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organic light-harvesting chromophores used for several applica- .\ o
tions, including triplet photosensitization and photometric sensing & 7?% s
of metal ions. These chromophores’ versatility and attractive Y Cooma _agms X

photophysics make them suitable for engineering transition-metal—
organic hybrid photomaterials. In this regard, we investigated the
self-assembly and behavior of N,N-diphenylquinodimethyl thio-
amide (Ph,QDM) nanostructures on transition-metal surfaces for
potential applications in photocatalysis and photosensors. In this
work, Ph,QDM molecules were deposited onto Au(111), Au(100),
and Ag(100) surfaces. The scanning tunneling microscopy (STM)
images indicate that the Ph,QDM molecules form an amorphous
structure on Au(111) but self-assembled structures on Au(100) and Ag(100). Furthermore, the isolated single sulfur atoms are
found on Ag(100) but not on Au substrates. High-resolution STM images combined with density functional theory (DFT)
simulation results indicate that the Ph,QDM molecules experience desulfurization on Ag(100) that induces the cleaving of the C=S$
bond and new covalent bonds between the desulfurized Ph,QDM and Ag atoms. The present results not only uncover the effect of

Self-assembly
with Au adatom

Self-assembly

Amorphous with desulfurization

substrates on the self-assembly of Ph,QDM but also open new avenues for metal—organic catalysts and nanodevices.

B INTRODUCTION

Thioamides belong to the broader class of carbonyl
compounds with a carbon—sulfur double bond (C=S), with
much smaller bond dissociation energies than a typical
carbon—oxygen bond energy."”> However, incorporating sulfur
into several carbonyl derivatives has been employed to fine-
tune the optoelectronic and/or chemophysical properties of
the corresponding thio-containing systems,” > including
improved internal charge mobility in thioamide molecules vs
in classical amides®’——with more charge transfer from
nitrogen to thiocarbonyl bond than from nitrogen to carbonyl
bond in the corresponding amides.” """ This establishes that
thioamide molecules exhibit higher reactivity and attractive
optoelectronic properties than classical amides."'~"* Hence,
exploring thioamide-containing compounds will open new
avenues to tailor these scaffolds for novel heterocyclic
chernistry,m_17 phe’«rmaceuticals,w_22 agrochemicals,m’24 and
photochemical sensitization.”> >’

In recent years, increasing attention has been received on
thioamide transition-metal complexes due to their high
catalytic activities and the nature of the C=S bond.”*™*' So
far, thioamide transition-metal complex catalysts have been
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extensively employed in the Mizorroki—Heck reaction,*”**

Suzuki—Miéyaura reaction,””** amide synthesis,” alcohol
oxidation,®® and C—H bond functionalization.’”™* The
remarkable catalytic performance of thioamide transition-
metal complexes inspires people to investigate the interaction
of thioamides with transition metals, especially thioamide self-
assembly on transition-metal surfaces that hold promise as a
novel catalytic system.”*"** In this regard, various simple
thioamide molecules, such as thiadiazole,** 2-mercapto
pyrimidine,*”** and thiourea*”** deposited on metal surfaces,
have been studied. Despite their better stability and catalytic
reactivity, the on-surface self-assembly of novel exotic
thioamide molecules remain largely unexplored.”*
N,N-Diphenylquinodimethyl thioamide (Ph,QDM) belongs
to a new class of quinoidal acene-thioamides with a C, (or C,,)
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Figure 1. (a) Large-scale STM image of Ph,QDM molecules on Au(111). (b) Zoomed-in image with single Ph,QDM molecules resolved. A
Ph,QDM molecule is indicated by a dashed-line oval, and its naphthalene-like ring and benzene rings are marked by the green oval and blue circles,
respectively. The bias voltage is 0.5 V for panel (a) and —1 V for panel (b); I, = 100 pA for both images. (c) Simulated model for a Ph,QDM
molecule on the Au(111) substrate. (d) The simulated density distribution for states between E; —1 eV and Ej, E; is the Fermi energy.
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Figure 2. (a) Self-assembly island of Ph,QDM on Au(100), Vi, = —0.02 V, I, = 100 pA. The lattice constant is measured to be around a = 1.84 +
0.04, b = 1.88 + 0.04 nm, & = 70 + 2°, (b) molecular self-assembly model derived from panel (a). Top view (c) and side view (d) of the simulated

model for a Au atom (purple) sandwiched by two Ph,QDM molecules.

