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inspired by a universal approximation theorem for stochastic systems, which we introduce
in this paper, and the projection-operator formalism for stochastic modeling. We devise
mechanisms for training the neural network model to reproduce the correct statistical
behavior of a target stochastic process. Numerical simulation results demonstrate that a

's(sﬂ%rgjmachme learning well-trained SINN can reliably approximate both Markovian and non-Markovian stochastic
Recurrent neural network dynamics. We demonstrate the applicability of SINN to coarse-graining problems and the
Reduced-order stochastic modeling modeling of transition dynamics. Furthermore, we show that the obtained reduced-order
Rare events model can be trained on temporally coarse-grained data and hence is well suited for rare-

event simulations.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The use of machine learning (ML) techniques to model stochastic processes and time series data has seen many contri-
butions in the past years. Two common strategies are to utilize neural networks (NNs) to either solve or learn the associated
differential equations.

In the ‘solver’ strategy, the differential equation governing a dynamical system is assumed to be known a priori and
an NN is used to construct a numerical solver for the equation. A representative approach using the solver strategy is
the physics-informed neural network (PINN) [1,2]. In the PINN approach, an NN serves as a solver that transforms initial
and boundary conditions into approximate solutions. Specifically, an NN is trained using a specialized loss function that is
defined in terms of the underlying differential equation. Thus, minimizing this specialized loss function steers the solver
towards producing outputs that conform to the target differential equation. More recent members within the PINN family
include sparse physics-informed neural network (SPINN) [3], parareal physics-informed neural network (PPINN) [4], and so
on [5].

The ‘learning’ strategy, on the other hand, aims to learn the hidden dynamics from data using an NN. This strategy
is adopted by the neural ordinary differential equation (NeuralODE) approach [6]. In this approach, an NN is not used to
directly solve an equation, but rather to compute the gradient of the state variables. To train such a network, an adjoint
dynamic system and a reverse-time ODE solver are adopted to facilitate backpropagation. After updating the parameters
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Fig. 1. Equation-based and equation-free modeling diagrams in different spatial-temporal scales.

of the augmented dynamics, solutions to the differential equations can be found to reconstruct and extrapolate the hidden
dynamics. Recent developments on top of NeuralODE include NeuralSDE [7,8], Neural Jump SDE [9], NeuralSPDE [10], Neural
Operators [11], infinitely deep Bayesian neural networks [12], etc.

Generally speaking, learning an unknown dynamics, which is an ‘inverse’ problem, is more challenging than solving or
simulating a known dynamics. This is particularly so for stochastic systems. The ever-growing abundance of data necessi-
tates methods that can learn stochastic dynamics in a wide range of scientific disciplines such as, for example, molecular
dynamics [13-15], computational chemistry [16], and ecology [17]. Aside from the aforementioned work based on ML
methodologies, recent progress in this direction includes the work of Lu et al. [18-20] on the learning of interaction kernel of
multi-particle systems with non-parametric methods, the kernel-based method [21,22] for learning discrete non-Markovian
time series, and various approximations of the Mori-Zwanzig equation for the learning of non-Markovian stochastic dynam-
ics [13,14,23-25] in molecular dynamics. Typically, these non-ML methods use sophisticated series expansion and regression
techniques to learn and construct the desired stochastic model. Although being theoretically complete and numerically
successful within their own applicability, such modeling processes are often complex and too difficult to be extended to
high-dimensional or highly heterogeneous systems. The success of NN models in dealing with high-dimensional problems
for complex systems inspired us to use it to build a simple data-driven, extensible framework for modeling stochastic dy-
namics, i.e. the statistics-informed neural network (SINN). We now detail SINN’s construction and the main rationale behind
it, as well as its major differences from the existing ML frameworks.

To learn stochastic dynamics with NNs, we first consider how to use deterministic architectures such as the recurrent
neural network (RNN) to generate randomness. Being built on top of a deterministic RNN architecture, SINN does not
generate randomness per se, but rather transforms an input stream of discrete independent and identically distributed (i.i.d.)
random numbers to produce realizations of stochastic trajectories. The modeling capacity of this simple construction can
be examined using the universal approximation theorem (UAT) for RNNs. Specifically, by mimicking the proof of the UAT
for a one-layer RNN for arbitrary deterministic, open dynamical systems [26], we obtain a similar result stating that a
one-layer RNN with Gaussian white-noise input can universally approximate arbitrary stochastic systems. We then use the
long short-term memory (LSTM) [27] architecture as the building blocks for SINN in order to capture non-Markovian and
memory effects that the underlying stochastic system may contain. Contrary to PINNs and the NeuralSDE, SINN is trained on
the statistics, such as probability density function and time autocorrelation functions, of an ensemble of trajectories. Briefly
speaking, SINN is mainly different from other ML frameworks in the following three aspects: (I) SINN is entirely equation-
free — training and modeling do not rely on knowledge about the underlying stochastic differential equation; (II) an RNN,
instead of fully connected or convolutional layers, is used as the primary architecture of the model; (Ill) instead of seeking
a pathwise approximation to the stochastic dynamics, SINN constructs simulated trajectories that converge to the example
trajectories in the sense of probability measure and n-th moment. The computational and modeling merit brought by these
three features will be elaborated later with numerical supports.

In a greater picture, SINN can be categorized as an equation-free ML architecture for discovering the hidden dynamics of
a physical system at different spatial-temporal scales. From a modeling perspective, the classical equation-based modeling
approach, as shown in Fig. 1, normally starts with a microscopic model for the molecular/quantum dynamics. A certain
coarse-grained procedure, such as the projection operator method or the mean-field approximation, is then applied to
reduce the dimensionality of the system in order to generate mesoscopic and macroscopic models. At different scales, the
established physical models have a general form:

ou=F(u,k,t), (1)

where u is the unknown (vector) variable or a (vector) field u(x,t), F(u,k,t) is the combination of functions, stochastic
processes, and operators with modeling parameters k. In contrast to the equation-based approach, ML approaches rely
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on equation-free models based on the convolutional neural network (CNN) [28,29], RNN [30], or graph neural network
(GNN) [31] to model a physical process. These NNs need to be trained on data, such as the sample trajectories of an
observable in the phase space. The general form of the modeling ansatz for the unknown function u(x,t) relies on the
multi-fold function composition:

u(x5t):f1(f2(f3("' ’k3)7k2)ak1)7 (2)

where f; is the activation function of i-th NN layer and k; represents the corresponding weights and parameters. ML models
such as PINNs use the underlying equations to define the loss function while the modeling ansatz is of the form (2). Other
examples such as the NeuralODE/SDE/SPDE use (2) to model the derivatives function, i.e. the right-hand side of equation
(1). In comparison, SINN is completely equation-free during the training and the modeling process.

Specifically for this paper, numerical experiments will be provided to demonstrate the capability of SINN in approximat-
ing Gaussian and non-Gaussian stochastic dynamics as well as its ability to capture the memory effect for non-Markovian
systems. We also use SINN to discover surrogate models for transition dynamics that often appears in computational chem-
istry. Our SINN model can be trained using temporally coarse-grained trajectories. This feature makes it an efficient simulator
for rare events. In addition to the application in physics, SINN provides a simple and flexible framework to model arbitrary
stationary stochastic processes, hence is generally applicable in the areas of uncertainty quantification and time series mod-
eling. Several simple test examples presented in Section 4.2 promisingly show its numerical advantages over established
stochastic process modeling tools such as the transformed Karhunen-Loéve or polynomial chaos expansion [32,33,23,14].

This paper is organized as follows. In Section 2, we review the established universal approximation theorem for a single-
layer RNN model and show that there is a natural extension of this theorem for stochastic systems driven by Gaussian
and non-Gaussian white noise. Inspired by this theoretical result, in Section 3, we propose a statistics-informed neural
network (SINN) and introduce different types of loss functions. The training method of SINN is provided in Section 4.1.
Three simple test examples are presented in Section 4.2 to demonstrate that SINN can well approximate both Gaussian and
non-Gaussian stochastic dynamics. In Section 5, we apply SINN to a coarse-graining problem and also use it as an effective
rare-event simulator to evaluate transition rates. Several assessments of SINN as a tool for learning stochastic dynamics are
also provided. Lastly, the main findings of this paper are summarized in Section 6. The proofs for the main theorems are
given in Appendix A.

2. RNN as a universal approximator for stochastic dynamics

Recurrent neural network (RNN) is a good candidate architecture for learning the unknown dynamics of a physical system
since there is a natural correspondence between the recurrent internal structure of RNN and the time-recursive update
rule that quantifies the dynamics. In this section, we discuss the universal approximation properties of RNN for stochastic
processes, in particular, discrete stochastic processes corresponding to the numerical solutions of stochastic differential
equations (SDEs). We consider a one-layer deterministic RNN with stochastic input and show that if the model is wide
enough, ie. has a large number of hidden states, it can accurately approximate the finite-difference scheme of a time-
homogeneous Markovian SDEs driven by Gaussian white noise.

