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Abstract. Despite the growing interest in applying generative adversarial networks (GANs) in complex scientific
applications, training GANs on scientific data remains a challenging problem from both theoretical
and practical standpoints. One reason for this is that the generator is unable to accurately capture
the underlying complex manifold structure of the real scientific data using only gradients from the
discriminator. In this paper, we address this challenge using a novel approach that exploits the
unique geometry of the scientific data to improve the quality of the generated data. Specifically,
we improve the training of the GAN using an additional term referred to as a manifold regularizer
which encourages the generator to respect the unique geometry of the scientific data manifold and
generate high quality data. We theoretically prove that the addition of this regularization term
leads to improved performance for different classes of GANs including deep convolutional GAN and
Wasserstein GAN. Finally, we carry out performance comparisons on diverse datasets: synthetic
data (Gaussian mixture), natural image data (celebrity face images (CelebA)), and scientific experi-
mental data (scanning electron microscopy images of organic crystalline materials). In most of these
applications, we find that the proposed manifold regularization-based approach helps in avoiding
mode collapse, produces stable training, and leads to significant gains in terms of geometry score
compared to its unregularized counterparts.
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1. Introduction. Machine learning (ML) provides incredible opportunities in a wide range
of scientific applications, such as material science [14], cosmology [33], and medicine [7]. One
application of ML that has emerged in recent years is the use of generative adversarial networks
(GANs) [10] to produce synthetic data that emulates real scientific data [42, 6, 41, 43, 30]. The
core of the training of GANs is a min-max game in which two neural networks (generator and
discriminator) compete with each other: the generator tries to trick the discriminator/classifier
into classifying its generated synthetic/fake data as true. These synthetic samples then can be
used to overcome the limitations caused by small datasets and limited amount of annotated
samples [8], data quality enhancement [20], data analysis and model introspection [23], etc.

Despite the interest that GANs have drawn, the task of training GANs (on both scien-
tific and natural data) remains a challenging problem, both from theoretical and practical
standpoints. Specifically, GAN training suffers from the following major problems: (a) mode-
collapse: the generator collapses which results in a poor generalization, i.e., producing limited
varieties of samples; (b) lack of equilibrium : the min-max game may not have any equilib-
rium; and (c) instability : even when the equilibrium exists, model parameters may oscillate,
destabilize, and never converge to an equilibrium. These failure modes result in generation of
poor quality data especially in scientific applications.

It was shown in [1] that the real data lies in a submanifold of the Euclidean space, and
the generated data and the real data lying in disjoint manifolds is one of the reasons for the
aforementioned problems in the training of GANs. Scientific data, in particular, need not
lie on simple smooth manifolds like most natural images. As a result, most commonly made
assumptions about images are likely to fail when it comes to scientific datasets. Consequently,
it is imperative to incorporate intrinsic manifold information in order to accurately capture
the complex geometries of scientific datasets. Motivated by this insight, this paper takes some
initial steps towards designing GAN architectures which can exploit the unique geometry of
the real data, such as its manifold structure, to overcome the aforementioned problems. The
basic idea is simple yet powerful: in addition to the gradient information provided by the
discriminator, we want the generator to exploit other geometric information present in the
real data, such as the manifold information. Taking advantage of this additional information,
we will have more stable gradients while training our generator. Specifically, we propose
a novel method for incorporating geometry and regularizing the GAN training by adding an
additional regularization term---called the manifold regularizer---with generator updates. The
proposed manifold regularizer forces the generator to respect the unique geometry of the real
data manifold. We prove theoretically that the addition of this regularization term in any
class of GANs (including deep convolutional GAN (DCGAN) and Wasserstein GAN) leads to
improved performance. In practice, the manifold regularized GANs (MR-GANs) are simple
to implement and result in improved quality of generated data in a wide range of computer
vision and scientific applications compared to their unregularized counterparts.
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1.1. Related work. In the literature, the unstable behavior of GAN training is relatively
understudied, with few notable exceptions like the remarkable work in [1]. The authors provide
important insights into mode collapse and instability in GAN training. They show that these
issues arise when the supports of the generated distribution and the true distribution are
disjoint. The authors in [3], on the other hand, explore questions relating to the sample
complexity and expressiveness of the GAN architecture and their relation to the existence of
an equilibrium. Given that an equilibrium exists, the convergence of GANs with an update
procedure using gradient descent was studied in [31]. The estimation and generalization
errors of GAN training was considered in [13]. The authors in [12] investigated the minimax
estimation problem of the neural net distance and justified the empirical neural net distance
as a good approximation of the true neural net distance for training GANs in practice.

From a practical perspective, various architectures and training objectives have been
proposed to address GAN training challenges [2, 36, 16]. The authors in [22] improved
the generative moment matching network and used maximum mean discrepancy with ad-
versarially learned kernels to have better hypothesis testing power. Several optimization
heuristics and architectures have also been proposed to address challenges such as mode col-
lapse [40, 27, 37, 5]. Methods for regularizing the discriminator for better stability were devised
in [38, 26, 31, 18, 28]. The authors in [38] presented a stabilizing regularizer that is based
on a gradient norm, where the gradient is calculated with respect to the data samples. The
authors in [28] proposed a weight normalization technique called spectral normalization to
stabilize the training of the discriminator. Other regularization approaches to improve GAN
training can be found in [21]. On the other hand, the authors of [26, 31] designed regularizers
based on the norm of a gradient calculated with respect to the parameters. The authors in
[18] applied a Jacobian regularizer to the discriminator of a feature-matching GAN to im-
prove the performance of GAN-based semisupervised learning. In contrast to regularizing the
discriminator, this paper proposes to regularize the generator for improving GAN training.
Finally, the authors in [35] proposed replacing the original GAN loss with a different loss
function matching the statistical mean and radius of the spheres approximating the geometry
of the real data and generated data. However, characterizing the geometric information of the
data only by the mean and the radius of the sphere representing the data loses a significant
amount of geometrical information. The construction in [35] was purely heuristic and did not
have any theoretical backing. On the contrary, we directly exploit the undistorted manifold
information for regularizing the training of the generator rather than treating it as a loss
function and theoretically prove that the proposed approach yields improved performance.

On the application front, there is a surge of interest in exploiting GANs in a wide range
of scientific applications. The authors in [42] and [24] applied GANs for the microstructural
materials design and analysis problem. Application of GANs to the high energy particle
physics problem was explored by [6]. In [41], the authors trained a GAN model to generate
images resembling the iconic Hubble Space Telescope Extreme Deep Field offering a new
data-driven approach for producing realistic mock surveys and synthetic data at scale, in
astrophysics. A survey of application of GAN in healthcare was provided in [43].

1.2. Contributions. The main contributions of the paper are summarized as follows:
\bullet We propose a novel method for regularizing GAN training by incorporating an addi-

tional regularization term that respects the unique geometry of the real data manifold.D
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\bullet We prove that the proposed training objective function can be realized with a suffi-
ciently small bias using deep neural networks (DNNs).

\bullet We show that the equilibrium of the min-max game for the proposed MR-GANs exists
and can be attained by DNNs in practice.

\bullet We prove that the training of the proposed MR-GAN is exponentially stable around
the equilibrium.

\bullet We show empirically in a wide range of computer vision and scientific applications
that MR-GANs are able to avoid model collapse and significantly outperform several
widely used baseline GAN architectures.

Finally, manifold regularization in MR-GAN is extremely simple in that it can be implemented
using a few lines of Python code and added to any existing GAN implementation to improve
its performance (see Appendix F).

2. Preliminaries. In this section, we give a brief introduction of GANs and manifold
learning. We will also briefly discuss how manifold learning principles can be exploited to
have a better GAN formulation.

2.1. Introduction of GANs. Throughout the paper, we use d for the dimension of samples,
p for the number of parameters in generator/discriminator, and m for the number of samples.
Let \{ Gu, u \in \scrU \} , with \scrU \in Rp, denote the class of generators, where Gu is a function---
which is often a neural network in practice---from Rl \rightarrow Rd indexed by u that denotes the
parameters of the generators. Here \scrU denotes the possible ranges of the parameters, and
without loss of generality we assume that \scrU is a subset of the unit ball. The generator Gu
defines a distribution \scrD Gu as follows: generate h from an l-dimensional spherical Gaussian
distribution, apply Gu on h, and generate a sample x = Gu(h) from the distribution \scrD Gu . We
drop the subscript u in \scrD Gu when it is clear from the context. Let \{ Dv, v \in \scrV \} denote the
class of discriminators, where Dv is a function from Rd to [0, 1] and v is the parameter of Dv.
Training the discriminator consists of making its output a high value (preferably 1) when x
is sampled from the distribution \scrD real and a low value (preferably 0) when x is sampled from
the synthetic distribution \scrD Gu . On the contrary, training the generator consists of making its
synthetic distribution ``similar"" to \scrD real in the sense that the discriminator's output tends to
indicate that the two distributions are close.