symmetric scaffold.”>~>> Ph,QDM contains a cyclo-thioamide
moiety and a fused proaromatic quinoidal ring to a Clar sextet.
We reported earlier that the proaromatic characteristic of all
other reported quinoidal acene-thioamides is the major factor
influencing these chromophores’ optoelectronic and photo-
excited-state behavior.”> These unique characteristics of the
quinoidal acene-thioamide chromophores have been exten-
sively exploited/harnessed for several processes, such as the
triplet photosensitization®*~>° and photometric sensing of
heavy metal ions.”” To further explore the behavior of
quinoidal acene-thioamide chromophores on metal surfaces,
we investigated the adsorption and self-assembly of Ph,QDM
on atomic well-defined metal surfaces, specifically Au(111),
Au(100), and Ag(100) single-crystal surfaces using scanning
tunneling microscopy (STM). In contrast to the amorphous

structures on Au(111), Ph,QDM molecules formed self-
assembled structures on Au(100) and Ag(100). Importantly,
desulfurization from the Ph,QDM/Ag(100) samples was
observed, whereas samples of Ph,QDM/Au(111) or
Ph,QDM/Au(100) underwent classical morphological changes
depending on the crystallinity of the substrate. These distinctly
different adsorptive behaviors of Ph,QDM suggest a strong
substrate effect, which will inform the investigation of the
surface chemistry of quinoidal acene-thioamide chromophore
self-assembly on transition metals.

B METHODS

Sample Preparation and STM Study. Experiments were
carried out in a variable-temperature STM system (UNI-
SOKU, USM1400) under a base pressure of 10™'° Torr. The
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Figure 3. (a) STM image of a self-assembly island of Ph,QDM on Ag(100). (b) Zoomed-in STM image with molecular models superimposed. The
lattice constant is measured to be about @ = 3.11 + 0.12 nm b = 1.43 + 0.08 nm, and & = 68 =+ 2°. (c) The arrangement of the self-assembled
structure derived from panel (b). The bias voltage is —0.5 V for (a) and 0.3 V for (b); I, = 100 pA for both images.

sample was prepared in a chamber (with base pressure 2.2 X
107" Torr) separated from the STM chamber by a gate valve.
The Au(111), Au(100), and Ag(100) surfaces were cleaned via
repeated cycles of argon ion sputtering (1 kV, ~9.0 X 1076
Torr) and thermal annealing to 865 K. The synthesis and
characterization of Ph,QDM are described in the Supporting
Information (Scheme S1 and Figures S3 and S4). The
molecules were sublimed onto the clean metal surfaces via a
K-cell molecular evaporator (TCE-BSC, Kentax GmbH) for 4
min (220 °C), while the substrates were kept at room
temperature during deposition. After that, the samples were
transferred to the analysis chamber for STM characterizations
performed at a liquid nitrogen temperature (78 K). Electro-
chemically etched Ag tips were used for STM experiments,®’
and the STM images were analyzed using the WSxM®*
program provided by Nanotech.

Computational Parameters. The VASP package® was
employed to perform density functional theory (DFT)
calculations with the projector augmented wave pseudopoten-
tials®* and the Perdew—Burke—Ernzerhof generalized gradient
approximation.”® The van der Waals (vdW) interaction was
included by using a nonlocal correlation functional.”>®” An
energy cutoff of 400 eV was used for the plane-wave basis set.
Only the I'-point in the Brillouin zone was used considering
the large size of the supercell. We employed a four-layer slab
with a (§ X S) unit cell for the Ag(100) and Au(100) surfaces.
A four-layer slab with an (8 X 4) unit cell is exploited to model
the Au(111) surface. The atoms in the top two layers were
fully relaxed, while the rest of the atoms were fixed in their
equilibrium positions. The force convergence criterion for
atomic relaxation is 0.01 eV/A.