We first review the universal approximation theorem (UAT) of RNN for deterministic dynamical systems established by
Schéfer and Zimmermann in [26]. To this end, let us consider a one-layer RNN model given by the update rule:

St+1 =0 (Ast + Bx; — 0), 3)
yr =Cst,

where s; e R¥ is the state vector of the RNN, x; € R! is the input, o is the activation function of the network, and y; € RN
is the output. The modeling parameters of this simple, one-layer RNN are the weight matrices A € RH#*H B e RHI,
C e RN*H and the bias vector 8 € RH¥. An immediate observation is that this update rule is very similar to the structure of
a discrete, open dynamical system of the form:

Se+1 = g(St, Xe),

(4)
ye =h(sp),

where s; e R/, x, e R!, y, e RN, and the functions g(-) : R/ x R - R/, h(-) : R/ — RV, In fact, Schifer and Zimmermann
in [26] proved that a one-layer RNN with update rule (3) can universally approximate the dynamics of open dynamical
system (4) with arbitrary accuracy. Their result can be restated as:

Theorem 1 (Schiifer & Zimmermann [26], UAT for the deterministic RNN). Let g(-) : R/ x R! — R/ be measurable and h(-) : R/ —
RN be continuous, the external input x; € R, the inner state s, € RJ, and the outputs y, ¢ RN (t =1,---, T). Then any discrete,
open dynamical system of form (4) can be approximated by an RNN model of type (3) to an arbitrary accuracy.

3
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The exact definition of an RNN model of type (3) and the meaning of the arbitrarily accurate approximation are provided
in Appendix A. The proof of this theorem was established based on the UAT for the feedforward neural networks. Here we
mention some key points of Theorem 1.

1. The state vector s; € R/ in the dynamical system (4) is not the same as the state vector s; € R" in RNN (3). In fact, to
guarantee the accuracy of the approximation, there normally is an enlargement of the state space in RNN, i.e. H > J.
This has also to do with the next point.

2. The universal approximation is in the sense of matching the input x; and the output y;. This means that with the exact
same input x;, the output y; of the RNN should match closely with the output y; of the dynamical system, while the
state vectors s; of these two systems may be different.

3. The UAT assumes finite-step input/output, i.e. T < 4o0.

The above UAT clearly indicates that even with a simple architecture such as the one-layer RNN, one can universally
approximate any open dynamical system of the general form (4). However, the theorem itself provides little guidance on
how to construct such an RNN model for a specific dynamical system. In practice, we rarely use a wide-enough RNN
to complete the computing task. Nevertheless, the theorem indubitably shows the potential of the RNN architecture in
modeling/learning dynamical systems.

We now show that a similar UAT holds for the resulting stochastic RNN by simply replacing the input vector x; with i.i.d.
Gaussian random variables while leaving all other structures unchanged. This result can be stated as:

Proposition 1 (UAT for RNN with Gaussian inputs). Let g(-) : RM x R! — RM be locally Lipschitz and h(-) : RM — RN be continu-
ous, the external input x; € R! be i.i.d. Gaussian random variables, the state vector s; € RM, and the outputs y: e RN (¢ =1,---, T).
Then any discrete, stochastic dynamical system of form (4) can be pathwisely approximated to an arbitrary accuracy by an RNN model
of type (3) asymptotically almost surely.

A mathematically rigorous statement of Proposition 1 is given as Theorem 3 in Appendix A, which can be proved using a
probabilistic variant of the method proposed by Schifer and Zimmermann [26]. The detailed proof is rather technical, hence
will also be deferred to Appendix A. An intuitive explanation of why the probability of finding a suitable RNN that approx-
imates (4) is only asymptotically 1 is that the key estimate which leads to Schifer and Zimmermann'’s deterministic UAT
(Theorem 1 in Appendix A) is based on the fact that the finite-step input vector x; can be bounded in a compact domain of
R, Since the Gaussian random input x; € R is not compactly supported, but only asymptotically compactly supported, we
can only find its universal approximation asymptotically almost surely. This discussion also implies the following corollary:

Proposition 2 (UAT for RNN with compactly supported stochastic input). Let g(-) : RM x RI — RM be locally Lipschitz, h(-) : RM —
RN be continuous, the external input x; be i.i.d. random variables with compact support, the inner state s, € RM, and the outputs
ye € RN (t=1,--., T). Then any discrete, stochastic dynamical system of form (4) can be pathwisely approximated to an arbitrary
accuracy by an RNN model of type (3) almost surely.

Proof. The proof is easy to obtain following the above arguments and Appendix A. O

As an example, consider i.i.d. stochastic input x; being uniformly distributed in [a, b]. Then, with probability 1 one can
find an RNN model of type (3) that accurately approximates open stochastic dynamics (4). For the proposed RNN with
stochastic inputs, what the RNN learns is the deterministic update rule that matches the input x; with the output y;. This
is the fundamental reason why the proof of the UAT for RNN with deterministic inputs can be modified to obtain the UAT
for RNN with stochastic inputs.

UAT for SDEs The above UATs for RNN with stochastic input can be immediately applied to address the learning and ap-
proximation problem of SDEs. Consider Itd's diffusion on RY:

dX(t) =b (X(t)) + o (X(t))dW(), (5)

where b(X(t)) € RY is the vector field, o (X(t)) € R¥™ is the diffusion matrix, and W(t) € R™ is the standard Wiener
process. Any (explicit) finite difference scheme corresponding to It6’s diffusion can be written in the form of (4) with i.i.d.
Gaussian input. For instance, the Euler-Maruyama scheme is given by

X(t+ At) = X(t) + Ath (X(£)) + 0 (X(©)) VALE(D)
= g(X(),&(t), At), (6)

where £(t) are i.i.d. standard normal random variables. For a fixed At, (6) corresponds to the update rule for the state
vector in (4) where x; = £(t). Any phase space observables of the stochastic system y; = h(X;) can be the output. Under

4
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some mild conditions, the Euler-Maruyama scheme (6) is proven to be pathwise convergent to the exact solution of SDE
(5) as At — 0 [34,35]. With this result, we can actually obtain the following UAT for It6’s diffusion:

Proposition 3 (UAT for the RNN approximation of It0’s diffusion). Suppose b(x) and o (x) are locally Lipschitz, then the exact solution
in a finite time grid to It6’s diffusion (5) can be pathwisely approximated to an arbitrary accuracy by an RNN model of the type (3)
asymptotically almost surely, if we replace x; by & (t).

A formal statement of Proposition 3, i.e. Theorem 4, and its proof are again provided in Appendix A. Since any time-
inhomogeneous SDE admits a time-homogeneous extended dynamics by choosing t = Y (t) as another state variable. There-
fore, the universal approximation result naturally extends to time-inhomogeneous SDEs. Similarly, if a non-Markovian SDE
admits a suitable embedded Markovian dynamics representation, one can approximate it with RNN model (3) by using the
latter representation. As an example, consider the generalized Langevin equation (GLE) [13] that is frequently used in the
coarse-grained modeling of large-scale molecular systems:

q =p,

p =F@— [oKt—s)ps)ds+ [,
where q(t), p(t) are the effective position and momentum of a coarse-grained particle of unit mass, F(q) is the effective
potential energy force, f(t) is the fluctuation force which is often assumed to be a colored Gaussian stochastic process, and
the time autocorrelation function of f(t) yields the memory kernel K(t) = (f(t) f(0)). GLE (7) is a non-Markovian stochastic

system because of the time-convolution term fot K(t —s) p(s)ds. It is shown in [13] and many recent works that for many
molecular dynamical systems, GLE (7) for a coarse-grained particle often admits a Markovian embedded approximation:

(7)

dg =pdt,
dp =[F(q)+ Z"s]dt, (8)
ds =|[Bs— QZp]dt+dw(t),

where the vector s consists of auxiliary variables whose length depends on the order of approximation, and Z, B, Q are the
corresponding auxiliary matrices. For such Markovian embedded dynamics, the proposed RNN has the capacity to approxi-
mate its output q(t) and p(t) according to Proposition 3.

3. Statistics-informed neural network

The UAT shows the potential of RNNs in simulating stochastic dynamics at the large-width limit. In this section, we put
this theoretical insight into practice as a framework called the statistics-informed neural network (SINN) to learn stochastic
dynamics from data. The main structure of SINN can be briefly summarized as follows. We use the long short-term memory
(LSTM) architecture, a specific type of RNN, to capture non-Markovian memory effects a potential stochastic system might
have. These LSTM cells take i.i.d. random sequences as input and generate ensembles of stochastic time series. A set of
training algorithms and statistics-based loss functions are devised to train SINN to reproduce the statistical characteristics
of a target stochastic system.

Before we introduce the specific way to construct SINN, it is worth clarifying our approach. In this paper, we do not
seek to construct NNs which are merely an implementation of established theoretical results in Section 2. A wide enough,
one-layer neural network has the universal approximation property while is hardly useful in practice. Instead, we use a
multi-layer deep neural network to design neural network. Deep neural networks with multiple layers are proven to have
many successful applications while the convergence proof is far out of reach. For this reason, we investigate numerical
convergence to the target stochastic dynamics in terms of statistics, which corresponds to the weak convergence instead
of the pathwise convergence [35]. It is noted that the UAT result should be understood as a justification of the modeling
capacity of stochastic RNN, and the way we embed random noise into the system.

