorithms on synthetic and real single-cell data
	Single-nucleus RNA-seq analysis of the macula in human individuals with AMD pathology
	Microglial activation signature identified in dry AMD is shared across the early phase of multiple neurodegenerative diseases
	Astrocyte activation signature identified in dry AMD is shared across the early phase of multiple neurodegenerative diseases
	Microglia display inflammasome activation signature and astrocytes display pro-angiogenic signature in late-stage neovascular AMD
	Microglia-derived IL-1β drives pathologic neovascularization via astrocytes

	Discussion
	Methods
	Ethics statement
	CATCH analysis details
	Background in manifold learning and diffusion filters
	Overview of diffusion condensation and its limitations
	Manifold-intrinsic diffusion condensation learns cellular hierarchy from single-cell transcriptomic data
	Learning manifold geometry dynamically with spectral entropy and t-step diffusion filters
	Improving scalability with weighted random walks, landmarked diffusion operators and merged data points
	Visualizing and analyzing condensation tree with topological activity analysis to identify meaningful granularities for downstream analysis
	Identification of disease-enriched populations in conjunction with MELD
	Automated cluster characterization via manifold-intrinsic diffusion condensation
	Differential expression analysis via approximation of gene Wasserstein distance
	Automated cluster characterization and Earth Mover’s Distance between genes in synthetic and real single-cell data
	CATCH identifies differentially expressed genes from noisy single-cell data
	Other computational methods details
	Single-nucleus AMD RNA sequencing and pre-processing
	Single-nucleus AD and MS RNA-sequencing pre-processing
	Cell-type identification with CATCH
	Interaction analysis
	Biological methods details
	Human tissues
	Retinal dissection and isolation of nuclei from frozen retinal tissue
	Droplet-based microfluidics snRNA-seq
	In situ RNA hybridization and immunofluorescence
	Mice
	Cells
	Cell culture
	Enzyme-linked immunosorbent assay
	Intravitreal injection
	Mice tissue processing and microscopy
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