The original GAN training problem [10] is formulated as the following min-max game
between the generator and the discriminator:

min
u\in \scrU 

max
v\in \scrV 

E
x\sim \scrD real

[logDv(x)] + E
y\sim \scrD Gu

[log(1 - Dv(y))].

Intuitively, this forces the discriminator Dv to give high values Dv(x) to the real samples
and low values Dv(y) to the generated examples. The log function is used because of its inter-
pretation as the likelihood. However, in practice this formulation may not provide sufficient
gradient for the generator to learn well, as the term [log(1 - Dv(y))] may saturate early during
the training process. Therefore, we consider a more general formulation by using a monotone
function \phi : [0, 1] \rightarrow R, which yields the following objective1:

1Note that this form of the objective function has connections with integral probability metrics-based
training of GANs [29].D
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min
u\in \scrU 

max
v\in \scrV 

E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi (Dv(x)) + \phi (1 - Dv(y))].

We call the function \phi the measuring function. It should be concave so that when \scrD real and
\scrD Gu are the same distributions, the best strategy for the discriminator is simply to output 1/2
and the optimal value is 2\phi (1/2). In later proofs, we require \phi to be bounded and Lipschitz. In
practice, training often uses \phi (x) = log(\delta +(1 - \delta )x) (which takes values in [log \delta , 0] and is 1/\delta -
Lipschitz), and the recently proposed Wasserstein GAN [2] objective function uses \phi (x) = x
(which takes values in [0, 1] (by definition) and is 1-Lipschitz).

2.2. Manifold learning. In several ML applications, the data lies on or close to the sur-
face of one or more low-dimensional manifolds embedded in the high-dimensional ambient
space. Attempting to uncover this manifold structure in a dataset is referred to as manifold
learning [4].

Given a set X of data (or feature) vectors, a graph \scrG = \{ X,\Omega \} is used to characterize
the manifold-based relationships among these vectors. Here, \Omega = [wij ] is a matrix containing
the weights over edges connecting graph nodes and is referred to as the affinity matrix. The
weight, wij , on an edge connecting two nodes, xi and xj , provides a measure of closeness
between them. These weights govern various characteristics of a graph, including structure,
connectivity, and compactness. Graph-based relationships are usually characterized using the
Euclidean distance based Gaussian heat kernel given by

wij = exp

\biggl( 
 - \| xi  - xj\| 2

\rho 

\biggr) 
,(2.1)

where \rho is the kernel scale parameter. One can also use

wij =

\Biggl\{ 
exp

\Bigl( 
 - \| \bfx i - \bfx j\| 2

\rho 

\Bigr) 
, e(xi,xj) = 1,

0 otherwise,
(2.2)

where the function e(xi,xj) indicates whether xi lies near the predefined neighborhood of
xj . As an example, given input \scrG = \{ X,\Omega \} , manifold learning inspired learning approaches
attempt to constrain the output, z = f(X),2 to preserve the structure (compactness) in X
(defined by the affinity weight matrix \Omega ). This is usually achieved by employing a regu-
larization term along with a task-specific loss function. A case of particular recent interest
in manifold regularized learning is when the support of the data is a compact submanifold
\scrM \in Rd. In that case, one natural choice for the regularizer is

\int 
x\in \scrM \| \nabla \scrM z\| 2dPX(x), where

\nabla \scrM is the gradient of z along the manifold \scrM and the integral is taken over the marginal
distribution. In most applications, the marginal PX is not known. Therefore, we need to get
empirical estimates of PX and the regularizer. The term

\int 
x\in \scrM \| \nabla \scrM z\| 2dPX(x) may be ap-

proximated on the basis of data samples using the graph Laplacian L associated to the data,
which yields an estimate 1

m2Tr(z
TLz), where z = [z1, z2, . . . , zm]. This estimate simplifies to\sum 

i,j \| zi  - zj\| 2wij as L = D - \Omega , where D is the diagonal matrix with Dii =
\sum 

j wij .

2Here the model f(\cdot ) and corresponding output \bfz depend on the task of interest, e.g., supervised learning
or generative modeling.D
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3. MR-GAN.

3.1. Geometry-aware GANs. A reasonable approach for GANs would be to use the con-
ventional manifold regularizer Tr(yTLy) at the generator to force the generated data y to
respect the geometry of the real data X. However, our initial experiments suggested that
the conventional regularizer does not perform well in practice. In fact, with the conventional
manifold regularizer at the generator, our theoretical analysis also indicates that the equi-
librium cannot be guaranteed. Therefore, we propose a novel regularizer at the generator
to force the generated data to respect the geometry of the real data. Furthermore, for this
new formulation, we theoretically show that some of the issues with GAN training can be
overcome.

3.2. Proposed GAN architecture. Motivated by the considerations above, in this section
we propose a novel regularization penalty for the generator updates, which employs a term
based on the gradient of the embedding function \psi in the intrinsic manifold, to incorporate the
fact that the real data is indeed extremely concentrated on a low-dimensional manifold [32].
The embedding function \psi serves two purposes. First, it extracts useful information from the
raw data for better inference. Second, it is a dimension-reduction mapping, which can prevent
overfitting during training. As we will show later, the regularization term does not change
the parameter values at the equilibrium point, and it further enhances the local stability of
the optimization procedure. Specifically, we propose the following regularized objective of
MR-GAN3 as follows:

min
u\in \scrU 

max
v\in \scrV 

E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi (Dv(x)) + \phi (1 - Dv(y))

+ \lambda 

\int 
x\sim \scrM 

\| \nabla \scrM (\psi (y) - \psi (x))\| 2dPx],(3.1)

where \psi is an embedding function which takes the form \psi : x\rightarrow \~x, and \~x lies within a manifold
embedded in Rd. In our experiments, we use either an autoencoder or the identity mapping as
our embedding function \psi . Essentially, the regularizer is the squared magnitude of the gradient
of the embedding function in the intrinsic manifold, with respect to the difference between
the real and generated data. When the support of distribution \scrD real lies in the manifold \scrM ,
the objective (3.1) becomes the following because we have an expectation operator over the
distribution of the real data:

min
u\in \scrU 

max
v\in \scrV 

E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi (Dv(x)) + \phi (1 - Dv(y))(3.2)

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2].

We show later that the proposed MR-GAN architecture enjoys provable performance guar-
antees.

3.3. Manifold regularized training. We provide intuitions that the objective function of
the proposed MR-GAN helps in aligning the manifold of the generated data with the manifold
of the real data. Let us denote the objective function of MR-GAN as

3Please see (3.7) for an empirical version of the MR-GAN formulation.D
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F (u, v) = E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi (Dv(x)) + \phi (1 - Dv(y))

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2].(3.3)

Regularized gradients. Note that the gradient for the generator of MR-GAN is given
by

\partial F (u, v)

\partial u
= E

x\sim \scrD real

\int 
\scrY 
\nabla u(pu(y)\phi (1 - Dv(y))

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2)dy,(3.4)

where \scrY is the domain of the generated samples and pu is the probability density function
of the distribution \scrD Gu for the generated samples and is dependent on u. The first term

Ex\sim \scrD real

\int 
\scrY \nabla upu(y)\phi (1 - Dv(y, \~x))dy follows the geometric properties of the measuring func-

tion \phi . When the manifold \scrM \scrY (where the support of \scrY lies) and the manifold \scrM are far
away, \| \nabla \scrM (\psi (y)  - \psi (x))\| 2 is very large. This should strongly drive \scrM \scrY to \scrM . When \scrM \scrY 
and \scrM become closer, \| \nabla \scrM (\psi (y)  - \psi (x))\| 2 is smaller. This resembles L2 optimization in
general, where the loss function offers an adaptive gradient toward the optima. The gradient
\nabla \scrM provides a multimodal weighting, and the modes of \scrD real will thus drive the gradient in
training the generator.