3.1. Model architecture

A graphical illustration of the SINN architecture is shown in Fig. 2. The network consists of a multi-layer LSTM component
to learn the temporal dynamics of stochastic processes, and a dense layer attached to the output gate of the LSTM as a ‘read-
out’ device. Dropout layers can be optionally placed between the layers to control overfitting.

As inspired by the UAT, we use a stream of i.i.d. random numbers as the input to the model, which only carries out
deterministic operations, in order to generate different realizations of a stochastic process. The preferred distributions for
the input noise are the ones with maximum entropy, i.e., normal distributions for outputs with infinite support, uniform
distributions for outputs with compact support, and exponential distributions for outputs with support on R*. From one

5
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Fig. 2. SINN architecture.

perspective, the maximum entropy principle implies that this is the best choice when we assume minimum prior knowl-
edge about the stochastic process. From an alternative perspective, the i.i.d. noise sequences can be viewed as the entropy
source for SINN, which in turn can be viewed as a transformer between the input and output stochastic processes. Since
information can be lost during the calculation, the maximum entropy distributions help to ensure that the transformation
process will not starve of entropy.

Denoting the white noise sequence as &, the forward pass of the first LSTM layer in SINN can be written as:

t(l)zgg (ngt-i‘Ufh;]—)l +bf)’ (9)
iM = o, (w,-st + U, +b,~), (10)
0V =5, (woa + U, +bo>, (1)
e = o (Wcst +Uh®, +bc), (12)
V=V +iVogh, (13)
hil) :ogl) ooh(cgl)), (14)

where Eﬁ]) is the cell input activation, cg]) is the cell state, and ft(l), ip), ogl) are the forget gate, the input gate, and the

output gate of the first layer, respectively [27]. For a subsequent layer i, the previous-layer output hgi_l) replaces & as the
input. The final output x; is then calculated as x; = Wmhgn) , Where h;”) is the output of n-th LSTM layer, W, € R*, and x is
the size of the output vector ;. Here we emphasize that only the input sequence is random, while the entire SINN model

itself is deterministic. This makes training of the network very efficient and straightforward.
3.2. Loss function

Rather than seeking a pathwise approximation to the stochastic dynamics, we attempt to match various density functions
and the statistics of the trajectories obtained from SINN with those for the target processes. By doing so, we avoid tracking
and storing the input Gaussian white noise used in generating the target processes. Moreover, the input noise sequences of
SINN can also be temporally coarse-grained if the loss function is measured on the coarse-grained target processes.

Autocorrelation function The autocorrelation function (ACF) of a sequence X is a deterministic function of lag t defined as
E[X: Xt+r]

ACFx (1) = F7]
t

. (15)

where the process X is assumed to be zero-mean without loss of generality.
Two common approaches exist for computing the ACF of discrete time series data. The first approach, which we call the
brute force method, simply uses the definition in (15) to compute ACF(t) for every t. For a sequence of length n, computing

6
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its ACF up to T =n using brute force requires ©@(n?) operations. The second approach, which we call the fast Fourier
transform (FFT) method, uses the Wiener-Khinchin theorem to efficiently compute the ACF using the Fourier transform of
the sequence as ACFx = FFT~! (FFT(X) - FFT(X)*), where the asterisk (*) denotes the complex conjugate. The FFT approach
requires only O(nlogn) operations for computing the ACF up to T =n. However, due to the periodicity assumption as
implied by the Fourier transformation, the computed ACF can deviate considerably from the true value for large 7. The
problem is particularly serious if the ACF does not decay close enough to zero at the length of the sequence data. Hence,
the method for computing the ACF must be chosen with discretion while taking the characteristics of the target process
into account. In the following numerical examples, both the brute force and FFT approaches are used as appropriate. Both
methods permit efficient backpropagation of ACF-based losses to the NN model using popular tensor algebra libraries such
as PyTorch [36] and JAX [37]. For the numerical examples considered, we use a linear combination of Ly and L, norms to
calculate the loss for ACF. Specifically, the loss function we use is

1 1
Lossacy = — ) IACFo (7) — ACFr(v)| + — 3 _[ACFo (1) — ACFr (1)), (16)
el TeT

where ACFq (t) is SINN output ACF function at time t and ACFr(t) is the ACF for the target stochastic process. There are
flexibilities in terms of the selection of the loss function and hence valid options are not limited to the L, norms.

Probability density function Binning-based probability density function (PDF) estimators are not differentiable due to the
discrete nature of the histogram operation. Therefore, we compute and compare the empirical PDFs of both the target and
simulated trajectories using kernel density estimation (KDE):

IX]
-~ 1
fa) = MZKh(x—xi), (17)
i
where K is a non-negative kernel while h is a smoothing parameter. K(d) = %K(%) is the scaled kernel. We use the
Gaussian kernel KG©2Uss(d) = \/%_nexp(—g) with a bandwidth parameter h = |X|’% [38], where |X| is the length of the

sequence X. Similarly, the combined L; and L, norm are used to calculate the loss for the probability density:

T~ -~ T~ ~
Losspa = — 3 1fy &) = fil o)l + = > Uy &) = fy P2, (18)
i=1

i=1

where Tho (x) and ’th (x) are the estimated PDFs for the output sequence and the target stochastic process, respectively.
While the Kullback-Leibler divergence appears to be a natural choice for comparing probability distributions, its use of the
logarithm operations requires that a large number of output trajectories to be sampled to ensure numeral stability. As such,
we are in favor of the L, norms due to their robustness and the resulting performance benefits.

4. Numerical experiments
4.1. Training method

The SINN model is trained with stochastic gradient descent (SGD) using the Adam optimizer. The learning rate is set to
be 103 with 81 = 0.9 and B, = 0.999. Training and validation losses are tracked throughout the training process for every
100 steps. A new batch of Gaussian white noise trajectories are generated and used as the model input for every training
iteration. This is to ensure that the learned SINN model is generalizable and not overfitting to a particular realization of
the stochastic processes. In our experiments, the training batch and the target data both contain 400 sequences, while the
validation set contain 800 sequences.

Evaluation of loss Instead of comparing the ACFs over the entire lag range 1, ..., tmax, we randomly select a set T of lag
values 11, ..., T, with m < tpmax during each SGD step and compare the ACFs at the selected lags. Typical values of m
is around 20. This procedure is particularly important when the brute force ACF estimator is employed due to its high
computational cost.

Input sequence The white noise sequence, which serves as the input to the SINN model as described earlier in Section 3.1,
is always created afresh at each SGD iteration. This refreshing procedure is to ensure that the dynamics SINN learned is
independent of any specific realizations of the input random noise. This step is particularly important to guarantee the
generality and consistency of SINN’s training results.

Validation sequence The validation data is a fixed number of target sequences that are used to monitor training and detect
overfitting. The losses computed on the validation sequence do not participate in backpropagation.

7
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Table 1

Wall time measurements for all numerical examples. The ‘SINN Training’ column
records the wall time for the SINN model to achieve er, ey < 1073. Here er and
€y are the training and validation errors, respectively. The time steps for the Euler-
Maruyama scheme are At =10"2 (OU, FPU, Poisson, CG) and At =103 (Double-
Well). Temporally coarse-grained trajectories with step size dt = 0.2 are used to train
SINN. Hence SINN models all have time scale dt = 0.2. Other technical details for each
example are given in the corresponding section. All wall time values are averaged
over 5 simulations. The algorithms are implemented using PyTorch and executed on
a workstation with 16 AMD Zen3 cores at 3.0 GHz and one NVIDIA A100 accelerator.

Stochastic process Training Generate 5000 trajectories up to T = 1000

SINN Euler-Maruyama SINN
ou 33s 13s 14s
FPU 68 s 25s 14s
Poisson 150 s 138 s 14s
CG 268 s 3430 s 14 s
Double-Well 779 s 252's 14s

Computational cost All computations are performed using a workstation with 16 AMD Zen3 cores at 3.0 GHz and one
NVIDIA A100 accelerator. A SINN model with 2 LSTM layers each with 25 units can be trained for 1200 SGD iterations within
approximately 1 minute. Detailed runtime statistics for all numerical examples considered in this paper are summarized in
Table 1. Explanations will be presented in following sections.

Before presenting numerical results, we comment in advance on the modeling advantages of SINN, which echos the
three architectural differences we mentioned in Introduction. First, SINN is essentially equation-free since the modeling and
training of SINN use no equations. This feature allows the generated dynamics to have tunable coarse-grained time scales,
which makes it particularly suitable for capturing the long-time behavior of stochastic systems. Further discussion in this
regard is provided in Section 5.2. Second, SINN learns a deterministic update rule for SDEs which is similar to the Euler-
Maruyama scheme (6). Thus, it is very natural to do time-domain extrapolation and expect a certain predictability of SINN.
Third, the convergence we seek is defined in terms of statistical moments and probability measure. In many cases, such as
the transition dynamics simulation in Section 5.2, it can be shown that such convergence is already enough to capture the
physics we are interested in.

4.2. Validation cases

We present three test cases here to show that SINN can well approximate Gaussian and non-Gaussian stochastic dynam-
ics. Detailed runtime statistics are listed in Table 1.