B RESULTS AND DISCUSSION

Given the particular interaction between sulfur and gold that
facilitates molecular self-assembly on Au surfaces,”*™"" we first
studied the adsorption of Ph,QDM on Au(111). As shown in
Figure 1la, the molecules form small islands along the
herringbone reconstruction of Au(111).”” The structure of a
single Ph,QDM molecule can be resolved as one oval
protrusion (marked by the green oval) with two round dots
(marked by two blue circles), shown in Figure 2b. The oval
protrusion is identified as a naphthalene-like ring, while the
two bright dots are assigned to benzene rings (the N-phenyl)
on both sides. Notably, the shape of the molecular framework

is slightly bent, resulting from the C,, symmetry/point group,
which agrees with the simulated model shown in Figures lc
and S7. There are two possible reasons why the molecules
cannot form larger islands. First, based on the previous reports,
the Au(111) herringbone divides the surface into the face-
centered-cubic (FCC) and hexagonal-close-pack (HCP) sites
(marked in Figure la), which have different affinities to
molecules.”””’® For the Ph,QDM, most islands are located on
the FCC site surface, where the elbow sites are more favored.
Very few of the molecules were observed on the HCP site
surface and only at the elbows (Figure 1a). Similar preferential
nucleation phenomena at the elbow sites have been reported
for various metals and molecules.”””>~7? However, the growth
across the herringbone reconstruction is forbidden, prohibiting
the formation of large molecular islands. Another reason
involves molecular orientations. Figure 1b shows that the
arrangement of Ph,QDM molecules is irregular with random
orientations (see the angle distribution in Figure SS), which
could also prevent the islands from forming order self-assembly
and growing bigger. Meanwhile, it is notable that in Figure 1la,
a diffusive molecular island was observed (yellow dashed
circle), which demonstrates the weak interaction between
Ph,QDM molecules. Furthermore, neither annealing the
sample to a high temperature (175 °C) nor increasing the
molecular coverage (0.6 ML) can result in self-assembled
patterns (Figure S6). Consequently, only disordered molecular
islands are present on Au(111).

Since the reconstruction of Au(111) impedes the formation
of the Ph,QDM self-assembly, it is worthwhile to study the
adsorption of this chromophore on another Au substrate. With
a fourfold symmetry and narrower reconstruction structures,
Au(100) surfaces have been reported to host different self-
assemblies from Au(111) surfaces.*”®" As shown in Figure 2,
Ph,QDM molecules form a self-assembly spot-like pattern,
where a bright protrusion is present in each molecular pairs.
The protrusion is assigned to a Au adatom grabbed from the
surface reconstruction structure by the neighboring S atoms,
which indicates a strong interaction between molecules and the
substrate. In addition, we observed that there is a sliding of the
self-assembly structure seen in Figure 2a, highlighted by the
two identical red lattice and blue dashed lines in Figure 2b; the
purple arrow and two dashed green lines indicate the direction
of sliding, and the distance of sliding is measured to be about
0.68 nm. Moreover, from the lower right part of the image, the
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Figure 4. (a) STM image of single Ph,QDM molecules and isolated sulfur atoms on the Ag(100) surface. (b, c) Sulfur atoms imaged at different
biases. The bias voltage is —2 V for panels (a) and (b) but 2 V for (c). I, = 100 pA for all three images. (d, e) Simulated model of a desulfurized
Ph,QDM molecule on the Ag(100) substrate in the side view (d) and plain view (e).

reconstruction of Au(100) can be seen. Different from the
random orientation on Au(111), the molecules on Au(100)
are found to have a constant angle of about 21 + 2° with
respect to the [011] direction,””*® which matches with the
simulated model (Figure 2c,d). The consistent orientation
observed on Au(100) suggests a stronger interaction between
the surface and the molecules, facilitating the self-assembly of
Ph,QDM on Au(100).