Bounded objective function. Additionally, recalling the objective function (3.1), the
regularizer plays a role in the training of the generator, which has the form

min
u\in \scrU 

E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi (1 - Dv(y)) + \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2].(3.5)

If the embedding function \psi is L\psi -Lipschitz smooth on the manifold (which we assume in
what follows), we have the following inequality:

\| \nabla \scrM (\psi (y) - \psi (x))\| 2 \leq L2
\psi \| y  - x\| 2,(3.6)

and further we can obtain

min
u\in \scrU 

E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi (1 - Dv(y))+\lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2

\leq min
u\in \scrU 

E
x\sim \scrD real

E
y\sim \scrD Gu

\phi (1 - Dv(y)) + \lambda L2
\psi \| y  - x\| 2].

The regularization term \lambda L2
\psi \| y  - x\| 2 imposes the similarity between the generated and the

real data, and thus our method penalizes dissimilarity between the generated and the real
data. Essentially, our method finds the generated data closer to the real one and incorporates
the geometric information of the real data into the data being generated. Later we show that
y does not overfit to x, and y generalizes well with the proposed GAN architecture.

Training practices. The objective function (3.1) (or (3.3)) assumes that we have an
infinite number of samples from \scrD real to estimate the value Ex\sim \scrD real

[\phi (Dv(x, \~x))]. In practice,
the objective function F (u, v) is approximated with a finite number of training samples, which
is denoted by \^F (u, v) and is expressed as
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\^F (u, v) =
1

m

m\sum 
i=1

\phi (Dv(xi)) + \phi (1 - Dv(yi))

+
\lambda 

m2

m\sum 
i=1,j=1

\| \psi (yi) - \psi (xi) - \psi (yj) + \psi (xj)\| 2wij .(3.7)

With finite training examples x1, . . . , xm \sim \scrD real, one uses \lambda 
m

\sum m
i=1 \phi (Dv(xi)) in practice

to estimate the quantity Ex\sim \scrD real
[\phi (Dv(x))]. Similarly, one can use an empirical version to

estimate Ex\sim \scrD real
Ey\sim \scrD Gu

\phi (1  - Dv(y)). Based on well-known manifold learning results, the
regularization term \| \nabla \scrM (\psi (y) - \psi (x))\| 2 can be approximated as

1

m2

m\sum 
i=1,j=1

\| \psi (yi) - \psi (xi) - \psi (yj) + \psi (xj)\| 2wij .(3.8)

We use (2.1) in our implementation to estimate wij applied to the encoded data obtained
using the embedding function, e.g., autoencoder or identity function.

Note that the first term on the right-hand side of (3.7) is the conventional objective
function to train a GAN. The second term is associated with two different paired-up batch
samples and training outcomes.

Here, using the definition of wij , we observe that if the data samples xi and xj are
from different submanifolds, it encourages the output yi and yj to lie in different manifolds.
Additionally, if xi and xj are from the same submanifold, it encourages the output yi and
yj to lie in the same manifold. The regularizer helps in exploiting the information regarding
inter- and intrarelations of the modes of the distribution of the real data and couples xi and
yi in a manifold learning fashion.

4. Theoretical analysis. This section provides provability results and properties of MR-
GAN.4 We first discuss the assumptions that we make in our analysis, which are widely used
in the analysis of GANs (or DNNs) [39, 3, 31].

4.1. Assumptions.

Assumption 1. We make the following assumptions of Gu, Dv, and \psi .
(a) \forall u, u\prime \in \scrU and any input h, \| Gu(h) - Gu\prime (h)\| \leq L\| u - u\prime \| .
(b) \forall u \in \scrU and any input h and h\prime , \| Gu(h) - Gu(h

\prime )\| \leq L\prime \| h - h\prime \| .
(c) The embedding function \psi is L\psi -Lipschitz smooth on manifold \scrM , i.e., \| \nabla \scrM \psi (y)  - 

\nabla \scrM \psi (x)\| 2 \leq L2
\psi \| y  - x\| 2.

(d) \scrD Gu\ast \sim \scrD real and Dv\ast = 0 \forall x \in supp(\scrD real).
(e) \exists \epsilon G > 0 such that \forall u \in B\epsilon G(u

\ast ) supp(\scrD Gu) = supp(\scrD real), where B\epsilon (\cdot ) denotes the
l2-ball of radius \epsilon .

Assumption 1(a) means that Gu is L-Lipschitz with respect to its parameters, and we
assume so for Dv as well. Note that this is distinct from the assumption that functions
Gu, Dv are Lipschitz (which we introduce next) which focuses on the change in function value
when we change x while keeping u, v fixed. Assumption 1(b) means that Gu is L\prime -Lipschitz

4The proofs are provided in the appendix.D
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with respect to its input, and we assume so for Dv as well. It essentially means that a
small variation in the input to the generator/discriminator does not cause a large variation
in the output of the generator/discriminator. Assumption 1(c) assumes the smoothness of
the embedding function on manifold \scrM . The embedding function in practice could be an
auto-encoder, which also satisfies this condition. Assumption 1(d) and Assumption 1(e) are
``realizability"" and ``same support"" conditions from [31].

Assumption 2. We make the following assumptions about the measure function \phi .
(a) \forall x \in \scrM , \| \nabla \scrM \phi (x)\| \leq M .
(b) The function \phi is bounded in [ - \Delta ,\Delta ] in training.
(c) \forall x, x\prime \in R, \| \phi (x) - \phi (x\prime )\| \leq L\phi \| x - x\prime \| .
(d) \nabla 2

vF (u
\ast , v) evaluated at v\ast is negative definite, and \nabla 2

u\| \nabla vF (u, v
\ast )\| 2 evaluated at u\ast 

is positive definite, where F (\cdot ) is defined in (3.3).

Assumption 2(a) is equivalent to the fact that the function \phi has no geometrically step-
sized property in function values. The training of the original GAN and Wasserstein GAN
uses \phi (x) = log(\delta + (1 - \delta )x) and \phi (x) = x, respectively. Also, log(x) and x are not bounded
by nature when x \in R. However, since \phi takes input from [0, 1], Assumption 2(b) is valid.
Assumption 2(c) implies that the measure function \phi is L\phi -Lipschitz continuous. Assump-
tion 2(d) is the ``strong curvature"" condition from [31].

4.2. Analytical results. Generalization. Since we can only access (and optimize) the
empirical distance between the distributions in practice, it becomes important to ensure that
this empirical distance is close to the true distance for the generated and the real distributions.
As the training algorithm is supposed to run in polynomial time, one has to estimate the true
distance using only a polynomial number of samples [3]. Indeed, it is shown in [3] that if we
do not have enough samples for training the GAN, (1) the distance between the empirical
distributions can be close to the maximum possible distance even if the samples are drawn
from the same distribution and (2) even if the generator happens to find the real distribution,
the distance between the empirical distributions can still be large and the generator has no
idea that it has succeeded.

Thus, it is crucial to answer the following question: can MR-GAN approximate the
true distance between the generated and the real distributions with a reasonable number of
samples?

Theorem 4.1. Let \^\scrD real and \^\scrD Gu be empirical versions with at least m samples each for
the MR-GAN. Then, there exists a universal constant C such that when

m \geq 
Cp log(LL\phi p/\epsilon )(\Delta + 4\lambda M2)2

\epsilon 2
,

we have, with probability at least 1 - exp(1 - p),

| F (u, v) - \^F (u, v)| \leq \epsilon .(4.1)

Proof. See Appendix B.

The above theorem shows that if a sufficient amount of training data is available, the dis-
tance between the empirical objective function \^F (u, v) and the population objective functionD
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1206 LI ET AL.

F (u, v) is sufficiently small. Although this does not directly imply the ability of the GAN to
model the true data generating distribution, this result is important as it guarantees that the
analysis of MR-GAN conducted based on the population objective function can be well gen-
eralized to the empirical form. Thus, it ensures that the theoretical guarantees of MR-GAN
can be well satisfied in practice.