4.2.1. Ornstein-Uhlenbeck process
Consider the Ornstein-Uhlenbeck (OU) process given by the following SDE:

X

i ox+o&(t), (19)
where o and @ are positive parameters and &(t) is standard Gaussian white noise with correlation function (£(t)&(s)) =
8(t — s). The OU process is ergodic and admits a stationary, i.e. equilibrium, Gaussian distribution A/(0, c%/26). In addition,
the ACF of x(t) at equilibrium is an exponentially decaying function C(t) = (x(t + T)x(t)) = %e‘ef. With the parameter
values 0 = 0.5 and # =1, we generate approximated dynamics for x(t) using the proposed SINN architecture with two
LSTM layers each with one unit. The stationary ACF and the equilibrium PDF, which are analytical, are used as the target by
the loss function to train the NN parameters.

Fig. 3 clearly shows that the statistics of the OU process is faithfully reproduced by the trajectories simulated by SINN.
Here we note that the time step dt = 0.1 of SINN is much larger than the MD time step At = 103, This temporally coarse-
grained feature of SINN is one of its main characteristics which makes it particularly useful in rare-event simulations as
will be detailed in Section 5.2 and 5.3). The error plot shows that the generalization error gets smaller while remaining at
the same magnitude with respect to the training error during the training process. This indicates that over-fitting does not
happen. Since the correlation function and the equilibrium probability density uniquely determine a Gaussian process, we
conclude that the stochastic process generated by SINN faithfully represents the dynamics of the OU process. For timing
results as given in Table 1, a slightly different SINN architecture with 2 LSTM layers each with 5 hidden units is adopted to
establish better comparability, while other parameters are exactly the same.
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Fig. 3. Comparison of the dynamics of q(t) generated by MD simulation and the SINN model. The MD simulation results of the sample trajectories (Top Left)
are obtained using the Euler-Maruyama scheme for (19) with step size At =1073. The target processes are temporally coarse-grained sample trajectories
of q(t) with step size dt =0.1. Note that sample trajectories simulated by SINN thus have natural coarse-grained time scale dt >> At. The output statistics
(PDF and ACF) are evaluated by taking the ensemble average over 5000 SINN trajectories which are generated using a new set of Gaussian white noise as
the SINN input.

4.2.2. Langevin dynamics
Consider the Langevin dynamics for an anharmonic oscillator:

qg =p,
p =-V'(@-yp+0o&@),

(20)

where V(q) = %qz + %q“ is the Fermi-Pasta-Ulam (FPU) potential and &(t) is Gaussian white noise. Parameters y and o are

linked by the fluctuation-dissipation relation o = (2)//8)!/2, where B is proportional to the inverse of the thermodynamic
temperature. Langevin dynamics for the FPU oscillator admits the Gibbs-form equilibrium distribution peq o e~PH where

H= p; + V(q). The parameters « = =60 =y =1 and ¢ = /2 are chosen for numerical simulations. We use the same
SINN model as in the OU process example with two LSTM layers and one hidden state to generate approximated dynamics
for q(t). Unlike the case for the OU process, here we do not have an analytical expression for the ACF of q(t). Hence, an
empirical estimate of the ACF of q(t) is obtained from numerical solutions to (20). Since q(t) is no longer a Gaussian process,
its PDF and ACF cannot completely characterize its dynamics. To ensure the validity of the model, we add the stationary ACF
for g(t) as an extra training target for the neural network. The results as presented in Fig. 4 show that the SINN architecture
can well approximate the dynamics of the non-Gaussian process (20). Runtime benchmarks use the same architecture as in
the OU process example.

Remark 1 Assuming that the Kramers-Moyal expansion [39] for a stochastic process exists, one can continuously improve
the approximations to the master equation corresponding to the stochastic process by progressively introducing higher-order
moments. This is the reason why we added the ACF for g%(t) as an additional target to train the model for non-Gaussian
dynamics. We note that higher-order moments such as (g*(t)q*(0)) can also be easily added into the total loss function.
Due to this extensibility of SINN, it is fairly simple to include higher-order information so that the generated stochastic
process can faithfully approximates that of the original stochastic process. We note that this is not generally guaranteed
by established methods in stochastic modeling such as the transformed Karhunen-Loéve or polynomial chaos expansion
[32,33].
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Fig. 4. Comparison of the dynamics of q(t) generated by MD simulation and the SINN model. The setting is exactly the same as the one used in Fig. 3
except that we added the ACF (g%(t)q2(0)) into the total loss function.

Remark 2 As a data-driven framework, the equation-free feature of SINN renders it a desirable option for solving reduced-
order modeling problems, where the effective dynamics for the low-dimensional resolved observables is generally hidden
and has to be extracted from the underlying high-dimensional dynamical systems through coarse-graining procedures. Gen-
erally speaking, dimensionality reduction leads to memory effects in the reduced-order dynamics. We emphasize that these
effects can be captured by the LSTM modules of SINN. Langevin dynamics (20) provides a good example for this. Here, the
system as a whole is Markovian for the state variables {q(t), p(t)}. However, the reduced-order effective dynamics for the
observable q(t) alone is non-Markovian. Using the Mori-Zwanzig framework [14,40], one can derive the following evolution
equation for q(t):

t

d
aq(t)=9q(t)+/ Kt —s)q(s)ds+ f(t), (21)
0

where Q is a modeling constant, K (t) is the memory kernel, and f (t) is the stochastic fluctuation force. In (21), the memory
effect is encoded by the convolution integral fé K(t —s)q(s)ds, where K(t) is generally unknown. SINN provides a novel
mechanism to quantify this complicated memory effect by ‘storing’ it within the LSTM cell state vectors c;, whose update
mechanism can be learned through simulation data. The coarse-grained modeling problem considered in Section 5.1 also
provides an example to further illustrate this point.

4.2.3. SDE driven by Poisson white noise
In order to validate the assertion made in Section 3.1 that SINN can take i.i.d. non-Gaussian noise sequences and model
stochastic process with support on R*, we consider the following SDE driven by Poisson white noise:

X
o = b+, (22)

where &(t) = Zf’g zi6(t — t;) is a random sequence of §-pulses. This random pulse is generated as follows. For each time
t, n(t) satisfies Poisson distribution with probability P (n(t) =n) = (At)"e~*!/n!, which counts the number of stimuli that
arrive within interval (0,t]. z; are i.i.d. exponentially distributed random variables with probability density p(z) =re™"*
(z > 0). For numerical simulations, we choose b=r=1 and A = 2.

10
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Fig. 5. Comparison of the dynamics of x(t) generated by MD simulation and the SINN model. The MD simulation results of the sample trajectories (Top
Left) are obtained using a first-order finite difference scheme [41] with step-size At = 0.01. The target processes are temporally coarse-grained sample
trajectories of x(t) with step size dt =0.2. The SINN model has 2 LSTM layers each with 5 hidden units. The input noise sequence satisfies the exponential
distribution with r = 1. Two statistical moments: (x(t), x(0)) and (x?(t)x*(0)), estimated with 400 simulated trajectories of x(t), are used to compose the
loss function. The output PDF and ACF are evaluated by taking the ensemble average over 5000 SINN trajectories.

SDE (22) describes the dynamical behavior of a system when randomly perturbed by external stimuli, which is com-
monly seen in many control systems in electronic engineering and physics. We want to use SINN to generate stochastic
processes that recover the statistical features of x(t). Here we only use observation data x(t) and assume the minimum
prior knowledge of its generating mechanism. That is, as shown in Fig. 5, x(t) is a random jump process and has support on
R*. For this case, we use i.i.d. exponentially distributed noise sequence as the input of SINN and train the neural network
using the empirical PDF/ACF calculated from sample trajectories of x(t).

In Fig. 5, we show that SINN can simulate trajectories of the jump stochastic process using exponentially distributed
noise sequence as the input. Other important statistics such as the ACF and the equilibrium PDF are also compared with the
ground truth that we obtained through the MD simulation of (22). It is remarkable that SINN faithfully recovers the long
tail of the equilibrium PDF of x(t). Also, it is noted that we did not use the Poisson distribution to generate the random
noise input since this part is assumed to be unknown when training the model. These results clearly demonstrate that SINN
can model stochastic dynamics driven by non-Gaussian noise and that the input of the neural network can be accordingly
adjusted to be non-Gaussian to accommodate the modeling needs.

Remark 1 A similar stochastic jump process was considered in the Neural jump SDE framework [9]. One obvious difference
is that SINN seeks convergence in terms of statistics, e.g. moments and PDF, whereas the Neural jump SDE targets path-wise
convergence. Furthermore, the training process employed in SINN is closer to real-world applications in the sense that only
the trajectory data of x(t), possibly temporally coarse-grained, were used to train the neural network. Moreover, we assumed
minimum prior knowledge on the generating mechanism of the observable x(t). In other words, this is a case where the
equation of motion for x(t) is completely hidden. This fact will be more obvious with the coarse-grained modeling example
considered in Section 5.1.