The different absorption behaviors on Au(111) and
Au(100) indicate the effect of substrate symmetry on the
Ph,QDM molecular self-assembly. In addition to lattice
structures, the chemistry of substrates plays a key role in
molecular adsorption and self-assembly. To gain insights in this
regard, a Ag(100) substrate, which shares the same lattice
symmetry with Au(100) was used to probe the surface
behavior of Ph,QDM. As a result, a different self-assembly
island with a stripe-like structure was obtained (Figure 3a).
The STM image in Figure 3b indicates that the stripe consists
of a periodic arrangement of Ph,QDM molecules in an “ABA”
structure (Figure 3b,c), all of the molecules are in a straight
rodlike configuration with a length of 1.6 nm, which agrees
with the configuration of isolated molecules and the simulated
model (Figure 4). The molecules in A and B stripes are
oriented to 5S + 4 and 105 + 3° with respect to the [011]
direction of the Ag(100) substrate, respectively.

Distinct from the images obtained on Au(111) and Au(100)
substrates, we noticed many isolated protrusions near the
island on Ag(100) (right top and left bottom of Figure 3a).
Figures 4a and S8 show the STM images of the coexisting
single Ph,QDM molecules and randomly distributed protru-
sions on Ag(100). Remarkably, the protrusions surrounded
with dark rings change to depressions when the scanning bias
is switched from —2 to 2 V, as displayed in Figure 4b,c. The
bias-dependent topography and the apparent size of the
protrusions (~1.5 nm) are in agreement with the reported
characteristics of sulfur atoms.*” ™" Significantly, the shape of
Ph,QDM molecules appear to be straight, in contrast to the
curved molecular shape observed on Au(111) and Au(100).
This observation conforms to the unique structural features of
Ph,QDM, suggesting the desulfurization of Ph,QDM mole-
cules on Ag(100).

Since the purity of Ph,QDM has been confirmed
(Supporting Information 1, Figures S3 and S4), the existence
of isolated single sulfur atoms on the surface indicates plausible
desulfurization of Ph,QDM/Ag(100), leaving behind a quasi-
aromatized scaffold. To further confirm this conjecture, the

model of the sulfur-cleaved Ph,QDM adsorbed on the
Ag(100) surface is simulated; as shown in Figure 4d,e, the
two unsaturated carbon atoms due to the desulfurization form
bonds with two Ag atoms, respectively, and drag them slightly
out of the surface, with a bond length of around 2.3 A.
Furthermore, based on the analysis of the atomic resolution of
Ag(100) shown in Figure 4a, the isolated Ph,QDM molecules
were found to be oriented to an angle of 25.8° with respect to
the [011] or [011] directions. This value agrees very well with
the angle (~24°) measured in the simulated model (Figure
4e). The orientations of the isolated molecules are different
from those in the self-assembly structure (55 and 105°),
indicating strong intermolecular interactions in the self-
assembly structure, which alter the molecular orientation
when the self-assembly is formed. It is notable that the sulfur
atoms are only observed on the Ag(100) surface rather than
Au(100) or Au(111), indicating that compared to Au surfaces,
Ag surfaces are more catalytically active during the
desulfurization of Ph,QDM molecules. A similar C=S
cleavage process in a redox reaction via the catalysis of silver
ions has been observed under the solution phase,””~"* but the
findings from our surface science studies are unprecedented
and could open new avenues to explore metal-catalyzed
desulfurization of sulfur-containing molecules.

Bl CONCLUSIONS

In summary, we investigated the adsorption and self-assembly
of Ph,QDM on Au(111), Au(100), and Ag(100) surfaces
using STM. The STM images show that Ph,QDM molecules
form amorphous islands on Au(111) but orderly self-
assembled structures on Au(100) and Ag(100). While most
Ph,QDM molecules prefer to form paired structures on
Au(100), inserting coordinated substrate Au atoms resulted in
bright protrusions in the self-assembled structure. In addition,
an “ABA” arrangement of molecular self-assembly can be
observed on Ag(100). Importantly, isolated sulfur atoms are
found in Ph,QDM-deposited Ag(100) surfaces, indicating the
Ag-assisted activation of carbon—sulfur double bonds.
Consequently, our study uncovers the substrate-dependent
self-assembly behavior of Ph,QDM, which would inform the
ongoing effort to realize Ph,QDM-based nanodevice applica-
tions in catalysis, optoelectronics, and photosensing.
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