Existence of equilibrium. The training of GANs has the goal to end up with an equi-
librium for the min-max game between the generator and the discriminator. That is, the
discriminator outputs 1/2 for both the cases where the input is the real data or the generated
data, which essentially means that the discriminator guesses randomly and cannot distinguish
between real and generated data. On the other hand, the generator cannot exploit the output
of the discriminator by back-propagation and cannot update itself and improve the quality
of the generated data anymore. Therefore, ensuring the existence of the equilibrium of a cer-
tain GAN architecture is crucial before training process starts. It is important that we have
provable results showing the existence of equilibrium for the proposed MR-GAN. Interest-
ingly, if we change the regularizer in the objective function (3.2) from \| \nabla \scrM (\psi (yi) - \psi (xi))\| 2
to \| \nabla \scrM \psi (yi)\| 2, which is used in conventional manifold learning problems, our analysis in-
dicates that the equilibrium cannot be guaranteed. To show the existence of equilibrium
for the proposed MR-GAN architecture, we use the following definition of the \epsilon -approximate
equilibrium.

Equilibrium ([3]). A pair of mixed strategies (\scrS u,\scrS v) is an \epsilon -approximate equilibrium
if, for some value V ,

\forall v \in \scrV , E
u\sim \scrS u

F (u, v) \leq V + \epsilon ;(4.2)

\forall u \in \scrU , E
v\sim \scrS v

F (u, v) \geq V  - \epsilon .(4.3)

If the strategies \scrS u,\scrS v are pure strategies, then this pair is called an \epsilon -approximate pure
equilibrium.

Theorem 4.2. If the generator can approximate any point mass by Eh\sim \scrD h
[\| Gu(h) - x\| ] \leq \epsilon ,

then there exists a universal constant C > 0 such that for any \epsilon , there exist T =
C\Delta 2p \mathrm{l}\mathrm{o}\mathrm{g}(LL\prime L\phi p/\epsilon )

\epsilon 2
generators Gu1, . . . , GuT . Let \scrS u be a uniform distribution on ui and D be

a discriminator that outputs 1/2; then (\scrS u, D) is an \epsilon -approximate equilibrium for MR-GAN.

Proof. See Appendix C.

Note that in the above result, the generator uses mixed strategies, which means that
the generated data comes from a mixture of generators. One can add an output layer of
ReLU activation functions to the generators to construct an integrated neural network of the
generator, and the output is uniformly distributed over the results from the T generators in
the theorem. One possible construction can be found in Lemma 4 in [3].

Stable training. From both the theoretical and the practical perspectives, the training
of GANs remains a challenging problem, one of which is the issue of instability in optimizing
GANs. It is presented in [31] that the training dynamics in ``(stochastic) gradient descent""
form of GAN optimization can be well analyzed by the method of nonlinear differential equa-
tions (ODEs), thus providing a characterization of the ``stability"" of GAN training. It isD
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important to show that MR-GAN also falls into this general framework to characterize the
training dynamics and to show that the proposed MR-GAN can stabilize the training process.

Assuming that the generator and discriminator networks are parameterized by the sets
of parameters, u and v, respectively, we investigate the problem of analyzing stability of
approaches based on stochastic gradient descent to solve (3.2). That is, we take simultaneous
gradient steps in both u and v.

All our conditions are imposed on both (u\ast , v\ast ) and all equilibrium points in a small
neighborhood around it. Given the above consideration, our focus is on proving the stability
of the dynamical system around equilibrium points, i.e., points \theta \ast for which h(\theta \ast ) = 0, h(\theta ) =
\nabla F (\theta ). We now discuss conditions under which we can guarantee exponential stability, which
is originally defined for a dynamic system as follows.

Stability ([15]). Consider a system consisting of variables \theta \in Rn whose time derivative
is defined by h(\theta ) as

h(\theta ) = \nabla F (\theta ).(4.4)

Let \theta (t) denote the state of the system at some time t. Then an equilibrium point of the
system in (4.4) is

\bullet stable if for each \epsilon > 0, there is \delta = \delta (\epsilon ) > 0 such that

\| \theta (0)\| \leq \delta , \| \theta (t)\| \leq \epsilon \forall t \geq 0;(4.5)

\bullet asymptotically stable if it is stable and \delta > 0 can be chosen such that

\| \theta (0)\| \leq \delta , lim
t\rightarrow \infty 

\theta (t) = 0;(4.6)

\bullet exponentially stable if it is asymptotically stable and \delta , k, \lambda > 0 can be chosen such
that

\| \theta (0)\| \leq \delta , \| \theta (t)\| \leq k\| \theta (0)\| exp( - \lambda t).(4.7)

Specifically, we invoke the well-known linearization theorem [15] analyzed for GANs train-
ing dynamics [31], which states that if the Jacobian of the dynamical system J = \partial h(\theta )/\partial \theta | \theta =
\theta \ast evaluated at an equilibrium point is Hurwitz (which has all strictly negative eigenvalues,
Re(\lambda i(J)) < 0, for all i = 1, . . . , n), then the optimization of the GAN system training will
converge to \theta \ast for some nonempty region around \theta \ast at an exponential rate. This means that
the system is locally asymptotically stable, or more precisely, locally exponentially stable.
Thus, an important contribution here is a proof of the following fact: under some conditions,
the Jacobian of the dynamical system given by the proposed GAN update is a Hurwitz matrix
at equilibrium. For simplicity, we denote the equilibrium point of the min-max game corre-
sponding to GAN training by (u\ast , v\ast ), which are the parameter sets of the discriminator and
the generator at the equilibrium points. Recall that

F (u, v) = E
x\sim \scrD real

E
y\sim \scrD Gu

[\phi Dv(x) + \phi (1 - Dv(y))

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2].(4.8)
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The gradient steps in both u and v are taken simultaneously, resulting in the following gradient
differential equations:

\.u = \nabla uF (u, v), \.v = \nabla vF (u, v).(4.9)

Theorem 4.3. The dynamical system defined by the MR-GAN objective in (3.2) and the
updates in (4.9) is locally exponentially stable with respect to an equilibrium point (u\ast , v\ast ).

Proof. See Appendix D.

This shows that the proposed MR-GAN is locally exponentially stable. That is, for some
region around an equilibrium of the updates, the gradient updates will converge to this equi-
librium at an exponential rate. As an interesting note, Wasserstein GANs [2] are not even
asymptotically stable [31]. However, adding the manifold regularization term makes them
locally exponentially stable. Different from the analysis in [31] and the proposed GAN train-
ing architecture therein, we can guarantee the existence of the equilibrium around which the
training has stable convergence. However, the analysis in [31] does not guarantee so, as it
only demonstrates convergence if there do exist points that satisfy certain criteria. Thus,
we provide a systematic analysis that proves the existence of the equilibrium and the stable
convergence.

Optimal embedding function. The function \psi embeds the data into a low-dimensional
subspace, and thus it can prevent overfitting in the training phase. However, to prevent over-
fitting, one can also use a smaller value of the regularizer parameter \lambda and employ \psi (x) = x
to exploit the complete geometric information in the data. Nevertheless, setting \psi (x) = x
is associated with highest computational complexity since no dimension reduction is intro-
duced. Thus, a trade-off between computational complexity for training and the amount of
the exploited geometric information of the data exists. On the other hand, we find in our
experiments that the computational complexity is reasonable when we use \psi (x) = x.

For completion of the theory and to account for the scenarios where low computational
complexity is desperately desired, we study the extreme case where \psi (x) is a 1-dimensional
embedding, i.e., \psi : Rd \rightarrow R.

Since \psi embeds the data into a 1-dimensional subspace, one can imagine that different
choices of the embedding functions can lead to different qualities of the generated data by
MR-GANs. Hence, it is important to find the optimal form of the embedding function \psi . As
the regularized objective only takes effect in the training of the generator, we can write the
joint optimization of finding the best generator and the embedding function \psi in an empirical
fashion as

min
u\in \scrU ,\psi 

1

m

m\sum 
i=1

[\phi (1 - Dv(yi)) + \lambda \| \nabla \scrM (\psi (yi) - \psi (xi))\| 2].(4.10)

We provide the result in the following theorem for such a case.

Theorem 4.4. The optimal one-dimensional embedding function \psi (x) exists and admits the
following representation:

\psi (x) =

m\sum 
i=1

\alpha iK(xi, x),(4.11)

where K : Rd \times Rd \rightarrow R is a Mercer kernel.
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Proof. See Appendix E.