Remark 2 1t is shown in [41] for SDE (22) that the governing equation for the transition probability P(x,t) satisfies a
generalized Fokker-Planck equation:

+00
dP(x,t) =bdxP(x,t) — AP(x,t) + A / re "* Vg (x — y) P(y, t)dy, (23)
—00
where 0 is the Heaviside step function. This equation is not given in the form of the Kramers-Moyal expansion. Neverthe-
less, since the moments of various orders for x(t) still exist, we expect a high-order Kramers-Moyal expansion to yield a
good approximation to (23). This is why we added the high-order correlation function (x?(t)x?(0)) in the loss function when
training SINN. It is reasonable to expect that training against more moments will help SINN to generate stochastic trajec-

tories closer to the original process x(t). While we believe SINN can model several common types of stochastic processes,
some particular processes such as the Lévy processes cannot be modeled by the current version of SINN simply because its
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Fig. 6. Schematic illustration of the coarse-graining scheme of a 1D particle chain where two neighboring particles are coarse-grained into a large CG
particle with position Q; = (q2i—1 + g2i)/2 and momentum P; = pi_1 + pai.

moments do not exist.! A possible remedy for this case might be using instead fractional moments [42] to define the loss
function. This, of course, awaits further investigation.

5. Applications

In this section, we use practical examples to demonstrate the capabilities of SINN to discover hidden stochastic dynamics
in given non-Gaussian, non-Markovian stochastic systems. We further verify whether the resulting stochastic model has
long-time predictability and numerical stability. The applications we consider here are the coarse-grained modeling of a
molecular system and the study of transition dynamics and rare events. Using these examples, we show that SINN has
several computational and modeling advantages over the traditional stochastic modeling methods.

5.1. Coarse-grained modeling of a molecular system

Coarse-grained modeling of complex molecular systems is an important research area in statistical mechanics and molec-
ular dynamics [43,44]. The goal is to construct effective dynamics for the coarse-grained (CG) particles from the original
high-resolution molecular system. If the effective dynamics capture the core features that are sufficient to understand the
important physics of the original system, then one only needs to solve the coarse-grained, low-dimensional effective dynam-
ical system so that the overall computational cost can be greatly reduced. However, analytically solving the coarse-graining
problem for realistic molecular systems is virtually intractable. Hence, data-driven approaches are commonly adopted. Clas-
sical coarse-graining methods such as those utilizing the Mori-Zwanzig formulation or the GLE extract important statistics
for the CG particles from simulation data and build an integro-differential stochastic differential equation, as given in (21),
to describe the effective dynamics. This is very close to what we do with SINN, except that the equation is now replaced
by a neural network. To test how well SINN models the dynamics of a CG particle, we consider a chain of N particles
interacting with each other according to the following Langevin dynamics [14]:

dl’j 1
G = mPiT P

24)
dpj odV(rjy1) oV(@j) vy (
—_— — —_ . t s
dt orjt1 or;j mp]+6;’:()

where {rj, pi}f’=l are non-canonical coordinates for the dynamics. Here, rj = q;j —q;_1 represents the displacement between
two neighboring particles relative to their equilibrium positions and p; is the momentum of the j-th particle. The two
endpoints of the chain are assumed to be fixed, i.e. o = qn+1 = 0, and the chain has N = 100 particles. The model pa-
rameters are chosen to be the same as those used in studying (20). That is, we have an FPU-type interaction potential
Vin=4%r’+%r* witha=p=0=y=1and o = 2y/p)"/? = V2.

For this chain dynamics, we consider the coarse-grained scheme illustrated in Fig. 6 and focus on the effective dynamics
of the center CG particle with position Q25 = (qa9 + g50)/2 relative to its equilibrium. We note that Q5 can be explicitly
expressed in terms of r-coordinates as:

40+ 49 r
st=7492 SOZZTH-%O- (25)
i=1
Traditionally, a GLE of form (7) can be used as an ansatz to approximate the stochastic dynamics for Qs [13]. Here, we
use SINN instead to do the modeling. The simulation results and calculation details are provided in Fig. 7. Although the
dynamics for Qs is completely hidden, our simulation results indicate that with only a limited amount of 400 temporally
coarse-grained trajectories, SINN can act as an accurate surrogate model for Q2s. Detailed runtime statistics can be found

in Table 1. We particularly note the runtime savings when comparing with the Euler-Maruyama scheme. More explanations
can be found in Section 5.3.

1 We thank one of the anonymous reviewers for pointing this out.
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Fig. 7. Comparison of the dynamics of the coarse-grained particle Qso(t) generated by MD simulations and SINN. Sample trajectories from MD simulation
(Top Left) are obtained using the Euler-Maruyama scheme for (24) with a step size At = 1073, The training data for SINN are the temporally coarse-grained
sample trajectories of Qso(t) with a step size dt = 0.1. The training setup is exactly the same as the one used in the FPU example (20), except that the
SINN model here uses 2 LSTM layers and 5 hidden units per layer.
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Fig. 8. (Left) Schematic illustration of the hopping events between two states for the reaction coordinate x(t). Through thermodynamic interactions with the
environment, an imaginary particle may gain enough energy to cross the energy barrier and make a transition from one well to the other. (Right) Sample
trajectory of x(t) simulated using (26). The modeling parameters are chosen to be Vo =5, X =1, and 8 = 1. One can see that hopping between these two
states is a rare event for the given height of energy barrier.

5.2. Transition dynamics modeling and rare-event simulations

The motivation for modeling transition dynamics stems from the need to calculate the reaction rate of a chemical re-
action. While this is an important problem, determining the reaction rate using simulation trajectories becomes extremely
difficult when the reaction is a rare event. This is because it takes a long time, which often exceeds the typical time scale
of MD simulations, to adequately observe the reaction when it happens with a very low probability. As a rare event ex-
ample, we consider a toy problem as illustrated in Fig. 8 for the transition dynamics given by the Langevin equation for a
double-well system [45,22]:

x =p,
—V'(x) —yp+0oE®),

(26)

p

where V (x) =V [1 — (x/xo)z]2 is a symmetric double-well potential with depth V¢ and two basins around xo and —xg. The
two wells correspond to two states along the reaction coordinate x(t), which, for example, can be the backbone dihedral
angle of n-butane in the isomerization process [46]. We aim to use SINN to construct a reduced-order model for the reaction
dynamics based on the short-time simulation data of x(t). Once the effective model is built, one may use it as a surrogate
model to perform Monte Carlo simulations or to generate long-time trajectories of x(t) with larger time step sizes. From
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Fig. 9. Comparison of the dynamics of the reaction coordinate x(t) generated by MD simulation and the SINN model. The exact statistics, including the PDFs
and the ACFs for x(t) and x2(t), are obtained through MD simulations of (26) and averaged over 5 x 10* trajectories. The statistics for the SINN outputs are
similarly calculated.

this, the rate of transition can be calculated in an economical manner. In practical applications, one may obtain sample
trajectories for the reaction coordinate x(t) from large-scale MD simulations that model the whole physical system. Here,
we use a toy model (26) to quickly generate sample trajectories of x(t) for the purpose of demonstrating the learning
capability of SINN and its validity in simulating rare events.

Since the transition dynamics is more complicated than the examples considered in Section 4.2, we employ a SINN
model with 2 LSTM layers and 25 hidden units per layer. This structure may not be optimal in terms of complexity or
efficiency, but is found to be sufficient for our study. To train the neural network, we solve (26) using the Euler-Maruyama
scheme with step size At =103 and obtain 400 sample trajectories. Temporally coarse-grained trajectories are obtained by
subsampling the trajectories with a fixed interval of dt = 0.2 and used as the training data. After the temporal subsampling,
each trajectory contains 400 points uniformly spanning the interval [0, 80]. The equilibrium PDFs and ACFs for x(t) and
x2(t) are used to construct the loss function. During the training process, occasionally the optimization gets stuck at local
optima. In this case, we simply need to retrain the model from random initialization. The numerical results are presented
in Fig. 9. We see that SINN yields an overall excellent approximation for the transition dynamics. Remarkably, it actually
reproduces the hopping events between the two states. Moreover, from the comparison of the long-time trajectories and
the normalized ACF, we can see that the trained SINN model can generate extrapolated trajectories for a good prediction
of the long-time dynamics of x(t), even though the training was carried out using only data from t =0 to t = 80. A more
qualitative evaluation of SINN on describing the transition dynamics relies on the calculation of the transition rate from the
generated samples trajectories, which can be found in Section 5.3.

5.3. Further assessment of SINN

In this section, we thoroughly study the SINN model for the double-well system and use this example to further assess
the modeling capability of SINN in various aspects. In particular, we focus on the temporally coarse-grained nature of SINN
and explain why this property is important for rare event simulations. More simulations are carried out to show that with
short-time data, SINN can extrapolate and predict long-time dynamics. We also discuss favorable numerical features of SINN,
including numerical convergence and consistency of the randomized optimization procedure.

SINN as a coarse-grained time integrator The SINN models we have used so far are trained using the coarse-grained sample
trajectories of x(t) with a time step size dt = 0.2, which is much larger than the MD integration time step size At =
1073, The output of SINN, i.e. the approximated trajectories of x(t), has the same coarse-grained step size as the training
data. This makes SINN a natural coarse-grained time integrator for the reduced-order dynamics of x(t). This coarse-grained
nature of our SINN model provides an efficient means to generate long-time approximated trajectories of x(t) because the
sampling gets 200 times sparser. For the calculation of physical quantities, such as the reaction rate, where the local fast-
time dynamics becomes irrelevant, this leads to huge computational advantages. In Fig. 10, we compare sample trajectories
of x(t) generated by well-trained SINNs with different time step sizes dt = 0.1, 0.2, 0.5. For these three time-scales, SINN
all reproduces the correct hopping dynamics. It is also clearly observed that while fast-time dynamics is filtered out as
dt increases, the statistics, i.e. PDFs and ACFs, of the predicted trajectories remain essentially unchanged. This means that
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Fig. 10. Comparison of SINN models with different coarse-grained time scales dt. As dt increases, local information gets gradually filtered out as shown by
the short-time trajectories in the inset figure of the left panel. However, the ACF and PDF of the simulated trajectories remain essentially the same.

the coarse-grained trajectory is sufficient to capture the important physics, i.e. the statistics of the hopping dynamics. The
capability to generate temporally coarse-grained stochastic trajectories is one of the most prominent features of SINN, which
gives huge computational advantages. We emphasize that this feature is not easily achievable using established stochastic
modeling methods such as the ones based on the Mori-Zwanzig equation, GLE, or the NeuralSDE.

We also compare the computational time of the Euler-Maruyama scheme versus SINN in Table 1. The savings in simula-
tion time of using SINN to generate coarse-grained trajectories can be clearly seen. The advantage is particularly obvious in
the CG example since the underlying MD system has a high dimensionality of 200. We emphasize that the dimensionality
of many realistic MD systems, e.g. proteins, is much higher and hence the potential saving in computational time will be
enormous. Meanwhile, the time spent on training SINN is well amortized.

Remark A possible intuitive explanation on why neural networks can actually learn a coarse-grained time integrator for
dynamical systems might be due to the similarity between the multi-fold function composition structure of neural network
with that of the Runge-Kutta (RK) method for solving an ODE y’ = f(t, y). The well-known fourth-order RK method has in
fact a function composition structure and can be rewritten as:

At At At
Ynr1=Yn+ 3 {f(tm.Vn) +2f <tn + Ta.Vn + Tf(tm.)’n))) + } ) (27)

where y;, is the approximated solution at time t,. By further expressing y, in (27) using y,—1 and f(t,—1, ¥n—1) and re-
peating this procedure, we obtain a natural coarse-grained time integrator with a multi-fold function composition structure.
One can imagine that a neural network may have learned a similar structure during training. In fact, this connection was
already noticed in the literature [47].?

Calculation of transition rate  We use our SINN model as a simulator for the transition dynamics of the double-well sys-
tem (26) and assess how well it predicts the transition rate for rare events. To calculate the transition rate between the two
states, we first divide the phase space for x(t) into two regions: A = (—o0,0] and B = (0, +00). Obviously, —xo € A and
Xo € B. Consider the equilibrium time correlation function C4 p(t) defined by:

Cap(t)  (ha(x(0)hp(x(1)))
Ca (ha(x(0)))
where ha (x(t)) is an indicator function of system configuration satisfying h4 (x(t)) =1 if x(t) € A and ha (x(t)) =0 if x(t) ¢ A,
while hp(x(t)) is analogously defined. Thus, the ratio (28) is the probability of finding the system in state B after time t
when the system is initially at state A. As a result, the transition rate from A to B can be calculated as [48,49]:

; (28)

d Ca,(0)
kap = at é—A’ Tmol <t <K Trxn, (29)
which is the slope of the CAC*‘Z“) curve in the time range between a short transient time scale 7., and the exponential

relaxation time Ty, = 1/(kap +kpa).

The numerical results are summarized in Fig. 11. The time profiles of the equilibrium time correlation function match
well with those obtained by MD simulations. The resulting values of ksp are approximately estimated to be 0.009, 0.003,
and 0.002 for transition dynamics with energy barrier height values Vo =4, 5, and 6, respectively. These agree well with
the values obtained by MD simulations. By calculating the transition rate using SINNs trained with coarse-grained trajecto-
ries with different temporal resolutions dt, we also observe that the temporal coarse-graining of the trajectories does not
significantly influence the calculated reaction rate. This is consistent with our previous analysis. The successful prediction

2 We thank Prof. Yannis Kevrekidis for pointing this out to us through private communications.
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Fig. 11. Prediction of the transition rate using SINN as the simulator for rare events. The time profiles of the equilibrium correlation function C4 g(t)/Ca for
double-well dynamics (26) are plotted for different values of the barrier depth Vo and the coarse-grained time scale dt: (left) Vo =4, dt =0.2; (middle)
Vo =5, dt =0.2; (right) Vo =6, dt = 0.5. The results obtained from SINN are compared with the numerical simulation results obtained from long-time MD
trajectories. The linear regression is used in fitting C4 p(t)/Ca in between the transient time scale 7,5 and the exponential relaxation time scale t;x; in
order to evaluate kap. The specific time domains for the linear regression are chosen to be (from left to right) [5, 10], [25, 50] and [25, 50], respectively.
R? is the coefficient of determination.

of the transition rate ksp indicates that, with the equilibrium PDFs and ACFs for x(t) and x2(t), it is practically sufficient to
create a reliable numerical approximation for the reduced-order dynamics of x(t) using SINN, although this information is
not enough to theoretically guarantee the uniqueness of the non-Gaussian process.

Long-time predictability, numerical convergence, and consistency Lastly, we discuss long-time predictability, numerical conver-
gence, and training consistency of SINN. As a neural network based on the LSTM architecture, SINN makes prediction of the
long-time dynamics of the reduced-order observable x(t) by quantifying the memory effect of the non-Markovian system.
This is similar to reduced-order modeling using the Mori-Zwanzig formalism or GLEs. Since these approaches are proven to
have predictability of the long-time stochastic dynamics [13,50], it is reasonable to expect SINN to have a similar behavior.
This is indeed the case as we have already shown in Fig. 9, where the SINN model faithfully predicts the long-time dynamics
of x(t) using short-time training data for t € [0, 80].

Due to the usage of the randomized training protocol, each learned SINN model may have a differently parameterized
memory model. This raises a reasonable doubt that whether our demonstrated long-time predictability of SINN is merely
a coincidence. Due to the well-known difficulties on the theoretical convergence analysis for deep neural networks, here
we only provide numerical verifications. To this end, we verify the convergence and consistency of the obtained SINN
model by comparing the long-time tail of the ACF for x(t) with the MD simulation result. We trained an ensemble of
independently initialized SINN models using the same data set. Specifically, we obtained three ensembles of SINN models.
The first ensemble was trained using 400 trajectories of x(t) for t € [0, 40] with a coarse-grained step size At =0.2, while
the time domain for the second and third ensemble trajectories are [0, 70] and [0, 100], respectively. In each ensemble,
we repeated the training process to create 20 candidate SINN models. Each candidate model was obtained by independent
training of SINN until the training and validation error satisfied e, €y =11 + I < 1073. From these candidate SINN models,
we performed time extrapolation to generate long-time dynamics of x(t) and re-evaluated the validation error €y to select
the top 5 qualified SINN models with the smallest €y. The evaluation time domains for €y were [0, 40], [0, 70], or [0, 100],
respectively, since these were the only time frames for which the ground truth was known. This procedure ensured the
qualified SINN models produce stationary time sequences in order to be consistent with the equilibrium dynamics of x(t).
The simulation results and the analysis are presented in Fig. 12. We see that with training data as short as t € [0, 40],
qualified SINN models, i.e. the top ones with the smallest validation errors, yield overall good predictions of the long-time
dynamics of x(t). This validates the long-time predictability of SINN. As we gradually increase the length of the target
trajectories from ¢ € [0, 40] to t € [0, 100], the 95% confidence interval of the predicted dynamics gets smaller. This indicates
that the collective output of the ensemble of SINN models converges to the correct dynamics of x(t). Hence, a numerical
validation of the convergence of SINN is established here in terms of the statistics of the input-output. All these repeated
training leads to accurate stochastic models for the transition dynamics. This confirms that the randomized optimizer used
in the training does not compromise, at least numerically, the consistency of the trained SINN models.

6. Conclusion

In this paper, we introduced a statistics-informed neural network (SINN) for learning stochastic dynamics. The design
and construction of SINN is theoretically inspired by the universal approximation theorem for one-layer RNNs with stochas-
tic inputs. This new model uses i.i.d. white-noise sequences as the input and layers of long short-term memory (LSTM)
cells as the functional units to generate output sequences. The statistics of the target stochastic process, such as equilibrium
probability density and time autocorrelation functions of different orders, are used in the loss function to train the param-
eters. SINN has a relatively simple architecture where deterministic transformations are applied to the random input and
is easy to implement and train. Numerical simulation results have shown that SINN can effectively approximate Gaussian
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Fig. 12. Long-time predictions of the ACF of x(t) using SINN. In each figure, the ACFs of the top 5 qualified SINN model are used to calculate the 95%
confidence interval of the predicted dynamics. For qualified SINN models, the one with the smallest validation error €y is selected to be the best model.

and non-Gaussian dynamics for both Markovian and non-Markovian stochastic systems. The successful application of SINN
in modeling the transition dynamics clearly indicates that it can serve as a useful surrogate model to simulate rare events.
Moreover, the coarse-grained nature and the long-time predictability of SINN makes it an efficient and reliable framework
for reduced-order modeling. Further applications and extensions of this framework in the general area of stochastic model-
ing, uncertainty quantification, and time series analysis can be expected. The code we used to train and evaluate our models
is available at https://github.com/SINN-model/SINN.
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Appendix A. Universal approximation theorem for recurrent neural networks with Gaussian stochastic inputs

Following [26], we first introduce some useful definitions and established universal approximation results for the deter-
ministic recurrent neural network (RNN).