Here, we still need to find the coefficients \alpha i for the finite-dimensional space. A good
method is indicated in [4]. First, one fixes the type of kernel function K and optimizes the
problem (4.10) with respect to \alpha i. Then, the optimal \alpha i can be easily found using simple
first-order derivative methods.

For the embedding function \psi which gives the embedding with a dimension that is higher
than 1, one can use auto-encoders to encode the high-dimensional data into a low-dimensional
subspace.

5. Experiments. We corroborate our theoretical results using synthetic data and real
datasets (both natural and scientific images). We present the performance comparison with
some widely used benchmark GAN architectures.5 We employ the recently proposed geometry
score (GS) metric [17] for assessing the quality of generated samples and detecting various
levels of failure models. GS compares the topological properties of the underlying real data
manifold and the generated one, which provides both qualitative and quantitative means for
evaluation of the results generated by GANs. It was shown in [17] that GS is more expressive
in capturing various failure modes of GANs compared to its conventional counterparts, such
as inception score [40] and Fr\'echet inception distance [11]. A lower value of GS indicates a
better match between the generated data and the real data. Furthermore, both inception score
and Fr\'echet inception distance evaluate how well the real and fake distributions are aligned
in the feature space of the Inception-v3 network that is trained on the ImageNet dataset of
natural images. However, these scores are meaningless in the context of scientific data because
they are not natural images and are completely agnostic to the scientific characteristics of the
data. As a result, GS, which is agnostic to the type of data and compares the topological
characteristics, is a better metric. For completeness, we also report Fr\'echet inception distance
in Appendix A. All the scores are empirically computed over 10,000 samples.

5.1. Synthetic data. To illustrate the impact of the proposed regularization in the train-
ing of the generator, we train the original GAN architecture [10] (using Adam Optimizer with
a learning rate of \gamma = 1e - 3 for both networks) on a 2D mixture of 8 Gaussians evenly arranged
in a circle. However, the circle of the Gaussian mixture lies in a hyperplane in a 3D space. We
show this dataset model in the third subfigure in Figure 1. Therefore, the generator has to
search for 2D submanifolds in a 3D space. The first two subfigures in Figure 1 show the GAN
training results of this model after 10, 000 training iterations. We present the result of the
original GAN in the first subfigure and that of MR-GAN in the second. For MR-GAN, we set
the kernel scale parameter \rho = 128 and the regularization parameter \lambda = 0.5. We can clearly
observe from the comparison in the figure that the original GAN misses one of the 8 modes
and the problem of mode collapse happens. The proposed MR-GAN learns to evenly spread
the probability mass and converges to all the 8 modes without any mode collapse. Second, we
can see from the figure that the data mass generated by the proposed GAN architecture lies
heavily within the mode, and the probability mass resembles the real probability in the third
subfigure very well. However, the data mass generated by the original GAN scatters around
the mode, compared to the result generated by MR-GAN. Furthermore, the results generated

5Additional results are provided in Appendix A.D
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1210 LI ET AL.

Figure 1. MR-GANs avoid the mode collapse problem and generalize better on a toy 2D mixture of Gaussian
dataset in a 3D ambient space. (a) Original GAN. (b) MR-GAN. (c) Ground truth.

Table 1
GS (\times 1e - 3) for the CelebA MR-DCGAN (\rho = 0.5).

\lambda 0.5 0.2 0.1 0

GS \downarrow 44.5 \pm 8.4 \bfthree \bfseven .\bffive \pm \bfeight .\bffour 38.1 \pm 8.6 48.9 \pm 6.2

by the original GAN have a GS of 0.909, and the results generated by the proposed MR-GAN
architecture have a GS of 0.442, which is an improvement of 51.4\%.

5.2. Natural image dataset. In this section, we compare the performance of MR-GANs
on a popular computer vision application with natural images---celebrity face generation.

In this experiment, we use the CelebA dataset [25], which is composed of 202, 599 images
of celebrity faces. We trained a manifold regularized DCGAN (MR-DCGAN) [37] using
90\% of the images from the CelebA dataset. As in the DCGAN case, we rescale the data
to lie in the range [ - 1, 1]. We use the same architecture as the DCGAN implementation in
the discriminator and generator networks. We also use the Adam Optimizer with a learning
rate of \gamma = 2e - 4 for both networks. For the embedding function \psi , we use a convolutional
autoencoder that embeds the training set of the CelebA dataset into a 100-dimensional latent
space.

We train the network with different values of \lambda , \rho as explained earlier and report the quality
of each GAN in Table 1. These experiments are performed over 5 independent runs. We see
that adding the proposed manifold regularization significantly improves the performance of
the DCGAN (shown with \lambda = 0.0), leading to a GS that is lower by about 23\%. Samples
from the MR-DCGAN are shown in Figure 2(a).

5.3. Scientific dataset. In this experiment, we consider a scientific application, where
the GAN is exploited to generate synthetic scanning electron microscopy (SEM) images of
crystalline organic materials.

Application. SEM is an important analytical tool for nano-, meso-, and macro-scale
characterization of materials that has been frequently employed in a variety of fields, including
chemistry, material science, biology, and physics [9].

The SEM image dataset used in this work contains 59,690 images from 30 classes. Each
class is composed of SEM images of 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) crystalline
samples produced with various synthesis reaction conditions.

Implementation details. We trained a MR-DCGAN using 90\% (47,706 out of 59,690)
of images from the whole SEM image dataset. We follow the setup introduced in section 5.2:
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(a) MR-DCGAN generated
celebrity images

(b) Real SEM images (c) MR-DCGAN generated
SEM images

Figure 2. Image quality comparison for (a) CelebA and (b), (c) material science application.

Table 2
GS (\times 1e - 3) for the SEM MR-DCGAN (\rho = 128).

\lambda 0.005 0.01 0.02 0.1 0

GS \downarrow 55.2 \pm 10.6 \bffour \bftwo .\bfzero \pm \bfnine .\bffour 62.0 \pm 10.6 61.0 \pm 5.6 144 \pm 3.6

Table 3
GS (\times 1e - 3) for the SEM MR-DCGAN (\rho = 1280).

\lambda 0.005 0.01 0.02 0.1 0

GS \downarrow 116 \pm 26.4 98.6 \pm 11.5 \bfseven \bfeight .\bftwo \pm \bfone \bfzero .\bfeight 129 \pm 23.3 144 \pm 3.6

the data is again rescaled to lie in the range [ - 1, 1]. The discriminator and generator network
architectures are the same as in the DCGAN implementation. We use the Adam Optimizer
with a learning rate of \gamma = 3e - 4 for both networks. The embedding function \psi is the pixels
of SEM images, which belong to a 64 \times 64\times 1 = 4096-dimensional pixel space.

Results and discussion. We train the networks with two \rho values (128 and 1280).
For both of them, we examine different values of \lambda and report the GAN quality in Table 2
and Table 3. These experiments are performed over 5 independent runs. We observe that
the MR-DCGAN can significantly outperform the baseline DCGAN (\lambda = 0), with a best-case
GS improvement of \sim 70\% when \rho = 128 and \sim 45\% when \rho = 1280. This corroborates our
hypothesis that by incorporating intrinsic manifold information in order to accurately capture
the complex geometries of scientific datasets will results in significant gains. Sample results
from the MR-DCGAN are shown in Figure 2(b) and (c).

6. Conclusion. We studied the problem of training GANs. We proposed a manifold reg-
ularization method to force the generator to respect the unique manifold geometry of the real
data in order to generate high quality data. Furthermore, we theoretically proved that the
incorporation of this regularization term in any class of GANs leads to improved performance.
We empirically showed that by incorporating intrinsic manifold information in order to accu-
rately capture the complex geometries, the proposed manifold regularization helps in avoiding
mode collapse and leads to stable training on both natural and scientific datasets. There are
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still many interesting questions that remain to be explored in the future such as establish-
ing the global convergence properties of GAN training. It will also be interesting to explore
the connection between the proposed method and the recently proposed Jacobian clamping
method [34]. Other cases where both the discriminator and the generator are regularized
or there is noise present in the training data and further experiments with state-of-the-art
GAN architectures may also be interesting to investigate. Finally, application of MR-GAN
on other scientific applications is expected to produce similar gains and is a worthwhile future
direction.

Appendix A. Additional results.