Definition 1. For any (Borel-)measurable function f(-): R/ — R/ and I,N € N, Z"N(f) is called a function class for
three-layer feedforward neural networks if any g € Z"N(f) is of the form:

gx)=Vf(Wx—0), where xeR!, VeRNYJ, weR/*, 9eR/, JeN.

This three-layer feedforward neural network has I input neurons, J hidden neurons, and N output neurons. Note that the
function f:RJ — R/ is defined to be component-wise with

fF(Wix—61)
F(Wax —6)

f(Wx—0):= : (A1)
FWx—6))
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Definition 2. A subset S of a metric space (X, p) is called p-dense in a subset U if there exists s € S such that p(s,u) <€
for any € >0 and any u € U.

Definition 3. Let C!'N : R/ — RN be the set of all continuous functions. A subset S ¢ C''N is uniformly dense on a compact
domain in C'"N if for any compact subset K ¢ R/, S is px-dense in C'"N, where px(f, g) := supyex | f (X) — £l 0o-

Definition 4. A function o is called a sigmoid function if o is monotonically increasing and bounded.

Common choice of sigmoid function of neural networks are 1/(1 + e*) and tanh(x).
The following result is the well-known universal approximation theorem (UAT) for feedforward neural networks.

Theorem 2 (UAT for feedforward neural networks). For any sigmoid activation function o and any dimensions I and N, Z' N (o) is
uniformly dense on a compact domain in C'-N,

The above theorem simply implies that for any sigmoid function o, as long as | € N is large enough, i.e. the number of
hidden state (neuron) is large enough, a three-layer feedforward neural network can approximate any continuous function in
any compact domain with arbitrary accuracy. This theorem was used in [26] to prove the universal approximation theorem
for RNN of type (4) when the input x; is deterministic.

We now introduce the following definition of the RNN class:

Definition 5. Let o () : R/ — R/ be an arbitrary sigmod function and I, N, T € N. The class RNN"N (o) refers to discrete
RNN system of the form (3), i.e.

St+1 =0 (As¢ + Bx; — 0),
Yt =Csg,

where x; e R!, s; e R/, and y; e RN for all t =1,---, T. Note that here o (As; + Bx; — 0) is calculated component-wise as
in (A.1). We also define o(RNN"N(c)) to be the set of all possible output y; for the RNN of the class RNN'N (o).

It is proved in [26] that RNN"'"N(c) is “dense” in the “space of discrete open dynamical systems”, in the sense that
for any sigmoid o and 8§ > 0, there exists y; € o(RNN'"N (o)) such that ||y — y¢llec < 8, where y; is the output of a M-
dimensional open system:

Se+1 = &(St, Xt),

A2
Yye =h(sy), (A2)

where g(-) : RM — RM and h(-) : RM — RN,

For RNN with stochastic input, the proof is similar. But the corresponding universal approximation theorem, i.e. The-
orem 1, holds only in the sense of probability essentially because whether one can find an RNN model such that
|7t — Ytlloo < 8 for all § > 0 becomes a random event. Using the above definitions and Theorem 2, we can prove the
following theorem:

Theorem 3 (UAT for RNN with Gaussian inputs). Let g(-) : RM x R! — RM pe locally Lipschitz and h(-) : RM — RN be continuous.
In addition, the external input x; € R! are i.i.d. Gaussian random variables, the inner state s; € RM, and the outputs y; e RN (t =
1,---,T). Then, for a finite number of iteration steps, the probability of finding an RNN model (3) such that the outputs of the RNN
pathwisely approximate the solution of the discrete, stochastic dynamical system of the form (4) arbitrarily accurate, is asymptotically
1

Proof of Theorem 3 We first show that the dynamics of an M-dimensional open dynamical system with s;11 = g(S¢, X;) can
be represented by an RNN with an update function of the form S;11 = 0 (AS; + Bx; — 0) for all t =1,--., T asymptotically
almost surely. For any realization of x,;, Theorem 2 implies that for any compact set K ¢ RM x R! which contains (s, x;),
one can find suitable g(s;,x) € Y.""M"M (o) with weight matrices V € RM*J, W e R/*M B ¢ R/*! and a bias 6 € R/
such that forall t=1,---, T,

sup [1g(se, xt) — &(St, Xt)lloo <6, where  g(s¢, X)) = Vo (Ws; + Bx; —6). (A.3)

X¢,sc€K

Here § > 0 is an arbitrary constant and o is an arbitrary component-wise applied sigmoid activation function.
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We denote approximated dynamics generated by the feedback neural network by

St+1 = &(5t, X) = Vo (Ws¢ + Bx, — 0).

Further assuming that s; € K, for any § > 0, we can find suitable W, B, V, 6 such that

lIse = Stlloo = ll&(St—1, Xe—1) — &(Se—1, Xt—1) + &(Ge—1, Xt—1) — Stllo
< lg(st—1,Xe—1) — &Gt—1, Xt—1) lloo + 18Gt—=1, Xt—1) — Stlloo
< 11g(se—1,Xe—1) — &(5t—1,Xe—1)[loo + 3.

Since g is locally Lipschitz, in the compact set K, it is also Lipschitz continuous. This implies for any € > 0, there is § > 0
and thus there are suitable W, B, V, 0, such that

_ _ 1-cT
lIse = Stlloo < Cllse—1 — Se—1lloo +8 <81+ C+---CT7Hy =6

- <e, (A4)
where we have used sg = 5g. Estimate (A.4) indicates that for deterministic inputs x;, the open dynamical system update
function g(s¢, X;) can be universally approximated by the feedward neural network update function g(5¢, x;) since the output
of each step, i.e. s¢, can be approximated arbitrarily accurate.

For an RNN with Gaussian random input x;, however, since x; is not compactly supported, whether x;, s; € K becomes a
random event. For any fixed K  RM x R! and sigmoid function o, one can associate it with the function class Z”M M),
The probability that one can find a suitable approximation to function g(s;, x;) within Z”M‘M(a) for any initial so € RM
and x; € R! can be written as

Pr inf sup  llg(se, X)) — (e, X)loo <€,V >0, (A5)
2eX ™M (5) x eR! soeRM
t=1,-.T

where for stochastic x;, the norm | g(s¢, Xr) — g(5¢, Xt)||o i interpreted in the pathwise sense [35], i.e. it is valid for each
realization of x;. Also note that the above probability depends on K, in particular, the size® of it, which is denoted as |K]|.
Taking the limit |K| — +o00, we obtain

lim Pr inf sup  [1g(se, X) — &Gt Xe)lloo < €, V€ >0
IK|—>+00 §€Z'+M'M(U)xteR1,soeRM
L t=1,--.T
i (A6)
= lim Pr inf sup |1g(se, X)) — &G, Xe)loo < €, V€ > 0|x¢, S, St € K | Pr[x;, s¢, 5¢ € K]
|[K|—+o00 ZeX MM 5y x5, 5e€K
fil,'--,T

= lim Pr[x,s¢, st € K.
|K|—+o00

Here we used (A.3) and (A.4) to show that under the condition x;, s, 5; € K, the event inf§€ZI+M,M SUDy, s, x ek 18(St, X¢) —
g6, X ) loo <8,V8 >0,t=1,---, T happens with probability 1, i.e. it holds for almost all x;.

Now the problem of calculating the probability (A.5) in the limit |K| — 400 boils down to the calculation of
lim| k|- oo PrlXe, S¢, St € K. To this end, we note that if we can choose a compact set Ko C RM x R! such that x;, sg € Ko
forall t=1,---,T, then ||s1]|| = [|g(S0, X0)|| < Co for some Cg > 0 because g is locally Lipschitz therefore bounded in Kjp.
We choose another compact set Ko U B(0, Co) € K1 c RY x R/, where B(0, C) is a ball centered at 0 with radius Cg. Then
we must have ||s2]| = |g(s1,x1)]| < C1 since x1,s1 € Ky. Continuing this procedure for T times, we can find a compact set
K1 ¢ RM x R! such that s, x; € K. Since the same logic applies to 5;, we can find a compact K ¢ RM x R! such that
St, Xt, St € K. On the other hand, Chebyshev’s inequality for a standard normal random variable X implies

1 1
Pr[|X|zb]§b—2 = Pr[X<b]21—b—2. (A.7)

Then for i.i.d. random variables X1, --- X1, we have
T

T
1
Pr{|X1| <b.--.|Xr| <b] = PrlIXil <b] = [1 —| -
i=1
3 |K| can be defined as, e.g. |K| := supyc l|x|l2, where [[x])> is the I,-norm of the vector.
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Therefore, for fixed T, we have
lim Pr[|X{|<b,---,|X7| <b]=1. (A.8)
b—+o0

This means that asymptotically almost surely one can find a compact subset B such that x; € B for all t=1,---T. As a
direct result of this, we have

lim Pr[x, s¢, 5S¢ € K] =1. (A.9)
|K|—+o00

Combining (A.6) and (A.9), we show that for an RNN with i.i.d. Gaussian input x;, asymptotically almost surely, one can
find suitable W, B, V, 6 such that ||s; — S¢|lcc < € for any sigmoid o and any € > 0. Furthermore, let
S£+1 = O'(Wgt + Bx; — 0),
which yields §5; = V. By defining A:= WV € R/*J, we obtain

St41 =0 (As; + Bx; — 0). (A10)

The dynamics of the RNN update function (A.10) encodes (not equals) the dynamics of the open dynamical systems. Hence
we claim that the dynamics of an M-dimensional open dynamical system with s;11 = g(S¢, X;) can be represented by an
RNN with an update function of the form s;y1 = o (AS; + Bx; — 0) for all t =1, ---, T asymptotically almost surely. We note
that the transformation §; = V's; often involves an enlargement of the hidden state dimensionality since A € R/*J, where
J is set to be large enough to guarantee the validity of the universal approximation.

The second part of the proof is to show that the output of the dynamical system, i.e. y; = h(s¢) can be approximated by
the output of an RNN j; = C5; asymptotically almost surely where 3; is an extended vector satisfying the RNN update rule:
5¢41 = 0 (AS; + Bx; — §). For an RNN with deterministic input, the proof is done in [26]. Hence we simply state the result
obtained therein.

Claim For x¢, 5,5 € K c RM x R, there exist enlarged matrices A, B, C and 6 for an RNN model:
St+1 =0 (AS¢ + Bxe — 0),
¥y = ff§t, (A11)

such that the output vector ||y; — y¢|| <€ for all € > 0. In (A.11), we have

_ _ - - - _ - / ~
J=J+1], r=o0(Es,+Fx—0)eR), EcRIV FeRI geR/, §t=[i:]eR1,

- [Aa o0 x] - [B j ~ 3 -~ [6 ]
— IxJ — Ix]J — NxJ . J
A_|:E O]E]R , B—[F]GR , C=[0 D]eR , and 9—[0]€R.

Proof.

lye — ¥ell = llye — Do (Es;_; + Fxe—1 — )]
<yt — Qo (GVo(As,_; + Bxe_1 —6) — )|
+1Qo(GVo(As,_; +Bx_1 —0) —6) — Do (Es,_, + Fxe_1 — 0)||.

Here Qo (GVo (As;_; + Bx(—1 —6) — 9) is a bounded function defined in the compact domain K. Hence, the universal
approximation theorem implies that for any €; > 0, we can find suitable D, E, F, 60 such that |Qo (GVo (As;_; + Bx;_1 —

6) —8) — Do (Es,_, + Fxc—1 — 0)|| < €1. Then we obtain
Ilye — Vel < llye — Qo (GVo(Asj_; + Bxe—1 — 0) — )| + €1
=lye — Qo (GVs, — )| + €1
=y — Qo (G5 — D) + e
< lye —hGoIll + 1hGe) — Qo (G5 — ) || + €1.

Again applying the universal approximation theorem, we have [|h(5;) — Qo (G5 — )| < €2, Ve > 0. On the other hand,
h(x) is continuously differentiable and thus Lipschitz in the compact set K and we have |y; — h(S¢)|| = [lh(s¢) — h(Se)| <
C|Ist — 5¢|| < Ceg. This leads to

lye = yell <Ce+e€14+€<6,¥6>0. O (A12)
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This claim indicates that under the condition x;, s;, 5; € K ¢ RM x R!, the probability of finding suitable A, B, 8, C such
that ||y — y:|l <6,V8 > 0 is 1. Hence using again relations (A.5), (A.6), and (A.9), we have

lim Pr inf sup lye — Velloo <8,¥8 >0 |, t=1,---,T
|K|—+00 Jt€o(RNNIN(0)) x,eR! 59 RM
lim Pr inf sup ||Vt — Velloo <8,VY8 > 0|x¢, s¢, St € K | Prx¢, s¢, St € K]
|K|—>+00 Je€o(RNNEN (0)) xp,5¢,5c€K
= |1<|hm Prx;, s¢, Sc € K1=1. (A13)

This implies that any open dynamical system (4) with Gaussian inputs x;, the existence of finding a deterministic RNN model
of the form (3) with the same stochastic input x; that pathwisely approximates the solution of (4) arbitrarily accurate tends
to 1 as |K| — +o0. This concludes the proof of Theorem 3.

Theorem 4. Suppose b(x) : R? - R? and o (x) : R™ — RY in SDE (5) are locally Lipschitz and b(x) satisfies conditions (i)—(iii) listed
in [34]. Consider a uniform time grid 0 =to < t1 - - - < tNy; = T with step size At = tj1 — t;. Then in this time grid, the probability of
finding an RNN model (3) such that the outputs of the RNN pathwisely approximate the exact solution of the SDE arbitrarily accurate,
is asymptotically 1.

Proof. The proof to this theorem is obtained by combining Theorem 3 and the established pathwise convergence result for
the Euler-Maruyama (EM) scheme to the exact solution to SDE (5). It was proved by Gydngy [35,34] that under the local
Lipschitz condition on b(x), o (x) and (i)-(iii) listed in [34], the EM scheme with uniform step size At satisfies pathwise
error estimate:

sup || X(tj, w) — XEAM(ti, w)|2 < CT(a))A%_e, Ve >0, foralmostallw e 2, (A14)
i=0,-,Nr

where || - || is the Euclidean norm, w € Q2 defines a sample realization of the Wiener process W (t), and X i (ti, ) is the
pathwise approximated solution generated using EM scheme with the same Wiener process realization. ThlS result also can
be restated as: for any w € €2, the above inequality holds in probability 1.

Now, suppose the EM scheme is the open dynamical system (4) as we defined in (6) and we specify the output of the
open dynamical system as y; = h(s;) = h(X(t)) = X(t). Since b(x) and o (x) in SDE (5) are locally Lipschitz, naturally g(-) in
(6) is also locally Lipschitz* for any fixed At > 0. Applying the result in Theorem 3, in particular, estimate (A.12), we know
there exists a stochastic RNN such that

sup  [IXEy (ti, @) — XRwn (tis @) lloo < 8,¥8 > 0,
i=0,-- N1
for any @ € , (£}, (XEy (ti, @), (X Bun (ti )} € K, (A15)

where )A(,%NN(t,-, w) is the path generated by stochastic RNN with any fixed w € Q. Combining (A.14) and (A.15) and then
using the triangle inequality and | f|l2 < v/d|| f|loo, We obtain

sup  [IX(ti, ) — Xgun (i @2 < sup [ X (6, ) — Xy (ti )12

i:0,-~-,NT l:0 --~.NT

+f _sup X8y (i, ) — Xawn (tis @) oo (A16)
Nt

< Cr(w)AT~¢ +Vds,

which is valid for all €, § > 0, almost all w € Q and {é(t,)}
by using estimate (A.13), we obtain

M AXE (tl,a))}l Tos (X By (Eis I N1 e K c RY x R™. As a result,

4 Here we mean the function g(x, y, z) = x — zb(x) + o /zy is locally Lipschitz for fixed z.
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lim lim Pr| inf sup I1X (i, w) — X,@NN(t;, W)|loo <68,V >0
[Kl>+00A=0 | RA(t,w)eo(RNN™4(0)) (£ €R™ X(0,0)eR¢
Tt
= lim lim Pr inf sup [ X (ti, w) — )A(ﬁNN(t,-, 0o <6,
|K|—400 A—0 XA(l’ a))eo(RNNm d(g)) (& )} Nt ERm {XA (t,,(l))}, 2o (X ?NN(tivw)}?goEK
t=1,-

Vs >0
{é(tz)},_o, (X, w)},_o, {Xann (i, w)},_o K] | x Pr[{é(tz)},_o, {XBy i, a))},_o, {(Xaun (i, w)},_o € K]

=| lll)rr_:_ Allm Pl‘[{é(t,)}l_o, {XEM(tla w)},_o’ {XRNN(th a))}z—O eKl=1.

(A17)

This probability can be interpreted as follows. For any w € 2, taking the limit A — 0 and then |K| — +oo (note that
the order is not exchangeable), the probability of ﬁnding a suitable stochastic RNN from RNN™4(¢), which takes sample
discrete white noise {g(t,-)}?’:T and generates outputs {XRNN(tl)} o that accurately approximate (error < é holds for any

8 > 0) the exact solution {X(t,~)}i=0 in all time grid 0 <ty --- <tn;, tends to 1. This concludes the proof of Theorem 4. O

As a final note, we point out that our UAT results are established based on pathwise convergence, while what SINN
seeks is weak convergence, i.e. convergence in terms of statistical moments. While the UAT convergence results do not
imply weak convergence, they do provide a plausible hint that weak convergence can be numerically achieved. To obtain
a UAT for weak or strong convergence, a prerequisite that needs further examination is the ergodicity condition of the
stochastic RNN model [51]. This is beyond the scope of the present paper and awaits future investigation.
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