A.1. MNIST dataset. We also test our approach on the MNIST dataset [19] of hand-
written digits. We compare the proposed GAN architecture based on the recently proposed
model, i.e., Wasserstein GAN (WGAN) [2]. We use the RMSProp Optimizer with a learning
rate of \gamma = 1e  - 4 for both networks. In the following tables, we quantify the performance
in terms of the GS for the proposed MR-WGAN architecture with different values of kernel
scale parameter \rho and with different values of regularization parameter \lambda after 300K training
iterations.

First, we set the kernel scale parameter \rho to 6.4 and vary the value of the regularization
parameter \lambda from 0.05 to 0.4, as shown in Table 4. Note that WGAN yields GS of 0.414,
which is shown with \lambda = 0. When the value of \lambda is small, we observe the improvement in GS
for manifold regularized (MR-WGAN) compared to the results of WGAN. When \lambda = 0.2, the
proposed MR-WGAN has GS = 0.384, which provides an improvement of 7.25\% in GS. We
also provide various GS results when \rho = 10 in Table 5. When \lambda is small, we again observe
improvement. When \lambda = 0.01, we have the best result, and the GS of the results generated
by MR-GAN is 0.372, which is an improvement of 10.14\%.

In Figure 3, we present the result for the WGAN and the proposed MR-WGAN for the
MNIST dataset. The results are obtained after 10,000 training iterations. We can see that
the proposed GAN architecture achieves better results.

We also report the inception score and Fr\'echet inception distance (FID) for the generated
results for different architectures in Table 6. The MR-WGAN model used in the table is
the one that generated the best GS in previous experiments, i.e., \rho = 10 and \gamma = 0.01. We
can observe from the table that when our proposed manifold regularizer is employed to the
WGAN architecture, the performance in terms of either inception score or FID is improved.

Table 4
GS for the MNIST MR-WGAN (\rho = 6.4).

\lambda 0.05 0.1 0.2 0.3 0.4 0
GS 0.405 0.403 \bfzero .\bfthree \bfeight \bffour 0.444 0.441 0.414

Table 5
GS for the MNIST MR-WGAN (\rho = 10).

\lambda 0.005 0.01 0.02 0.1 0.2 0
GS 0.382 \bfzero .\bfthree \bfseven \bftwo 0.379 0.404 0.506 0.414
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(a) Randomly generated digits from the WGAN (b) Randomly generated digits from the MR-GAN

Figure 3. Performance comparison for digits generation.

Table 6
Inception score and FID.

WGAN MR-WGAN

Inception score 2.02 2.14

FID 67.88 59.69

Table 7
GS (\times 1e - 3) and FID score for the CelebA MR-DCGAN (\rho = 0.5).

\lambda 0.5 0.2 0.1 0
GS \downarrow 44.5 \pm 8.4 \bfthree \bfseven .\bffive \pm \bfeight .\bffour 38.1 \pm 8.6 48.9 \pm 6.2
FID \downarrow 51.3 \pm 3.3 \bffive \bfzero .\bffive \pm \bfone .\bfthree 54.9 \pm 3.4 51.0 \pm 3.7

Specifically, the inception score increases from 2.02 to 2.14, and the FID decreases from 67.88
to 59.69.

A.2. CelebA dataset. In Table 7, we report the GS scores and the FID scores averaged
over 5 independent experimental runs. As can be seen from the table, the manifold regularizer
improves the performance in terms of both of these metrics.

A.3. SEM dataset. For the scientific application, we calculate the FID-like score for the
real and generated images using a trainedWide Resnet for a relevant classification problem (see
[44] for more details) with high accuracy (92.3\%). Specifically, the 64-dimensional last-pooling
layer of the 30-class classification model is used to capture the features of input images. As
can be seen from Tables 8 and 9, the manifold regularizer improves the performance in terms
of both the GS score as well as the FID score. The scores are calculated over 5 independent
runs, and the mean and the standard deviation are reported.

Appendix B. Proof of Theorem 4.1.

Theorem B.1. Let \^\scrD real and \^\scrD Gu be empirical versions with at least m samples each for

MR-GAN. There is a universal constant C such that when m \geq Cp \mathrm{l}\mathrm{o}\mathrm{g}(LL\phi p/\epsilon )(\Delta +4\lambda M2)2

\epsilon 2
, we

have, with probability at least 1 - exp(1 - p),D
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Table 8
GS (\times 1e - 3) and FID-like score for the SEM MR-DCGAN (\rho = 128).

\lambda 0.005 0.01 0.02 0.1 0
GS \downarrow 55.2 \pm 10.6 \bffour \bftwo .\bfzero \pm \bfnine .\bffour 62.0 \pm 10.6 61.0 \pm 5.6 144 \pm 3.6
FID \downarrow 52.0 \pm 2.0 \bffour \bfsix .\bfzero \pm \bfthree .\bftwo 48.0 \pm 2.9 53.3 \pm 3.7 54.4 \pm 2.9

Table 9
GS (\times 1e - 3) and FID-like score for the SEM MR-DCGAN (\rho = 1280).

\lambda 0.005 0.01 0.02 0.1 0
GS \downarrow 116 \pm 26.4 98.6 \pm 11.5 \bfseven \bfeight .\bftwo \pm \bfone \bfzero .\bfeight 129 \pm 23.3 144 \pm 3.6
FID \downarrow 61.6 \pm 4.2 \bffive \bfone .\bfnine \pm \bfzero .\bffive 57.8 \pm 4.0 56.7 \pm 2.0 54.4 \pm 2.9

| F (u, v) - \^F (u, v)| \leq \epsilon .(B.1)

Proof. Let \scrX be a finite set such that every point in \scrV is within distance \epsilon /8LL\phi of a
point in X (a so-called \epsilon /8LL\phi -net). Standard constructions give an X satisfying log | \scrX | \leq 
O(p log(LL\phi p/\epsilon )). For every v \in \scrX , by Hoeffding's inequality we know that

Pr
\Bigl( 
| f(\scrD real,\scrD Gu , v) - f( \^\scrD real, \^\scrD Gu , v)| \geq 

\epsilon 

4

\Bigr) 
\leq 2 exp

\Biggl( 
 - 

m2 \epsilon 2

16

m(2\Delta + 8\lambda M2)2

\Biggr) 

= 2 exp

\biggl( 
 - m\epsilon 2

32(\Delta + 4\lambda M2)2

\biggr) 
,(B.2)

where f(\scrD real,\scrD Gu , v) = Ex\sim \scrD real Ey\sim \scrD Gu
\phi (1 - Dv(y))+\lambda \| \nabla \scrM (\psi (y) - \psi (x)\| 2. Thus, we can

union bound over all v \in \scrX , for large enough constant C,

Pr
\Bigl( 
| f(\scrD real,\scrD Gu , v) - f( \^\scrD real, \^\scrD Gu , v)| \geq 

\epsilon 

4

\Bigr) 
\leq 2| \scrX | exp

\biggl( 
 - m\epsilon 2

32(\Delta + 4\lambda M2)2

\biggr) 
(B.3)

= exp

\biggl( 
log 2| \scrX |  - m\epsilon 2

32(\Delta + 4\lambda M2)2

\biggr) 
(B.4)

\leq exp

\biggl( 
Cp log(LL\phi p/\epsilon ) - 

m\epsilon 2

32(\Delta + 4\lambda M2)2

\biggr) 
.(B.5)

Choose m such that m \geq Cp \mathrm{l}\mathrm{o}\mathrm{g}(LL\phi p/\epsilon )(\Delta +4\lambda M2)2

\epsilon 2
, and thus, with high probability (at leat

1 - exp( - p)) we have | f(\scrD real,\scrD Gu , v) - f( \^\scrD real, \^\scrD Gu , v)| \leq \epsilon 
4 .

Now, for v \in \scrV and v\prime \in \scrX such that \| v  - v\prime \| \leq \epsilon /8LL\phi , we have

| f(\scrD real,\scrD Gu , v) - f( \^\scrD real, \^\scrD Gu , v)| 
\leq | f(\scrD real,\scrD Gu , v

\prime ) - f( \^\scrD real, \^\scrD Gu , v
\prime )| (B.6)

+ | f(\scrD real,\scrD Gu , v
\prime ) - f(\scrD real,\scrD Gu , v)| (B.7)D
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+ | f( \^\scrD real, \^\scrD Gu , v
\prime ) - f( \^\scrD real, \^\scrD Gu , v)| (B.8)

\leq \epsilon /4 + \epsilon /8 + \epsilon /8 = \epsilon /2.(B.9)

The value of \epsilon /8 results from Lipschitz continuity.
Similarly, we can bound

| E
x\sim \scrD real

\phi (Dv(x)) - E
x\sim \^\scrD real

\phi (Dv(x)) | \leq \epsilon /2(B.10)

with m \geq Cp \mathrm{l}\mathrm{o}\mathrm{g}(LL\phi p/\epsilon )\Delta 
2

\epsilon 2
.

Since F (u, v) = f(\scrD real,\scrD Gu , v) + Ex\sim \scrD real
\phi (Dv(x)), choose m such that

m \geq 
Cp log(LL\phi p/\epsilon )(\Delta + 4\lambda M2)2

\epsilon 2
,

and we have the desired result.

Appendix C. Proof of Theorem 4.2.

Theorem C.1. If the generator can approximate any point mass by Eh\sim \scrD h
[\| Gu(h) - x\| ] \leq \epsilon ,

there is a universal constant C > 0 such that for any \epsilon , there exist T =
C\Delta 2p \mathrm{l}\mathrm{o}\mathrm{g}(LL\prime L\phi p/\epsilon )

\epsilon 2

generators Gu1, . . . , GuT . Let \scrS u be a uniform distribution on ui, and D is a discriminator
that outputs 1/2; then (\scrS u, D) is an \epsilon -approximate equilibrium for MR-GAN.

Proof. We first prove the value of the function F (u, v) of the game at the equilibrium must
be equal to 2\phi (1/2). This strategy has payoff 2\phi (1/2) no matter what the generator does, so
V \geq 2\phi (1/2).

For the generator, we use the assumption that for any point x and any \epsilon > 0, there is a
generator (which we denote by Gx,\epsilon ) such that Eh\sim \scrD h

\| Gx,\epsilon (h) - x\| \leq \epsilon . Now for any \alpha > 0,
consider the following mixture of generators: sample x \sim \scrD real, then use the generator Gx,\alpha .
Let \scrD \alpha be the distribution generated by this mixture of generators. The Wasserstein distance
between \scrD \alpha and \scrD real is bounded by \alpha . Since the discriminator is L\prime -Lipschitz, it cannot
distinguish between \scrD \alpha and \scrD real. In particular we know for any discriminator Dv that

| E
y\sim \scrD \alpha 

[\phi (1 - Dv(y))] - E
x\sim \scrD real

[\phi (1 - Dv(x))]| \leq O(L\phi L
\prime \alpha ).(C.1)

Therefore,

max
v\in \scrV 

E
y\sim \scrD \alpha 

E
x\sim \scrD real

[\phi (Dv(x))] + [\phi (1 - Dv(y))] + \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2

\leq max
v\in \scrV 

E
y\sim \scrD \alpha 

E
x\sim \scrD real

 - \phi (1 - Dv(x)) + \phi (1 - Dv(y))

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2 +max
v\in \scrV 

E
x\sim \scrD real

\phi (Dv(x)) + \phi (1 - Dv(x))

\leq O(L\phi L
\prime \alpha ) + \lambda L2

\psi \alpha 
2 + 2\phi (1/2).(C.2)

Here the last step uses the assumption that \phi is concave. Therefore, the value is upper-
bounded by V \leq O(L\phi L

\prime \alpha ) + \lambda L2
\psi \alpha 

2 + 2\phi (1/2) for any \alpha . Taking limit of \alpha to 0, we have
V = 2\phi (1/2).D
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1216 LI ET AL.

The value of the game is 2\phi (1/2) in particular means the optimal discriminator cannot
do anything other than a random guess. Therefore, we will use a discriminator that outputs
1/2. Next we will construct the generator.

Let \{ \scrS \prime 
u,\scrS \prime 

v\} be the pair of optimal mixed strategies as in the theorem and V be the
optimal value. We will show that randomly sampling T generators from \scrS \prime 

u gives the desired
mixture with high probability.

Construct \epsilon /4LL\prime L\phi -nets \scrV for the parameters of the discriminator (for any v, v\prime \in \scrV , \| v - 
v\prime \| \leq \epsilon /4LL\prime L\phi ). By standard construction, the sizes of these \epsilon -nets satisfy log | \scrV | \leq 
C \prime p log(LL\prime L\phi p/\epsilon ) for some constant C \prime . Let u1, . . . , uT be independent samples from \scrS \prime 

u.
By Hoeffding's inequality, for any v \in \scrV , we know that

P

\Biggl( 
E

i\in [T ]
F (ui, v) - E

u\in \scrU 
F (u, v) \geq \epsilon 

2

\Biggr) 
\leq exp

\Biggl( 
 - 
2T 2 \epsilon 2

4

T4\Delta 2

\Biggr) 

= exp

\biggl( 
 - T\epsilon 2

8\Delta 2

\biggr) 
.(C.3)

Now for all v \in \scrV , with union bound, we have

\forall v \in \scrV , P

\Biggl( 
E

i\in [T ]
F (ui, v) - E

u\in \scrU 
F (u, v) \geq \epsilon 

2

\Biggr) 

\leq | \scrV | exp
\biggl( 
 - T\epsilon 2

8\Delta 2

\biggr) 
\leq exp

\biggl( 
C \prime p log(LL\prime L\phi p/\epsilon ) - 

T\epsilon 2

8\Delta 2

\biggr) 
.(C.4)

Thus, when T =
C\Delta 2p \mathrm{l}\mathrm{o}\mathrm{g}(LL\prime L\phi p/\epsilon )

\epsilon 2
and C \geq 8C \prime , with high probability,

E
i\in [T ]

F (ui, v) \leq E
u\in \scrU 

F (u, v) +
\epsilon 

2
.(C.5)

By construction of the net, we have \| v  - v\prime \| \leq \epsilon 
4LL\prime L\phi 

. It is easy to find that F (u, v) is

2LL\prime L\phi -Lipschitz with respect to v, and therefore,

E
i\in [T ]

F (ui, v
\prime ) \leq E

i\in [T ]
F (ui, v) + 2LL\prime L\phi 

\epsilon 

4LL\prime L\phi 

= E
i\in [T ]

F (ui, v) +
\epsilon 

2
.(C.6)

Together with the inequality (C.5), we obtain

\forall v\prime \in \scrV , E
i\in [T ]

F (ui, v
\prime ) \leq 2\phi (1/2) + \epsilon .(C.7)

This means the mixture of generators can win against any discriminator. By probabilistic
argument, we know there must exist such generators. The discriminator (outputs 1/2) obvi-
ously achieves value V no matter what the generator is. Therefore, we get an approximate
equilibrium.D
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Appendix D. Proof of Theorem 4.3.

Theorem D.1. The dynamical system defined by the MR-GAN objective in (3.2) and the
updates in (4.9) is locally exponentially stable with respect to an equilibrium point (u\ast , v\ast ).

Proof. To derive the Jacobian, we begin with subtly different algebraic form of the GAN
objective by

F (u, v) = E
x\sim \scrD real

\int 
\scrY 
(pu(y)[\phi Dv(x) + \phi (1 - Dv(y))]

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2)dy.(D.1)

Thus, we have the following form of the dynamic ODE system:

\.u =  - \partial F (u, v)
\partial u

=  - E
x\sim \scrD real

\int 
\scrY 
(\nabla upu(y)\phi (1 - Dv(y))

+ \lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2)dy(D.2)

\.v =
\partial F (u, v)

\partial v
= E

x\sim \scrD real

E
y\sim pu(y)

[\phi \prime Dv(x)\nabla vDv(x)

 - \phi \prime (1 - Dv(y))\nabla vDv(y)].(D.3)

The Jacobian matrix J consists of blocks as

J =

\biggl( 
Jvv Jvu
Juv Juu,

\biggr) 
.(D.4)

Then Jvv is

Jvv = \nabla 2
vF (u, v)

\bigm| \bigm| 
u=u\ast 
v=v\ast 

=
\partial \.v

\partial v

\bigm| \bigm| \bigm| \bigm| 
u=u\ast 
v=v\ast 

=
\partial \.v| u=u\ast 
\partial v

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.5)

=

\partial ( E
x\sim \scrD real

[\phi \prime Dv(x)\nabla vDv(x)

\partial v

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.6)

 - 
\partial ( E
x\sim \scrD real

[\phi \prime (1 - Dv(x))\nabla vDv(x)])

\partial v

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.7)

= E
x\sim \scrD real

\phi \prime \prime (Dv(x))\nabla vDv(x)\nabla T
vDv(x)

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.8)

+ E
x\sim \scrD real

\phi \prime (Dv(x))\nabla 2
vDv(x)

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.9)
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+ E
x\sim \scrD real

\phi \prime \prime (Dv(x))\nabla vDv(x)\nabla T
vDv(x)

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.10)

 - E
x\sim \scrD real

\phi \prime (Dv(x))\nabla 2
vDv(x)

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.11)

= 2\phi \prime \prime 
\biggl( 
1

2

\biggr) 
E

x\sim \scrD real

\nabla vDv(x)\nabla T
vDv(x)

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

.(D.12)

The matrix Jvu is

Jvu =
\partial \.v

\partial u

\bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

=
\partial \.v| v=v\ast 
\partial u

\bigm| \bigm| \bigm| \bigm| 
u=u\ast 

(D.13)

=
\partial 

\partial u
E

x\sim \scrD real

E
y\sim pu(y)

\biggl[ 
 - \phi \prime 

\biggl( 
1

2

\biggr) 
\nabla vDv(y)

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

(D.14)

=  - \phi \prime 
\biggl( 
1

2

\biggr) 
E

x\sim \scrD real

\int 
\scrY 
\nabla vDv(y)\nabla T

u pu(y)dy

\bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

.(D.15)

The matrix Juv is

Juv =
\partial \.u

\partial v

\bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

=
\partial \.u| u=u\ast 
\partial v

\bigm| \bigm| \bigm| \bigm| 
v=v\ast 

(D.16)

= - \partial 

\partial v
E

x\sim \scrD real

\int 
\scrY 
\nabla upu(y)[\phi (1 - Dv(x))]dy

\bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

(D.17)

= - E
x\sim \scrD real

\int 
\scrY 
\nabla upu(y)( - \phi \prime (1 - Dv(x)))\nabla T

vDv(x)dy

\bigm| \bigm| \bigm| \bigm| 
u=u\ast 
v=v\ast 

(D.18)

= \phi \prime (
1

2
) E
x\sim \scrD real

\int 
\scrY 
\nabla upu(y)\nabla T

vDv(x)dy

\bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

=  - Jvu.(D.19)

Now, to show that Juu is zero, we take any vector v that is a perturbation in the generator
space and show that vTJuu = 0. Here, we will use the limit definition of the derivative along
a particular direction v:

vT
\partial \.u

\partial u

\bigm| \bigm| \bigm| \bigm| 
u=u\ast ,v=v\ast 

= vT
\partial \.u| v = v\ast 

\partial u

\bigm| \bigm| \bigm| \bigm| 
u=u\ast 

(D.20)

= - lim
u - u\ast =\epsilon \bfv ,

\epsilon \rightarrow 0

E\scrD real

\int 
\scrY (\nabla upu(y)\phi (1 - Dv\ast (y)))dy

\epsilon 
(D.21)

 - lim
u - u\ast =\epsilon \bfv ,

\epsilon \rightarrow 0

E\scrD real

\int 
\scrY (\lambda \| \nabla \scrM (\psi (y) - \psi (x))\| 2)dy

\epsilon 
(D.22)

= - lim
u - u\ast =\epsilon \bfv ,

\epsilon \rightarrow 0

\int 
supp(\scrD real)

(\nabla upu(y)\phi (1 - Dv\ast (x))dy

\epsilon 
(D.23)

= - \phi 

\biggl( 
1

2

\biggr) 
lim

u - u\ast =\epsilon \bfv 
\epsilon \rightarrow 0

\nabla u

\int 
supp(\scrD real)

pu(y)dy

\epsilon 
= 0.(D.24)
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According to Lemma C.3 and Lemma G.2 in [31], the Jacobian matrix is full rank and
Hurwitz, and the training is locally exponentially stable.

Appendix E. Proof of Theorem 4.4.

Theorem E.1. The optimal one-dimensional embedding function \psi (x) exists and admits the
following representation:

\psi (x) =
m\sum 
i=1

\alpha iK(xi, x),(E.1)

where K : Rd \times Rd \rightarrow R is a Mercer kernel.

Proof. Consider samples yi and xi (same index i), i = 1, . . . ,m, are drawn from the gen-
erator and the real dataset; we use the empirical expressions. To find the optimal embedding
function \psi , we write the cost function for the generator:

min
u\in \scrU ,\psi 

1

m

\sum 
x\sim \scrD real,y\sim \scrD Gu

[\phi (1 - Dv(yi))

+ \lambda \| \nabla \scrM (\psi (yi) - \psi (xi))\| 2].(E.2)

By using the samples, any function \psi derived can be uniquely decomposed into a component
\psi \| in the linear space spanned by the kernel functions \{ K(xi, \cdot )\} mi=1 and a component \psi \bot 
orthogonal to it. Thus,

\psi = \psi \| + \psi \bot =

m\sum 
i=1

\alpha iK(xi, \cdot ) + \psi \bot .(E.3)

By the reproducing property, the evaluation of \psi on any data point xj is independent of the
orthogonal component \psi \bot :

\psi (xj) = \langle f,K(xj , \cdot )\rangle 

=

\Biggl\langle 
m\sum 
i=1

\alpha iK(xi, \cdot ),K(xj , \cdot )

\Biggr\rangle 
+ \langle \psi \bot ,K(xj , \cdot )\rangle .(E.4)

Since the second term zeros out and \langle (xi, \cdot ),K(xj , \cdot )\rangle = K(xi, xj), it follows that \psi (xj) =\sum m
i=1 \alpha iK(xi, xj).
Indeed, we find that

FLF T = \langle \psi (y), L\psi (y)\rangle  - 2\langle \psi (y), L\psi (x)\rangle + \langle \psi (x), L\psi (x)\rangle ,(E.5)

where F = [f1, f2, . . . , fm] and fi = \psi (yi)  - \psi (xi), \psi (x) = [\psi (x1), \psi (x2), . . . , \psi (xm)] and
\psi (y) = [\psi (y1), \psi (y2), . . . , \psi (ym)]. Hence, it can be further written with respect to L-norm as

FLF T =

m\sum 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

\alpha iK(xi, yj)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L

+

m\sum 
j=1

\| \psi \bot (yj)\| 2L

+
m\sum 
j=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

\alpha iK(xi, xj)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L

 - \langle (\psi \| (x), L\psi \bot (y)\rangle ,(E.6)
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where \psi \| (x) = [\psi \| (x1), \psi \| (x2), . . . , \psi \| (xm)] and \psi \| (y) = [\psi \| (y1), \psi \| (y2), . . . , \psi \| (ym)]. It fol-
lows that the optimal embedding function \psi of problem E.2 must have \psi \bot = 0. Therefore, it
admits a representation

\psi (x) =
m\sum 
i=1

\alpha iK(xi, x).(E.7)

Appendix F. Python code.
In this section, we provide a concise Python implementation for the manifold regularizer,

with the choice of pixel-space embedding function \psi (x) and the Gaussian heat kernel weight
\omega ij as given in (2.1).

1 import numpy as np

2 import torch

3 '''

4 The function kernel\.product provides the Gaussian heat kernel weight wij

for pixel -space embedding (x and y are two images , rho is the

Gaussian heat kernel coefficient).

5 '''

6

7 def kernel\.product(x,y,rho):

8 with torch.no\.grad ():

9 xmy = torch.sum((x-y)**2,(1,2,3))

10 K = torch.exp(-xmy/rho)

11 return torch.t(K)

12

13 '''

14 The following code snippet provides the manifold regularizer described in

(10), which can be readily added to the conventional generator loss

function during the backpropagation training process.

15

16 real: a batch of real images with batch size $n\.b$
17 fake: a batch of synthetic images with batch size $n\.b$ , produced by the

generator

18 '''

19 Wij = kernel\.product(real[:int(nb/2) ,:],real[int(nb/2):,:], rho)

20

21 latentloss = torch.sum((fake[:int(nb/2) ,:]-real[:int(nb/2) ,:]-fake[int(nb

/2):,:]+ real[int(nb/2):,:])**2,(1,2,3))

22

23 mrloss = lambda*torch.mean(Wij*latentloss)
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